1
|
Garypidou A, Ypsilantis K, Plakatouras JC, Garoufis A. Dual-Emissive Rectangular Supramolecular Pt(II)- p-Biphenyl with 4,4'-Bipyridine Derivative Metallacycles: Stepwise Synthesis and Photophysical Properties. Molecules 2023; 28:7261. [PMID: 37959681 PMCID: PMC10649779 DOI: 10.3390/molecules28217261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Mixed-ligand tetranuclear supramolecular coordination complexes (SCCs) of Pt(II)-p-biphenyl and bridging ligands derivatives of 4,4'-bypiridine (8)-(10), were synthesized and characterized. The SCCs were synthesized stepwise, starting from the Pt-p-biphenyl -Pt core. The crystal structure of complex {[Pt(2,2'-bpy)]4(μ-bph)2(μ-(4,4'-bpy)2}{PF6}4 (2,2'-bpy = 2,2'-bipyridine, bph = p-biphenyl and 4,4'-bpy = 4,4' bipyridine), was determined using single-crystal diffraction methods. The emission profile of the tetranuclear complexes (8)-(10) was influenced by the length of the bridging ligands and was found to depend on solvent polarity. Dual-emission patterns in methanol-water mixtures were observed only in the cases of complexes (9) and (10), attributed to aggregation-induced emission phenomena.
Collapse
Affiliation(s)
- Antonia Garypidou
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece; (A.G.); (K.Y.); (J.C.P.)
| | - Konstantinos Ypsilantis
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece; (A.G.); (K.Y.); (J.C.P.)
| | - John C. Plakatouras
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece; (A.G.); (K.Y.); (J.C.P.)
- Institute of Materials Science and Computing, University Research Centre of Ioannina (URCI), GR-45110 Ioannina, Greece
| | - Achilleas Garoufis
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece; (A.G.); (K.Y.); (J.C.P.)
- Institute of Materials Science and Computing, University Research Centre of Ioannina (URCI), GR-45110 Ioannina, Greece
| |
Collapse
|
2
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202209054. [DOI: 10.1002/anie.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sikun Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wenqiang Ma
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Long Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Shi Yu
- School of Materials Science & Engineering Chang'an University Xi'an Shaanxi 710064 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Lei Zhang
- School of Optoelectronic Engineering Xidian University Xi'an Shaanxi 710126 China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| |
Collapse
|
3
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sikun Zhang
- Xi'an Jiaotong University Frontier Institute of Science and Technology Xi'an CHINA
| | - Lingzhi Ma
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Wenqiang Ma
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Long Chen
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Kai Gao
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Shi Yu
- Chang'an University School of Materials Science & Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Lei Zhang
- Xidian University School of Optoelectronic Engineering CHINA
| | - Gang He
- Xi'an Jiaotong University Frontier Institute of Science and Technology No 99, Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
4
|
Zhao J, Zhou Z, Li G, Stang PJ, Yan X. Light-emitting self-assembled metallacages. Natl Sci Rev 2021; 8:nwab045. [PMID: 34691672 PMCID: PMC8288187 DOI: 10.1093/nsr/nwab045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 11/26/2022] Open
Abstract
Coordination-driven self-assembly of metallacages has garnered significant interest because of their 3D layout and cavity-cored nature. The well-defined, highly tunable metallacage structures render them particularly attractive for investigating the properties of luminophores, as well as for inducing novel photophysical characters that enable widespread applications. In this review, we summarize the recent advances in synthetic methodologies for light-emitting metallacages, and highlight some representative applications of these metallacages. In particular, we focus on the favorable photophysical properties—including high luminescence efficiency in various physical states, good modularity in photophysical properties and stimulus responsiveness—that have resulted from incorporating ligands displaying aggregation-induced emission (AIE) into metallacages. These features show that the synergy between carrying out coordination-driven self-assembly and using luminophores with novel photophysical characteristics like AIE could stimulate the development of supramolecular luminophores for applications in fields as diverse as sensing, biomedicine and catalysis.
Collapse
Affiliation(s)
- Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Shen Y, Xu C, Chen J, Guan Z, Huang Y, Zeng Z, Xu X, Tan X, Zhao C. Phototriggered Self-Adaptive Functionalized MOC-Based Drug Delivery Platform Promises High Antitumor Efficacy. Adv Healthc Mater 2021; 10:e2100676. [PMID: 34414688 DOI: 10.1002/adhm.202100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/23/2021] [Indexed: 11/10/2022]
Abstract
Due to their great stability and special cavities, metal-organic cages (MOCs) are increasingly considered as promising nanocarriers for drug delivery. However, the size and surface dilemmas restrict their further biomedical applications. The ultrasmall size of MOCs facilitates tumor penetration but suffers from quick clearance and poor accumulation at the tumor site. Hydrophobicity of MOC surfaces improves internalization into tumor cells while causing low blood circulation time as well as poor biocompatibility. Therefore, it remains challenging for the MOC-based drug delivery nanoplatform to realize high therapeutic efficacy because it requires different or even opposite dimensions and surface characteristics in different steps of circulation, penetration, accumulation, and internalization processes. In this study, an unprecedented phototriggered self-adaptive platform (ZnPc@polySCage) is developed by integrating functionalized MOCs and a photodynamic therapy based reactive oxygen species responsive strategy to realize high-efficiency tumor-specific therapy. ZnPc@polySCage remains hydrophilic and stealthy during circulation, and retains its small original size for tumor penetration, while transforming to a larger size for effective accumulation and hydrophobic for enhanced internalization under laser irradiation in tumor tissue. With these essential transitions, ZnPc@polySCage demonstrates prominent antitumor effects. Overall, the work provides an advantageous strategy for functional MOC-based platforms and biomedical applications.
Collapse
Affiliation(s)
- Yifeng Shen
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Congjun Xu
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Jie Chen
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Zilin Guan
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Zishan Zeng
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Xiaoyu Xu
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Xiaomin Tan
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
6
|
Bobylev EO, Poole Iii DA, de Bruin B, Reek JNH. Selective formation of Pt 12L 24 nanospheres by ligand design. Chem Sci 2021; 12:7696-7705. [PMID: 34168821 PMCID: PMC8188466 DOI: 10.1039/d1sc01295a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Supramolecular self-assemblies are used across various fields for different applications including their use as containers for catalysts, drugs and fluorophores. M12L24 spheres are among the most studied, as they offer plenty of space for functionalization, yielding systems with unique properties in comparison to their single components. Detailed studies on the formation of M12L24 structures using palladium cornerstones (that have generally dynamic coordination chemistry) aided in the development of synthetic protocols. The more robust platinum-based systems received thus far much less attention. The general use of platinum-based assemblies remains elusive as parameters and design principles of the ligand building blocks are not fully established. As platinum-based nanospheres are more robust due to the kinetically more stable nitrogen-platinum bond, we studied the sphere formation process in detail in order to develop descriptors for the formation of platinum-based nanospheres. In a systematic study, using time-dependent mass spectrometry, 1H-NMR and DOSY NMR, we identified new kinetically trapped intermediates during the formation of Pt12L24 spheres and we developed key parameters for selective formation of Pt12L24 spheres. Molecular mechanics calculations and experimental result support the importance of charge and steric bulk placed at the endo-site of the ditopic linker for selective sphere formation. Applicability of these principles is demonstrated by employing various ditopic ligands with different bend-angles for the synthesis of a range of Pt2L4, Pt3L6, Pt4L8 and Pt12L24 polyhedra with platinum cornerstones in excellent yields, thus paving the way for future applications of well-defined robust platinum nanospheres of different shapes and sizes with the general composition Pt n L2n .
Collapse
Affiliation(s)
- Eduard O Bobylev
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - David A Poole Iii
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
7
|
Wang X, Bai T, Chu T. A molecular design for a turn-off NIR fluoride chemosensor. J Mol Model 2021; 27:104. [PMID: 33686496 DOI: 10.1007/s00894-021-04716-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/23/2022]
Abstract
We designed a turn-off near-infrared fluorescent fluoride chemosensor NIR-BODIPY-Si through the density functional theory/time-dependent functional theory calculations. In the designed sensor, the tert-butyldimethylsilyloxy moiety responses to the fluoride-triggered desilylation process, and the BODIPY dye serves as fluorophore. The molecular design firstly showed that the possibility of photoinduced electron transfer is low/high in NIR-BODIPY-Si/NIR-BODIPY-O (the desilylation product), thus referring that the fluorescence sensing mechanism is a photoinduced electron transfer mechanism that quenched the sensor's fluorescence after detection of fluoride anions. Absorption and emission spectra further demonstrated that the designed sensor is a near-infrared chemosensor. The largest binding energy between NIR-BODIPY-Si and F- suggests that the sensor has an excellent selectivity to F- and the low barrier of the desilylation reaction accounts for the sensor's rapid response speed to F-. We also provided the synthetic routine for the molecule sensor, with the expectation that this molecular design can shed some light on the experimentally based design procedure.
Collapse
Affiliation(s)
- Xiaochen Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266235, People's Republic of China
| | - Tianxin Bai
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266235, People's Republic of China
| | - Tianshu Chu
- School of Physics, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
8
|
Jiao Y, Zuo Y, Yang H, Gao X, Duan C. Photoresponse within dye-incorporated metal-organic architectures. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Volbach L, Struch N, Bohle F, Topić F, Schnakenburg G, Schneider A, Rissanen K, Grimme S, Lützen A. Influencing the Self-Sorting Behavior of [2.2]Paracyclophane-Based Ligands by Introducing Isostructural Binding Motifs. Chemistry 2020; 26:3335-3347. [PMID: 31815311 PMCID: PMC7154700 DOI: 10.1002/chem.201905070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 11/30/2022]
Abstract
Two isostructural ligands with either nitrile (Lnit ) or isonitrile (Liso ) moieties directly connected to a [2.2]paracyclophane backbone with pseudo-meta substitution pattern have been synthesized. The ligand itself (Lnit ) or its precursors (Liso ) were resolved by HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum-chemical simulated and experimental electronic circular dichroism (ECD) spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf)2 ] differ in their composition: whereas Lnit forms dinuclear complexes, Liso exclusively forms trinuclear ones. Furthermore, they also differ in their chiral self-sorting behavior as (rac)-Liso undergoes exclusive social self-sorting leading to a heterochiral assembly, whereas (rac)-Liso shows a twofold preference for the formation of homochiral complexes in a narcissistic self-sorting manner as proven by ESI mass spectrometry and NMR spectroscopy. Interestingly, upon crystallization, these discrete aggregates undergo structural transformation to coordination polymers, as evidenced by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Lucia Volbach
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
| | - Niklas Struch
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
- current address: Arlanxeo Netherlands B.V.Urmonderbaan 246167 RDGeleenThe Netherlands
| | - Fabian Bohle
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstrasse 453115BonnGermany
| | - Filip Topić
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
- current address: Department of ChemistryMcGill University801 Sherbrooke St. WestMontrealQcH3A 0B8Canada
| | - Gregor Schnakenburg
- Institute of Inorganic ChemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
| | - Andreas Schneider
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
| | - Kari Rissanen
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstrasse 453115BonnGermany
| | - Arne Lützen
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
| |
Collapse
|
10
|
Li G, Zhou Z, Yuan C, Guo Z, Liu Y, Zhao D, Liu K, Zhao J, Tan H, Yan X. Trackable Supramolecular Fusion: Cage to Cage Transformation of Tetraphenylethylene‐Based Metalloassemblies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Chang Yuan
- Department of ChemistryBeijing Normal University Beijing 100050 P. R. China
| | - Zhewen Guo
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kai Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hongwei Tan
- Department of ChemistryBeijing Normal University Beijing 100050 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
11
|
Li G, Zhou Z, Yuan C, Guo Z, Liu Y, Zhao D, Liu K, Zhao J, Tan H, Yan X. Trackable Supramolecular Fusion: Cage to Cage Transformation of Tetraphenylethylene‐Based Metalloassemblies. Angew Chem Int Ed Engl 2020; 59:10013-10017. [DOI: 10.1002/anie.202000078] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/19/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Chang Yuan
- Department of ChemistryBeijing Normal University Beijing 100050 P. R. China
| | - Zhewen Guo
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kai Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hongwei Tan
- Department of ChemistryBeijing Normal University Beijing 100050 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
12
|
Sensing mechanism of a ratiometric near-infrared fluorescent chemosensor for cysteine hydropersulfide: Intramolecular charge transfer. Sci Rep 2020; 10:711. [PMID: 31959854 PMCID: PMC6971067 DOI: 10.1038/s41598-020-57631-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/21/2019] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown that the cysteine hydropersulfide (Cys-SSH) as the sulfur donor is crucial to sulfur-containing cofactors synthesis. Recently, a selective and sensitive near-infrared ratiometric fluorescent chemosensor Cy-DiSe has been designed and synthesized to detect Cys-SSH spontaneously. Herein, by means of the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) approaches, the sensing mechanism has been thoroughly explored. According to our calculations, the experimental data have been reproduced. The results indicate the intramolecular charge transfer (ICT) is the reason for changes in fluorescence wavelengths. Compared with the chemosensor Cy-DiSe, the larger energy gap of Cy induced by ICT mechanism leads to the blue-shift of the absorption and emission spectra, which guarantees that Cy-DiSe can become a ratiometric fluorescent chemosensor to detect Cys-SSH.
Collapse
|
13
|
Zhang X, Liu D, Lv F, Yu B, Shen Y, Cong H. Recent advances in ruthenium and platinum based supramolecular coordination complexes for antitumor therapy. Colloids Surf B Biointerfaces 2019; 182:110373. [DOI: 10.1016/j.colsurfb.2019.110373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/23/2019] [Accepted: 07/15/2019] [Indexed: 11/24/2022]
|
14
|
Zhu JL, Xu L, Ren YY, Zhang Y, Liu X, Yin GQ, Sun B, Cao X, Chen Z, Zhao XL, Tan H, Chen J, Li X, Yang HB. Switchable organoplatinum metallacycles with high quantum yields and tunable fluorescence wavelengths. Nat Commun 2019; 10:4285. [PMID: 31537803 PMCID: PMC6753206 DOI: 10.1038/s41467-019-12204-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
The preparation of fluorescent discrete supramolecular coordination complexes (SCCs) has attracted considerable attention within the fields of supramolecular chemistry, materials science, and biological sciences. However, many challenges remain. For instance, fluorescence quenching often occurs due to the heavy-atom effect arising from the Pt(II)-based building block in Pt-based SCCs. Moreover, relatively few methods exist for tuning of the emission wavelength of discrete SCCs. Thus, it is still challenging to construct discrete SCCs with high fluorescence quantum yields and tunable fluorescence wavelengths. Here we report nine organoplatinum fluorescent metallacycles that exhibit high fluorescence quantum yields and tunable fluorescence wavelengths through simple regulation of their photoinduced electron transfer (PET) and intramolecular charge transfer (ICT) properties. Moreover, 3D fluorescent films and fluorescent inks for inkjet printing were fabricated using these metallacycles. This work provides a strategy to solve the fluorescence quenching problem arising from the heavy-atom effect of Pt(II), and offers an alternative approach to tune the emission wavelengths of discrete SCCs in the same solvent. Fluorescent supramolecular coordination complexes are of interest for chemical sensing and optical devices. Here the authors synthesize nine organoplatinum metallacycles with high quantum yields, whose fluorescence wavelengths are tuned through manipulation of their photoinduced electron transfer and intramolecular charge transfer properties.
Collapse
Affiliation(s)
- Jun-Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China.
| | - Yuan-Yuan Ren
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Ying Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100050, China
| | - Xi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China.,Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Bin Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Xiaodan Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Zhuang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, 100050, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
15
|
Yan X, Wei P, Liu Y, Wang M, Chen C, Zhao J, Li G, Saha ML, Zhou Z, An Z, Li X, Stang PJ. Endo- and Exo-Functionalized Tetraphenylethylene M 12L 24 Nanospheres: Fluorescence Emission inside a Confined Space. J Am Chem Soc 2019; 141:9673-9679. [PMID: 31125220 PMCID: PMC6689230 DOI: 10.1021/jacs.9b03885] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intrinsic relationship between the properties of green fluorescent protein (GFP) and its encapsulated small molecular light machine has spurred many biomimicking studies, aiming at revealing the detailed mechanism and further promoting its wide applications in different disciplines. However, how to build a similar confined microenvironment to mimic the cavity of a β-barrel and the fluorescence turn-on process is a fundamental challenge for both chemists and biologists. Herein, two distinct exo- and endo-functionalized tetraphenylethylene (TPE)-based M12L24 nanospheres with precise distribution of anchored TPE moieties and unique photophysical properties were constructed by means of a coordination-driven self-assembly strategy. Under dilute conditions, the nanospheres fluoresce more strongly than the corresponding TPE subcomponents. Meanwhile, the endo-functionalized sphere is able to induce a higher local concentration and more restrained motion of the enclosed 24 TPE units compared with exo-functionalized counterpart and thus induces much stronger emission due to the restriction of the rotation of the pendant TPE units. The biomimetic methodology developed here represents a promising way to understand and construct artificial GFP materials on the platforms of supramolecular coordination complexes.
Collapse
Affiliation(s)
- Xuzhou Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peifa Wei
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Chuanshuang Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Manik Lal Saha
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Zhe An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
16
|
Bagdžiu̅nas G, Butkus E, Orentas E. Hierarchical Assembly toward Nanoparticles of a Chiral Palladium Supramolecular Complex Based on Bicyclo[3.3.1]nonane Framework. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gintautas Bagdžiu̅nas
- Department of Material Science and Electrical Engineering, Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius LT-10257, Lithuania
- Department of Organic Chemistry, Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko 24, Vilnius LT-03225, Lithuania
| | - Eugenijus Butkus
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Edvinas Orentas
- Department of Organic Chemistry, Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko 24, Vilnius LT-03225, Lithuania
| |
Collapse
|
17
|
Saha R, Devaraj A, Bhattacharyya S, Das S, Zangrando E, Mukherjee PS. Unusual Behavior of Donor–Acceptor Stenhouse Adducts in Confined Space of a Water-Soluble PdII8 Molecular Vessel. J Am Chem Soc 2019; 141:8638-8645. [DOI: 10.1021/jacs.9b03924] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anthonisamy Devaraj
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Soumik Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Structural controlled pure metallo-triangular assembly through bisterpyridinyl Dibenzo[b,d]thiophene, Dibenzo[b,d]furan and Dibenzo[b,d]carbazole. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
|
20
|
Datta S, Saha ML, Lahiri N, Yu G, Louie J, Stang PJ. Hierarchical Self-Assembly of a Water-Soluble Organoplatinum(II) Metallacycle into Well-Defined Nanostructures. Org Lett 2018; 20:7020-7023. [PMID: 30371089 PMCID: PMC6385591 DOI: 10.1021/acs.orglett.8b02925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A water-soluble metallosupramolecular hexagon containing pendant methyl viologen (MV) and trimethylammonium units at the vertices has been synthesized via an organoplatinum(II) ← pyridyl coordination-driven self-assembly reaction. The MV units of the metallacycle were further utilized in the formation of a heteroternary complex with cucurbit[8]uril and a galactose-functionalized naphthalene derivative, yielding a metallacycle-cored carbohydrate cluster that was subsequently ordered into nanospheres and tapes, depending upon the concentration.
Collapse
Affiliation(s)
- Sougata Datta
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Manik Lal Saha
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Nabajit Lahiri
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Guocan Yu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Janis Louie
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
21
|
Senapati S, Biswas S, Manna S, Ros R, Lindsay S, Zhang P. A Y-Shaped Three-Arm Structure for Probing Bivalent Interactions between Protein Receptor-Ligand Using AFM and SPR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6930-6940. [PMID: 29783836 DOI: 10.1021/acs.langmuir.8b00735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goal of this research was to develop linkage chemistry for the study of bivalent interactions between a receptor and its ligand using atomic force microscopy (AFM) and surface plasmon resonance (SPR). We conceived a three-arm structure composed of flexible chains connected to a large rigid core with orthogonal functional groups at their ends for formation and attachment (or immobilization) of bivalent ligands. To demonstrate the principle, we chose the well-known biotin-streptavidin interaction as a model system. On the basis of a crystal structure of the biotin-streptavidin complex, we designed and synthesized a bisbiotin ligand to have a Y shape with two biotin motifs on its arms for binding and a functional group on its stem for immobilization or attachment, referred to as y-bisbiotin. First, we found that the y-bisbiotin ligand stabilized the streptavidin more than its monobiotin counterpart did in solution, which indicates that the bivalent interaction was synergistic. The y-bisbiotin was attached to AFM tips through a click reaction for the force measurement experiments, which showed that unbinding the bisbiotin from streptavidin needed twice the force of unbinding a monobiotin. For the SPR study, we added a ω-thiolated alkyl chain to y-bisbiotin for its incorporation into a monolayer. The SPR data indicated that the streptavidin dissociated from a mixed monolayer bearing y-bisbiotin much slower than from the one bearing monobiotin. This work demonstrates unique chemistry for the study of bivalent interactions using AFM and SPR.
Collapse
|
22
|
Zhou Z, Liu J, Rees TW, Wang H, Li X, Chao H, Stang PJ. Heterometallic Ru-Pt metallacycle for two-photon photodynamic therapy. Proc Natl Acad Sci U S A 2018; 115:5664-5669. [PMID: 29760069 PMCID: PMC5984529 DOI: 10.1073/pnas.1802012115] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
As an effective and noninvasive treatment of various diseases, photodynamic therapy (PTD) relies on the combination of light, a photosensitizer, and oxygen to generate cytotoxic reactive oxygen species that can damage malignant tissue. Much attention has been paid to covalent modifications of the photosensitizers to improve their photophysical properties and to optimize the pathway of the photosensitizers interacting with cells within the target tissue. Herein we report the design and synthesis of a supramolecular heterometallic Ru-Pt metallacycle via coordination-driven self-assembly. While inheriting the excellent photostability and two-photon absorption characteristics of the Ru(II) polypyridyl precursor, the metallacycle also exhibits red-shifted luminescence to the near-infrared region, a larger two-photon absorption cross-section, and higher singlet oxygen generation efficiency, making it an excellent candidate as a photosensitizer for PTD. Cellular studies reveal that the metallacycle selectively accumulates in mitochondria and nuclei upon internalization. As a result, singlet oxygen generated by photoexcitation of the metallacycle can efficiently trigger cell death via the simultaneous damage to mitochondrial function and intranuclear DNA. In vivo studies on tumor-bearing mice show that the metallacycle can efficiently inhibit tumor growth under a low light dose with minimal side effects. The supramolecular approach presented in this work provides a paradigm for the development of PDT agents with high efficacy.
Collapse
Affiliation(s)
- Zhixuan Zhou
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL 33620
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China;
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112;
| |
Collapse
|
23
|
Saha R, Ghosh AK, Samajdar RN, Mukherjee PS. Self-Assembled Pd II6 Molecular Spheroids and Their Proton Conduction Property. Inorg Chem 2018; 57:6540-6548. [PMID: 29792418 DOI: 10.1021/acs.inorgchem.8b00668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of molecular spheroids (SP1-SP4) was synthesized using pseudolinear bisimidazole and bisbenzimidazole donors in combination with Pd(NO3)2 acceptor via coordination-driven self-assembly. They were characterized by NMR and mass spectrometry, and the solid-state structures of SP1 and SP3 were confirmed by X-ray diffraction. Crystal packing revealed the presence of molecular channels with water molecules in the channels as proton source. All the systems showed proton conductivity across a wide range of temperature and relative humidity. Furthermore, the mode of proton conduction in these molecular spheroids was explored by performing a control experiment using 2,4-dinitrophenol molecule, which indicates that the proton conductivity in the present case increases with increasing surface area of these molecular spheroids.
Collapse
|
24
|
Chen M, Wang J, Liu D, Jiang Z, Liu Q, Wu T, Liu H, Yu W, Yan J, Wang P. Highly Stable Spherical Metallo-Capsule from a Branched Hexapodal Terpyridine and Its Self-Assembled Berry-type Nanostructure. J Am Chem Soc 2018; 140:2555-2561. [DOI: 10.1021/jacs.7b10707] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mingzhao Chen
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jun Wang
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhilong Jiang
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qianqian Liu
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tun Wu
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Haisheng Liu
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Weidong Yu
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jun Yan
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Pingshan Wang
- Department of Organic and
Polymer Chemistry, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
25
|
Roberts DA, Pilgrim BS, Nitschke JR. Covalent post-assembly modification in metallosupramolecular chemistry. Chem Soc Rev 2018; 47:626-644. [DOI: 10.1039/c6cs00907g] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review examines the growing variety of covalent reactions used to achieve the post-assembly modification of self-assembled metallosupramolecular complexes.
Collapse
|
26
|
Govindarajan R, Nagarajaprakash R, Veena V, Sakthivel N, Manimaran B. One-pot reaction of amide functionalized Re(I) based dinuclear metallacycles: Synthesis, characterization and evaluation for anticancer potential. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Hauke CE, Oldacre AN, Fulong CRP, Friedman AE, Cook TR. Coordination-Driven Self-Assembly of Ruthenium Polypyridyl Nodes Resulting in Emergent Photophysical and Electrochemical Properties. Inorg Chem 2017; 57:3587-3595. [PMID: 29278500 DOI: 10.1021/acs.inorgchem.7b02657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ruthenium polypyridyl complexes are among the most studied molecular species for photochemical applications such as light-harvesting and photocatalysis, with [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) serving as an iconic example. We report the use of the [Ru(bpy)2]2+ fragment as a 90° acceptor tecton (M) in coordination-driven self-assembly to synthesize a M4L4 metallacycle (L = 4,4'-bipyridine) and a M6L4 truncated tetrahedral cage [L = 2,4,6-tris(4-pyridyl)-1,3,5-triazine]. The M6L4 cage possesses emergent properties attributed to its unique electronic structure, which results in increased visible-light absorption and an emission band that decays biexponentially with times of 3 and 790 ns. The presence of multiple ruthenium centers in the cage results in multiple RuIII/II reduction events, with a cathodic shift of the first reduction relative to that of [Ru(bpy)3]Cl2 (0.56 V vs 1.05 V). The ligand-centered reduction shifts anodically (-1.29 vs -1.64 V) versus the first bpy reduction observed in the parent [Ru(bpy)3]Cl2. The photophysical properties are explained by the existence of two localized charge-transfer states in the cage molecule: one that draws upon the bipyridine π* orbitals and the other upon the 2,4,6-tris(4-pyridyl)-1,3,5-triazine π* orbitals.
Collapse
|
28
|
Mononuclear half-sandwich iridium and rhodium complexes through C‒H activation: Synthesis, characterization and catalytic activity. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Zhang Y, Fulong CRP, Hauke CE, Crawley MR, Friedman AE, Cook TR. Photophysical Enhancement of Triplet Emitters by Coordination-Driven Self-Assembly. Chemistry 2017; 23:4532-4536. [PMID: 28191708 DOI: 10.1002/chem.201700614] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 01/06/2023]
Abstract
The quantum yields of organic fluorophores used as donors in coordination-driven self-assembly often suffer from the heavy atom effect of nearby metal sites. Here, the role of intersystem crossing from a deactivating process to one that delivers emissive triplet states was reversed. A phosphorescent trans bis-N-heterocyclic carbene platinum(II) compound, Pt(dhim)2 (C≡C-4-py)2 (D1; dhim=1,3-dihexyl-2-H-imidazol-2-ylidene), was used along with other linear donors 4,4'-bipyridine (D2) and 1,4-bis(4-pyridyl ethynyl)benzene (D3) in self-assembly reactions with Pt(dtbpy)X2 acceptors (dtbpy=4,4'-di-tert-butyl-2,2'-bipyridine) to afford three metallacycles. Photophysical investigations revealed that, although the building blocks used to construct M1 have relatively low quantum yields (Φ=1.2 and <1 % for D1 and 2, respectively), the metallacycle has a quantum yield of 14 %. This increase reflects a change in radiative rate constant from 3.6×104 s-1 for D1 to 2.1×105 s-1 for M1.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Cressa Ria P Fulong
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Cory E Hauke
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Alan E Friedman
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| |
Collapse
|
30
|
Roy B, Saha R, Ghosh AK, Patil Y, Mukherjee PS. Versatility of Two Diimidazole Building Blocks in Coordination-Driven Self-Assembly. Inorg Chem 2017; 56:3579-3588. [DOI: 10.1021/acs.inorgchem.7b00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bijan Roy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Aloke Kumar Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Yogesh Patil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
31
|
Dzhardimalieva GI, Uflyand IE. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers. Dalton Trans 2017; 46:10139-10176. [DOI: 10.1039/c7dt01916e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic methodologies, physico-chemical peculiarities, properties, and structure of metal chelate dendrimers and star and hyperbranched polymers are considered.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
32
|
Zhang S, Geng Y, Fan Y, Duan W, Deng K, Zhao D, Zeng Q. Two-dimensional (2D) self-assembly of oligo(phenylene-ethynylene) molecules and their triangular platinum(ii) diimine complexes studied using STM. Phys Chem Chem Phys 2017; 19:31284-31289. [DOI: 10.1039/c7cp06154d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of a series of cyclic oligo(phenylene-ethynylene) (OPE) molecules and their triangular Pt(ii) diimine complexes were studied using scanning tunneling microscope (STM).
Collapse
Affiliation(s)
- Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Yanfang Geng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Yuanpeng Fan
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
| | - Wubiao Duan
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing
- P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| |
Collapse
|
33
|
Biswas S, Dolai M, Dutta A, Ali M. Synthesis, structural characterization and DFT calculation on a square-planar Ni(II) complex of a compartmental Schiff base ligand. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Saha ML, Yan X, Stang PJ. Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications. Acc Chem Res 2016; 49:2527-2539. [PMID: 27736060 DOI: 10.1021/acs.accounts.6b00416] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past couple of decades, coordination-driven self-assembly has evolved as a broad multidisciplinary domain that not only covers the syntheses of aesthetically pleasing supramolecular architectures but also emerges as a method to form new optical materials, chemical sensors, theranostic agents, and compounds with light-harvesting and emissive properties. The majority of these applications depend upon investigations that reveal the photophysical nature and electronic structure of supramolecular coordination complexes (SCCs), including two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages. As such, well-defined absorption and emission spectra are important for a given SCC to be used for sensing, bioimaging, and other applications with molecular fluorescence being an important component. In this Account, we summarize the photophysical properties of some bis(phosphine)organoplatinum(II) compounds and their discrete SCCs. The platinum(II) based organometallic precursors typically display spectral red-shifts and have low fluorescence quantum yields and short fluorescence lifetimes compared to their organic counterparts because the introduction of metal centers enhances both intersystem crossing (ISC) and intramolecular charge transfer (ICT) processes, which can compete with the fluorescence emissions. Likewise ligands with conjugation can also increase the ICT process; hence the corresponding organoplatinum(II) compounds undergo a further decrease in fluorescence lifetimes. The use of endohedral amine functionalized 120°-bispyridyl ligands can dramatically enhance the emission properties of the resultant organoplatinum(II) based SCCs. As such these SCCs display emissions in the visible region (ca. 400-500 nm) and are significantly red-shifted (ca. 80-100 nm) compared to the ligands. This key feature makes them suitable as supramolecular theranostic agents wherein these unique emission properties provide diagnostic spectroscopic handles and the organoplatinum(II) centers act as potential anticancer agents. Using steady state and time-resolved-spectroscopic techniques and quantum computations in concert, we have determined that the emissive properties stem from the ligand-centered transitions involving π-type molecular orbitals with modest contributions from the metal-based orbitals. The self-assembly and the photophysics of organoplatinum(II) ← 3-substituted pyridyl based SCCs are highly diverse. Subtle changes in the ligands' structures can form molecular congener systems with distinct conformational and photophysical properties. Furthermore, the heterometallic SCCs described herein possess rich photophysical properties and can be used for sensing based applications. Tetraphenylethylene (TPE) based SCCs display emissions in the aggregated state as well as in dilute solutions. This is a unique phenomenon that bridges the aggregation caused quenching (ACQ) and aggregation induced emission (AIE) effects. Moreover, a TPE based metallacage exhibits solvatoluminescence, including white light emission in THF solvent, and can act as a fluorescence-sensor for structurally similar ester compounds.
Collapse
Affiliation(s)
- Manik Lal Saha
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Xuzhou Yan
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Peter J. Stang
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
35
|
Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages. Sci Rep 2016; 6:29476. [PMID: 27404912 PMCID: PMC4941399 DOI: 10.1038/srep29476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/20/2016] [Indexed: 01/03/2023] Open
Abstract
Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.
Collapse
|
36
|
Fan WJ, Sun B, Ma J, Li X, Tan H, Xu L. Coordination-Driven Self-Assembly of Carbazole-Based Metallodendrimers with Generation-Dependent Aggregation-Induced Emission Behavior. Chemistry 2015. [DOI: 10.1002/chem.201501282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Bright Fluorescence and Host-Guest Sensing with a Nanoscale M4L6Tetrahedron Accessed by Self-Assembly of Zinc-Imine Chelate Vertices and Perylene Bisimide Edges. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501670] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Frischmann PD, Kunz V, Würthner F. Bright Fluorescence and Host-Guest Sensing with a Nanoscale M4L6Tetrahedron Accessed by Self-Assembly of Zinc-Imine Chelate Vertices and Perylene Bisimide Edges. Angew Chem Int Ed Engl 2015; 54:7285-9. [DOI: 10.1002/anie.201501670] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 11/11/2022]
|
39
|
Cook TR, Stang PJ. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem Rev 2015; 115:7001-45. [DOI: 10.1021/cr5005666] [Citation(s) in RCA: 1299] [Impact Index Per Article: 129.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Timothy R. Cook
- Department
of Chemistry, University at Buffalo, State University of New York, 359 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Peter J. Stang
- Department
of Chemistry, University of Utah, 315 S. 1400 E. Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
40
|
Fan Y, Zhao D. Triangular platinum(II) metallacycles: syntheses, photophysics, and nonlinear optics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6162-6171. [PMID: 25738555 DOI: 10.1021/am509074m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three triangular platinum(II) diimine metallacycles incorporating large cyclic oligo(phenylene-ethynylene) (OPE) bisacetylide ligands are synthesized, and their photophysical properties are studied. Two types of triplet excited states with ligand/metal-to-ligand charge-transfer and acetylide-ligand-centered characteristics respectively, are exhibited by these complexes depending on the size (conjugation length) and electronic features of the cyclic OPE ligands. When the energy levels of the two excited states are close to each other, the lowest triplet state is found to switch between the two in varied solvents, resulting from their relative energy inversion induced by solvent polarity change. Density functional theory and time-dependent density functional theory calculations provide corroborative evidence for such experimental conclusions. More importantly, the designed metallacycles show impressive two-photon absorption (2PA) and two-photon excitation phosphorescing abilities, and the 2PA cross section reaches 1020 GM at 680 nm and 670 GM at 1040 nm by two different metallacycles. Additionally, pronounced reverse saturable absorptions are observed with these metallacycles by virtue of their strong transient triplet-state absorptions.
Collapse
Affiliation(s)
- Yuanpeng Fan
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry, Center for Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry, Center for Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Karakostas N, Kaloudi-Chantzea A, Martinou E, Seintis K, Pitterl F, Oberacher H, Fakis M, Kallitsis JK, Pistolis G. Energy transfer within self-assembled cyclic multichromophoric arrays based on orthogonally arranged donor–acceptor building blocks. Faraday Discuss 2015; 185:433-54. [DOI: 10.1039/c5fd00083a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein present the coordination-driven supramolecular synthesis and photophysics of a [4+4] and a [2+2] assembly, built up by alternately collocated donor–acceptor chromophoric building blocks based, respectively, on the boron dipyrromethane (Bodipy) and perylene bisimide dye (PBI). In these multichromophoric scaffolds, the intensely absorbing/emitting dipoles of the Bodipy subunit are, by construction, cyclically arranged at the corners and aligned perpendicular to the plane formed by the closed polygonal chain comprising the PBI units. Steady-state and fs time-resolved spectroscopy reveal the presence of efficient energy transfer from the vertices (Bodipys) to the edges (PBIs) of the polygons. Fast excitation energy hopping – leading to a rapid excited state equilibrium among the low energy perylene-bisimide chromophores – is revealed by fluorescence anisotropy decays. The dynamics of electronic excitation energy hopping between the PBI subunits was approximated on the basis of a theoretical model within the framework of Förster energy transfer theory. All energy-transfer processes are quantitatively describable with Förster theory. The influence of structural deformations and orientational fluctuations of the dipoles in certain kinetic schemes is discussed.
Collapse
Affiliation(s)
- Nikolaos Karakostas
- NCSR “Demokritos”
- Institute of Nanosciences and Nanotechnology (INN)
- 153 10 Athens
- Greece
| | | | - Elisabeth Martinou
- NCSR “Demokritos”
- Institute of Nanosciences and Nanotechnology (INN)
- 153 10 Athens
- Greece
| | - Kostas Seintis
- Department of Physics
- University of Patras
- 26500 Patras
- Greece
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics
- Innsbruck Medical University
- 6020 Innsbruck
- Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics
- Innsbruck Medical University
- 6020 Innsbruck
- Austria
| | - Mihalis Fakis
- Department of Physics
- University of Patras
- 26500 Patras
- Greece
| | | | - George Pistolis
- NCSR “Demokritos”
- Institute of Nanosciences and Nanotechnology (INN)
- 153 10 Athens
- Greece
| |
Collapse
|
42
|
Abstract
The development of novel antitumor agents that have high efficacy in suppressing tumor growth, have low toxicity to nontumor tissues, and exhibit rapid localization in the targeted tumor sites is an ongoing avenue of research at the interface of chemistry, cancer biology, and pharmacology. Supramolecular metal-based coordination complexes (SCCs) have well-defined shapes and geometries, and upon their internalization, SCCs could affect multiple oncogenic signaling pathways in cells and tissues. We investigated the uptake, intracellular localization, and antitumor activity of two rhomboidal Pt(II)-based SCCs. Laser-scanning confocal microscopy in A549 and HeLa cells was used to determine the uptake and localization of the assemblies within cells and their effect on tumor growth was investigated in mouse s.c. tumor xenograft models. The SCCs are soluble in cell culture media within the entire range of studied concentrations (1 nM-5 µM), are nontoxic, and showed efficacy in reducing the rate of tumor growth in s.c. mouse tumor xenografts. These properties reveal the potential of Pt(II)-based SCCs for future biomedical applications as therapeutic agents.
Collapse
|
43
|
Attachment of Luminescent Neutral “Pt(pq)(C≡CtBu)” Units to Di and Tri N-Donor Connecting Ligands: Solution Behavior and Photophysical Properties. INORGANICS 2014. [DOI: 10.3390/inorganics2040565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
44
|
Kayano T, Takayasu S, Sato K, Shinozaki K. Luminescence color tuning of Pt(II) complexes and a kinetic study of trimer formation in the photoexcited state. Chemistry 2014; 20:16583-9. [PMID: 25327871 DOI: 10.1002/chem.201403789] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 11/09/2022]
Abstract
We investigated the luminescence properties and color tuning of [Pt(dpb)Cl] (dpbH=1,3-di(2-pyridyl)benzene) and its analogues. An almost blue emission was obtained for the complex [Pt(Fmdpb)CN] (FmdpbH=4-fluoro-1,3-di(4-methyl-2-pyridyl)benzene), modified by the introduction of F and CH3 groups to the dpb ligand and the substitution of Cl by CN. As the concentration of the solution was increased, the color of the emission varied from blue to white to orange. The color change resulted from a monomer-excimer equilibrium in the excited state. A broad emission spectrum around 620 nm was clearly detected along with a structured monomer emission around 500 nm. Upon further increases in concentration, another broad peak appeared in the longer wavelength region of the spectrum. We assigned the near-infrared band to the emission from an excited trimer generated by the reaction of the excimer with the ground-state monomer. The emission lifetimes of the monomer, dimer, and trimer were evaluated as τM =12.8 μs, τD =2.13 μs, and τT =0.68 μs, respectively, which were sufficiently long to allow association with another Pt(II) complex and dissociation into a lower order aggregate. Based on equilibrium constants determined from a kinetic study, the formation of the excimer and the excited trimer were concluded to be exothermic processes, with ΔG*D =-24.5 kJ mol(-1) and ΔG*T =-20.4 kJ mol(-1) respectively, at 300 K.
Collapse
Affiliation(s)
- T Kayano
- Department of Materials System Science, Graduate School of Nanobiosystem Sciences, Yokohama City University, 22-2 Seto, Yokohama, 236-0027 (Japan), Fax: (+81) 45-787-2413
| | | | | | | |
Collapse
|
45
|
Hosseini-Monfared H, Alavi S, Mayer P. A novel homodinuclear manganese(III) complex with N,N′-bis(salicylidene)diethylenetriamine: Synthesis, structure and catalytic activity. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Desmarets C, Gontard G, Cooksy AL, Rager MN, Amouri H. Encapsulation of a Metal Complex within a Self-Assembled Nanocage: Synergy Effects, Molecular Structures, and Density Functional Theory Calculations. Inorg Chem 2014; 53:4287-94. [DOI: 10.1021/ic402539x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Christophe Desmarets
- Institut Parisien
de Chimie Moléculaire (IPCM), UMR 8232, Sorbonne Universités, Université Paris 06, Université Pierre et Marie Curie (UPMC), 4 place Jussieu, 75252 Paris Cedex 05, France
- IPCM, UMR 8232, Centre National de la Recherche Scientifique (CNRS), 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Geoffrey Gontard
- Institut Parisien
de Chimie Moléculaire (IPCM), UMR 8232, Sorbonne Universités, Université Paris 06, Université Pierre et Marie Curie (UPMC), 4 place Jussieu, 75252 Paris Cedex 05, France
- IPCM, UMR 8232, Centre National de la Recherche Scientifique (CNRS), 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Andrew L. Cooksy
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San
Diego California 92182-1030, United States
| | - Marie Noelle Rager
- Institut de Recherche de Chimie Paris, CNRS−Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Hani Amouri
- Institut Parisien
de Chimie Moléculaire (IPCM), UMR 8232, Sorbonne Universités, Université Paris 06, Université Pierre et Marie Curie (UPMC), 4 place Jussieu, 75252 Paris Cedex 05, France
- IPCM, UMR 8232, Centre National de la Recherche Scientifique (CNRS), 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
47
|
Yao ZJ, Yu WB, Lin YJ, Huang SL, Li ZH, Jin GX. Iridium-Mediated Regioselective B–H/C–H Activation of Carborane Cage: A Facile Synthetic Route to Metallacycles with a Carborane Backbone. J Am Chem Soc 2014; 136:2825-32. [DOI: 10.1021/ja4115665] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zi-Jian Yao
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Material, Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Wei-Bin Yu
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Material, Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Material, Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Sheng-Li Huang
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Material, Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Zhen-Hua Li
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Material, Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Material, Department
of Chemistry, Fudan University, Shanghai 200433, P. R. China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Science, Shanghai 200032, P. R. China
| |
Collapse
|
48
|
Lewis JEM, Elliott ABS, McAdam CJ, Gordon KC, Crowley JD. ‘Click’ to functionalise: synthesis, characterisation and enhancement of the physical properties of a series of exo- and endo-functionalised Pd2L4nanocages. Chem Sci 2014. [DOI: 10.1039/c4sc00434e] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Facile CuAAC ‘click’ chemistry has been utilised toexo-functionalise Pd2L4host nanocages with electrochemically active, emissive and solubilising groups.
Collapse
Affiliation(s)
| | - Anastasia B. S. Elliott
- Department of Chemistry
- University of Otago
- Dunedin, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- New Zealand
| | - C. John McAdam
- Department of Chemistry
- University of Otago
- Dunedin, New Zealand
| | - Keith C. Gordon
- Department of Chemistry
- University of Otago
- Dunedin, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- New Zealand
| | | |
Collapse
|
49
|
Xu L, Chen LJ, Yang HB. Recent progress in the construction of cavity-cored supramolecular metallodendrimers via coordination-driven self-assembly. Chem Commun (Camb) 2014; 50:5156-70. [DOI: 10.1039/c3cc47484d] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Chatelet B, Gornitzka H, Dufaud V, Jeanneau E, Dutasta JP, Martinez A. Superbases in Confined Space: Control of the Basicity and Reactivity of the Proton Transfer. J Am Chem Soc 2013; 135:18659-64. [DOI: 10.1021/ja409444s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bastien Chatelet
- Laboratoire
de Chimie, École Normale Supérieure de
Lyon, CNRS, UCBL, 46 Allée d’Italie, F-69364 Lyon, France
| | - Heinz Gornitzka
- Laboratoire de
Chimie de Coordination du CNRS, 205
Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Véronique Dufaud
- Laboratoire de
Chimie, Catalyse, Polymère, Procédés (C2P2),
Université de Lyon, CNRS, Université Claude Bernard
Lyon1, CPE Lyon, 43 Boulevard du 11
Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Erwann Jeanneau
- Centre de Diffractométrie
Henri Longchambon, Universite Claude Bernard Lyon 1, Site CLEA—Bâtiment ISA, 5 Rue de
La Doua, F-69100 Villeurbanne, France
| | - Jean-Pierre Dutasta
- Laboratoire
de Chimie, École Normale Supérieure de
Lyon, CNRS, UCBL, 46 Allée d’Italie, F-69364 Lyon, France
| | - Alexandre Martinez
- Laboratoire
de Chimie, École Normale Supérieure de
Lyon, CNRS, UCBL, 46 Allée d’Italie, F-69364 Lyon, France
| |
Collapse
|