1
|
Ye Z, Shen B, Kang D, Huang J, Wang Z, Wahl CB, Shin D, Huang L, Shen J, Wolverton CM, Mirkin CA. Using Surface Composition and Energy to Control the Formation of Either Tetrahexahedral or Hexoctahedral High-Index Facet Nanostructures. J Am Chem Soc 2024; 146:13519-13526. [PMID: 38701368 DOI: 10.1021/jacs.4c03088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
High-index facet nanoparticles with structurally complex shapes, such as tetrahexahedron (THH) and hexoctahedron (HOH), represent a class of materials that are important for catalysis, and the study of them provides a fundamental understanding of the relationship between surface structures and catalytic properties. However, the high surface energies render them thermodynamically unfavorable compared to low-index facets, thereby making their syntheses challenging. Herein, we report a method to control the shape of high-index facet Cu nanoparticles (either THH with {210} facets or HOH with {421} facets) by tuning the facet surface energy with trace amounts of Te atoms. Density functional theory (DFT) calculations reveal that the density of Te atoms on Cu nanoparticles can change the relative stability of the high-index facets associated with either the THH or HOH structures. By controlling the annealing conditions and the rate of Te dealloying from CuTe nanoparticles, the surface density of Te atoms can be deliberately adjusted, which can be used to force the formation of either THH (higher surface Te density) or HOH (lower surface Te density) nanoparticles.
Collapse
Affiliation(s)
- Zihao Ye
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Bo Shen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Dohun Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jin Huang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Zhe Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Carolin B Wahl
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Donghoon Shin
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Liliang Huang
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiahong Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher M Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Moon JH, Oh E, Koo TM, Jeon YS, Jang YJ, Fu HE, Ko MJ, Kim YK. One-Step Electrochemical Synthesis of Multiyolk-Shell Nanocoils for Exceptional Photocatalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312214. [PMID: 38190643 DOI: 10.1002/adma.202312214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Multiyolk-shell (mYS) nanostructures have garnered significant interest in various photocatalysis applications such as water splitting and waste treatment. Nonetheless, the complexity and rigorous conditions for the synthesis have hindered their widespread implementation. This study presents a one-step electrochemical strategy for synthesizing multiyolk-shell nanocoils (mYSNC), wherein multiple cores of noble metal nanoparticles, such as Au, are embedded within the hollow coil-shaped FePO4 shell structures, mitigating the challenges posed by conventional methods. By capitalizing on the dissimilar dissolution rates of bimetallic alloy nanocoils in an electrochemically programmed solution, nanocoils of different shapes and materials, including two variations of mYSNCs are successfully fabricated. The resulting Au-FePO4 mYSNCs exhibit exceptional photocatalytic performance for environmental remediation, demonstrating up to 99% degradation of methylene blue molecules within 50 min and 95% degradation of tetracycline within 100 min under ultraviolet-visible (UV-vis) light source. This remarkable performance can be attributed to the abundant electrochemical active sites, internal voids facilitating efficient light harvesting with coil morphology, amplified localized surface plasmon resonance (LSPR) at the plasmonic nanoparticle-semiconductor interface, and effective band engineering. The innovative approach utilizing bimetallic alloys demonstrates precise geometric control and design of intricate multicomponent hybrid composites, showcasing the potential for developing versatile hollow nanomaterials for catalytic applications.
Collapse
Affiliation(s)
- Jun Hwan Moon
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eunsoo Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Sang Jeon
- Institute of Engineering Research, Korea University, Seoul, 02841, Republic of Korea
| | - Young Jun Jang
- Department of Semiconductor Systems Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Chen G, Li R, Huang L. Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts. NANOSCALE 2023; 15:13909-13931. [PMID: 37581402 DOI: 10.1039/d3nr02475j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Photochemical deposition has been attracting increasing attention for preparing nano-catalysts due to its mild reaction conditions, simplicity, green and safe characteristics, and potential for various applications in photocatalysis, thermal catalysis, and electrocatalysis. In this review, we provide an overview of recent advances in photochemical deposition methods for fabricating heterogeneous catalysts, and summarize the factors that influence the nucleation and growth of metal nanoparticles during the photochemical process. Specifically, we focus on the various factors including surface defects, crystal facets, surface properties and the surface plasmon effect on the size, morphology and distribution control of metal and metal oxide nanoparticles on semiconductors. The control of the photogenerated charges and the triggered photochemical reactions have been proved to be significant in the photochemical deposition process. Besides, the applications of the obtained catalytic materials in thermal catalysis and electrocatalysis is highlighted, considering that many reviews have covered photocatalysis applications. We first introduce the principle of photodeposition, nucleation and growth theory, and factors affecting photodeposition. Then, we introduce photodeposition methods that can achieve "controlled" photodeposition from a strategic perspective. Finally, we summarize the fruitful results of controlled photodeposition and provide future prospects for the development of controlled photodeposition technologies and methods, as well as the deepening and expansion of applications.
Collapse
Affiliation(s)
- Guoli Chen
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
5
|
Mashiach R, Avram L, Bar-Shir A. Diffusion 19F-NMR of Nanofluorides: In Situ Quantification of Colloidal Diameters and Protein Corona Formation in Solution. NANO LETTERS 2022; 22:8519-8525. [PMID: 36255401 PMCID: PMC9650773 DOI: 10.1021/acs.nanolett.2c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The NMR-detectability of elements of organic ligands that stabilize colloidal inorganic nanocrystals (NCs) allow the study of their diffusion characteristics in solutions. Nevertheless, these measurements are sensitive to dynamic ligand exchange and often lead to overestimation of diffusion coefficients of dispersed colloids. Here, we present an approach for the quantitative assessment of the diffusion properties of colloidal NCs based on the NMR signals of the elements of their inorganic cores. Benefiting from the robust 19F-NMR signals of the fluorides in the core of colloidal CaF2 and SrF2, we show the immunity of 19F-diffusion NMR to dynamic ligand exchange and, thus, the ability to quantify, with high accuracy, the colloidal diameters of different types of nanofluorides in situ. With the demonstrated ability to characterize the formation of protein corona at the surface of nanofluorides, we envision that this study can be extended to additional formulations and applications.
Collapse
Affiliation(s)
- Reut Mashiach
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| |
Collapse
|
6
|
Hilal H, Zhao Q, Kim J, Lee S, Haddadnezhad M, Yoo S, Lee S, Park W, Park W, Lee J, Lee JW, Jung I, Park S. Three-dimensional nanoframes with dual rims as nanoprobes for biosensing. Nat Commun 2022; 13:4813. [PMID: 35974015 PMCID: PMC9381508 DOI: 10.1038/s41467-022-32549-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional (3D) nanoframe structures are very appealing because their inner voids and ridges interact efficiently with light and analytes, allowing for effective optical-based sensing. However, the realization of complex nanoframe architecture with high yield is challenging because the systematic design of such a complicated nanostructure lacks an appropriate synthesis protocol. Here, we show the synthesis method for complex 3D nanoframes wherein two-dimensional (2D) dual-rim nanostructures are engraved on each facet of octahedral nanoframes. The synthetic scheme proceeds through multiple executable on-demand steps. With Au octahedral nanoparticles as a sacrificial template, sequential processes of edge-selective Pt deposition and inner Au etching lead to Pt octahedral mono-rim nanoframes. Then, adlayers of Au are grown on Pt skeletons via the Frank-van der Merwe mode, forming sharp and well-developed edges. Next, Pt selective deposition on both the inner and outer boundaries leads to tunable geometric patterning on Au. Finally, after the selective etching of Au, Pt octahedral dual-rim nanoframes with highly homogeneous size and shape are achieved. In order to endow plasmonic features, Au is coated around Pt frames while retaining their geometric shape. The resultant plasmonic dual-rim engraved nanoframes possess strong light entrapping capability verified by single-particle surface-enhanced Raman scattering (SERS) and show the potential of nanoprobes for biosensing through SERS-based immunoassay. Most SERS-active nanostructures suffer from low robustness against misalignment to field polarization. Here, the authors demonstrate three-dimensional nanoframes of octahedral geometry, with two rims engraved on each facet, as polarization-independent SERS nanoprobes.
Collapse
Affiliation(s)
- Hajir Hilal
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | | | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woongkyu Park
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, 61007, Republic of Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Joong Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Department of Chemistry and Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Pedrazo-Tardajos A, Arslan Irmak E, Kumar V, Sánchez-Iglesias A, Chen Q, Wirix M, Freitag B, Albrecht W, Van Aert S, Liz-Marzán LM, Bals S. Thermal Activation of Gold Atom Diffusion in Au@Pt Nanorods. ACS NANO 2022; 16:9608-9619. [PMID: 35687880 DOI: 10.1021/acsnano.2c02889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the thermal stability of bimetallic nanoparticles is of vital importance to preserve their functionalities during their use in a variety of applications. In contrast to well-studied bimetallic systems such as Au@Ag, heat-induced morphological and compositional changes in Au@Pt nanoparticles are insufficiently understood, even though Au@Pt is an important material for catalysis. To investigate the thermal instability of Au@Pt nanorods at temperatures below their bulk melting point, we combined in situ heating with two- and three-dimensional electron microscopy techniques, including three-dimensional energy-dispersive X-ray spectroscopy. The experimental results were used as input for molecular dynamics simulations, to unravel the mechanisms behind the morphological transformation of Au@Pt core-shell nanorods. We conclude that thermal stability is influenced not only by the degree of coverage of Pt on Au but also by structural details of the Pt shell.
Collapse
Affiliation(s)
- Adrián Pedrazo-Tardajos
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Ece Arslan Irmak
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vished Kumar
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER- BBN), 20014 Donostia-San Sebastián, Spain
| | - Qiongyang Chen
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Maarten Wirix
- Thermo Fisher Scientific, Strijp-T, Zwaanstraat 31G, 5651 Eindhoven, The Netherlands
| | - Bert Freitag
- Thermo Fisher Scientific, Strijp-T, Zwaanstraat 31G, 5651 Eindhoven, The Netherlands
| | - Wiebke Albrecht
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Sandra Van Aert
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER- BBN), 20014 Donostia-San Sebastián, Spain
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
8
|
Kim J, Hilal H, Haddadnezhad M, Lee J, Park W, Park W, Lee JW, Jung I, Park S. Plasmonic All-Frame-Faceted Octahedral Nanoframes with Eight Engraved Y-Shaped Hot Zones. ACS NANO 2022; 16:9214-9221. [PMID: 35446559 DOI: 10.1021/acsnano.2c01543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the synthesis of all-frame-faceted octahedral nanoframes containing eight Y-shaped hot zones in a single entity where electromagnetic near-field focusing can be maximized. To realize such state-of-the-art complex nanoframes, a series of multiple stepwise bottom-up processes were executed by exploiting Au octahedral nanoparticles as the initial template. By rationally controlling the chemical reactivity of different surface facets (i.e., vertexes, edges, and terraces), the Au octahedral nanoparticles went through controlled shape transformations, leading to Au-engraved nanoparticles wherein 24 edges wrap the octahedral Au nanoparticle core. Those edges were then selectively decorated with Pt, leading to the formation of eight Pt tripods in a single entity. After etching the central Au, 3D Pt tripod frame-faceted octahedral nanoframes were achieved with high integrity. By harnessing the obtained Pt nanoframes as a scaffold, AuAg alloy-based plasmonic all-frame-faceted nanoframes were obtained after the co-reduction of Ag and Au, which generated multiple hot zones within multiple surface intra-nanogaps, creating a single-particle, surface-enhanced Raman spectroscopy enhancer platform.
Collapse
Affiliation(s)
- Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Woongkyu Park
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, South Korea
| | - Joong-Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University. Gwangju 61186, South Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
9
|
Zhao Y, Sarhan RM, Eljarrat A, Kochovski Z, Koch C, Schmidt B, Koopman W, Lu Y. Surface-Functionalized Au-Pd Nanorods with Enhanced Photothermal Conversion and Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17259-17272. [PMID: 35389208 DOI: 10.1021/acsami.2c00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.
Collapse
Affiliation(s)
- Yuhang Zhao
- Department for Electrochemical Energy Storage, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Radwan M Sarhan
- Department for Electrochemical Energy Storage, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Alberto Eljarrat
- Department of Physics & IRIS Adlershof, Humboldt-Universitätzu zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Christoph Koch
- Department of Physics & IRIS Adlershof, Humboldt-Universitätzu zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Bernd Schmidt
- Institute of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Wouter Koopman
- Institute of Physics and Astronomy, University of Potsdam, 14467 Potsdam, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| |
Collapse
|
10
|
Huang L, Shen B, Lin H, Shen J, Jibril L, Zheng CY, Wolverton C, Mirkin CA. Regioselective Deposition of Metals on Seeds within a Polymer Matrix. J Am Chem Soc 2022; 144:4792-4798. [PMID: 35258289 DOI: 10.1021/jacs.1c11118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We use scanning probe block copolymer lithography in a two-step sequential manner to explore the deposition of secondary metals on nanoparticle seeds. When single element nanoparticles (Au, Ag, Cu, Co, or Ni) were used as seeds, both heterogeneous and homogeneous growth occurred, as rationalized using the thermodynamic concepts of bond strength and lattice mismatch. Specifically, heterogeneous growth occurs when the heterobond strength between the seed and growth atoms is stronger than the homobond strength between the growth atoms. Moreover, the resulting nanoparticle structure depends on the degree of lattice mismatch between the seed and growth metals. Specifically, a large lattice mismatch (e.g., 13.82% for Au and Ni) typically resulted in heterodimers, whereas a small lattice mismatch (e.g., 0.19% for Au and Ag) resulted in core-shell structures. Interestingly, when heterodimer nanoparticles were used as seeds, the secondary metals deposited asymmetrically on one side of the seed. By programming the deposition conditions of Ag and Cu on AuNi heterodimer seeds, two distinct nanostructures were synthesized with (1) Ag and Cu on the Au domain and (2) Ag on the Au domain and Cu on the Ni domain, illustrating how this technique can be used to predictively synthesize structurally complex, multimetallic nanostructures.
Collapse
Affiliation(s)
- Liliang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Shen
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Haixin Lin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiahong Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Liban Jibril
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Cindy Y Zheng
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Alinezhad A, Benedetti TM, Lian J, Gonçales VR, Gooding JJ, Tilley RD. Controlling hydrogen evolution reaction activity on Ni core-Pt island nanoparticles by tuning the size of the Pt islands. Chem Commun (Camb) 2021; 57:2788-2791. [PMID: 33599222 DOI: 10.1039/d0cc07769k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pt islands with different sizes were grown on amorphous Ni nanoparticles, allowing the tuning of the Pt-Ni interface without changing the hydrogen binding energy of the Pt sites. As a result, the HER activity of the electrocatalysts increases by decreasing the size of the Pt islands due to the greater surface area of the Pt-Ni interfaces.
Collapse
Affiliation(s)
- Ali Alinezhad
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Xie X, van Huis MA, van Blaaderen A. Symmetric and asymmetric epitaxial growth of metals (Ag, Pd, and Pt) onto Au nanotriangles: effects of reductants and plasmonic properties. NANOSCALE 2021; 13:2902-2913. [PMID: 33449991 DOI: 10.1039/d0nr06789j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The surface plasmon resonance of noble metals can be tuned by morphology and composition, offering interesting opportunities for applications in biomedicine, optoelectronics, photocatalysis, photovoltaics, and sensing. Here, we present the results of the symmetrical and asymmetrical overgrowth of metals (Ag, Pd, and Pt) onto triangular Au nanoplates using l-ascorbic acid (AA) and/or salicylic acid (SA) as reductants. By varying the reaction conditions, various types of Au nanotriangle-metal (Au NT-M) hetero-nanostructures were easily prepared. The plasmonic properties of as-synthesized nanoparticles were investigated by a combination of optical absorbance measurements and Finite-Difference Time-Domain (FDTD) simulations. We show that specific use of these reductants enables controlled growth of different metals on Au NTs, yielding different morphologies and allowing manipulation and tuning of the plasmonic properties of bimetallic Au NT-M (Ag, Pd, and Pt) structures.
Collapse
Affiliation(s)
- Xiaobin Xie
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - Marijn A van Huis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
13
|
Rehn SM, Gerrard-Anderson TM, Qiao L, Zhu Q, Wehmeyer G, Jones MR. Mechanical Reshaping of Inorganic Nanostructures with Weak Nanoscale Forces. NANO LETTERS 2021; 21:130-135. [PMID: 33301332 DOI: 10.1021/acs.nanolett.0c03383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inorganic nanomaterials are often depicted as rigid structures whose shape is permanent. However, forces that are ordinarily considered weak can exert sufficient stress at the nanoscale to drive mechanical deformation. Here, we leverage van der Waals (VdW) interactions to mechanically reshape inorganic nanostructures from planar to curvilinear. Modified plate deformation theory shows that high-aspect-ratio two-dimensional particles can be plastically deformed via VdW forces. Informed by this finding, silver nanoplates were deformed over spherical iron oxide template particles, resulting in distinctive bend contour patterns in bright-field (BF) transmission electron microscopy (TEM) images. High-resolution TEM images of deformed areas reveal the presence of highly strained bonds in the material. Finally, we show that the distance between two nearby template particles allows for the engineering of several distinct curvilinear morphologies. This work challenges the traditional view of nanoparticles as static objects and introduces methods for postsynthetic mechanical shape control.
Collapse
Affiliation(s)
- Sarah M Rehn
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | | | - Liang Qiao
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Qing Zhu
- Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
| | - Geoff Wehmeyer
- Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
14
|
In situ NMR reveals real-time nanocrystal growth evolution via monomer-attachment or particle-coalescence. Nat Commun 2021; 12:229. [PMID: 33431908 PMCID: PMC7801738 DOI: 10.1038/s41467-020-20512-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023] Open
Abstract
Understanding inorganic nanocrystal (NC) growth dynamic pathways under their native fabrication environment remains a central goal of science, as it is crucial for rationalizing novel nanoformulations with desired architectures and functionalities. We here present an in-situ method for quantifying, in real time, NCs' size evolution at sub-nm resolution, their concentration, and reactants consumption rate for studying NC growth mechanisms. Analyzing sequential high-resolution liquid-state 19F-NMR spectra obtained in-situ and validating by ex-situ cryoTEM, we explore the growth evolution of fluoride-based NCs (CaF2 and SrF2) in water, without disturbing the synthesis conditions. We find that the same nanomaterial (CaF2) can grow by either a particle-coalescence or classical-growth mechanism, as regulated by the capping ligand, resulting in different crystallographic properties and functional features of the fabricated NC. The ability to reveal, in real time, mechanistic pathways at which NCs grow open unique opportunities for tunning the properties of functional materials.
Collapse
|
15
|
Zheng G, Mourdikoudis S, Zhang Z. Plasmonic Metallic Heteromeric Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002588. [PMID: 32762017 DOI: 10.1002/smll.202002588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Binary, ternary, and other high-order plasmonic heteromers possess remarkable physical and chemical properties, enabling them to be used in numerous applications. The seed-mediated approach is one of the most promising and versatile routes to produce plasmonic heteromers. Selective growth of one or multiple domains on desired sites of noble metal, semiconductor, or magnetic seeds would form desired heteromeric nanostructures with multiple functionalities and synergistic effects. In this work, the challenges for the synthetic approaches are discussed with respect to tuning the thermodynamics, as well as the kinetic properties (e.g., pH, temperature, injection rate, among others). Then, plasmonic heteromers with their structure advantages displaying unique activities compared to other hybrid nanostructures (e.g., core-shell, alloy) are highlighted. Some of the main most recent applications of plasmonic heteromers are also presented. Finally, perspectives for further exploitation of plasmonic heteromers are demonstrated. The goal of this work is to provide the current know-how on the synthesis routes of plasmonic heteromers in a summarized manner, so as to achieve a better understanding of the resulting properties and to gain an improved control of their performances and extend their breadth of applications.
Collapse
Affiliation(s)
- Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London (UCL), London, WC1E 6BT, UK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, London, W1S 4BS, UK
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
16
|
Hilal H, Lee S, Jung I, Yoo S, Park S. Scattering Fourier Transform Biosensor: Binary Mixture Consisting of Magnetic Ni Nanorings and Plasmonic Au Nanorods. Anal Chem 2020; 92:10099-10107. [PMID: 32586087 DOI: 10.1021/acs.analchem.0c02065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report a biosensing platform based on a binary mixture comprised of Au nanorods (plasmonic nanoparticles, Au NRs) and magnetically responsive Pt@Ni nanorings (magnetic nanostirrers, MN-rings). The mixture of Au NRs and MN-rings was modulated with an external rotating magnetic field (a dynamic assay with magnetic perturbation), which led to fluctuating extinction in the UV-vis spectroscopy measurement. As the surfaces of Au NRs were modified with antigens and antibodies, their periodic profile of extinction changed in accordance with surface modification of the Au NRs. The obtained periodic extinction with time could be converted to a frequency domain function where the signal-to-noise ratios of the peaks were evaluated to monitor surface biorecognitions on Au NRs, which is in contrast to conventional biosensors (a stagnant assay without perturbation) that use only the peak shift of localized surface plasmon resonance of Au nanoparticles.
Collapse
Affiliation(s)
- Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
17
|
Bhol P, Bhavya MB, Swain S, Saxena M, Samal AK. Modern Chemical Routes for the Controlled Synthesis of Anisotropic Bimetallic Nanostructures and Their Application in Catalysis. Front Chem 2020; 8:357. [PMID: 32528924 PMCID: PMC7262677 DOI: 10.3389/fchem.2020.00357] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Bimetallic nanoparticles (BNPs) have attracted greater attention compared to its monometallic counterpart because of their chemical/physical properties. The BNPs have a wide range of applications in the fields of health, energy, water, and environment. These properties could be tuned with a number of parameters such as compositions of the bimetallic systems, their preparation method, and morphology. Monodisperse and anisotropic BNPs have gained considerable interest and numerous efforts have been made for the controlled synthesis of bimetallic nanostructures (BNS) of different sizes and shapes. This review offers a brief summary of the various synthetic routes adopted for the synthesis of Palladium(Pd), Platinum(Pt), Nickel(Ni), Gold(Au), Silver(Ag), Iron(Fe), Cobalt(Co), Rhodium(Rh), and Copper(Cu) based transition metal bimetallic anisotropic nanostructures, growth mechanisms e.g., seed mediated co-reduction, hydrothermal, galvanic replacement reactions, and antigalvanic reaction, and their application in the field of catalysis. The effect of surfactant, reducing agent, metal precursors ratio, pH, and reaction temperature for the synthesis of anisotropic nanostructures has been explained with examples. This review further discusses how slight modifications in one of the parameters could alter the growth mechanism, resulting in different anisotropic nanostructures which highly influence the catalytic activity. The progress or modification implied in the synthesis techniques within recent years is focused on in this article. Furthermore, this article discussed the improved activity, stability, and catalytic performance of BNS compared to the monometallic performance. The synthetic strategies reported here established a deeper understanding of the mechanisms and development of sophisticated and controlled BNS for widespread application.
Collapse
Affiliation(s)
- Prangya Bhol
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - M B Bhavya
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - Swarnalata Swain
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - Manav Saxena
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Ramanagara, India
| |
Collapse
|
18
|
Lu W, Xia X, Wei X, Li M, Zeng M, Guo J, Cheng S. Nanoengineering 2D Dendritic PdAgPt Nanoalloys with Edge-Enriched Active Sites for Enhanced Alcohol Electroxidation and Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21569-21578. [PMID: 32309921 DOI: 10.1021/acsami.0c01690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lots of research studies reveal that the surface atoms on the top/bottom facets of the nanosheets are the key features in enhancing electrocatalytic activity while the edge and corner sites of electrocatalysts often possess superior activity. Herein, we report 2D dendritic PdAgPt ternary nanoalloys with abundant crystal defects such as steps, twin boundary, and atomic holes, which can effectively work as catalytic active-sites. The morphology of PdAgPt nanoalloys can be regulated readily from dendritic nanosheets to nanowheels. Compared with binary Pd68Ag32 nanodendrites, Pd62Pt38 nanospheres, and Pt/C catalyst, the composition- and morphology-optimized Pd43Ag21Pt36 nanowheels exhibit the best mass/specific activity and stability for methanol/ethanol oxidation reaction (MOR/EOR). The mass peak current density for EOR/MOR of Pd43Ag21Pt36 is 7.08/3.50 times of the Pt/C catalyst. Simultaneously, the hydrogen evolution reaction performance of the Pd43Ag21Pt36 nanowheels in terms of the lowest overpotential of 9 mv at a current density of 10 mA/cm2 and high electrochemical stability is much better than that of binary Pd68Ag32 nanodendrites, Pd62Pt38 nanospheres, and Pt/C.
Collapse
Affiliation(s)
- Wenya Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xinyue Xia
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xiaoxu Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Manman Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Guo
- Testing & Analysis Center, Soochow University, Suzhou 215123, China
| | - Si Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
19
|
Smith JD, Bladt E, Burkhart JAC, Winckelmans N, Koczkur KM, Ashberry HM, Bals S, Skrabalak SE. Defect‐Directed Growth of Symmetrically Branched Metal Nanocrystals. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joshua D. Smith
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Eva Bladt
- EMAT University of Antwerp Groenenborgerlaan, 171 2020 Antwerp Belgium
| | - Joseph A. C. Burkhart
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Naomi Winckelmans
- EMAT University of Antwerp Groenenborgerlaan, 171 2020 Antwerp Belgium
| | - Kallum M. Koczkur
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Hannah M. Ashberry
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Sara Bals
- EMAT University of Antwerp Groenenborgerlaan, 171 2020 Antwerp Belgium
| | - Sara E. Skrabalak
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| |
Collapse
|
20
|
Smith JD, Bladt E, Burkhart JAC, Winckelmans N, Koczkur KM, Ashberry HM, Bals S, Skrabalak SE. Defect‐Directed Growth of Symmetrically Branched Metal Nanocrystals. Angew Chem Int Ed Engl 2019; 59:943-950. [DOI: 10.1002/anie.201913301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Joshua D. Smith
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Eva Bladt
- EMAT University of Antwerp Groenenborgerlaan, 171 2020 Antwerp Belgium
| | - Joseph A. C. Burkhart
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Naomi Winckelmans
- EMAT University of Antwerp Groenenborgerlaan, 171 2020 Antwerp Belgium
| | - Kallum M. Koczkur
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Hannah M. Ashberry
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Sara Bals
- EMAT University of Antwerp Groenenborgerlaan, 171 2020 Antwerp Belgium
| | - Sara E. Skrabalak
- Department of Chemistry Indiana University – Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| |
Collapse
|
21
|
Alinezhad A, Gloag L, Benedetti TM, Cheong S, Webster RF, Roelsgaard M, Iversen BB, Schuhmann W, Gooding JJ, Tilley RD. Direct Growth of Highly Strained Pt Islands on Branched Ni Nanoparticles for Improved Hydrogen Evolution Reaction Activity. J Am Chem Soc 2019; 141:16202-16207. [PMID: 31580659 DOI: 10.1021/jacs.9b07659] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direct growth of Pt islands on lattice mismatched Ni nanoparticles is a major synthetic challenge and a promising strategy to create highly strained Pt atoms for electrocatalysis. By using very mild reaction conditions, Pt islands with tunable strain were formed directly on Ni branched particles. The highly strained 1.9 nm Pt-island on branched Ni nanoparticles exhibited high specific activity and the highest mass activity for hydrogen evolution (HER) in a pH 13 electrolyte. These results show the ability to synthetically tune the size of the Pt islands to control the strain to give higher HER activity.
Collapse
Affiliation(s)
- Ali Alinezhad
- School of Chemistry , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Lucy Gloag
- School of Chemistry , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Tania M Benedetti
- School of Chemistry , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Soshan Cheong
- Mark Wainwright Analytical Centre , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Richard F Webster
- Mark Wainwright Analytical Centre , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Martin Roelsgaard
- Center for Materials Crystallography, Department of Chemistry and iNANO , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark.,PETRA III, Deutsches-Elektronen Synchrotron (DESY) , Notkestr. 85 , D-22607 Hamburg , Germany
| | - Bo B Iversen
- Center for Materials Crystallography, Department of Chemistry and iNANO , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry , Ruhr University Bochum , Universitätsstr. 150 , D-44780 Bochum , Germany
| | - J Justin Gooding
- School of Chemistry , The University of New South Wales , Sydney , New South Wales 2052 , Australia.,Australian Centre for NanoMedicine , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Richard D Tilley
- School of Chemistry , The University of New South Wales , Sydney , New South Wales 2052 , Australia.,Mark Wainwright Analytical Centre , The University of New South Wales , Sydney , New South Wales 2052 , Australia.,Australian Centre for NanoMedicine , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
22
|
Jung H, King ME, Personick ML. Strategic synergy: advances in the shape control of bimetallic nanoparticles with dilute alloyed surfaces. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Clark BD, DeSantis CJ, Wu G, Renard D, McClain MJ, Bursi L, Tsai AL, Nordlander P, Halas NJ. Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals. J Am Chem Soc 2019; 141:1716-1724. [PMID: 30612425 DOI: 10.1021/jacs.8b12255] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The precise size- and shape-controlled synthesis of monodisperse Al nanocrystals remains an open challenge, limiting their utility for numerous applications that would take advantage of their size and shape-dependent optical properties. Here we pursue a molecular-level understanding of the formation of Al nanocrystals by titanium(IV) isopropoxide-catalyzed decomposition of AlH3 in Lewis base solvents. As determined by electron paramagnetic resonance spectroscopy of intermediates, the reaction begins with the formation of Ti3+-AlH3 complexes. Proton nuclear magnetic resonance spectroscopy indicates isopropoxy ligands are removed from Ti by Al, producing aluminum(III) isopropoxide and low-valent Ti3+ catalysts. These Ti3+ species catalyze elimination of H2 from AlH3 inducing the polymerization of AlH3 into colloidally unstable low-valent aluminum hydride clusters. These clusters coalesce and grow while expelling H2 to form colloidally stable Al nanocrystals. The colloidal stability of the Al nanocrystals and their size is determined by the molecular structure and density of coordinating atoms in the reaction, which is controlled by choice of solvent composition.
Collapse
Affiliation(s)
| | | | - Gang Wu
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin Street , Houston , Texas 77030 , United States
| | | | | | | | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin Street , Houston , Texas 77030 , United States
| | | | | |
Collapse
|
24
|
Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications. Commun Chem 2018. [DOI: 10.1038/s42004-018-0088-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
25
|
Ma L, Ding SJ, Yang DJ. Preparation of bimetallic Au/Pt nanotriangles with tunable plasmonic properties and improved photocatalytic activity. Dalton Trans 2018; 47:16969-16976. [PMID: 30451267 DOI: 10.1039/c8dt03482f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bimetallic nanoparticles are widely used in chemical catalysis and energy conversion. Their practical performance can be better exploited through morphological control by adjusting the synthetic strategy. Herein, an aqueous phase route is used to achieve the controlled preparation of bimetallic Au/Pt and hollow Au/Pt/Au nanotriangles with tunable plasmonic properties and superior photocatalytic activity. By continuously adjusting the concentration of surfactant solution, the gradual growth orientation of Pt nanoparticles on Au nanotriangles is observed, which occurs first on the tips, then on the edges, and then on the facets. Three types of Au/Pt nanotriangles (including Pt on the tips (Au/Pt (tips)), Pt on the edges (Au/Pt (edges)), and Pt covering Au (Au@Pt)) with tunable plasmon resonance are obtained. Then, Au/Pt/Au nanotriangles with a hollow structure are synthesized based on Au/Pt (edges). By evaluating the reduction rate of p-nitrophenol under visible light irradiation, hollow Au/Pt/Au nanotriangles exhibit the best photocatalytic activity compared with Au and Au/Pt (edges). The hollow structure, high visible light absorption and a strong tip- and center-focused local electric field of Au/Pt/Au are thought to be responsible for their superior photocatalytic activity.
Collapse
Affiliation(s)
- Liang Ma
- School of Photoelectric Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, Wuhan, P. R. China
| | - Da-Jie Yang
- Beijing Computational Science Research Center, Beijing, 100193, P. R. China
| |
Collapse
|
26
|
Zhao Y, Zhang W, Yin H, He J, Ding Y. Surface alloying of Pt monolayer on nanoporous gold for enhanced oxygen reduction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Yan X, Yu S, Tang Y, Sun D, Xu L, Xue C. Triangular AgAu@Pt core-shell nanoframes with a dendritic Pt shell and enhanced electrocatalytic performance toward the methanol oxidation reaction. NANOSCALE 2018; 10:2231-2235. [PMID: 29340403 DOI: 10.1039/c7nr08899j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Triangular AgAu@Pt nanoframes with a dendritic Pt shell were synthesized by employing Ag nanoprisms as sacrificial templates. Due to the unique frame-like nanostructure and ternary components, the AgAu@Pt nanoframes exhibit impressive electrocatalytic performance toward the methanol oxidation reaction with much higher activity, and better anti-poisoning capability than commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | | | | | | | | | | |
Collapse
|
28
|
Straney PJ, Diemler NA, Smith AM, Eddinger ZE, Gilliam MS, Millstone JE. Ligand-Mediated Deposition of Noble Metals at Nanoparticle Plasmonic Hotspots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1084-1091. [PMID: 29148778 DOI: 10.1021/acs.langmuir.7b03309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the use of gold nanoparticle surface chemistry as a tool for site-selective noble metal deposition onto colloidal gold nanoparticle substrates. Specifically, we demonstrate that partial passivation of the gold nanoparticle surface using thiolated ligands can induce a transition from linear palladium island deposition to growth of palladium selectively at plasmonic hotspots on the edges or vertices of the underlying particle substrate. Further, we demonstrate the broader applicability of this approach with respect to substrate morphology (e.g., prismatic and rod-shaped nanoparticles), secondary metal (e.g., palladium, gold, and platinum), and surface ligand (e.g., surfactant molecules and n-alkanethiols). Taken together, these results demonstrate the important role of metal-ligand surface chemistry and ligand packing density on the resulting modes of multimetallic nanoparticle growth, and in particular, the ability to direct that growth to particle regions of impact such as plasmonic hotspots.
Collapse
Affiliation(s)
- Patrick J Straney
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Nathan A Diemler
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ashley M Smith
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Zachary E Eddinger
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew S Gilliam
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
29
|
Zhou JH, Lan DW, Yang SS, Guo Y, Yuan K, Dai LX, Zhang YW. Thin-walled hollow Au–Cu nanostructures with high efficiency in electrochemical reduction of CO2 to CO. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00297e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin-walled hollow Au–Cu nanostructures were synthesized via galvanic replacement and the Kirkendall effect between copper and gold, and they showed high efficiency for electro-reduction of CO2 to CO.
Collapse
Affiliation(s)
- Jun-Hao Zhou
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Da-Wei Lan
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Sheng-Song Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yu Guo
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Kun Yuan
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Lin-Xiu Dai
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
30
|
Joplin A, Hosseini Jebeli SA, Sung E, Diemler N, Straney PJ, Yorulmaz M, Chang WS, Millstone JE, Link S. Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal. ACS NANO 2017; 11:12346-12357. [PMID: 29155558 DOI: 10.1021/acsnano.7b06239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bimetallic nanocatalysts have the potential to surmount current limitations in industrial catalysis if their electronic and optical properties can be effectively controlled. However, improving the performance of bimetallic photocatalysts requires a functional understanding of how the intricacies of their morphology and composition dictate every element of their optical response. In this work, we examine Au and Pt-decorated Au nanorods on a single-particle level to ascertain how Pt influences the plasmon resonance of the bimetallic nanostructure. We correlated scattering, photoluminescence, and pure absorption of individual nanostructures separately to expose the impact of Pt on each component. We found that the scattering and absorption spectra of uncoated Au nanorods followed expected trends in peak intensity and shape and were accurately reproduced by finite difference time domain simulations. In contrast, the scattering and absorption spectra of single Pt-decorated Au nanorods exhibited red-shifted, broad features and large deviations in line shape from particle to particle. Simulations using an idealized geometry confirmed that Pt damps the plasmon resonance of individual Au nanorods and that spectral changes after Pt deposition were a consequence of coupling between Au and Pt in the hybrid nanostructure. Simulations also revealed that the Au nanorod acts as an antenna and enhances absorption in the Pt islands. Furthermore, comparing photoluminescence spectra from Au and Pt-decorated Au nanorods illustrated that emission was significantly reduced in the presence of Pt. The reduction in photoluminescence intensity indicates that Pt lowers the number of hot carriers in the Au nanorod available for radiative recombination through either direct production of hot carriers in Pt following enhanced absorption or charge transfer from Au to Pt. Overall, these results confirm that the Pt island morphology and distribution on the nanorod surface contribute to the optical response of individual hybrid nanostructures and that the damping observed in ensemble measurements originates not only from structural heterogeneity but also because of significant damping in single nanostructures.
Collapse
Affiliation(s)
| | | | | | - Nathan Diemler
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Patrick J Straney
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | |
Collapse
|
31
|
Sun X, Yang X, Zhang Y, Ding Y, Su D, Qin D. Pt-Ag cubic nanocages with wall thickness less than 2 nm and their enhanced catalytic activity toward oxygen reduction. NANOSCALE 2017; 9:15107-15114. [PMID: 28972210 DOI: 10.1039/c7nr04366j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a facile synthesis of Pt-Ag nanocages with walls thinner than 2 nm by depositing a few atomic layers of Pt as conformal shells on Ag nanocubes and then selectively removing the Ag template via wet etching. In a typical process, we inject a specific volume of aqueous H2PtCl6 into a mixture of Ag nanocubes, ascorbic acid (H2Asc), NaOH, and poly(vinylpyrrolidone) in water under ambient conditions. At an initial pH of 11.9, the Pt(iv) precursor is quickly reduced by an ascorbate monoanion, a strong reducing agent derived from the neutralization of H2Asc with NaOH. The newly formed Pt atoms are deposited onto the edges and then corners and side faces of Ag nanocubes, leading to the generation of Ag@Pt core-shell nanocubes with a conformal Pt shell of approximately three atomic layers (or, about 0.6 nm in thickness) when 0.4 mL of 0.2 mM H2PtCl6 is involved. After the selective removal of Ag in the core using an etchant based on a mixture of Fe(NO3)3 and HNO3, we transform the core-shell nanocubes into Pt-Ag alloy nanocages with an ultrathin wall thickness of less than 2 nm. We further demonstrate that the as-obtained nanocages with a composition of Pt42Ag58 exhibit an enhanced catalytic activity toward the oxygen reduction reaction, with a mass activity of 0.30 A mg-1 and a specific activity of 0.93 mA cm-2, which are 1.6 and 2.5 times, respectively, greater than those of a commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Xiaojun Sun
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Laramy CR, Fong LK, Jones MR, O'Brien MN, Schatz GC, Mirkin CA. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Gong H, Cao X, Mendes RG, Rummeli MH, Zhang J, Yang R. Self-Supported PtAuCu@Cu2O/Pt Hybrid Nanobranch as a Robust Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem 2017. [DOI: 10.1002/celc.201700319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongyu Gong
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy & Collaborative, Innovation Center of Suzhou Nano science and Technology; Soochow University, Suzhou; Jiangsu 215006 China
| | - Xuecheng Cao
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy & Collaborative, Innovation Center of Suzhou Nano science and Technology; Soochow University, Suzhou; Jiangsu 215006 China
| | - Rafael Gregorio Mendes
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy & Collaborative, Innovation Center of Suzhou Nano science and Technology; Soochow University, Suzhou; Jiangsu 215006 China
- IFW Dresden; Helmholtz Strasse 20 01069 Dresden Germany
| | - Mark H. Rummeli
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy & Collaborative, Innovation Center of Suzhou Nano science and Technology; Soochow University, Suzhou; Jiangsu 215006 China
- IFW Dresden; Helmholtz Strasse 20 01069 Dresden Germany
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie-Sklodowskiej 34 Zabrze 41-819 Poland
| | - Jingyu Zhang
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy & Collaborative, Innovation Center of Suzhou Nano science and Technology; Soochow University, Suzhou; Jiangsu 215006 China
| | - Ruizhi Yang
- Soochow Institute for Energy and Materials InnovationS, College of Physics, Optoelectronics and Energy & Collaborative, Innovation Center of Suzhou Nano science and Technology; Soochow University, Suzhou; Jiangsu 215006 China
| |
Collapse
|
34
|
Wang C, Li J, Lou Y, Kan C, Zhu Y, Feng X, Ni Y, Xu H, Shi D, Wei X. Facile synthesis and heteroepitaxial growth mechanism of Au@Cu core–shell bimetallic nanocubes probed by first-principles studies. CrystEngComm 2017. [DOI: 10.1039/c7ce01617d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work provided a facile strategy for the synthesis of Au@Cu core–shell nanostructures. The proposed growth mechanism was probed by a first-principles investigation.
Collapse
Affiliation(s)
- Changshun Wang
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Junlong Li
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Yeke Lou
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Caixia Kan
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Yan Zhu
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Xiaoqin Feng
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Yuan Ni
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Haiying Xu
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
- Department of Mathematics and Physics
| | - Daning Shi
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Xinyuan Wei
- State Key Laboratory of Surface Physics and
- Key Laboratory for Computational Physical Sciences (MOE) &
- Department of Physics
- Fudan University
- Shanghai 200433
| |
Collapse
|
35
|
Satyavolu NSR, Tan LH, Lu Y. DNA-Mediated Morphological Control of Pd–Au Bimetallic Nanoparticles. J Am Chem Soc 2016; 138:16542-16548. [DOI: 10.1021/jacs.6b10983] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nitya Sai Reddy Satyavolu
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Li Huey Tan
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Liu M, Gilroy KD, Peng HC, Chi M, Guo L, Xia Y. The effect of surface capping on the diffusion of adatoms in the synthesis of Pd@Au core-shell nanocrystals. Chem Commun (Camb) 2016; 52:13159-13162. [PMID: 27763648 DOI: 10.1039/c6cc07456a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We offer new insights into the roles played by surface capping in controlling the pattern of growth involving Pd cubic seeds and a HAuCl4 precursor. The final products can take different surface structures (concave vs. flat side faces) depending on the presence or absence of surface capping.
Collapse
Affiliation(s)
- Maochang Liu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Griffin S, Montoni NP, Li G, Straney PJ, Millstone JE, Masiello DJ, Camden JP. Imaging Energy Transfer in Pt-Decorated Au Nanoprisms via Electron Energy-Loss Spectroscopy. J Phys Chem Lett 2016; 7:3825-3832. [PMID: 27617864 DOI: 10.1021/acs.jpclett.6b01878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Driven by the desire to understand energy transfer between plasmonic and catalytic metals for applications such as plasmon-mediated catalysis, we examine the spatially resolved electron energy-loss spectra (EELS) of both pure Au nanoprisms and Pt-decorated Au nanoprisms. The EEL spectra and the resulting surface-plasmon mode maps reveal detailed near-field information on the coupling and energy transfer in these systems, thereby elucidating the underlying mechanism of plasmon-driven chemical catalysis in mixed-metal nanostructures. Through a combination of experiment and theory we demonstrate that although the location of the Pt decoration greatly influences the plasmons of the nanoprism, simple spatial proximity is not enough to induce significant energy transfer from the Au to the Pt. What matters more is the spectral overlap between the intrinsic plasmon resonances of the Au nanoprism and Pt decoration, which can be tuned by changing the composition or morphology of either component.
Collapse
Affiliation(s)
- Sarah Griffin
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Nicholas P Montoni
- Department of Chemistry, University of Washington , Seattle, Washington 98915, United States
| | - Guoliang Li
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Patrick J Straney
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - David J Masiello
- Department of Chemistry, University of Washington , Seattle, Washington 98915, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
38
|
The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proc Natl Acad Sci U S A 2016; 113:11717-11725. [PMID: 27671628 DOI: 10.1073/pnas.1605289113] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this Perspective, we present a framework that defines how to understand and control material structure across length scales with inorganic nanoparticles. Three length scales, frequently discussed separately, are unified under the topic of hierarchical organization: atoms arranged into crystalline nanoparticles, ligands arranged on nanoparticle surfaces, and nanoparticles arranged into crystalline superlattices. Through this lens, we outline one potential pathway toward perfect colloidal matter that emphasizes the concept of uniformity. Uniformity is of both practical and functional importance, necessary to increase structural sophistication and realize the promise of nanostructured materials. Thus, we define the nature of nonuniformity at each length scale as a means to guide ongoing research efforts and highlight potential problems in the field.
Collapse
|
39
|
Leary RK, Kumar A, Straney P, Collins SM, Yazdi S, Dunin-Borkowski RE, Midgley PA, Millstone JE, Ringe E. Structural and Optical Properties of Discrete Dendritic Pt Nanoparticles on Colloidal Au Nanoprisms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:20843-20851. [PMID: 27688821 PMCID: PMC5036133 DOI: 10.1021/acs.jpcc.6b02103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Indexed: 05/17/2023]
Abstract
Catalytic and optical properties can be coupled by combining different metals into nanoscale architectures in which both the shape and the composition provide fine-tuning of functionality. Here, discrete, small Pt nanoparticles (diameter = 3-6 nm) were grown in linear arrays on Au nanoprisms, and the resulting structures are shown to retain strong localized surface plasmon resonances. Multidimensional electron microscopy and spectroscopy techniques (energy-dispersive X-ray spectroscopy, electron tomography, and electron energy-loss spectroscopy) were used to unravel their local composition, three-dimensional morphology, growth patterns, and optical properties. The composition and tomographic analyses disclose otherwise ambiguous details of the Pt-decorated Au nanoprisms, revealing that both pseudospherical protrusions and dendritic Pt nanoparticles grow on all faces of the nanoprisms (the faceted or occasionally twisted morphologies of which are also revealed), and shed light on the alignment of the Pt nanoparticles. The electron energy-loss spectroscopy investigations show that the Au nanoprisms support multiple localized surface plasmon resonances despite the presence of pendant Pt nanoparticles. The plasmonic fields at the surface of the nanoprisms indeed extend into the Pt nanoparticles, opening possibilities for combined optical and catalytic applications. These insights pave the way toward comprehensive nanoengineering of multifunctional bimetallic nanostructures, with potential applications in plasmon-enhanced catalysis and in situ monitoring of chemical processes via surface-enhanced spectroscopy.
Collapse
Affiliation(s)
- Rowan K. Leary
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K.
- R.K.L.: e-mail, ; phone, +44-1223-34597
| | - Anjli Kumar
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Patrick
J. Straney
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Sean M. Collins
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K.
| | - Sadegh Yazdi
- Department
of Materials Science and Nanoengineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Rafal E. Dunin-Borkowski
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg
Institute (PGI-5), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Paul A. Midgley
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K.
| | - Jill E. Millstone
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- J.E.M.: e-mail, ; phone, +1-412-648-4153
| | - Emilie Ringe
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Materials Science and Nanoengineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
- E.R.: e-mail, ; phone, +1-713-348-2582
| |
Collapse
|
40
|
Smith JG, Chakraborty I, Jain PK. In Situ Single-Nanoparticle Spectroscopy Study of Bimetallic Nanostructure Formation. Angew Chem Int Ed Engl 2016; 55:9979-83. [PMID: 27381891 DOI: 10.1002/anie.201604710] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 01/28/2023]
Abstract
Bimetallic nanostructures (NSs), with utility in catalysis, are typically prepared using galvanic exchange (GE), but the final catalyst morphology is dictated by the dynamics of the process. In situ single nanoparticle (NP) optical scattering spectroscopy, coupled with ex situ electron microscopy, is used to capture the dynamic structural evolution of a bimetallic NS formed in a GE reaction between Ag and [PtCl6 ](2-) . We identify an early stage involving anisotropic oxidation of Ag to AgCl concomitant with reductive deposition of small Pt clusters on the NS surface. At later stages of GE, unreacted Ag inclusions phase segregate from the overcoated AgCl as a result of lattice strain between Ag and AgCl. The nature of the structural evolution elucidates why multi-domain Ag/AgCl/Pt NSs result from the GE process. The complex structural dynamics, determined from single-NP trajectories, would be masked in ensemble studies due to heterogeneity in the response of different NPs.
Collapse
Affiliation(s)
- Jeremy G Smith
- Dept. of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Indranath Chakraborty
- Dept. of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Prashant K Jain
- Dept. of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA. .,Materials Research Lab, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
41
|
Smith JG, Chakraborty I, Jain PK. In Situ Single-Nanoparticle Spectroscopy Study of Bimetallic Nanostructure Formation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jeremy G. Smith
- Dept. of Chemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana IL 61801 USA
| | - Indranath Chakraborty
- Dept. of Chemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana IL 61801 USA
| | - Prashant K. Jain
- Dept. of Chemistry; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana IL 61801 USA
- Materials Research Lab; University of Illinois at Urbana-Champaign; 104 South Goodwin Avenue Urbana IL 61801 USA
| |
Collapse
|
42
|
Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem Rev 2016; 116:10414-72. [DOI: 10.1021/acs.chemrev.6b00211] [Citation(s) in RCA: 1109] [Impact Index Per Article: 138.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kyle D. Gilroy
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | | | | | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Zhang J, Wan L, Liu L, Deng Y, Zhong C, Hu W. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. NANOSCALE 2016; 8:3962-3972. [PMID: 26511671 DOI: 10.1039/c5nr05971b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, a new and convenient one step approach is described for synthesizing shape controlled PdPt bimetallic nanoparticles. It is found that the resultant morphologies of these PdPt nanoparticles can be well controlled by simply altering the participation of different halide ions that serve as shape controlling agents in the reaction solution. The dendritic core-shell PdPt bimetallic nanoparticles generated with Pt atoms adopt usual island growth pattern in the presence of Cl(-) ions, whereas the introduction of Br(-) ions with a relatively strong adsorption effect facilitate the formation of a layered core-shell structure due to the layered growth mode of Pt atoms on the exterior surface of the central Pd core. Moreover, the stronger adsorption function of I(-) ions and the resulting fast atomic diffusion promoted the generation of mesoporous core-shell PdPt bimetallic nanoparticles with many pore channels. In addition, the size of these synthesized PdPt nanoparticles exhibited a significant dependence on the concentration of the halide ions involved. Due to their specific structural features and synergistic effects, these PdPt catalysts exhibited shape-dependent catalytic performance and drastically enhanced electrocatalytic activities relative to that of commercial Pt black and Pt/C toward methanol oxidation.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Wan
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Liu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Wenbin Hu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China and Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
44
|
Qi K, Zheng W, Cui X. Supersaturation-controlled surface structure evolution of Pd@Pt core-shell nanocrystals: enhancement of the ORR activity at a sub-10 nm scale. NANOSCALE 2016; 8:1698-1703. [PMID: 26693587 DOI: 10.1039/c5nr07940c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here, we designed and implemented a facile strategy for controlling the surface evolution of Pd@Pt core-shell nanostructures by simply adjusting the volume of OH(-) to control the reducing ability of ascorbic acid and finally manipulating the supersaturation in the reaction system. The surface structure of the obtained Pd@Pt bimetallic nanocrystals transformed from a Pt {111} facet-exposed island shell to a conformal Pt {100} facet-exposed shell by increasing the pH value. The as-prepared well aligned Pd@Pt core-island shell nanocubes present both significantly enhanced electrocatalytic activity and favorable long-term stability toward the oxygen reduction reaction in alkaline media.
Collapse
Affiliation(s)
- Kun Qi
- Department of Materials Science, Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China.
| | - Weitao Zheng
- Department of Materials Science, Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China.
| | - Xiaoqiang Cui
- Department of Materials Science, Key Laboratory of Automobile Materials of MOE and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
45
|
Han S, Zhou G, Fu Y, Ma Y, Xu L, Zou C, Chen W, Yang Y, Huang S. The alloying effect and AgCl-directing growth for synthesizing a trimetallic nanoring with improved SERS. NANOSCALE 2015; 7:20414-20425. [PMID: 26502355 DOI: 10.1039/c5nr05531h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl(2)](-)/Au because of the alloying effect, resulting in the dissolved O(2) molecules that serve as an effective etchant for oxidizing Au to Au(I). Ascorbic acid (AA) and chloroplatinic acid (H(2)PtCl(6)) are weak acids which can accelerate the etching by increasing the concentration of H(+). The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H(2)PtCl(6) here via their complexing interaction. AA reduces Pt(IV) and Ag(I) to atoms which grow on {100} facets. The formed Pt/Ag layer changes the etching direction from along [100] to [111] and generates the TAAPN. Besides, it has been noted that the TAAPNs exhibit good Surface Enhanced Raman Scattering (SERS) performance.
Collapse
Affiliation(s)
- Shuhua Han
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - Guangju Zhou
- College of Materials and Chemical Engineering, Hainan University, Haikou, HaiNan 570228, P. R. China
| | - Yunzhi Fu
- College of Materials and Chemical Engineering, Hainan University, Haikou, HaiNan 570228, P. R. China
| | - Ying Ma
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - Li Xu
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - Chao Zou
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - Wei Chen
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - Shaoming Huang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| |
Collapse
|
46
|
Tan L, Li L, Peng Y, Guo L. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction. NANOTECHNOLOGY 2015; 26:505401. [PMID: 26585310 DOI: 10.1088/0957-4484/26/50/505401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.
Collapse
Affiliation(s)
- Lingyu Tan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, People's Republic of China
| | | | | | | |
Collapse
|
47
|
|
48
|
Zhu C, Du D, Eychmüller A, Lin Y. Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chem Rev 2015; 115:8896-943. [DOI: 10.1021/acs.chemrev.5b00255] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
| | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Key
Laboratory of Pesticide and Chemical Biology of the Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
49
|
Tran Si Bui T, Kim Y, Kim S, Lee H. Facile and green cinchonidine-assisted synthesis of ultrafine and well-dispersed palladium nanoparticles supported on activated carbon with high catalytic performance. RSC Adv 2015. [DOI: 10.1039/c5ra10995g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the facile and green synthesis of activated carbon-supported palladium (Pd/AC) containing homogeneously dispersed Pd nanoparticles (Pd NPs) by using eco-friendly and naturally available cinchonidine (CD) as the capping agent.
Collapse
Affiliation(s)
- Trung Tran Si Bui
- Molecular-Level Interface Research Center
- Department of Chemistry
- KAIST
- Republic of Korea
| | - Yeonwoo Kim
- Molecular-Level Interface Research Center
- Department of Chemistry
- KAIST
- Republic of Korea
| | - Sehun Kim
- Molecular-Level Interface Research Center
- Department of Chemistry
- KAIST
- Republic of Korea
| | - Hangil Lee
- Department of Chemistry
- Sookmyung Women's University
- Seoul 140-742
- Republic of Korea
| |
Collapse
|
50
|
Luo L, Dai C, Zhang A, Wang J, Liu M, Song C, Guo X. A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00242g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mesoporous ZSM-5 zeolite obtained from alkaline treatment was found to be a superior support of bimetallic FeCu, minimizing the nanoparticle size, enhancing the bimetallic interaction, and promoting catalytic oxidation of phenol.
Collapse
Affiliation(s)
- Lei Luo
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Chengyi Dai
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Anfeng Zhang
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Junhu Wang
- Mossbauer Effect Data Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Min Liu
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|