1
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Mendez LC, Boadi FO, Kennedy M, Bhatia SR, Sampson NS. Glycopolymers Prepared by Alternating Ring-Opening Metathesis Polymerization Provide Access to Distinct, Multivalent Structures for the Probing of Biological Activity. ACS BIO & MED CHEM AU 2024; 4:214-225. [PMID: 39184055 PMCID: PMC11342347 DOI: 10.1021/acsbiomedchemau.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024]
Abstract
A myriad of biological processes are facilitated by ligand-receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand-receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand-receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.
Collapse
Affiliation(s)
- Luz C. Mendez
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Francis O. Boadi
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Mitchell Kennedy
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Surita R. Bhatia
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Nicole S. Sampson
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| |
Collapse
|
3
|
Zhang P, Li C, Ma X, Ye J, Wang D, Cao H, Yu G, Wang W, Lv X, Cai C. Glycopolymer with Sulfated Fucose and 6'-Sialyllactose as a Dual-Targeted Inhibitor on Resistant Influenza A Virus Strains. ACS Macro Lett 2024; 13:874-881. [PMID: 38949618 DOI: 10.1021/acsmacrolett.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The frequent mutations of influenza A virus (IAV) have led to an urgent need for the development of innovative antiviral drugs. Glycopolymers offer significant advantages in biomedical applications owing to their biocompatibility and structural diversity. However, the primary challenge lies in the design and synthesis of well-defined glycopolymers to precisely control their biological functionalities. In this study, functional glycopolymers with sulfated fucose and 6'-sialyllactose were successfully synthesized through ring-opening metathesis polymerization and a postmodification strategy. The optimized heteropolymer exhibited simultaneous targeting of hemagglutinin and neuraminidase on the surface of IAV, as evidenced by MU-NANA assay and hemagglutination inhibition data. Antiviral experiments demonstrated that the glycopolymer displayed broad and efficient inhibitory activity against wild-type and mutant strains of H1N1 and H3N2 subtypes in vitro, thereby establishing its potential as a dual-targeted inhibitor for combating IAV resistance.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Chenning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, P. R. China
| | - Xiaoyao Ma
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jinfeng Ye
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Depeng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, P. R. China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| |
Collapse
|
4
|
Nagao M, Hoshino Y, Miura Y. Quantification of thermodynamic effects of carbohydrate multivalency on avidity using synthetic discrete glycooligomers. Chem Commun (Camb) 2024; 60:7021-7024. [PMID: 38895769 DOI: 10.1039/d4cc02409e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A quantitative understanding of thermodynamic effects of avidity in biomolecular interactions is important. Herein, we synthesized discrete glycooligomers and evaluated their interactions with a model protein using isothermal titration calorimetry. The dimeric glycooligomer exhibited higher binding constants compared to the glycomonomer, attributed to the reduced conformational entropy loss through local presentation of multiple carbohydrate units. Conversely, divalent glycoligands with polyethylene glycol linkers, aiming for multivalent binding, showed enhanced interactions through increased enthalpy. These findings emphasize the importance of distinguishing between the "local avidity" and the "multipoint avidity".
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
5
|
Tanaka T. Recent Advances in Polymers Bearing Activated Esters for the Synthesis of Glycopolymers by Postpolymerization Modification. Polymers (Basel) 2024; 16:1100. [PMID: 38675019 PMCID: PMC11053895 DOI: 10.3390/polym16081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glycopolymers are functional polymers with saccharide moieties on their side chains and are attractive candidates for biomaterials. Postpolymerization modification can be employed for the synthesis of glycopolymers. Activated esters are useful in various fields, including polymer chemistry and biochemistry, because of their high reactivity and ease of reaction. In particular, the formation of amide bonds caused by the reaction of activated esters with amino groups is of high synthetic chemical value owing to its high selectivity. It has been employed in the synthesis of various functional polymers, including glycopolymers. This paper reviews the recent advances in polymers bearing activated esters for the synthesis of glycopolymers by postpolymerization modification. The development of polymers bearing hydrophobic and hydrophilic activated esters is described. Although water-soluble activated esters are generally unstable and hydrolyzed in water, novel polymer backbones bearing water-soluble activated esters are stable and useful for postpolymerization modification for synthesizing glycopolymers in water. Dual postpolymerization modification can be employed to modify polymer side chains using two different molecules. Thiolactone and glycine propargyl esters on the polymer backbone are described as activated esters for dual postpolymerization modification.
Collapse
Affiliation(s)
- Tomonari Tanaka
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
6
|
Lőrincz EB, Herczeg M, Houser J, Rievajová M, Kuki Á, Malinovská L, Naesens L, Wimmerová M, Borbás A, Herczegh P, Bereczki I. Amphiphilic Sialic Acid Derivatives as Potential Dual-Specific Inhibitors of Influenza Hemagglutinin and Neuraminidase. Int J Mol Sci 2023; 24:17268. [PMID: 38139095 PMCID: PMC10743929 DOI: 10.3390/ijms242417268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.
Collapse
Affiliation(s)
- Eszter Boglárka Lőrincz
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
| | - Josef Houser
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Martina Rievajová
- Department of Biochemistry, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic;
| | - Ákos Kuki
- Department of Applied Chemistry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Lenka Malinovská
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium;
| | - Michaela Wimmerová
- National Centre for Biomolecular Research, Masaryk University, 611 37 Brno, Czech Republic; (J.H.); (L.M.); (M.W.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic;
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- National Laboratory of Virology, University of Pécs, H-7624 Pécs, Hungary
- HUN-REN–UD Molecular Recognition and Interaction Research Group, University of Debrecen, H-4032 Debrecen, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.L.); (M.H.); (A.B.); (P.H.)
- National Laboratory of Virology, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
7
|
Zhu X, Yi Y, Fan Z, Liu R, Chu X, Wang M, Zhang J, Tretyakova E, Zhang Y, Zhang L, Zhou D, Xiao S. Novel mono- and multivalent N-acetylneuraminic acid glycoclusters as potential broad-spectrum entry inhibitors for influenza and coronavirus infection. Eur J Med Chem 2023; 260:115723. [PMID: 37595545 DOI: 10.1016/j.ejmech.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
N-acetylneuraminic acid (Neu5Ac) is a glycan receptor of viruses spread in many eukaryotic cells. The present work aimed to design, synthesis and biological evaluation of a panel of Neu5Ac derivatives based on a cyclodextrin (CD) scaffold for targeting influenza and coronavirus membrane proteins. The multivalent Neu5Ac glycoclusters efficiently inhibited chicken erythrocyte agglutination induced by intact influenza virus in a Neu5Ac density-dependent fashion. Compared with inhibition by Neu5Ac, the multivalent inhibitor with 21 Neu5Ac residues on the primary face of the β-CD scaffold afforded 1788-fold higher binding affinity inhibition for influenza virus hemagglutinin with a dissociation constant (KD) of 3.87 × 10-7 M. It showed moderate binding affinity to influenza virus neuraminidase, but with only about one-thirtieth the potency of that with the HA protein. It also exhibited strong binding affinity to the spike protein of three human coronaviruses (severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2), with KD values in the low micromolar range, which is about 10-time weaker than that of HA. Therefore, these multivalent sialylated CD derivatives have possible therapeutic application as broad-spectrum antiviral entry inhibitors for many viruses by targeting the Neu5Ac of host cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanliang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zibo Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ruiwen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xindang Chu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mengyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiayi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Elena Tretyakova
- Ufa Institute of Chemistry UFRC RAS, Pr. Oktyabrya 71, 450054, Ufa, Russian Federation
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China.
| |
Collapse
|
8
|
Chen X, Li X, He W, Wang M, Gao A, Tong L, Guo S, Wang H, Pan G. Rational multivalency construction enables bactericidal effect amplification and dynamic biomaterial design. Innovation (N Y) 2023; 4:100483. [PMID: 37560332 PMCID: PMC10407542 DOI: 10.1016/j.xinn.2023.100483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
The multivalency of bioligands in living systems brings inspiration for not only the discovery of biological mechanisms but also the design of extracellular matrix (ECM)-mimicking biomaterials. However, designing controllable multivalency construction strategies is still challenging. Herein, we synthesized a series of well-defined multivalent antimicrobial peptide polymers (mAMPs) by clicking ligand molecules onto polymers prepared by reversible addition-fragmentation chain transfer polymerization. The multiple cationic ligands in the mAMPs could enhance the local disturbance of the anionic phospholipid layer of the bacterial membrane through multivalent binding, leading to amplification of the bactericidal effect. In addition to multivalency-enhanced antibacterial activity, mAMPs also enable multivalency-assisted hydrogel fabrication with an ECM-like dynamic structure. The resultant hydrogel with self-healing and injectable properties could be successfully employed as an antibacterial biomaterial scaffold to treat infected skin wounds. The multivalency construction strategy presented in this work provides new ideas for the biomimetic design of highly active and dynamic biomaterials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinrui Li
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenbo He
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shun Guo
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Konietzny PB, Peters H, Hofer ML, Gerling-Driessen UIM, de Vries RP, Peters T, Hartmann L. Enzymatic Sialylation of Synthetic Multivalent Scaffolds: From 3'-Sialyllactose Glycomacromolecules to Novel Neoglycosides. Macromol Biosci 2022; 22:e2200358. [PMID: 36112275 DOI: 10.1002/mabi.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/1912] [Indexed: 01/15/2023]
Abstract
Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy. A key feature for high affinity binding of such conjugates is the multivalent presentation of sialoglycans which often possess synthetic challenges. Here, the combination is described of solid phase polymer synthesis and enzymatic sialylation yielding 3'-sialyllactose-presenting precision glycomacromolecules. CMP-Neu5Ac synthetase from Neisseria meningitidis (NmCSS) and sialyltransferase from Pasteurella multocida (PmST1) are combined in a one-pot reaction giving access to sequence-defined sialylated macromolecules. Surprisingly, when employing Tris(hydroxymethyl)aminomethane (Tris) as a buffer, formation of significant amounts of α-linked Tris-sialoside is observed as a side reaction. Further exploring and exploiting this unusual sialylation reaction, different neoglycosidic structures are synthesized showing that PmST1 can be used to derive both, sialylation on natural carbohydrates as well as on synthetic hydroxylated scaffolds.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hannelore Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Marc L Hofer
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ulla I M Gerling-Driessen
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
10
|
Baker AN, Hawker-Bond GW, Georgiou PG, Dedola S, Field RA, Gibson MI. Glycosylated gold nanoparticles in point of care diagnostics: from aggregation to lateral flow. Chem Soc Rev 2022; 51:7238-7259. [PMID: 35894819 PMCID: PMC9377422 DOI: 10.1039/d2cs00267a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current point-of-care lateral flow immunoassays, such as the home pregnancy test, rely on proteins as detection units (e.g. antibodies) to sense for analytes. Glycans play a fundamental role in biological signalling and recognition events such as pathogen adhesion and hence they are promising future alternatives to antibody-based biosensing and diagnostics. Here we introduce the potential of glycans coupled to gold nanoparticles as recognition agents for lateral flow diagnostics. We first introduce the concept of lateral flow, including a case study of lateral flow use in the field compared to other diagnostic tools. We then introduce glycosylated materials, the affinity gains achieved by the cluster glycoside effect and the current use of these in aggregation based assays. Finally, the potential role of glycans in lateral flow are explained, and examples of their successful use given. Antibody-based lateral flow (immune) assays are well established, but here the emerging concept and potential of using glycans as the detection agents is reviewed.![]()
Collapse
Affiliation(s)
- Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - George W Hawker-Bond
- Oxford University Clinical Academic Graduate School, John Radcliffe Hospital Oxford, Oxford, OX3 9DU, UK
| | - Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | | | - Robert A Field
- Iceni Glycoscience Ltd, Norwich, NR4 7GJ, UK.,Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK. .,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| |
Collapse
|
11
|
Lema MA, Nava-Medina IB, Cerullo AR, Abdelaziz R, Jimenez SM, Geldner JB, Abdelhamid M, Kwan CS, Kharlamb L, Neary MC, Braunschweig AB. Scalable Preparation of Synthetic Mucins via Nucleophilic Ring-Opening Polymerization of Glycosylated N-Carboxyanhydrides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel A. Lema
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, City College of New York, 160 Convent Ave, New York, New York 10031, United States
| | - Ilse B. Nava-Medina
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Antonio R. Cerullo
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Radwa Abdelaziz
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Stephanie M. Jimenez
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Jacob B. Geldner
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Mohamed Abdelhamid
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Chak-Shing Kwan
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Lily Kharlamb
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Michelle C. Neary
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| |
Collapse
|
12
|
Facial Synthesis and Bioevaluation of Well-Defined OEGylated Betulinic Acid-Cyclodextrin Conjugates for Inhibition of Influenza Infection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041163. [PMID: 35208962 PMCID: PMC8880671 DOI: 10.3390/molecules27041163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/11/2023]
Abstract
Betulinic acid (BA) and its derivatives exhibit a variety of biological activities, especially their anti-HIV-1 activity, but generally have only modest inhibitory potency against influenza virus. The entry of influenza virus into host cells can be competitively inhibited by multivalent derivatives targeting hemagglutinin. In this study, a series of hexa-, hepta- and octavalent BA derivatives based on α-, β- and γ-cyclodextrin scaffolds, respectively, with varying lengths of flexible oligo(ethylene glycol) linkers was designed and synthesized using a microwave-assisted copper-catalyzed 1,3-dipolar cycloaddition reaction. The generated BA-cyclodextrin conjugates were tested for their in vitro activity against influenza A/WSN/33 (H1N1) virus and cytotoxicity. Among the tested compounds, 58, 80 and 82 showed slight cytotoxicity to Madin-Darby canine kidney cells with viabilities ranging from 64 to 68% at a high concentration of 100 μM. Four conjugates 51 and 69–71 showed significant inhibitory effects on influenza infection with half maximal inhibitory concentration values of 5.20, 9.82, 7.48 and 7.59 μM, respectively. The structure-activity relationships of multivalent BA-cyclodextrin conjugates were discussed, highlighting that multivalent BA derivatives may be potential antiviral agents against influenza infection.
Collapse
|
13
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
14
|
Richards SJ, Gibson MI. Toward Glycomaterials with Selectivity as Well as Affinity. JACS AU 2021; 1:2089-2099. [PMID: 34984416 PMCID: PMC8717392 DOI: 10.1021/jacsau.1c00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/08/2023]
Abstract
Multivalent glycosylated materials (polymers, surfaces, and particles) often show high affinity toward carbohydrate binding proteins (e.g., lectins) due to the nonlinear enhancement from the cluster glycoside effect. This affinity gain has potential in applications from diagnostics, biosensors, and targeted delivery to anti-infectives and in an understanding of basic glycobiology. This perspective highlights the question of selectivity, which is less often addressed due to the reductionist nature of glycomaterials and the promiscuity of many lectins. The use of macromolecular features, including architecture, heterogeneous ligand display, and the installation of non-natural glycans, to address this challenge is discussed, and examples of selectivity gains are given.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
15
|
Lucas TM, Gupta C, Altman MO, Sanchez E, Naticchia MR, Gagneux P, Singharoy A, Godula K. Mucin-mimetic glycan arrays integrating machine learning for analyzing receptor pattern recognition by influenza A viruses. Chem 2021; 7:3393-3411. [PMID: 34993358 PMCID: PMC8726012 DOI: 10.1016/j.chempr.2021.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Influenza A viruses (IAVs) exploit host glycans in airway mucosa for entry and infection. Detection of changes in IAV glycan-binding phenotype can provide early indication of transmissibility and infection potential. While zoonotic viruses are monitored for mutations, the influence of host glycan presentation on viral specificity remains obscured. Here, we describe an array platform which uses synthetic mimetics of mucin glycoproteins to model how receptor presentation and density in the mucinous glycocalyx may impact IAV recognition. H1N1 and H3N2 binding in arrays of α2,3- and α2,6-sialyllactose receptors confirmed their known sialic acid-binding specificities and revealed their different sensitivities to receptor presentation. Further, the transition of H1N1 from avian to mammalian cell culture improved the ability of the virus to recognize mucin-like displays of α2,6-sialic acid receptors. Support vector machine (SVM) learning efficiently characterized this shift in binding preference and may prove useful to study viral evolution to a new host.
Collapse
Affiliation(s)
- Taryn M. Lucas
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Meghan O. Altman
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Emi Sanchez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Matthew R. Naticchia
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Pascal Gagneux
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
16
|
Stadtmueller MN, Bhatia S, Kiran P, Hilsch M, Reiter-Scherer V, Adam L, Parshad B, Budt M, Klenk S, Sellrie K, Lauster D, Seeberger PH, Hackenberger CPR, Herrmann A, Haag R, Wolff T. Evaluation of Multivalent Sialylated Polyglycerols for Resistance Induction in and Broad Antiviral Activity against Influenza A Viruses. J Med Chem 2021; 64:12774-12789. [PMID: 34432457 DOI: 10.1021/acs.jmedchem.1c00794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of multivalent sialic acid-based inhibitors active against a variety of influenza A virus (IAV) strains has been hampered by high genetic and structural variability of the targeted viral hemagglutinin (HA). Here, we addressed this challenge by employing sialylated polyglycerols (PGs). Efficacy of prototypic PGs was restricted to a narrow spectrum of IAV strains. To understand this restriction, we selected IAV mutants resistant to a prototypic multivalent sialylated PG by serial passaging. Resistance mutations mapped to the receptor binding site of HA, which was accompanied by altered receptor binding profiles of mutant viruses as detected by glycan array analysis. Specifying the inhibitor functionalization to 2,6-α-sialyllactose (SL) and adjusting the linker yielded a rationally designed inhibitor covering an extended spectrum of inhibited IAV strains. These results highlight the importance of integrating virological data with chemical synthesis and structural data for the development of sialylated PGs toward broad anti-influenza compounds.
Collapse
Affiliation(s)
- Marlena N Stadtmueller
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Pallavi Kiran
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Malte Hilsch
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Valentin Reiter-Scherer
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Lutz Adam
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Strasse 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Badri Parshad
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Matthias Budt
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Simon Klenk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Strasse 10, 13125 Berlin, Germany.,Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Katrin Sellrie
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Daniel Lauster
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Peter H Seeberger
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andreas Herrmann
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| |
Collapse
|
17
|
Valles DJ, Zholdassov YS, Korpanty J, Uddin S, Naeem Y, Mootoo DR, Gianneschi NC, Braunschweig AB. Glycopolymer Microarrays with Sub‐Femtomolar Avidity for Glycan Binding Proteins Prepared by Grafted‐To/Grafted‐From Photopolymerizations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel J. Valles
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yerzhan S. Zholdassov
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Joanna Korpanty
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Samiha Uddin
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yasir Naeem
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - David R. Mootoo
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Nathan C. Gianneschi
- Department of Chemistry Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Adam B. Braunschweig
- The PhD program in Chemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
- Advanced Science Research Center at the Graduate Center The City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA
- The PhD program in Biochemistry Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA
| |
Collapse
|
18
|
Valles DJ, Zholdassov YS, Korpanty J, Uddin S, Naeem Y, Mootoo DR, Gianneschi NC, Braunschweig AB. Glycopolymer Microarrays with Sub-Femtomolar Avidity for Glycan Binding Proteins Prepared by Grafted-To/Grafted-From Photopolymerizations. Angew Chem Int Ed Engl 2021; 60:20350-20357. [PMID: 34273126 DOI: 10.1002/anie.202105729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/04/2021] [Indexed: 11/09/2022]
Abstract
We report a novel glycan array architecture that binds the mannose-specific glycan binding protein, concanavalin A (ConA), with sub-femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted-from thiol-(meth)acrylate polymerization with thiol-ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted-to/grafted-from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography.
Collapse
Affiliation(s)
- Daniel J Valles
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Yerzhan S Zholdassov
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Joanna Korpanty
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Samiha Uddin
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Yasir Naeem
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - David R Mootoo
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Adam B Braunschweig
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA.,The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| |
Collapse
|
19
|
Sengupta S, Singh A, Dutta K, Sahu RP, Kumar S, Goswami C, Chawla S, Goswami L, Bandyopadhyay A. Branched/Hyperbranched Copolyesters from Poly(vinyl alcohol) and Citric Acid as Delivery Agents and Tissue Regeneration Scaffolds. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Srijoni Sengupta
- Department of Polymer Science & Technology University of Calcutta 92, A.P.C. Road Kolkata 700009 India
| | - Abhishek Singh
- KIIT School of Biotechnology Kalinga Institute of Industrial Technology KIIT Road, Patia Bhubaneswar Odisha 751024 India
| | - Koushik Dutta
- Department of Polymer Science & Technology University of Calcutta 92, A.P.C. Road Kolkata 700009 India
| | - Ram Prasad Sahu
- School of Biological Science National Institute of Science Education and Research P.O. Jatni, Khurda Bhubaneswar Odisha 752050 India
| | - Satish Kumar
- KIIT School of Biotechnology Kalinga Institute of Industrial Technology KIIT Road, Patia Bhubaneswar Odisha 751024 India
| | - Chandan Goswami
- School of Biological Science National Institute of Science Education and Research P.O. Jatni, Khurda Bhubaneswar Odisha 752050 India
| | - Saurabh Chawla
- School of Biological Science National Institute of Science Education and Research P.O. Jatni, Khurda Bhubaneswar Odisha 752050 India
| | - Luna Goswami
- Department of Chemical Technology Kalinga Institute of Industrial Technology KIIT Road, Patia Bhubaneswar Odisha 751024 India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science & Technology University of Calcutta 92, A.P.C. Road Kolkata 700009 India
| |
Collapse
|
20
|
Filipczak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26113304. [PMID: 34072765 PMCID: PMC8198206 DOI: 10.3390/molecules26113304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- The Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
21
|
Straßburger D, Herziger S, Huth K, Urschbach M, Haag R, Besenius P. Supramolecular polymerization of sulfated dendritic peptide amphiphiles into multivalent L-selectin binders. Beilstein J Org Chem 2021; 17:97-104. [PMID: 33519996 PMCID: PMC7814183 DOI: 10.3762/bjoc.17.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
Abstract
The synthesis of a sulfate-modified dendritic peptide amphiphile and its self-assembly into one-dimensional rod-like architectures in aqueous medium is reported. The influence of the ionic strength on the supramolecular polymerization was probed via circular dichroism spectroscopy and cryogenic transmission electron microscopy. Physiological salt concentrations efficiently screen the charges of the dendritic building block equipped with eight sulfate groups and trigger the formation of rigid supramolecular polymers. Since multivalent sulfated supramolecular structures mimic naturally occurring L-selectin ligands, the corresponding affinity was evaluated using a competitive SPR binding assay and benchmarked to an ethylene glycol-decorated supramolecular polymer.
Collapse
Affiliation(s)
- David Straßburger
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Svenja Herziger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.,Research Center of Electron Microscopy, Freie Universität Berlin, Fabeckstr. 34a, 14195 Berlin
| | - Katharina Huth
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
22
|
Wang J, Wang D, Zhang Y, Dong J. Synthesis and Biopharmaceutical Applications of Sugar-Based Polymers: New Advances and Future Prospects. ACS Biomater Sci Eng 2021; 7:963-982. [PMID: 33523642 DOI: 10.1021/acsbiomaterials.0c01710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rapid rise in research interest in carbohydrate-based polymers is undoubtedly due to the nontoxic nature of such materials in an in vivo environment and the versatile roles that the polymers can play in cellular functions. Such polymers have served as therapeutic tools for drug delivery, including antigens, proteins, and genes, as well as diagnostic devices. Our focus in the first half of this Review is on synthetic methods based on ring-opening polymerization and enzyme-catalyzed polymerization, along with controlled radical polymerization. In the second half of this Review, sugar-based polymers are discussed on the basis of their remarkable success in competitive receptor binding, as multifunctional nanocarriers of targeting inhibitors for cancer treatment, in genome-editing delivery, in immunotherapy based on endogenous antibody recruitment, and in treatment of respiratory diseases, including influenza A. Particular emphasis is put on the synthesis and biopharmaceutical applications of sugar-based polymers published in the most recent 5 years. A noticeable attribute of carbohydrate-based polymers is that the sugar-receptor interactions can be facilitated by the cooperative effect of multiple sugar units. Their diversified topology and structures will drive the development of new synthetic strategies and bring about important applications, including coronavirus-related drug therapy.
Collapse
Affiliation(s)
- Jie Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Yixian Zhang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| |
Collapse
|
23
|
Pleass RJ. The therapeutic potential of sialylated Fc domains of human IgG. MAbs 2021; 13:1953220. [PMID: 34288809 PMCID: PMC8296966 DOI: 10.1080/19420862.2021.1953220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogens frequently use multivalent binding to sialic acid to infect cells or to modulate immunity through interactions with human sialic acid-binding immunoglobulin-type lectins (Siglecs). Molecules that interfere with these interactions could be of interest as diagnostics, anti-infectives or as immune modulators. This review describes the development of molecular scaffolds based on the crystallizable fragment (Fc) region of immunoglobulin (Ig) G that deliver high-avidity binding to innate immune receptors, including sialic acid-dependent receptors. The ways in which the sialylated Fc may be engineered as immune modulators that mimic the anti-inflammatory properties of intravenous polyclonal Ig or as blockers of sialic-acid-dependent infectivity by viruses are also discussed.
Collapse
Affiliation(s)
- Richard J. Pleass
- Department of Tropical Disease Biology, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
24
|
Zhou X, Zhao M, Liu Y, Chen Q, Shen L. Statistical Binding Matching between Influenza A Virus and Dynamic Glycan Clusters Determines Its Adhesion onto Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15212-15219. [PMID: 33307709 DOI: 10.1021/acs.langmuir.0c02047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The resistance of drugs to the new influenza A virus (IAV) strains and the limited efficiency of vaccines to prevent seasonal flu epidemics underscore the urgency in finding novel strategies to block IAV infection, which is required to gain insights into the mechanism of the initial step of IAV adhesion. While it is well established that IAVs bind to respiratory tract cells by recognizing sialylated glycans on host cell membranes through a multivalency effect, how IAVs dynamically respond to multiple glycan receptors via distinct valencies has not been fully understood, limiting the discovery of novel anti-flu strategies. Using single-particle tracking to record the 2D mobilities and surface residence times of highly pathogenic H5N1 avian IAVs adhered to fluidic membranes containing α2-3 sialylated GM3 glycolipids, we quantified the univalent and multivalent IAV adhesion channels, which provide insights into the mechanism of IAV binding; IAV can guide the clustering of dynamic glycolipids to statistically match the multivalent binding affinities for IAV adhesion. This mechanism can be inhibited by disrupting the dynamic glycan clustering on membranes of varying fluidities, like the gel phase membrane. This work facilitates a deeper fundamental understanding of IAV infection as well as the development of novel anti-flu strategies.
Collapse
Affiliation(s)
- Xin Zhou
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuanyuan Liu
- School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan 430071, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
25
|
Rütter M, Milošević N, David A. Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. J Control Release 2020; 330:1191-1207. [PMID: 33207257 DOI: 10.1016/j.jconrel.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The vast majority of nanomedicines (NM) investigated today consists of a macromolecular carrier and a drug payload (conjugated or encapsulated), with a purpose of preferential delivery of the drug to the desired site of action, either through passive accumulation, or by active targeting via ligand-receptor interaction. Several drug delivery systems (DDS) have already been approved for clinical use. However, recent reports are corroborating the notion that NM do not necessarily need to include a drug payload, but can exert biological effects through specific binding/blocking of important target proteins at the site of action. The seminal work of Kopeček et al. on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing biorecognition motifs (peptides or oligonucleotides) for crosslinking cell surface non-internalizing receptors of malignant cells and inducing their apoptosis, without containing any low molecular weight drug, led to the definition of a special group of NM, termed Drug-Free Macromolecular Therapeutics (DFMT). Systems utilizing this approach are typically designed to employ pendant targeting-ligands on the same macromolecule to facilitate multivalent interactions with receptors. The lack of conventional small molecule drugs reduces toxicity and adverse effects at off-target sites. In this review, we describe different types of DFMT that possess biological activity without attached low molecular weight drugs. We classified the relevant research into several groups by their mechanisms of action, and compare the advantages and disadvantages of these different approaches. We show that identification of target sites, specificity of attached targeting ligands, binding affinity and the synthesis of carriers of defined size and ligand spacing are crucial aspects of DFMT development. We further discuss how knowledge in the field of NM accumulated in the past few decades can help in the design of a successful DFMT to speed up the translation into clinical practice.
Collapse
Affiliation(s)
- Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nenad Milošević
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
26
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
27
|
Laezza A, Georgiou PG, Richards SJ, Baker AN, Walker M, Gibson MI. Protecting Group Free Synthesis of Glyconanoparticles Using Amino-Oxy-Terminated Polymer Ligands. Bioconjug Chem 2020; 31:2392-2403. [PMID: 32951418 DOI: 10.1021/acs.bioconjchem.0c00465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycomaterials display enhanced binding affinity to carbohydrate-binding proteins due to the nonlinear enhancement associated with the cluster glycoside effect. Gold nanoparticles bearing glycans have attracted significant interest in particular. This is due to their versatility, their highly tunable gold cores (size and shape), and their application in biosensors and diagnostic tools. However, conjugating glycans onto these materials can be challenging, necessitating either multiple protecting group manipulations or the use of only simple glycans. This results in limited structural diversity compared to glycoarrays which can include hundreds of glycans. Here we report a method to generate glyconanoparticles from unprotected glycans by conjugation to polymer tethers bearing terminal amino-oxy groups, which are then immobilized onto gold nanoparticles. Using an isotope-labeled glycan, the efficiency of this reaction was probed in detail to confirm conjugation, with 25% of end-groups being functionalized, predominantly in the ring-closed form. Facile post-glycosylation purification is achieved by simple centrifugation/washing cycles to remove excess glycan and polymer. This streamlined synthetic approach may be particularly useful for the preparation of glyconanoparticle libraries using automation, to identify hits to be taken forward using more conventional synthetic methods. Exemplar lectin-binding studies were undertaken to confirm the availability of the glycans for binding and show this is a powerful tool for rapid assessment of multivalent glycan binding.
Collapse
|
28
|
Kessler N, Akabayov SR, Moseri A, Cohen LS, Sakhapov D, Bolton D, Fridman B, Kay LE, Naider F, Anglister J. Allovalency observed by transferred NOE: interactions of sulfated tyrosine residues in the N-terminal segment of CCR5 with the CCL5 chemokine. FEBS J 2020; 288:1648-1663. [PMID: 32814359 DOI: 10.1111/febs.15503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
The N-terminal segment of the chemokine receptor Human CC chemokine receptor 5 (CCR5), Nt-CCR5, contains four tyrosine residues, Y3, Y10, Y14, and Y15. Sulfation of at least two of these tyrosine residues was found to be essential for high-affinity binding of CCR5 to its chemokine ligands. Here, we show that among the monosulfated Nt-CCR5(8-20) peptide surrogates (sNt-CCR5) those sulfated at Y15 and Y14 have the highest affinity for the CC chemokine ligand 5 (CCL5) chemokine in comparison with monosulfation at position Y10. Sulfation at Y3 was not investigated. A peptide sulfated at both Y14 and Y15 has the highest affinity for CCL5 by up to a factor of 3, in comparison with the other disulfated (sNt-CCR5) peptides. Chemical shift perturbation analysis and transferred nuclear Overhauser effect measurements indicate that the sulfated tyrosine residues interact with the same CCL5-binding pocket and that each of the sulfated tyrosines at positions 10, 14, and 15 can occupy individually the binding site on CCL5 in a similar manner, although with somewhat different affinity, suggesting the possibility of allovalency in sulfated Nt-CCR5 peptides. The affinity of the disulfated peptides to CCL5 could be increased by this allovalency and by stronger electrostatic interactions.
Collapse
Affiliation(s)
- Naama Kessler
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sabine R Akabayov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Moseri
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leah S Cohen
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA.,PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Damir Sakhapov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Bolton
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Office for People with Developmental Disabilities, Staten Island, NY, USA
| | - Brandon Fridman
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, The University of Toronto, Toronto, ON, Canada.,Department of Chemistry, The University of Toronto, Toronto, ON, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA.,PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Chen Y, Wang X, Zhu Y, Si L, Zhang B, Zhang Y, Zhang L, Zhou D, Xiao S. Synthesis of a Hexavalent Betulinic Acid Derivative as a Hemagglutinin-Targeted Influenza Virus Entry Inhibitor. Mol Pharm 2020; 17:2546-2554. [PMID: 32426985 DOI: 10.1021/acs.molpharmaceut.0c00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yingying Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinchen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yinbiao Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Bo Zhang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
30
|
Richards SJ, Baker AN, Walker M, Gibson MI. Polymer-Stabilized Sialylated Nanoparticles: Synthesis, Optimization, and Differential Binding to Influenza Hemagglutinins. Biomacromolecules 2020; 21:1604-1612. [PMID: 32191036 PMCID: PMC7173702 DOI: 10.1021/acs.biomac.0c00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Indexed: 12/31/2022]
Abstract
During influenza infection, hemagglutinins (HAs) on the viral surface bind to sialic acids on the host cell's surface. While all HAs bind sialic acids, human influenza targets terminal α2,6 sialic acids and avian influenza targets α2,3 sialic acids. For interspecies transmission (zoonosis), HA must mutate to adapt to these differences. Here, multivalent gold nanoparticles bearing either α2,6- or α2,3-sialyllactosamine have been developed to interrogate a panel of HAs from pathogenic human, low pathogenic avian, and other species' influenza. This method exploits the benefits of multivalent glycan presentation compared to monovalent presentation to increase affinity and investigate how multivalency affects selectivity. Using a library-orientated approach, parameters including polymer coating and core diameter were optimized for maximal binding and specificity were probed using galactosylated particles and a panel of biophysical techniques [ultraviolet-visible spectroscopy, dynamic light scattering, and biolayer interferometry]. The optimized particles were then functionalized with sialyllactosamine and their binding analyzed against a panel of HAs derived from pathogenic influenza strains including low pathogenic avian strains. This showed significant specificity crossover, which is not observed in monovalent formats, with binding of avian HAs to human sialic acids and vice versa in agreement with alternate assay formats. These results demonstrate that precise multivalent presentation is essential to dissect the interactions of HAs and may aid the discovery of tools for disease and zoonosis transmission.
Collapse
Affiliation(s)
| | | | - Marc Walker
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
31
|
Ishido Y, Kanbayashi N, Fujii N, Okamura TA, Haino T, Onitsuka K. Folding control of a non-natural glycopeptide using saccharide-coded structural information for polypeptides. Chem Commun (Camb) 2020; 56:2767-2770. [DOI: 10.1039/c9cc10030j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We synthesized “glyco-arylopeptides”, whose folding structure significantly changes depending on the kind of saccharide in their side chain. The saccharide moiety interacts with the main chain via hydrogen bonding, and the non-natural polypeptides form two well-defined architectures—(P)-31- and (M)-41-helices—depending on the length of the saccharide chains and even the configuration of a single stereo-genic center in the epimers.
Collapse
Affiliation(s)
- Yuki Ishido
- Department of Macromolecular Science, Graduate School of Science, Osaka University
- Toyonaka
- Japan
| | - Naoya Kanbayashi
- Department of Macromolecular Science, Graduate School of Science, Osaka University
- Toyonaka
- Japan
| | - Naoka Fujii
- Department of Chemistry, Graduate School of Science, Hiroshima University
- 1-3-1, Kagamiyama
- Higashi-Hiroshima
- Japan
| | - Taka-aki Okamura
- Department of Macromolecular Science, Graduate School of Science, Osaka University
- Toyonaka
- Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Science, Hiroshima University
- 1-3-1, Kagamiyama
- Higashi-Hiroshima
- Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science, Graduate School of Science, Osaka University
- Toyonaka
- Japan
| |
Collapse
|
32
|
Georgiou PG, Baker AN, Richards SJ, Laezza A, Walker M, Gibson MI. "Tuning aggregative versus non-aggregative lectin binding with glycosylated nanoparticles by the nature of the polymer ligand". J Mater Chem B 2019; 8:136-145. [PMID: 31778137 DOI: 10.1039/c9tb02004g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycan-lectin interactions drive a diverse range of biological signaling and recognition processes. The display of glycans in multivalent format enables their intrinsically weak binding affinity to lectins to be overcome by the cluster glycoside effect, which results in a non-linear increase in binding affinity. As many lectins have multiple binding sites, upon interaction with glycosylated nanomaterials either aggregation or surface binding without aggregation can occur. Depending on the application area, either one of these responses are desirable (or undesirable) but methods to tune the aggregation state, independently from the overall extent/affinity of binding are currently missing. Herein, we use gold nanoparticles decorated with galactose-terminated polymer ligands, obtained by photo-initiated RAFT polymerization to ensure high end-group fidelity, to show the dramatic impact on agglutination behaviour due to the chemistry of the polymer linker. Poly(N-hydroxyethyl acrylamide) (PHEA)-coated gold nanoparticles, a polymer widely used as a non-ionic stabilizer, showed preference for aggregation with lectins compared to poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA)-coated nanoparticles which retained colloidal stability, across a wide range of polymer lengths and particle core sizes. Using biolayer interferometry, it was observed that both coatings gave rise to similar binding affinity and hence provided conclusive evidence that aggregation rate alone cannot be used to measure affinity between nanoparticle systems with different stabilizing linkers. This is significant, as turbidimetry is widely used to demonstrate glycomaterial activity, although this work shows the most aggregating may not be the most avid, when comparing different polymer backbones/coating. Overall, our findings underline the potential of PHPMA as the coating of choice for applications where aggregation upon lectin binding would be problematic, such as in vivo imaging or drug delivery.
Collapse
Affiliation(s)
- Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Antonio Laezza
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK. and Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| |
Collapse
|
33
|
Zumbro E, Witten J, Alexander-Katz A. Computational Insights into Avidity of Polymeric Multivalent Binders. Biophys J 2019; 117:892-902. [PMID: 31400918 PMCID: PMC6731389 DOI: 10.1016/j.bpj.2019.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 11/28/2022] Open
Abstract
Multivalent binding interactions are commonly found throughout biology to enhance weak monovalent binding such as between glycoligands and protein receptors. Designing multivalent polymers to bind to viruses and toxic proteins is a promising avenue for inhibiting their attachment and subsequent infection of cells. Several studies have focused on oligomeric multivalent inhibitors and how changing parameters such as ligand shape, size, linker length, and flexibility affect binding. However, experimental studies of how larger structural parameters of multivalent polymers, such as degree of polymerization, affect binding avidity to targets have mixed results, with some finding an improvement with longer polymers and some finding no effect. Here, we use Brownian dynamics simulations to provide a theoretical understanding of how the degree of polymerization affects the binding avidity of multivalent polymers. We show that longer polymers increase binding avidity to multivalent targets but reach a limit in binding avidity at high degrees of polymerization. We also show that when interacting with multiple targets simultaneously, longer polymers are able to use intertarget interactions to promote clustering and improve binding efficiency. We expect our results to narrow the design space for optimizing the structure and effectiveness of multivalent inhibitors as well as be useful to understand biological design strategies for multivalent binding.
Collapse
Affiliation(s)
- Emiko Zumbro
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jacob Witten
- Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
34
|
Purcell SC, Godula K. Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx. Interface Focus 2019; 9:20180080. [PMID: 30842878 PMCID: PMC6388016 DOI: 10.1098/rsfs.2018.0080] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
The glycocalyx is an information-dense network of biomacromolecules extensively modified through glycosylation that populates the cellular boundary. The glycocalyx regulates biological events ranging from cellular protection and adhesion to signalling and differentiation. Owing to the characteristically weak interactions between individual glycans and their protein binding partners, multivalency of glycan presentation is required for the high-avidity interactions needed to trigger cellular responses. As such, biological recognition at the glycocalyx interface is determined by both the structure of glycans that are present as well as their spatial distribution. While genetic and biochemical approaches have proven powerful in controlling glycan composition, modulating the three-dimensional complexity of the cell-surface 'glycoscape' at the sub-micrometre scale remains a considerable challenge in the field. This focused review highlights recent advances in glycocalyx engineering using synthetic nanoscale glycomaterials, which allows for controlled de novo assembly of complexity with precision not accessible with traditional molecular biology tools. We discuss several exciting new studies in the field that demonstrate the power of precision glycocalyx editing in living cells in revealing and controlling the complex mechanisms by which the glycocalyx regulates biological processes.
Collapse
Affiliation(s)
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA
| |
Collapse
|
35
|
Baier M, Rustmeier NH, Harr J, Cyrus N, Reiss GJ, Grafmüller A, Blaum BS, Stehle T, Hartmann L. Divalent Sialylated Precision Glycooligomers Binding to Polyomaviruses and the Effect of Different Linkers. Macromol Biosci 2019; 19:e1800426. [PMID: 30884172 DOI: 10.1002/mabi.201800426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/04/2019] [Indexed: 12/31/2022]
Abstract
Divalent precision glycooligomers terminating in N-acetylneuraminic acid (Neu5Ac) or 3'-sialyllactose (3'-SL) with varying linkers between scaffold and the glycan portions are synthesized via solid phase synthesis for co-crystallization studies with the sialic acid-binding major capsid protein VP1 of human Trichodysplasia spinulosa-associated Polyomavirus. High-resolution crystal structures of complexes demonstrate that the compounds bind to VP1 depending on the favorable combination of carbohydrate ligand and linker. It is found that artificial linkers can replace portions of natural carbohydrate linkers as long as they meet certain requirements such as size or flexibility to optimize contact area between ligand and receptor binding sites. The obtained results will influence the design of future high affinity ligands based on the structures presented here, and they can serve as a blueprint to develop multivalent glycooligomers as inhibitors of viral adhesion.
Collapse
Affiliation(s)
- Mischa Baier
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Nils H Rustmeier
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Strasse 4, 72076, Tuebingen, Germany
| | - Joachim Harr
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Strasse 4, 72076, Tuebingen, Germany
| | - Norbert Cyrus
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Guido J Reiss
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Bärbel S Blaum
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Strasse 4, 72076, Tuebingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Strasse 4, 72076, Tuebingen, Germany.,Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| |
Collapse
|
36
|
Nagao M, Matsubara T, Hoshino Y, Sato T, Miura Y. Topological Design of Star Glycopolymers for Controlling the Interaction with the Influenza Virus. Bioconjug Chem 2019; 30:1192-1198. [DOI: 10.1021/acs.bioconjchem.9b00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
37
|
Worstell NC, Singla A, Wu HJ. Evaluation of hetero-multivalent lectin binding using a turbidity-based emulsion agglutination assay. Colloids Surf B Biointerfaces 2019; 175:84-90. [PMID: 30522011 PMCID: PMC10079213 DOI: 10.1016/j.colsurfb.2018.11.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022]
Abstract
Lectin hetero-multivalency, binding to two or more different types of ligands, has been demonstrated to play a role in case of both LecA (a Pseudomonas aeruginosa adhesin) and Cholera Toxin subunit B (a Vibrio cholerae toxin). In order to screen the ligand candidates that involve in hetero-multivalent binding from large molecular libraries, we present a turbidity-based emulsion agglutination (TEA) assay that can be conducted in a high-throughput format using the standard laboratory instruments and reagents. The benefit of this assay is that it relies on the use of emulsions that can be formed using ultrasonication, minimizing the bottleneck of substrate surface functionalization. By measuring the change in turbidity, we could quantify the lectin-induced aggregation rate of oil droplets to determine the relative binding strength between different ligand combinations. The TEA results are consistent with our prior binding results using a nanocube sensor. The developed TEA assay can serve as a high-throughput and customizable tool to screen the potential ligands involved in hetero-multivalent binding.
Collapse
Affiliation(s)
- Nolan C Worstell
- Dept. of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akshi Singla
- Dept. of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Hung-Jen Wu
- Dept. of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
38
|
Binding inhibition of various influenza viruses by sialyllactose-modified trimer DNAs. Bioorg Med Chem Lett 2019; 29:744-748. [DOI: 10.1016/j.bmcl.2018.12.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 11/19/2022]
|
39
|
A polyester with hyperbranched architecture as potential nano-grade antibiotics: An in-vitro study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1246-1256. [PMID: 30889660 DOI: 10.1016/j.msec.2019.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 02/03/2023]
Abstract
A potential nanograde antibiotic with hyperbranched architecture was synthesized from melt esterification of poly(ethylene glycol) or PEG and Citric acid or CA with 1:1 mol composition. PEG of different molecular weights, c.a. 4000, 6000 and 20,000 were used during the polyesterification. The polyester molecules of nanometric size were highly water soluble and showed a melting point between 55 and 60 °C. The branching status was established from spectroscopy, flow behaviour (viscosity) and rheological evidences. The extent of branching and flowability, both were reduced as the molecular weight of PEG was increased. During in-vitro pathological study, all the grades showed reasonably strong antibacterial affect (both with gram positive and negative bacteria), high selectivity, biocompatibility and controlled generation of reactive oxygen species or ROS, however, the grade with maximum level of branching and functional chain ends displayed highest therapeutic efficiency, may that be considered further as a potential agent for next level investigation.
Collapse
|
40
|
Fukuda T, Tsuji S, Miura Y. Glycopolymer preparation via post-polymerization modification using N-succinimidyl monomers. Polym J 2019. [DOI: 10.1038/s41428-019-0170-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Lu W, Pieters RJ. Carbohydrate–protein interactions and multivalency: implications for the inhibition of influenza A virus infections. Expert Opin Drug Discov 2019; 14:387-395. [DOI: 10.1080/17460441.2019.1573813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wenjing Lu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
42
|
Oldenkamp HF, Vela Ramirez JE, Peppas NA. Re-evaluating the importance of carbohydrates as regenerative biomaterials. Regen Biomater 2019; 6:1-12. [PMID: 30740237 PMCID: PMC6362819 DOI: 10.1093/rb/rby023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Julia E Vela Ramirez
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
43
|
Hayashida O, Nada C, Kusano S. Synthesis of Branch-Type Cyclophane Tetramers Having a Multivalently Enhanced Guest-Binding Ability. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aces.2019.91006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Choi H, Jung Y. Applying Multivalent Biomolecular Interactions for Biosensors. Chemistry 2018; 24:19103-19109. [DOI: 10.1002/chem.201801408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Hyeongjoo Choi
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 Korea
| | - Yongwon Jung
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 Korea
| |
Collapse
|
45
|
Postic I, Sheardown H. Poly(ethylene glycol) induces cell toxicity in melanoma cells by producing a hyperosmotic extracellular medium. J Biomater Appl 2018; 33:693-706. [PMID: 30360676 DOI: 10.1177/0885328218807675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly(ethylene glycol) is a polymer that is widely used as a biomaterial and has been approved in a host of applications. While generally viewed as inert, recent studies with poly(ethylene glycol) suggest that it may have some effects on cells and tissues, making it potentially attractive as a therapeutic agent. In this study, the effect of poly(ethylene glycol) on the cell viability, membrane transport and apoptotic markers of metastatic melanoma cells was examined. The data were combined with observed effects of the polymer on the cell media, including osmolality and viscosity, in order to elucidate any structure-function relationship between the polymer and cells. It was observed that poly(ethylene glycol) reduced the cellular viability of A375 cells, and that the effect was dependent on poly(ethylene glycol) molecular weight and concentration. The mechanism was highly correlated with changes in the osmolality of the cell medium, which is determined by the inherent structure of poly(ethylene glycol), and in particular the ethylene oxide units. This mechanism was specific to poly(ethylene glycol) and was not observed with the similar linear, hydrophilic polymer poly(vinyl pyrrolidone). Overall, the data suggest that poly(ethylene glycol) and poly(ethylene glycol)-like compounds have a distinct effect on cellular activity, presumably mediated in part by their osmotic effects, supporting the further investigation of these polymers as pharmaceutically active compounds.
Collapse
|
46
|
Lin J, Wang K, Xia X, Shen L. Quantification of Multivalency in Protein-Oligomer-Coated Nanoparticles Targeting Dynamic Membrane Glycan Receptors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8415-8421. [PMID: 29958494 DOI: 10.1021/acs.langmuir.8b01605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multivalent binding of proteins to glycan receptors on the host cell quantitatively controls the initial adhesion of most viruses. However, quantifying such multivalency in terms of binding valency has always been a challenge because of the hierarchy of multivalency involving multiple protein oligomers on the virus, limiting our understanding of virus adhesion and virulence. To address this challenge, we mimicked virus adhesion to cell surfaces by attaching protein-oligomer-coated nanoparticles (NPs) to fluidic glycolipid membranes with surface glycan density varying over 4 orders of magnitude. Using total internal reflection fluorescence microscopy to track single attached NPs, we show that the binding isotherms exhibit two regions, attributed to monovalent and multivalent protein/glycan interactions at low and high glycan densities, respectively. The bimodal binding curve allows the quantification of the different valency and binding constants of monovalent and multivalent interactions. In addition, the competitive inhibition of multivalency by the glycopolymer presenting multiple glycan moieties is quantitatively appreciated. This work is essential to mapping and understanding the complex binding specificities of glycan-binding proteins and inhibitory drug designs and applications.
Collapse
Affiliation(s)
- Jiake Lin
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Kang Wang
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiaoyu Xia
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan 430070 , China
| |
Collapse
|
47
|
Yamabe M, Kaihatsu K, Ebara Y. Sialyllactose-Modified Three-Way Junction DNA as Binding Inhibitor of Influenza Virus Hemagglutinin. Bioconjug Chem 2018; 29:1490-1494. [PMID: 29566328 DOI: 10.1021/acs.bioconjchem.8b00045] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sialic acid present on the cell surface is recognized by hemagglutinin (HA) on the influenza virus in the first step of infection. Therefore, a compound that can efficiently interfere with the interaction between sialic acid and HA might inhibit infection and allow detection of the influenza virus. We focused on the spatial arrangement of sialic acid binding sites on HA and developed 2,3-sialyllactose (2,3-SL)-modified three-way junction (3WJ) DNA molecules with a topology similar to that of sialic acid binding sites. 3WJ DNA with three 2,3-SL residues on each DNA strand showed (8.0 × 104)-fold higher binding affinity for influenza virus A/Puerto Rico/08/34 (H1N1) compared to the 2,3-SL. This result indicated that the glycocluster effect due to clustering on one DNA arm and optimal spatial arrangement of the 3WJ DNA improved the weak interactions between a sialic acid and its binding site on HA. This 3WJ DNA compound has possible application as an inhibitor of influenza infection and for virus sensing.
Collapse
Affiliation(s)
- Miyuki Yamabe
- Graduate School of Human Development and Environment , Kobe University , 3-11 Tsurukabuto , Kobe , Hyogo 657-8501 , Japan
| | - Kunihiro Kaihatsu
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Yasuhito Ebara
- Graduate School of Human Development and Environment , Kobe University , 3-11 Tsurukabuto , Kobe , Hyogo 657-8501 , Japan
| |
Collapse
|
48
|
Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018; 8:147-164. [PMID: 29719776 PMCID: PMC5925450 DOI: 10.1016/j.apsb.2018.01.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins and peptides have revolutionized treatment for a number of diseases, and the expected increase in macromolecule-based therapies brings a new set of challenges for the pharmaceutics field. Due to their poor stability, large molecular weight, and poor transport properties, therapeutic proteins and peptides are predominantly limited to parenteral administration. The short serum half-lives typically require frequent injections to maintain an effective dose, and patient compliance is a growing issue as therapeutic protein treatments become more widely available. A number of studies have underscored the relationship of subcutaneous injections with patient non-adherence, estimating that over half of insulin-dependent adults intentionally skip injections. The development of oral formulations has the potential to address some issues associated with non-adherence including the interference with daily activities, embarrassment, and injection pain. Oral delivery can also help to eliminate the adverse effects and scar tissue buildup associated with repeated injections. However, there are several major challenges associated with oral delivery of proteins and peptides, such as the instability in the gastrointestinal (GI) tract, low permeability, and a narrow absorption window in the intestine. This review provides a detailed overview of the oral delivery route and associated challenges. Recent advances in formulation and drug delivery technologies to enhance bioavailability are discussed, including the co-administration of compounds to alter conditions in the GI tract, the modification of the macromolecule physicochemical properties, and the use of improved targeted and controlled release carriers.
Collapse
Affiliation(s)
- Angela M. Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Margaret P. Gran
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author at: McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA. Tel.: +1 512 471 6644; fax: +1 512 471 8227.
| |
Collapse
|
49
|
Ustinov NB, Zavyalova EG, Smirnova IG, Kopylov AM. The Power and Limitations of Influenza Virus Hemagglutinin Assays. BIOCHEMISTRY (MOSCOW) 2018; 82:1234-1248. [PMID: 29223151 DOI: 10.1134/s0006297917110025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Influenza virus hemagglutinins (HAs) are surface proteins that bind to sialic acid residues at the host cell surface and ensure further virus internalization. Development of methods for the inhibition of these processes drives progress in the design of new antiviral drugs. The state of the isolated HA (i.e. combining tertiary structure and extent of oligomerization) is defined by multiple factors, like the HA source and purification method, posttranslational modifications, pH, etc. The HA state affects HA functional activity and significantly impacts the results of numerous HA assays. In this review, we analyze the power and limitations of currently used HA assays regarding the state of HA.
Collapse
Affiliation(s)
- N B Ustinov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
50
|
Yeung SY, Mucha A, Deshmukh R, Boutrus M, Arnebrant T, Sellergren B. Reversible Self-Assembled Monolayers (rSAMs): Adaptable Surfaces for Enhanced Multivalent Interactions and Ultrasensitive Virus Detection. ACS CENTRAL SCIENCE 2017; 3:1198-1207. [PMID: 29202022 PMCID: PMC5704293 DOI: 10.1021/acscentsci.7b00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 05/06/2023]
Abstract
We report on the design of pH-switchable monolayers allowing a reversible and ordered introduction of affinity reagents on sensor surfaces. The principal layer building blocks consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with affinity ligands. These spontaneously self-assemble on top of carboxylic acid terminated SAMs to form reversible homo or mixed monolayers (rSAMs) that are tunable with respect to the nature of the head group, layer order and stability while featuring pH responsiveness and the dynamic nature of noncovalent build assemblies. We show that this results in a range of unique biosensor features. As a first example a sialic acid rSAM featuring strong lectin affinity is here used to sense hemagglutinin and influenza virus (H5N1) at the pM and fM level by in situ ellipsometry in a fully reversible fashion. We believe that the rSAM concept will find widespread use in surface chemistry and overall for boosting sensitivity in affinity biosensors.
Collapse
Affiliation(s)
- Sing Yee Yeung
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Annabell Mucha
- Faculty
of Chemistry, Technical University of Dortmund, Dortmund, 44227 Germany
| | - Ravindra Deshmukh
- Faculty
of Chemistry, Technical University of Dortmund, Dortmund, 44227 Germany
| | - Malak Boutrus
- Faculty
of Chemistry, Technical University of Dortmund, Dortmund, 44227 Germany
| | - Thomas Arnebrant
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Börje Sellergren
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Faculty
of Chemistry, Technical University of Dortmund, Dortmund, 44227 Germany
| |
Collapse
|