1
|
Simsek E, Yildirim K, Akcit ET, Atas C, Kocak O, Altinkaynak A, Salehi Moharer MP, Yazici E, Sisaneci A, Kalay M, Tanriover G, Uzun M, Coban AY. The In vitro evaluation of in silico-designed synthetic peptides AKVUAM-1 and AKVUAM-2 on human lung fibroblast cell line MRC5 and Mycobacterium tuberculosis isolates. Microb Pathog 2024; 197:107027. [PMID: 39426636 DOI: 10.1016/j.micpath.2024.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Tuberculosis is a major global health problem caused by Mycobacterium tuberculosis and the increase in drug resistance is driving the need for new treatments. Today, various approaches are being applied in the development of drugs for the treatment of tuberculosis. Computer-aided drug design (CADD) enables the prediction of pharmacological efficacy for potential drug molecules during the design process. Thus, new therapeutic compounds can be developed that are more potent, less toxic and have fewer side effects than existing drugs. In this study, we investigated the in vitro activities of AKVUAM-1 and AKVUAM-2 synthetic peptides designed in silico by computer-aided drug design method to inhibit the interaction between M. tuberculosis outer membrane protein Cpn T and macrophage surface receptor CR-1 and Surfactant D protein. Notably, these synthetic peptides do not show cytotoxic effect on normal lung tissue and do not kill M. tuberculosis directly. The MIC values for AKVUAM-1 were higher than 512 μg/ml for all bacterial strains except IST-16 strain (128 μg/ml). According to our results, AKVUAM-1 and AKVUAM-2 synthetic peptides have the potential to be successful candidates for investigating their potential to block macrophage entry of bacilli as targeted.
Collapse
Affiliation(s)
- Ece Simsek
- Department of Nutrition and Dietetics, Institute of Health Sciences, Akdeniz University, Antalya, Turkey; Department of Medical Biotechnology, Institute of Health Sciences, Akdeniz University, Antalya, Turkey.
| | - Kubra Yildirim
- Department of Nutrition and Dietetics, Institute of Health Sciences, Akdeniz University, Antalya, Turkey; Department of Medical Biotechnology, Institute of Health Sciences, Akdeniz University, Antalya, Turkey
| | - Esra Tanyel Akcit
- Department of Medical Biotechnology, Institute of Health Sciences, Akdeniz University, Antalya, Turkey; Department of Medical Services and Techniques, Dialysis Program, Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Cemilenur Atas
- Department of Medical Biotechnology, Institute of Health Sciences, Akdeniz University, Antalya, Turkey
| | - Orhan Kocak
- Department of Biology, Institute of Natural and Applied Sciences, Akdeniz University, Antalya, Turkey
| | - Altinay Altinkaynak
- Department of Nutrition and Dietetics, Institute of Health Sciences, Akdeniz University, Antalya, Turkey
| | | | - Emine Yazici
- Department of Medical Biotechnology, Institute of Health Sciences, Akdeniz University, Antalya, Turkey
| | - Aleyna Sisaneci
- Department of Medical Biotechnology, Institute of Health Sciences, Akdeniz University, Antalya, Turkey
| | - Merzuka Kalay
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Gamze Tanriover
- Department of Medical Biotechnology, Institute of Health Sciences, Akdeniz University, Antalya, Turkey; Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Meltem Uzun
- Department of Medical Microbiology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Ahmet Yilmaz Coban
- Department of Nutrition and Dietetics, Institute of Health Sciences, Akdeniz University, Antalya, Turkey; Department of Medical Biotechnology, Institute of Health Sciences, Akdeniz University, Antalya, Turkey
| |
Collapse
|
2
|
Lahiri H, Israeli E, Krugliak M, Basu K, Britan-Rosich Y, Yaish TR, Arkin IT. Potent Anti-Influenza Synergistic Activity of Theobromine and Arainosine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618054. [PMID: 39416015 PMCID: PMC11482935 DOI: 10.1101/2024.10.13.618054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Influenza represents one of the biggest health threats facing humanity. Seasonal epidemics can transition to global pandemics, with cross-species infection presenting a continuous challenge. Although vaccines and several anti-viral options are available, constant genetic drifts and shifts vitiate any of the aforementioned prevention and treatment options. Therefore, we describe an approach targeted at the virus's channel to derive new anti-viral options. Specifically, Influenza A's M2 protein is a well-characterized channel targeted for a long time by aminoadamantane blockers. However, widespread mutations in the protein render the drugs ineffective. Consequently, we started by screening a repurposed drug library against aminoadamantane-sensitive and resistant M2 channels using bacteria-based genetic assays. Subsequent in cellulo testing and structure-activity relationship studies yielded a combination of Theobromine and Arainosine, which exhibits stark anti-viral activity by inhibiting the virus's channel. The drug duo was potent against H1N1 pandemic swine flu, H5N1 pandemic avian flu, aminoadamantane-resistant and sensitive strains alike, exhibiting activity that surpassed Oseltamivir, the leading anti-flu drug on the market. When this drug duo was tested in an animal model, it once more outperformed Oseltamivir, considerably reducing disease symptoms and viral RNA progeny. In conclusion, the outcome of this study represents a new potential treatment option for influenza alongside an approach that is sufficiently general and readily applicable to other viral targets.
Collapse
|
3
|
Medley BJ, Low KE, Irungu JDW, Kipchumba L, Daneshgar P, Liu L, Garber JM, Klassen L, Inglis GD, Boons GJ, Zandberg WF, Abbott DW, Boraston AB. A "terminal" case of glycan catabolism: Structural and enzymatic characterization of the sialidases of Clostridium perfringens. J Biol Chem 2024; 300:107750. [PMID: 39251137 DOI: 10.1016/j.jbc.2024.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Sialic acids are commonly found on the terminal ends of biologically important carbohydrates, including intestinal mucin O-linked glycans. Pathogens such as Clostridium perfringens, the causative agent of necrotic enteritis in poultry and humans, have the ability to degrade host mucins and colonize the mucus layer, which involves removal of the terminal sialic acid by carbohydrate-active enzymes (CAZymes). Here, we present the structural and biochemical characterization of the GH33 catalytic domains of the three sialidases of C. perfringens and probe their substrate specificity. The catalytically active domains, which we refer to as NanHGH33, NanJGH33, and NanIGH33, displayed differential activity on various naturally occurring forms of sialic acid. We report the X-ray crystal structures of these domains in complex with relevant sialic acid variants revealing the molecular basis of how each catalytic domain accommodates different sialic acids. NanHGH33 displays a distinct preference for α-2,3-linked sialic acid, but can process α-2,6-linked sialic acid. NanJGH33 and NanIGH33 both exhibit the ability to process α-2,3- and α-2,6-linked sialic acid without any significant apparent preference. All three enzymes were sensitive to generic and commercially available sialidase inhibitors, which impeded sialidase activity in cultures as well as the growth of C. perfringens on sialylated glycans. The knowledge gained in these studies can be applied to in vivo models for C. perfringens growth and metabolism of mucin O-glycans, with a view toward future mitigation of bacterial colonization and infection of intestinal tissues.
Collapse
Affiliation(s)
- Brendon J Medley
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Kristin E Low
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Jackline D W Irungu
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Linus Kipchumba
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Parandis Daneshgar
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jolene M Garber
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada; Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Leeann Klassen
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - G Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
| | - Wesley F Zandberg
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada.
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada.
| | - Alisdair B Boraston
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
4
|
Zhang P, Li C, Ma X, Ye J, Wang D, Cao H, Yu G, Wang W, Lv X, Cai C. Glycopolymer with Sulfated Fucose and 6'-Sialyllactose as a Dual-Targeted Inhibitor on Resistant Influenza A Virus Strains. ACS Macro Lett 2024; 13:874-881. [PMID: 38949618 DOI: 10.1021/acsmacrolett.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The frequent mutations of influenza A virus (IAV) have led to an urgent need for the development of innovative antiviral drugs. Glycopolymers offer significant advantages in biomedical applications owing to their biocompatibility and structural diversity. However, the primary challenge lies in the design and synthesis of well-defined glycopolymers to precisely control their biological functionalities. In this study, functional glycopolymers with sulfated fucose and 6'-sialyllactose were successfully synthesized through ring-opening metathesis polymerization and a postmodification strategy. The optimized heteropolymer exhibited simultaneous targeting of hemagglutinin and neuraminidase on the surface of IAV, as evidenced by MU-NANA assay and hemagglutination inhibition data. Antiviral experiments demonstrated that the glycopolymer displayed broad and efficient inhibitory activity against wild-type and mutant strains of H1N1 and H3N2 subtypes in vitro, thereby establishing its potential as a dual-targeted inhibitor for combating IAV resistance.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Chenning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, P. R. China
| | - Xiaoyao Ma
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jinfeng Ye
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Depeng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, P. R. China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| |
Collapse
|
5
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. Retracted and republished from: "The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs". mBio 2024; 15:e0017524. [PMID: 38551343 PMCID: PMC11077966 DOI: 10.1128/mbio.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Department of High-Tech Development, Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Epidemic Prevention Laboratory, Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Khorn PA, Luginina AP, Pospelov VA, Dashevsky DE, Khnykin AN, Moiseeva OV, Safronova NA, Belousov AS, Mishin AV, Borshchevsky VI. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: A Structural Biology Perspective. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:747-764. [PMID: 38831510 DOI: 10.1134/s0006297924040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
G protein-coupled receptors (GPCRs) play a key role in the transduction of extracellular signals to cells and regulation of many biological processes, which makes these membrane proteins one of the most important targets for pharmacological agents. A significant increase in the number of resolved atomic structures of GPCRs has opened the possibility of developing pharmaceuticals targeting these receptors via structure-based drug design (SBDD). SBDD employs information on the structure of receptor-ligand complexes to search for selective ligands without the need for an extensive high-throughput experimental ligand screening and can significantly expand the chemical space for ligand search. In this review, we describe the process of deciphering GPCR structures using X-ray diffraction analysis and cryoelectron microscopy as an important stage in the rational design of drugs targeting this receptor class. Our main goal was to present modern developments and key features of experimental methods used in SBDD of GPCR-targeting agents to a wide range of specialists.
Collapse
Affiliation(s)
- Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| | - Valentin I Borshchevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Moscow Region, 141980, Russia
| |
Collapse
|
7
|
Shishmarev D, Fontenelle CQ, Linclau B, Kuprov I, Kuchel PW. Quantitative Analysis of 2D EXSY NMR Spectra of Strongly Coupled Spin Systems in Transmembrane Exchange. Chembiochem 2024; 25:e202300597. [PMID: 37984465 PMCID: PMC10952724 DOI: 10.1002/cbic.202300597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Solute translocation by membrane transport proteins is a vital biological process that can be tracked, on the sub-second timescale, using nuclear magnetic resonance (NMR). Fluorinated substrate analogues facilitate such studies because of high sensitivity of 19 F NMR and absence of background signals. Accurate extraction of translocation rate constants requires precise quantification of NMR signal intensities. This becomes complicated in the presence of J-couplings, cross-correlations, and nuclear Overhauser effects (NOE) that alter signal integrals through mechanisms unrelated to translocation. Geminal difluorinated motifs introduce strong and hard-to-quantify contributions from non-exchange effects, the nuanced nature of which makes them hard to integrate into data analysis methodologies. With analytical expressions not being available, numerical least squares fitting of theoretical models to 2D spectra emerges as the preferred quantification approach. For large spin systems with simultaneous coherent evolution, cross-relaxation, cross-correlation, conformational exchange, and membrane translocation between compartments with different viscosities, the only available simulation framework is Spinach. In this study, we demonstrate GLUT-1 dependent membrane transport of two model sugars featuring CF2 and CF2 CF2 fluorination motifs, with precise determination of translocation rate constants enabled by numerical fitting of 2D EXSY spectra. For spin systems and kinetic networks of this complexity, this was not previously tractable.
Collapse
Affiliation(s)
- Dmitry Shishmarev
- The Australian National UniversityJohn Curtin School of Medical Research2601CanberraACTAustralia
- The Australian National UniversityResearch School of Biology2601CanberraACTAustralia
| | | | - Bruno Linclau
- University of SouthamptonDepartment of ChemistrySO17 1BJSouthamptonUK
- Department of Organic and Macromolecular ChemistryGhent UniversityCampus Sterre, Krijgslaan 281-S49000GhentBelgium
| | - Ilya Kuprov
- University of SouthamptonDepartment of ChemistrySO17 1BJSouthamptonUK
| | - Philip W. Kuchel
- The University of SydneySchool of Life and Environmental Sciences2006SydneyNSWAustralia
| |
Collapse
|
8
|
Khairullina V, Martynova Y. Quantitative Structure-Activity Relationship in the Series of 5-Ethyluridine, N2-Guanine, and 6-Oxopurine Derivatives with Pronounced Anti-Herpetic Activity. Molecules 2023; 28:7715. [PMID: 38067446 PMCID: PMC10708366 DOI: 10.3390/molecules28237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
A quantitative analysis of the relationship between the structure and inhibitory activity against the herpes simplex virus thymidine kinase (HSV-TK) was performed for the series of 5-ethyluridine, N2-guanine, and 6-oxopurines derivatives with pronounced anti-herpetic activity (IC50 = 0.09 ÷ 160,000 μmol/L) using the GUSAR 2019 software. On the basis of the MNA and QNA descriptors and whole-molecule descriptors using the self-consistent regression, 12 statistically significant consensus models for predicting numerical pIC50 values were constructed. These models demonstrated high predictive accuracy for the training and test sets. Molecular fragments of HSV-1 and HSV-2 TK inhibitors that enhance or diminish the anti-herpetic activity are considered. Virtual screening of the ChEMBL database using the developed QSAR models revealed 42 new effective HSV-1 and HSV-2 TK inhibitors. These compounds are promising for further research. The obtained data open up new opportunities for developing novel effective inhibitors of TK.
Collapse
Affiliation(s)
- Veronika Khairullina
- Institute of Chemistry and Defence in Emergency Situations, Ufa University of Science and Technology, 50076 Ufa, Russia;
| | | |
Collapse
|
9
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
10
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs. mBio 2023; 14:e0127323. [PMID: 37610204 PMCID: PMC10653855 DOI: 10.1128/mbio.01273-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
11
|
Sokouti B, Hamzeh-Mivehroud M. 6D-QSAR for predicting biological activity of human aldose reductase inhibitors using quasar receptor surface modeling. BMC Chem 2023; 17:63. [PMID: 37349775 DOI: 10.1186/s13065-023-00970-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
The application of QSAR analysis dates back a half-century ago and is currently continuously employed in any rational drug design. The multi-dimensional QSAR modeling can be a promising tool for researchers to develop reliable predictive QSAR models for designing novel compounds. In the present work, we studied inhibitors of human aldose reductase (AR) to generate multi-dimensional QSAR models using 3D- and 6D-QSAR methods. For this purpose, Pentacle and Quasar's programs were used to produce the QSAR models using corresponding dissociation constant (Kd) values. By inspecting the performance metrics of the generated models, we achieved similar results with comparable internal validation statistics. However, considering the externally validated values, 6D-QSAR models provide significantly better prediction of endpoint values. The obtained results suggest that the higher the dimension of the QSAR model, the higher the performance of the generated model. However, more studies are required to verify these outcomes.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
13
|
Liu B, Ye W, Zheng Z, Zhou Z. Synthesis, crystal structure and DFT study of ethyl (3aR,7R,7aR)-2,2-dimethyl-7-((methylsulfonyl)oxy)-3a,6,7,7a-tetrahydrobenzo[d][1,3]dioxole-5-carboxylate. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Eberhardt J, Forli S. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. J Chem Theory Comput 2023; 19:2535-2556. [PMID: 37094087 PMCID: PMC10732097 DOI: 10.1021/acs.jctc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Water desolvation is one of the key components of the free energy of binding of small molecules to their receptors. Thus, understanding the energetic balance of solvation and desolvation resulting from individual water molecules can be crucial when estimating ligand binding, especially when evaluating different molecules and poses as done in High-Throughput Virtual Screening (HTVS). Over the most recent decades, several methods were developed to tackle this problem, ranging from fast approximate methods (usually empirical functions using either discrete atom-atom pairwise interactions or continuum solvent models) to more computationally expensive and accurate ones, mostly based on Molecular Dynamics (MD) simulations, such as Grid Inhomogeneous Solvation Theory (GIST) or Double Decoupling. On one hand, MD-based methods are prohibitive to use in HTVS to estimate the role of waters on the fly for each ligand. On the other hand, fast and approximate methods show an unsatisfactory level of accuracy, with low agreement with results obtained with the more expensive methods. Here we introduce WaterKit, a new grid-based sampling method with explicit water molecules to calculate thermodynamic properties using the GIST method. Our results show that the discrete placement of water molecules is successful in reproducing the position of crystallographic waters with very high accuracy, as well as providing thermodynamic estimates with accuracy comparable to more expensive MD simulations. Unlike these methods, WaterKit can be used to analyze specific regions on the protein surface, (such as the binding site of a receptor), without having to hydrate and simulate the whole receptor structure. The results show the feasibility of a general and fast method to compute thermodynamic properties of water molecules, making it well-suited to be integrated in high-throughput pipelines such as molecular docking.
Collapse
Affiliation(s)
- Jerome Eberhardt
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Bose P, Jaiswal MK, Singh SK, Singh RK, Tiwari VK. Growing impact of sialic acid-containing glycans in future drug discovery. Carbohydr Res 2023; 527:108804. [PMID: 37031650 DOI: 10.1016/j.carres.2023.108804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.
Collapse
|
16
|
Naz A, Asif S, Alwutayd KM, Sarfaraz S, Abbasi SW, Abbasi A, Alenazi AM, Hasan ME. Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach. Molecules 2023; 28:molecules28072989. [PMID: 37049752 PMCID: PMC10096053 DOI: 10.3390/molecules28072989] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Over the past few years, COVID-19 has caused widespread suffering worldwide. There is great research potential in this domain and it is also necessary. The main objective of this study was to identify potential inhibitors against acid sphingomyelinase (ASM) in order to prevent coronavirus infection. Experimental studies revealed that SARS-CoV-2 causes activation of the acid sphingomyelinase/ceramide pathway, which in turn facilitates the viral entry into the cells. The objective was to inhibit acid sphingomyelinase activity in order to prevent the cells from SARS-CoV-2 infection. Previous studies have reported functional inhibitors against ASM (FIASMAs). These inhibitors can be exploited to block the entry of SARS-CoV-2 into the cells. To achieve our objective, a drug library containing 257 functional inhibitors of ASM was constructed. Computational molecular docking was applied to dock the library against the target protein (PDB: 5I81). The potential binding site of the target protein was identified through structural alignment with the known binding pocket of a protein with a similar function. AutoDock Vina was used to carry out the docking steps. The docking results were analyzed and the inhibitors were screened based on their binding affinity scores and ADME properties. Among the 257 functional inhibitors, Dutasteride, Cepharanthine, and Zafirlukast presented the lowest binding affinity scores of −9.7, −9.6, and −9.5 kcal/mol, respectively. Furthermore, computational ADME analysis of these results revealed Cepharanthine and Zafirlukast to have non-toxic properties. To further validate these findings, the top two inhibitors in complex with the target protein were subjected to molecular dynamic simulations at 100 ns. The molecular interactions and stability of these compounds revealed that these inhibitors could be a promising tool for inhibiting SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aliza Naz
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad 44000, Pakistan
| | - Sumbul Asif
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad 44000, Pakistan
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sara Sarfaraz
- Department of Bioinformatics, Kohsar University Murree, Murree 47150, Pakistan
- Correspondence:
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree 47150, Pakistan
| | - Abdulkareem M. Alenazi
- Pediatric Senior Registrar, King Salman Armed Forces Hospital in Northwestern Region (KSAFH), Tabuk 47512, Saudi Arabia
| | - Mohamed E. Hasan
- Bioinformatic Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| |
Collapse
|
17
|
A Structural-Reporter Group to Determine the Core Conformation of Sialyl Lewisx Mimetics. Molecules 2023; 28:molecules28062595. [PMID: 36985569 PMCID: PMC10054758 DOI: 10.3390/molecules28062595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
The d-GlcNAc moiety in sialyl Lewisx (sLex, 1) acts predominantly as a linker to position the d-Gal and the l-Fuc moieties in the bioactive spatial orientation. The hypothesis has been made that the NHAc group of GlcNAc pushes the fucose underneath the galactose and, thus, contributes to the stabilization of the bioactive conformation of the core of sLex (1). To test this hypothesis, GlcNAc mimetics consisting of (R,R)-1,2-cyclohexanediols substituted with alkyl and aryl substituents adjacent to the linking position of the fucose moiety were synthesized. To explore a broad range of extended and spatially demanding R-groups, an enzymatic approach for the synthesis of 3-alkyl/aryl-1,2-cyclohexanediols (3b-n) was applied. These cyclohexanediol derivatives were incorporated into the sLex mimetics 2b-n. For analyzing the relationship of affinity and core conformation, a 1H NMR structural-reporter-group concept was applied. Thus, the chemical shift of H-C5Fuc proved to be a sensitive indicator for the degree of pre-organization of the core of this class of sLex mimetics and therefore could be used to quantify the contribution of the R-groups.
Collapse
|
18
|
Qi X, Chen W, Chen L, Hu Y, Wang X, Han W, Xiao J, Pang X, Yao X, Liu S, Li Y, Yang J, Wang J, Liu Y. Structurally various p-terphenyls with neuraminidase inhibitory from a sponge derived fungus Aspergillus sp. SCSIO41315. Bioorg Chem 2023; 132:106357. [PMID: 36642018 DOI: 10.1016/j.bioorg.2023.106357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Guided by Global Natural Products Social molecular networking, 14 new p-terphenyl derivatives, asperterphenyls A-N (1-14), together with 20 known p-terphenyl derivatives (15-34), were obtained from a sponge derived fungus Aspergillus sp. SCSIO41315. Among them, new compounds 2-8 and 15-17 were ten pairs of enantiomers. Comprehensive methods such as chiral-phase HPLC analysis, ECD calculations and X-ray diffraction analysis were applied to determine the absolute configurations. Asperterphenyls B (2) and C (3) represented the first reported natural p-terphenyl derivatives possessing a dicarboxylic acid system. Asperterphenyl A (1) displayed neuraminidase inhibitory activity with an IC50 value of 1.77 ± 0.53 µM and could efficiently inhibit infection of multiple strains of H1N1 with IC50 values from 0.67 ± 0.28 to 1.48 ± 0.60 µM through decreasing viral plaque formation in a dose-dependent manner, which suggested that asperterphenyl A (1) might be exploited as a potential antiviral compound in the pharmaceutical fields.
Collapse
Affiliation(s)
- Xin Qi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Liurong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Xueni Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Wenrong Han
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Jiao Xiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China.
| | - Yonghong Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China; Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, People's Republic of China.
| |
Collapse
|
19
|
Kwon EB, Li W, Kim YS, Kim B, Chung HS, Go Y, Ko HJ, Song JH, Kim YH, Choi CW, Choi JG. Vitisin B inhibits influenza A virus replication by multi-targeting neuraminidase and virus-induced oxidative stress. Acta Pharm Sin B 2023; 13:174-191. [PMID: 36815046 PMCID: PMC9939323 DOI: 10.1016/j.apsb.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase (NA) inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration (FDA) for the prevention and treatment of influenza. Here, we show that vitisin B (VB) inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species (ROS), which frequently occur during viral infection, increase virus replication by activating the NF-κB signaling pathway, downmodulating glucose-6-phosphate dehydrogenase (G6PD) expression, and decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response activity. VB decreased virus-induced ROS generation by increasing G6PD expression and Nrf2 activity, and inhibiting NF-κB translocation to the nucleus through IKK dephosphorylation. In addition, VB reduced body weight loss, increased survival, decreased viral replication and the inflammatory response in the lungs of influenza A virus (IAV)-infected mice. Taken together, our results indicate that VB is a promising therapeutic candidate against IAV infection, complements existing drug limitations targeting viral NA. It modulated the intracellular ROS by G6PD, Nrf2 antioxidant response pathway, and NF-κB signaling pathway. These results demonstrate the feasibility of a multi-targeting drug strategy, providing new approaches for drug discovery against IAV infection.
Collapse
Affiliation(s)
- Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Buyun Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Chun Whan Choi
- Natural Product Research Team, Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do 16229, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| |
Collapse
|
20
|
Cheng H, Fu L, Yang X, Yang Y, Zhang Z, Tao Y, Wan J, Tu Z, Chen J, Li Y. Screening and identification of 3-aryl-quinolin-2-one derivatives as antiviral agents against influenza A. J Med Virol 2023; 95:e28327. [PMID: 36415105 DOI: 10.1002/jmv.28327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Quinolin-2-one represents an important and valuable chemical motif that possesses a wide variety of biological activities; however, the anti-influenza activities of quinolin-2-one-containing compounds were rarely reported. Herein, we describe the screening and identification of 3-aryl-quinolin-2-one derivatives as a novel class of antiviral agents. The 3-aryl-quinolinone derivatives were synthesized via an efficient copper-catalyzed reaction cascade that we previously developed. Using this synthetic method, preliminary structure-activity relationships of this scaffold against the influenza A virus infection were systematically explored. The most potent compound 34 displayed IC50 values of 2.14 and 4.88 μM against the replication of H3N2 (A/HK/8/68) and H1N1 (A/WSN/33) strains, respectively, without apparent cytotoxicity on MDCK cells. We further demonstrated that 27 and 34 potently inhibited the plaque formation of the IAV, rendering this scaffold attractive for pursuing novel anti-influenza agents.
Collapse
Affiliation(s)
- Huimin Cheng
- XtalPi Inc. (Shenzhen Jingtai Technology Co., Ltd), Shenzhen, China
| | - Liangbing Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yujian Yang
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhening Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuan Tao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Junting Wan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingjun Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| |
Collapse
|
21
|
Screening and characterization of inhibitory vNAR targeting nanodisc-assembled influenza M2 proteins. iScience 2022; 26:105736. [PMID: 36570769 PMCID: PMC9771723 DOI: 10.1016/j.isci.2022.105736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus poses a constant challenge to human health. The highly conserved influenza matrix-2 (M2) protein is an attractive target for the development of a universal antibody-based drug. However, screening using antigens with subphysiological conformation in a nonmembrane environment significantly reduces the generation of efficient antibodies. Here, M2(1-46) was incorporated into nanodiscs (M2-nanodiscs) with M2 in a membrane-embedded tetrameric conformation, closely resembling its natural physiological state in the influenza viral envelope. M2-nanodisc generation, an antigen, was followed by Chiloscyllium plagiosum immunization. The functional vNARs were selected by phage display panning strategy from the shark immune library. One of the isolated vNARs, AM2H10, could specifically bind to tetrameric M2 instead of monomeric M2e (the ectodomain of M2 protein). Furthermore, AM2H10 blocked ion influx through amantadine-sensitive and resistant M2 channels. Our findings indicated the possibility of developing functional shark nanobodies against various influenza viruses by targeting the M2 protein.
Collapse
|
22
|
Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin Emerg Drugs 2022; 27:389-403. [PMID: 36396398 DOI: 10.1080/14728214.2022.2149734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Both vaccines and antiviral drugs represent the mainstay for preventing and treating influenza. However, approved M2 ion channel inhibitors, neuraminidase inhibitors, polymerase inhibitors, and various vaccines cannot meet therapeutic needs because of viral resistance. Thus, the discovery of new targets for the virus or host and the development of more effective inhibitors are essential to protect humans from the influenza virus. AREAS COVERED This review summarizes the latest progress in vaccines and antiviral drug research to prevent and treat influenza, providing the foothold for developing novel antiviral inhibitors. EXPERT OPINION Vaccines embody the most effective approach to preventing influenza virus infection, and recombinant protein vaccines show promising prospects in developing next-generation vaccines. Compounds targeting the viral components of RNA polymerase, hemagglutinin and nucleoprotein, and the modification of trusted neuraminidase inhibitors are future research directions for anti-influenza virus drugs. In addition, some host factors affect the replication of virus in vivo, which can be used to develop antiviral drugs.
Collapse
Affiliation(s)
- Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Yihang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Nanfang Hospital, Guangzhou Guangdong China
| |
Collapse
|
23
|
Maiti A, Hedger AK, Myint W, Balachandran V, Watts JK, Schiffer CA, Matsuo H. Structure of the catalytically active APOBEC3G bound to a DNA oligonucleotide inhibitor reveals tetrahedral geometry of the transition state. Nat Commun 2022; 13:7117. [PMID: 36402773 PMCID: PMC9675756 DOI: 10.1038/s41467-022-34752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
APOBEC3 proteins (A3s) are enzymes that catalyze the deamination of cytidine to uridine in single-stranded DNA (ssDNA) substrates, thus playing a key role in innate antiviral immunity. However, the APOBEC3 family has also been linked to many mutational signatures in cancer cells, which has led to an intense interest to develop inhibitors of A3's catalytic activity as therapeutics as well as tools to study A3's biochemistry, structure, and cellular function. Recent studies have shown that ssDNA containing 2'-deoxy-zebularine (dZ-ssDNA) is an inhibitor of A3s such as A3A, A3B, and A3G, although the atomic determinants of this activity have remained unknown. To fill this knowledge gap, we determined a 1.5 Å resolution structure of a dZ-ssDNA inhibitor bound to active A3G. The crystal structure revealed that the activated dZ-H2O mimics the transition state by coordinating the active site Zn2+ and engaging in additional stabilizing interactions, such as the one with the catalytic residue E259. Therefore, this structure allowed us to capture a snapshot of the A3's transition state and suggests that developing transition-state mimicking inhibitors may provide a new opportunity to design more targeted molecules for A3s in the future.
Collapse
Affiliation(s)
- Atanu Maiti
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Adam K. Hedger
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Wazo Myint
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Vanivilasini Balachandran
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Jonathan K. Watts
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Celia A. Schiffer
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Hiroshi Matsuo
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| |
Collapse
|
24
|
Keil J, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun XL. Sialidase Inhibitors with Different Mechanisms. J Med Chem 2022; 65:13574-13593. [PMID: 36252951 PMCID: PMC9620260 DOI: 10.1021/acs.jmedchem.2c01258] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for understanding sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue inhibitors were also explored. Finally, natural products have shown competitive inhibiton against viral, bacterial, and human sialidases. This Perspective describes sialidase inhibitors with different mechanisms and their activities and future potential, which include transition-state analogue inhibitors, mechanism-based inhibitors, suicide substrate inhibitors, product analogue inhibitors, and natural product inhibitors.
Collapse
Affiliation(s)
- Joseph
M. Keil
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Garrett R. Rafn
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Isaac M. Turan
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Majdi A. Aljohani
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Reza Sahebjam-Atabaki
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
25
|
Kim YS, Kwon EB, Kim B, Chung HS, Choi G, Kim YH, Choi JG. Mulberry Component Kuwanon C Exerts Potent Therapeutic Efficacy In Vitro against COVID-19 by Blocking the SARS-CoV-2 Spike S1 RBD:ACE2 Receptor Interaction. Int J Mol Sci 2022; 23:12516. [PMID: 36293371 PMCID: PMC9604257 DOI: 10.3390/ijms232012516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
There has been an immense effort by global pharmaceutical companies to develop anti-COVID-19 drugs, including small molecule-based RNA replication inhibitors via drug repositioning and antibody-based spike protein blockers related to cell entry by SARS-CoV-2. However, several limitations to their clinical use have emerged in addition to a lack of progress in the development of small molecule-based cell entry inhibitors from natural products. In this study, we tested the effectiveness of kuwanon C (KC), which has mainly been researched using in silico docking simulation and can serve as an effective building block for developing anti-COVID-19 drugs, in blocking the spike S1 RBD:ACE2 receptor interaction. KC is a natural product derived from Morus alba L., commonly known as mulberry, which has known antiviral efficacy. Molecular interaction studies using competitive ELISA and the BLItz system revealed that KC targets both the spike S1 RBD and the ACE2 receptor, successfully disrupting their interaction, as supported by the in silico docking simulation. Furthermore, we established a mechanism of action by observing how KC prevents the infection of SARS-CoV-2 spike pseudotyped virus in ACE2/TPRSS2-overexpressing HEK293T cells. Finally, we demonstrated that KC inhibits clinical isolates of SARS-CoV-2 in Vero cells. Future combinations of small molecule-based cell entry inhibitors, such as KC, with the currently prescribed RNA replication inhibitors are anticipated to significantly enhance the efficacy of COVID-19 therapies.
Collapse
Affiliation(s)
- Young Soo Kim
- Korea Institute of Oriental Medicine, Korean Medicine Application Center, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Eun-Bin Kwon
- Korea Institute of Oriental Medicine, Korean Medicine Application Center, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Buyun Kim
- Korea Institute of Oriental Medicine, Korean Medicine Application Center, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Hwan-Suck Chung
- Korea Institute of Oriental Medicine, Korean Medicine Application Center, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Garam Choi
- R&D Center, Etnova Therapeutics Corp., 198 Saneop-ro, Gwonseon-gu, Suwon 13207, Korea
| | - Yeoun-Hee Kim
- R&D Center, Etnova Therapeutics Corp., 198 Saneop-ro, Gwonseon-gu, Suwon 13207, Korea
| | - Jang-Gi Choi
- Korea Institute of Oriental Medicine, Korean Medicine Application Center, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| |
Collapse
|
26
|
Structural and inhibitor sensitivity analysis of influenza B-like viral neuraminidases derived from Asiatic toad and spiny eel. Proc Natl Acad Sci U S A 2022; 119:e2210724119. [PMID: 36191180 PMCID: PMC9586306 DOI: 10.1073/pnas.2210724119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus neuraminidase (NA) is an important target for antiviral development because it plays a crucial role in releasing newly assembled viruses. Two unique influenza-like virus genomes were recently reported in the Wuhan Asiatic toad and Wuhan spiny eel. Their NA genes appear to be highly divergent from all known influenza NAs, raising key questions as to whether the Asiatic toad influenza-like virus NA (tNA) and spiny eel NA (eNA) have canonical NA activities and structures and whether they show sensitivity to NA inhibitors (NAIs). Here, we found that both tNA and eNA have neuraminidase activities. A detailed structural analysis revealed that tNA and eNA present similar overall structures to currently known NAs, with a conserved calcium binding site. Inhibition assays indicated that tNA is resistant to NAIs, while eNA is still sensitive to NAIs. E119 is conserved in canonical NAs. The P119E substitution in tNA can restore sensitivity to NAIs, and, in contrast, the E119P substitution in eNA decreased its sensitivity to NAIs. The structures of NA-inhibitor complexes further provide a detailed insight into NA-inhibitor interactions at the atomic level. Moreover, tNA and eNA have unique N-glycosylation sites compared with canonical NAs. Collectively, the structural features, NA activities, and sensitivities to NAIs suggest that fish- and amphibian-derived influenza-like viruses may circulate in these vertebrates. More attention should be paid to these influenza-like viruses because their NA molecules may play roles in the emergence of NAI resistance.
Collapse
|
27
|
Dhankhar J, Hofer MD, Linden A, Čorić I. Site-Selective C-H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angew Chem Int Ed Engl 2022; 61:e202205470. [PMID: 35830351 DOI: 10.1002/anie.202205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 01/07/2023]
Abstract
Catalytic systems for direct C-H activation of arenes commonly show preference for electronically activated and sterically exposed C-H sites. Here we show that a range of functionally rich and pharmaceutically relevant arene classes can undergo site-selective C-H arylation ortho to small alkyl substituents, preferably endocyclic methylene groups. The C-H activation is experimentally supported as being the selectivity-determining step, while computational studies of the transition state models indicate the relevance of non-covalent interactions between the catalyst and the methylene group of the substrate. Our results suggest that preference for C(sp2 )-H activation next to alkyl groups could be a general selectivity mode, distinct from common steric and electronic factors.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Micha D Hofer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
28
|
Iliyasov TM, Karpenko KA, Vinokurov AD, Fakhrutdinov AN, Tyutin AA, Elinson MN, Vereshchagin AN. Highly diastereoselective multicomponent synthesis of polysubstituted 2-hydroxy-2-trifluoromethylpiperidineswith four and five stereogenic centers. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Binding mechanism of oseltamivir and influenza neuraminidase suggests perspectives for the design of new anti-influenza drugs. PLoS Comput Biol 2022; 18:e1010343. [PMID: 35901128 PMCID: PMC9401145 DOI: 10.1371/journal.pcbi.1010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/24/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Oseltamivir is a widely used influenza virus neuraminidase (NA) inhibitor that prevents the release of new virus particles from host cells. However, oseltamivir-resistant strains have emerged, but effective drugs against them have not yet been developed. Elucidating the binding mechanisms between NA and oseltamivir may provide valuable information for the design of new drugs against NA mutants resistant to oseltamivir. Here, we conducted large-scale (353.4 μs) free-binding molecular dynamics simulations, together with a Markov State Model and an importance-sampling algorithm, to reveal the binding process of oseltamivir and NA. Ten metastable states and five major binding pathways were identified that validated and complemented previously discovered binding pathways, including the hypothesis that oseltamivir can be transferred from the secondary sialic acid binding site to the catalytic site. The discovery of multiple new metastable states, especially the stable bound state containing a water-mediated hydrogen bond between Arg118 and oseltamivir, may provide new insights into the improvement of NA inhibitors. We anticipated the findings presented here will facilitate the development of drugs capable of combating NA mutations. Influenza virus neuraminidase (NA), a viral membrane glycoprotein, plays an important role in the interactions with host cell surface receptors. The emergence and spread of influenza mutants resistant to neuraminidase inhibitors (NAIs), such as oseltamivir, has been of great concern. Despite many improvements to NAIs, no new first-line NAIs are currently in clinical use. Although there have been previous molecular dynamics simulation studies on the binding and dissociation process of oseltamivir-NA, we discovered new binding pathways and states of oseltamivir through larger-scale simulations and more systematic analysis, which may provide new ideas for the improvement of oseltamivir and even a series of NAIs. In our study, we strongly demonstrate that a detailed understanding of the drug−receptor association process is of fundamental importance for drug design and provide methodological references for the improvement of other drugs.
Collapse
|
30
|
Site‐Selective C–H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Tetrahydropyridines’ Stereoselective Formation, How Lockdown Assisted in the Identification of the Features of Its Mechanism. Molecules 2022; 27:molecules27144367. [PMID: 35889242 PMCID: PMC9324243 DOI: 10.3390/molecules27144367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
The multicomponent reaction of aldehydes, cyano-containing C-H acids, esters of 3-oxocarboxylic acid and ammonium acetate led to unexpected results. The boiling of starting materials in methanol for one to two hours resulted in the formation of polysubstituted 1,4,5,6-tetrahydropyridines with two or three stereogenic centers. During the 2020 lockdown, we obtained key intermediates of this six-step domino reaction. A number of fast and slow reactions occurred during the prolonged stirring of the reaction mass at rt. Sequence: 1. Knoevenagel condensation; 2. Michael addition; 3. Mannich reaction; 4. cyclization—fast reactions and cyclization of the product polysubstituted 2-hydroxypiperidine—was isolated after 40 min stirring at rt. Further monitoring proved the slow dehydration of 2-hydroxypiperidine to obtain 3,4,5,6-tetrahydropyridine after 7 days. Then, four-month isomerization occurred with 1,4,5,6-tetrahydropyridine formation. All reactions were stereoselective. Key intermediates and products structures were verified by X-ray diffraction analysis. Additionally, we specified conditions for the selective intermediates’ preparation.
Collapse
|
32
|
Chavan SP, Kawale SA, Gonnade RG. cis‐Aziridine Synthon Based Synthetic Investigation for Tamiflu Employing Horner‐Wadsworth‐Emmons Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Subhash P. Chavan
- National Chemical Laboratory Division of Organic chemistry Dr. Homi Bhabha Road 411008 Pune INDIA
| | - Sanket A. Kawale
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Organic Chemistry Division INDIA
| | - Rajesh G. Gonnade
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Organic Chemistry Division INDIA
| |
Collapse
|
33
|
Schmitz U, Swaminathan S. Discovery and development of oseltamivir at Gilead Sciences. Antivir Ther 2022; 27:13596535211067598. [PMID: 35499178 DOI: 10.1177/13596535211067598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
John Martin's untimely death in March 2021 was a huge loss for us personally, Gilead Sciences, the company he built over 30 years and the scientific community concerned with antiviral therapies. We wish to honor John's legacy by retelling the discovery and history of Tamiflu and his contributions to it. Without his vision, persistence, and keen eye for opportunities, Tamiflu would not exist and Gilead's path would not have been the same. His strategic thinking around the first oral flu drug is still quite relevant today, when we are still in the SARS-CoV-2 pandemic. John explained it simply in an interview with the Science History Institute in May 2020: "…most of my colleagues, we travel with Tamiflu when we go internationally, because it works for treatment and prevention, and hopefully, there will be a solution like that, eventually, for the Covid virus in addition to vaccines. Most people will get a flu vaccine every year, but there is still disease, we need a pill for treatment and prevention.".
Collapse
Affiliation(s)
- Uli Schmitz
- 2158Gilead Sciences Inc, Foster City, CA, USA
| | | |
Collapse
|
34
|
Świerczyńska M, Mirowska-Guzel DM, Pindelska E. Antiviral Drugs in Influenza. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053018. [PMID: 35270708 PMCID: PMC8910682 DOI: 10.3390/ijerph19053018] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Flu is a serious health, medical, and economic problem, but no therapy is yet available that has satisfactory results and reduces the occurrence of these problems. Nearly 20 years after the registration of the previous therapy, baloxavir marboxil, a drug with a new mechanism of action, recently appeared on the market. This is a promising step in the fight against the influenza virus. This article presents the possibilities of using all available antiviral drugs specific for influenza A and B. We compare all currently recommended anti-influenza medications, considering their mechanisms of action, administration, indications, target groups, effectiveness, and safety profiles. We demonstrate that baloxavir marboxil presents a similar safety and efficacy profile to those of drugs already used in the treatment of influenza. Further research on combination therapy is highly recommended and may have promising results.
Collapse
Affiliation(s)
- Magdalena Świerczyńska
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Dagmara M. Mirowska-Guzel
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6160; Fax: +48-22-116-6202
| | - Edyta Pindelska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-093 Warsaw, Poland;
| |
Collapse
|
35
|
Takizawa N, Takada H, Umekita M, Igarashi M, Takahashi Y. Anti-influenza Virus Activity of Methylthio-Formycin Distinct From That of T-705. Front Microbiol 2022; 13:802671. [PMID: 35250924 PMCID: PMC8894184 DOI: 10.3389/fmicb.2022.802671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Seasonal influenza virus epidemics result in severe illness, and occasionally influenza pandemics cause significant morbidity and mortality, although vaccines and anti-influenza virus drugs are available. By screening an in-house library, we identified methylthio-formycin (SMeFM), an adenosine analog, as a potent inhibitor of influenza virus propagation. SMeFM inhibited the propagation of influenza A and B viruses (IC50: 34.1 and 37.9 nM, respectively) and viruses showing reduced susceptibility to baloxavir and neuraminidase inhibitors but not T-705 (Favipiravir). However, the combination of T-705 and SMeFM inhibited the propagation of the influenza virus not in an antagonistic but in a slightly synergistic manner, suggesting that SMeFM has targets distinct from that of T-705. SMeFM induced A-to-C transversion mutations in virus genome RNA, and SMeFM triphosphate did not inhibit in vitro viral RNA synthesis. Our results show that SMeFM inhibits the propagation of the influenza virus by a mechanism different from that of T-705 and is a potential drug candidate to develop for anti-influenza drug.
Collapse
|
36
|
de Andrade P, Ahmadipour S, Field RA. Anomeric 1,2,3-triazole-linked sialic acid derivatives show selective inhibition towards a bacterial neuraminidase over a trypanosome trans-sialidase. Beilstein J Org Chem 2022; 18:208-216. [PMID: 35280952 PMCID: PMC8895027 DOI: 10.3762/bjoc.18.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Sialic acid is the natural substrate for sialidases and its chemical modification has been a useful approach to generate potent and selective inhibitors. Aiming at advancing the discovery of selective Trypanosoma cruzi trans-sialidase (TcTS) inhibitors, we have synthesised a small series of anomeric 1,2,3-triazole-linked sialic acid derivatives in good yields and high purity via copper-catalysed azide-alkyne cycloaddition (CuAAC, click chemistry) and evaluated their activity towards TcTS and neuraminidase. Surprisingly, the compounds showed practically no TcTS inhibition, whereas ca. 70% inhibition was observed for neuraminidase in relation to the analogues bearing hydrophobic substituents and ca. 5% for more polar substituents. These results suggest that polarity changes are less tolerated by neuraminidase due to the big difference in impact of hydrophobicity upon inhibition, thus indicating a simple approach to differentiate both enzymes. Moreover, such selectivity might be reasoned based on a possible steric hindrance caused by a bulky hydrophobic loop that sits over the TcTS active site and may prevent the hydrophobic inhibitors from binding. The present study is a step forward in exploiting subtle structural differences in sialidases that need to be addressed in order to achieve selective inhibition.
Collapse
Affiliation(s)
- Peterson de Andrade
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Sanaz Ahmadipour
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Iceni Glycoscience Ltd, Norwich Research Park NR4 7GJ, UK
| | - Robert A Field
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Iceni Glycoscience Ltd, Norwich Research Park NR4 7GJ, UK
| |
Collapse
|
37
|
Muchtaridi M, Nuwarda RF, Ikram EHK, Abdul Rahim AS, Gazzali AM, Wahab HA. Neuraminidase Inhibitor of Garcinia atroviridis L. Fruits and Leaves Using Partial Purification and Molecular Characterization. Molecules 2022; 27:molecules27030949. [PMID: 35164214 PMCID: PMC8840166 DOI: 10.3390/molecules27030949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Neuraminidase (NA) is an enzyme that prevents virions from aggregating within the host cell and promotes cell-to-cell spread by cleaving glycosidic linkages to sialic acid. The best-known neuraminidase is the viral neuraminidase, which present in the influenza virus. Thus, the development of anti-influenza drugs that inhibit NA has emerged as an important and intriguing approach in the treatment of influenza. Garcinia atroviridis L. (GA) dried fruits (GAF) are used commercially as seasoning and in beverages. The main objective of this study was to identify a new potential neuraminidase inhibitor from GA. A bioassay-guided fractionation method was applied to obtain the bioactive compounds leading to the identification of garcinia acid and naringenin. In an enzyme inhibition study, garcinia acid demonstrated the highest activity when compared to naringenin. Garcinia acid had the highest activity, with an IC50 of 17.34–17.53 µg/mL or 91.22–92.21 µM against Clostridium perfringens-NA, and 56.71–57.85 µg/mL or 298.32–304.31 µM against H1N1-NA. Based on molecular docking results, garcinia acid interacted with the triad arginine residues (Arg118, Arg292, and Arg371) of the viral neuraminidase, implying that this compound has the potential to act as a NA enzyme inhibitor.
Collapse
Affiliation(s)
- Muchtaridi Muchtaridi
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadajaran, Jl. Bandung-Sumedang KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung-Sumedang KM 21, Jatinangor 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-8784288888 (ext. 3210)
| | - Rina Fajri Nuwarda
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung-Sumedang KM 21, Jatinangor 45363, Indonesia;
| | | | | | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia; (A.M.G.); (H.A.W.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia; (A.M.G.); (H.A.W.)
| |
Collapse
|
38
|
Catalytic Enantioselective Diels Alder Reaction: Application in the Synthesis of Antiviral Agents. Catalysts 2022. [DOI: 10.3390/catal12020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Diels–Alder reaction (DAR) is one of the most effective and reliable strategies for the construction of six-membered carbocyclic and heterocyclic rings, and it is widely used in the synthesis of organic molecules and drugs. Due to the high regio- and stereo-selectivity and its versatility, DARs have represented a powerful tool for organic chemistry for many years. In addition, the asymmetric DAR has become a fundamental synthetic approach in the preparation of optically active six-membered rings and natural compounds. The COVID-19-related pandemic requires continuous research; DAR represents an useful method to obtain optically active intermediates for the synthesis of antiviral agents under different catalytic conditions. We would like to highlight an intriguing synthetic procedure applied to the development of novel synthetic protocols that are potentially useful against a large panel of viruses and other unmet diseases.
Collapse
|
39
|
Wu CR, Yin WC, Jiang Y, Xu HE. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacol Sin 2022; 43:3021-3033. [PMID: 35058587 PMCID: PMC8771608 DOI: 10.1038/s41401-021-00851-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and persistently threatens to humanity. With tireless efforts from scientists around the world, understanding of the biology of coronavirus has been greatly enhanced over the past 2 years. Structural biology has demonstrated its powerful impact on uncovering structures and functions for the vast majority of SARS-CoV-2 proteins and guided the development of drugs and vaccines against COVID-19. In this review, we summarize current progress in the structural biology of SARS-CoV-2 and discuss important biological issues that remain to be addressed. We present the examples of structure-based design of Pfizer’s novel anti-SARS-CoV-2 drug PF-07321332 (Paxlovid), Merck’s nucleotide inhibitor molnupiravir (Lagevrio), and VV116, an oral drug candidate for COVID-19. These examples highlight the importance of structure in drug discovery to combat COVID-19. We also discussed the recent variants of Omicron and its implication in immunity escape from existing vaccines and antibody therapies.
Collapse
|
40
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Abstract
The neuraminidase (NA) of influenza A and B viruses plays a distinct role in viral replication and has a highly conserved catalytic site. Numerous sialic (neuraminic) acid analogs that competitively bind to the NA active site and potently inhibit enzyme activity have been synthesized and tested. Four NA inhibitors are now licensed in various parts of the world (zanamivir, oseltamivir, peramivir, and laninamivir) to treat influenza A and B infections. NA changes, naturally occurring or acquired under selective pressure, have been shown to reduce drug binding, thereby affecting the effectiveness of NA inhibitors. Drug resistance and other drawbacks have prompted the search for the next-generation NA-targeting therapeutics. One of the promising approaches is the identification of monoclonal antibodies (mAbs) targeting the conserved NA epitopes. Anti-NA mAbs demonstrate Fab-based antiviral activity supplemented with Fc-mediated immune effector functions. Antiviral Fc-conjugates offer another cutting-edge strategy that is based on a multimodal mechanism of action. These novel antiviral agents are composed of a small-molecule NA inhibitor and an Fc-region that simultaneously engages the immune system. The significant advancements made in recent years further support the value of NA as an attractive target for the antiviral development.
Collapse
Affiliation(s)
- Larisa Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| | - Teena Mohan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| |
Collapse
|
42
|
Takada H, Takizawa N, Shibasaki S, Asaba H, Igarashi M, Shibasaki M, Takahashi Y. Synthesis and antiviral activity of formycin derivatives with anti-influenza virus activity. Bioorg Med Chem 2022; 57:116613. [DOI: 10.1016/j.bmc.2022.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/02/2022]
|
43
|
|
44
|
Budhiraja M, Ali A, Tyagi V. First biocatalytic synthesis of piperidine derivatives via an immobilized lipase-catalyzed multicomponent reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj06232h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A robust and reusable biocatalyst was constructed via immobilization of lipase onto magnetic halloysite nanotubes for the synthesis of piperidine derivatives.
Collapse
Affiliation(s)
- Meenakshi Budhiraja
- School of chemistry and Biochemistry Thapar institute of engineering and technology (TIET), Patiala, Punjab, India
| | - Amjad Ali
- School of chemistry and Biochemistry Thapar institute of engineering and technology (TIET), Patiala, Punjab, India
| | - Vikas Tyagi
- School of chemistry and Biochemistry Thapar institute of engineering and technology (TIET), Patiala, Punjab, India
| |
Collapse
|
45
|
Abstract
Depending on the strain, influenza A virus causes animal, zoonotic, pandemic, or seasonal influenza with varying degrees of severity. Two surface glycoprotein spikes, hemagglutinin (HA) and neuraminidase (NA), are the most important influenza A virus antigens. NA plays an important role in the propagation of influenza virus by removing terminal sialic acid from sialyl decoy receptors and thereby facilitating the release of viruses from traps such as in mucus and on infected cells. Some NA inhibitors have become widely used drugs for treatment of influenza. However, attempts to develop effective and safe NA inhibitors that can be used for treatment of anti-NA drugs-resistant influenza viruses have continued. In this chapter, we describe the following updates on influenza A NA inhibitor development: (i) N-acetylneuraminic acid (Neu5Ac)-based derivatives, (ii) covalent NA inhibitors, (iii) sulfo-sialic acid analogs, (iv) N-acetyl-6-sulfo-β-D-glucosaminide-based inhibitors, (v) inhibitors targeting the 150-loop of group 1 NAs, (vi) conjugation inhibitors, (vii) acylhydrazone derivatives, (viii) monoclonal antibodies, (ix) PVP-I, and (x) natural products. Finally, we provide future perspectives on the next-generation anti-NA drugs.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | - Hiromasa Kiyota
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
46
|
Yadav M, Igarashi M, Yamamoto N. Theoretical insights into the molecular mechanism of I117V mutation in neuraminidase mediated reduction of oseltamivir drug susceptibility in A/H5N1 influenza virus. PEERJ PHYSICAL CHEMISTRY 2021. [DOI: 10.7717/peerj-pchem.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The substitution of Ile to Val at residue 117 (I117V) of neuraminidase (NA) reduces the susceptibility of the A/H5N1 influenza virus to oseltamivir (OTV). However, the molecular mechanism by which the I117V mutation affects the intermolecular interactions between NA and OTV has not been fully elucidated. In this study, we performed molecular dynamics (MD) simulations to analyze the characteristic conformational changes that contribute to the reduced binding affinity of NA to OTV after the I117V mutation. The results of MD simulations revealed that after the I117V mutation in NA, the changes in the secondary structure around the mutation site had a noticeable effect on the residue interactions in the OTV-binding site. In the case of the WT NA-OTV complex, the positively charged side chain of R118, located in the β-sheet region, frequently interacted with the negatively charged side chain of E119, which is an amino acid residue in the OTV-binding site. This can reduce the electrostatic repulsion of E119 toward D151, which is also a negatively charged residue in the OTV-binding site, so that both E119 and D151 simultaneously form hydrogen bonds with OTV more frequently, which greatly contributes to the binding affinity of NA to OTV. After the I117V mutation in NA, the side chain of R118 interacted with the side chain of E119 less frequently, likely because of the decreased tendency of R118 to form a β-sheet structure. As a result, the electrostatic repulsion of E119 toward D151 is greater than that of the WT case, making it difficult for both E119 and D151 to simultaneously form hydrogen bonds with OTV, which in turn reduces the binding affinity of NA to OTV. Hence, after the I117V mutation in NA, influenza viruses are less susceptible to OTV because of conformational changes in residues of R118, E119, and D151 around the mutation site and in the binding site.
Collapse
Affiliation(s)
- Mohini Yadav
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Norifumi Yamamoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan
| |
Collapse
|
47
|
Singh Aidhen I, Thoti N. Natural Products & Bioactivity Inspired Synthetic Pursuits Interfacing with Carbohydrates: Ongoing Journey with C-Glycosides. CHEM REC 2021; 21:3131-3177. [PMID: 34714570 DOI: 10.1002/tcr.202100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Natural products, remains the most important source for the discovery of new drugs for the treatment of human diseases. This has inspired the synthetic community to design and develop mimics of natural products either to answer important questions in biology or to explore their therapeutic potentials. Glycosides present themselves abundantly in nature, right from the cell surface receptors to natural products of any origin. The O-Glycosides are hydrolytically less stable compared to C-glycosides and this feature has presented a great opportunity for drug discovery. The discovery of Dapagliflozin, an SGLT inhibitor and C-glucoside, for the treatment of diabetes is one such example. Aryl acyl-anion chemistry has been explored for the synthesis of 2-deoxy-C-aryl furanoside/pyranoside/septanosides. Besides success, the studies have provided valuable insight into the natural propensities of the architectural framework for the cascade to furan derivatives. The aryl acyl-anion chemistry has also enabled the synthesis of biologically active diaryl heptanoids. Inspired from sucesss of Dapagliflozin, new analogues have been synthesized with pyridine and isocoumarin heterocycle as the proximal ring. C-glucosides of isoliquiritigenin have been synthesized for the first time and evaluated as an efficient aldose reductase inhibitor. The synthesis and evaluation of acyl-C-β-D-glucosides and benzyl-C-β-D-glucoside as glucose-uptake promoters has revealed promise in small molecules. The concept of building blocks has been used to obtain natural oxylipins, D-xylo and L-xylo-configured alkane tetrols and novel lipophilic ketones with erythro/threo configured trihydroxy polar head-group as possible anti-mycobacterial agents.
Collapse
Affiliation(s)
- Indrapal Singh Aidhen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Naveenkumar Thoti
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
48
|
Liu J, Li J, Ren B, Zhang Y, Xue L, Wang Y, Zhao J, Zhang P, Xu X, Li P. Domino Ring‐Opening of
N
‐Tosyl Vinylaziridines Triggered by Aryne Diels‐Alder Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiupeng Liu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Jiaqi Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Bowen Ren
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Yun Zhang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Linyi Xue
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Yanying Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Jingjing Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Puyu Zhang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Xuejun Xu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Pan Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| |
Collapse
|
49
|
Botta L, Cesarini S, Zippilli C, Bizzarri BM, Fanelli A, Saladino R. Multicomponent reactions in the synthesis of antiviral compounds. Curr Med Chem 2021; 29:2013-2050. [PMID: 34620058 DOI: 10.2174/0929867328666211007121837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE Multicomponent reactions are considered green processes with high atom economy. In addition, they present advantages compared to the classic synthetic methods such as high efficiency and low wastes production. METHOD In these reactions two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION Multicomponent reactions can be applied to all the stages of the drug discovery and development process making them very useful in the search for new agents active against emerging (viral) pathogens.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Silvia Cesarini
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Claudio Zippilli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | | | - Angelica Fanelli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Raffaele Saladino
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| |
Collapse
|
50
|
Hussain S, Daniels RS, Wharton SA, Howell S, Halai C, Kunzelmann S, Whittaker L, McCauley JW. Reduced sialidase activity of influenza A(H3N2) neuraminidase associated with positively charged amino acid substitutions. J Gen Virol 2021; 102. [PMID: 34596510 DOI: 10.1099/jgv.0.001648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuraminidase (NA) inhibitors (NAI), oseltamivir and zanamivir, are the main antiviral medications for influenza and monitoring of susceptibility to these antivirals is routinely done by determining 50 % inhibitory concentrations (IC50) with MUNANA substrate. During 2010-2019, levels of A(H3N2) viruses presenting reduced NAI inhibition (RI) were low (~0.75 %) but varied year-on-year. The highest proportions of viruses showing RI were observed during the 2013-2014, 2016-2017 and 2017-2018 Northern Hemisphere seasons. The majority of RI viruses were found to contain positively charged NA amino acid substitutions of N329K, K/S329R, S331R or S334R, being notably higher during the 2016-2017 season. Sialidase activity kinetics were determined for viruses of RI phenotype and contemporary wild-type (WT) viruses showing close genetic relatedness and displaying normal inhibition (NI). RI phenotypes resulted from reduced sialidase activity compared to relevant WT viruses. Those containing S329R or N329K or S331R showed markedly higher Km for the substrate and Ki values for NAIs, while those with S334R showed smaller effects. Substitutions at N329 and S331 disrupt a glycosylation sequon (NDS), confirmed to be utilised by mass spectrometry. However, gain of positive charge at all three positions was the major factor influencing the kinetic effects, not loss of glycosylation. Because of the altered enzyme characteristics NAs carrying these substitutions cannot be assessed reliably for susceptibility to NAIs using standard MUNANA-based assays due to reductions in the affinity of the enzyme for its substrate and the concentration of the substrate usually used.
Collapse
Affiliation(s)
- Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Rodney S Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Stephen A Wharton
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Steven Howell
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Chandrika Halai
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Lynne Whittaker
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - John W McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|