1
|
Zhang Y, Zhang W, Chen Z, Wang L, Yu G. Recent developments in polymer semiconductors with excellent electron transport performances. Chem Soc Rev 2025. [PMID: 39906917 DOI: 10.1039/d4cs00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Benefiting from molecular design and device innovation, electronic devices based on polymer semiconductors have achieved significant developments and gradual commercialization over the past few decades. Most of high-performance polymer semiconductors that have been prepared exhibit p-type performances, and records of their carrier mobilities are constantly being broken through. Although ambipolar and n-type polymers are necessary for constructing p-n heterojunctions and logic circuits, only a few materials show outstanding device performances, which leads to their developments lagging far behind that of p-type analogues. As a consequence, it is extremely significant to summarize polymer semiconductors with excellent electron transport performances. This review focuses on the design considerations and bonding modes between monomers of polymer semiconductors with high electron mobilities. To enhance electron transport performances of polymer semiconductors, the structural modification strategies are described in detail. Subsequently, the electron transport, thermoelectric, mixed ionic-electronic conduction, intrinsically stretchable, photodetection, and spin transport performances of high-electron mobility polymers are discussed from the perspective of molecular engineering. In the end, the challenges and prospects in this research field are presented, which provide valuable guidance for the design of polymer semiconductors with excellent electron transport performances and the exploration of more advanced applications in the future.
Collapse
Affiliation(s)
- Yunchao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Tu S, Tian T, Zhang J, Liang S, Pan G, Ma X, Liu L, Fischer RA, Müller-Buschbaum P. Electrostatic Tailoring of Freestanding Polymeric Films for Multifunctional Thermoelectrics, Hydrogels, and Actuators. ACS NANO 2024; 18:34829-34841. [PMID: 39652515 DOI: 10.1021/acsnano.4c12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Organic conducting polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has garnered enormous attention in organic electronics due to its low-cost solution processability, highly tunable conductivity, superior mechanical flexibility, and good biocompatibility together with excellent atmospheric stability. Nevertheless, limited electrical properties and unfavorable water instability of pristine PEDOT:PSS film impede its further implementation in a broad spectrum of practical applications. In this work, the successful tailoring of the intrinsic electrostatic interaction within PEDOT:PSS and consequent optimized electrical properties are enabled by a simple yet effective ionic salt post-treatment strategy. The choice of zinc di[bis(trifluoromethylsulfonyl)imide] (Zn(TFSI)2) not only endows the post-treated PEDOT:PSS film with high electrical properties but also other compelling characteristics, including superior water stability, excellent mechanical flexibility, and fast humidity responsiveness. Multidimensional characterizations are conducted to gain in-depth insights into the mechanisms underlying such improved performance, ranging from intermolecular interactions, polymer conformations, and doping levels to microstructural characteristics. Benefiting from these versatile properties, the as-prepared freestanding Zn(TFSI)2-post-treated PEDOT:PSS films can serve as promising candidates for high-performance polymeric materials integrated into multifunctional flexible electronics, including thermoelectric power generators, conductive hydrogels, and humidity-responsive actuators. This study demonstrates a facile methodology for the exploration of multifunctional conducting polymers, whose implications can extend across a wide range of next-generation wearable devices, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Suo Tu
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Ting Tian
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Jinsheng Zhang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Suzhe Liang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Guangjiu Pan
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xiaoxin Ma
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Liangzhen Liu
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
3
|
Iqbal MA, Fang X, Abbas Y, Weng X, He T, Zeng YJ. Unlocking high-performance near-infrared photodetection: polaron-assisted organic integer charge transfer hybrids. LIGHT, SCIENCE & APPLICATIONS 2024; 13:318. [PMID: 39648203 PMCID: PMC11625827 DOI: 10.1038/s41377-024-01695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/17/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
Room temperature femtowatt sensitivity remains a sought-after attribute, even among commercial inorganic infrared (IR) photodetectors (PDs). While organic IR PDs are poised to emerge as a pivotal sensor technology in the forthcoming Fourth-Generation Industrial Era, their performance lags behind that of their inorganic counterparts. This discrepancy primarily stems from poor external quantum efficiencies (EQE), driven by inadequate exciton dissociation (high exciton binding energy) within organic IR materials, exacerbated by pronounced non-radiative recombination at narrow bandgaps. Here, we unveil a high-performance organic Near-IR (NIR) PD via integer charge transfer between Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (C-14PBTTT) donor (D) and Tetrafluorotetracyanoquinodimethane (TCNQF4) acceptor (A) molecules, showcasing strong low-energy subgap absorptions up to 2.5 µm. We observe that specifically, polaron excitation in these radical and neutral D-A blended molecules enables bound charges to exceed the Coulombic attraction to their counterions, leading to an elevated EQE (polaron absorption region) compared to Frenkel excitons. As a result, our devices achieve a high EQE of ∼107%, femtowatt sensitivity (NEP) of ~0.12 fW Hz-1/2 along a response time of ~81 ms, at room temperature for a wavelength of 1.0 µm. Our innovative utilization of polarons highlights their potential as alternatives to Frenkel excitons in high-performance organic IR PDs.
Collapse
Affiliation(s)
- Muhammad Ahsan Iqbal
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Department of Mechanics, Tianjin University, Tianjin, 300350, China
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueqian Fang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan University of Technology, Dongguan, 523808, China.
- Department of Mechanics, Tianjin University, Tianjin, 300350, China.
| | - Yasir Abbas
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiaoliang Weng
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tingchao He
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu-Jia Zeng
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Yang X, Ye G, Liu J, Chiechi RC, Koster LJA. Carrier-Carrier Repulsion Limits the Conductivity of N-Doped Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404397. [PMID: 39246234 DOI: 10.1002/adma.202404397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Molecular doping is a key strategy to enhance the electrical conductivity of organic semiconductors. Typically, the electrical conductivity shows a maximum value upon increased doping, after which the conductivity decreases. This decrease in conductivity is commonly attributed to unfavorable changes in the morphology. However, in recent simulation work, has shown, that the conductivity-at high doping-is instead limited by electron-electron repulsion rather than by morphology, at least for some material combinations. Based on the simulations, this limitation is expected to show up in the dependence of the Seebeck coefficient versus carrier density: the Seebeck coefficient will follow Heike's formula if carrier-carrier repulsion limits the conductivity. Here, the electrical conductivity and Seebeck coefficient are measured as a function of doping for a series of n-type organic semiconductors. Additionally, the resulting carrier density is measured using metal-insulator-semiconductor diodes, which link dopant loading and the number of charge carriers. At high carrier densities, the Seebeck coefficient indeed follows Heike's formula, confirming that the conductivity is limited by carrier-carrier repulsion rather than by morphological effects. This study shows that current models of hopping transport in organic semiconductors may be incomplete. As a result, this study offers novel insights in the design of organic semiconductors.
Collapse
Affiliation(s)
- Xuwen Yang
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Ryan C Chiechi
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - L Jan Anton Koster
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
5
|
Gámez-Valenzuela S, Li J, Ma S, Jeong SY, Woo HY, Feng K, Guo X. High-Performance n-Type Organic Thermoelectrics with Exceptional Conductivity by Polymer-Dopant Matching. Angew Chem Int Ed Engl 2024; 63:e202408537. [PMID: 38973771 DOI: 10.1002/anie.202408537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/09/2024]
Abstract
Achieving high electrical conductivity (σ) and power factor (PF) simultaneously remains a significant challenge for n-type organic themoelectrics (OTEs). Herein, we demonstrate the state-of-the-art OTEs performance through blending a fused bithiophene imide dimer-based polymer f-BTI2g-SVSCN and its selenophene-substituted analogue f-BSeI2g-SVSCN with a julolidine-functionalized benzimidazoline n-dopant JLBI, vis-à-vis when blended with commercially available n-dopants TAM and N-DMBI. The advantages of introducing a more lipophilic julolidine group into the dopant structure of JLBI are evidenced by the enhanced OTEs performance that JLBI-doped films show when compared to those doped with N-DMBI or TAM. In fact, thanks to the enhanced intermolecular interactions and the lower-lying LUMO level enabled by the increase of selenophene content in polymer backbone, JLBI-doped films of f-BSeI2g-SVSCN exhibit a unprecedent σ of 206 S cm-1 and a PF of 114 μW m-1 K-2. Interestingly, σ can be further enhanced up to 326 S cm-1 by using TAM dopant as a consequence of its favorable diffusion behavior into densely packed crystalline domains. These values are the highest to date for solution-processed molecularly n-doped polymers, demonstrating the effectiveness of the polymer-dopant matching approach carried out in this work.
Collapse
Affiliation(s)
- Sergio Gámez-Valenzuela
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
6
|
Cunin CE, Meacham RF, Lee ER, Roh H, Samal S, Li W, Matthews JR, Zhao Y, He M, Gumyusenge A. Leveraging Insulator's Tacticity in Semiconducting Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39717-39727. [PMID: 39036945 DOI: 10.1021/acsami.4c06609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Blending conjugated polymers with insulating matrices is often utilized for engineering extrinsic properties in organic electronics. Semiconductor/insulator blends are typically processed to form a uniformly distributed network of conductive domains within the insulating matrix, marrying electronic and physical properties from individual components. Understanding of polymer-polymer interactions in such systems is thus crucial for property co-optimization. One of the commonly overlooked parameters is the structural configuration of the insulator on the resulting properties, especially the electronic properties. This study investigated how the tacticity of the matrix polymer, among other relevant parameters in play, impacts solid state crystallization in semiconductor/matrix blends and hence the resulting charge transport properties. We found an intricate dependence of the film morphology, aggregation behavior, electronic charge transport, and mixed ionic-electronic coupling properties on the insulator's tacticity. Our experimentally iterative approach shows that for a given application, when selecting semiconductor/insulator combinations, the tacticity of the matrix can be leveraged to optimize performance and vary solid-state structure.
Collapse
Affiliation(s)
- Camille E Cunin
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rebecca F Meacham
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric R Lee
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heejung Roh
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sanket Samal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - James R Matthews
- Corning Incorporated, One River Front Plaza, Corning, New York 14831, United States
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Mingqian He
- Corning Incorporated, One River Front Plaza, Corning, New York 14831, United States
| | - Aristide Gumyusenge
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Fan X, Liu J, Duan X, Li H, Deng S, Kuang Y, Li J, Lin C, Meng B, Hu J, Wang S, Liu J, Wang L. Alcohol-Processable All-Polymer n-Type Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401952. [PMID: 38647398 PMCID: PMC11220645 DOI: 10.1002/advs.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The general strategy for n-type organic thermoelectric is to blend n-type conjugated polymer hosts with small molecule dopants. In this work, all-polymer n-type thermoelectric is reported by dissolving a novel n-type conjugated polymer and a polymer dopant, poly(ethyleneimine) (PEI), in alcohol solution, followed by spin-coating to give polymer host/polymer dopant blend film. To this end, an alcohol-soluble n-type conjugated polymer is developed by attaching polar and branched oligo (ethylene glycol) (OEG) side chains to a cyano-substituted poly(thiophene-alt-co-thiazole) main chain. The main chain results in the n-type property and the OEG side chain leads to the solubility in hexafluorineisopropanol (HFIP). In the polymer host/polymer dopant blend film, the Coulombic interaction between the dopant counterions and the negatively charged polymer chains is reduced and the ordered stacking of the polymer host is preserved. As a result, the polymer host/polymer dopant blend exhibits the power factor of 36.9 µW m-1 K-1, which is one time higher than that of the control polymer host/small molecule dopant blend. Moreover, the polymer host/polymer dopant blend shows much better thermal stability than the control polymer host/small molecule dopant blend. This research demonstrates the high performance and excellent stability of all-polymer n-type thermoelectric.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Hongxiang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jingyu Li
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Junli Hu
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
8
|
Xiong M, Deng XY, Tian SY, Liu KK, Fang YH, Wang JR, Wang Y, Liu G, Chen J, Villalva DR, Baran D, Gu X, Lei T. Counterion docking: a general approach to reducing energetic disorder in doped polymeric semiconductors. Nat Commun 2024; 15:4972. [PMID: 38862491 PMCID: PMC11166965 DOI: 10.1038/s41467-024-49208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Molecular doping plays an important role in controlling the carrier concentration of organic semiconductors. However, the introduction of dopant counterions often results in increased energetic disorder and traps due to the molecular packing disruption and Coulomb potential wells. To date, no general strategy has been proposed to reduce the counterion-induced structural and energetic disorder. Here, we demonstrate the critical role of non-covalent interactions (NCIs) between counterions and polymers. Employing a computer-aided approach, we identified the optimal counterions and discovered that NCIs determine their docking positions, which significantly affect the counterion-induced energetic disorder. With the optimal counterions, we successfully reduced the energetic disorder to levels even lower than that of the undoped polymer. As a result, we achieved a high n-doped electrical conductivity of over 200 S cm-1 and an eight-fold increase in the thermoelectric power factor. We found that the NCIs have substantial effects on doping efficiency, polymer backbone planarity, and Coulomb potential landscape. Our work not only provides a general strategy for identifying the most suitable counterions but also deepens our understanding of the counterion effects on doped polymeric semiconductors.
Collapse
Affiliation(s)
- Miao Xiong
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shuang-Yan Tian
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kai-Kai Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Hui Fang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Juan-Rong Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Guangchao Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jupeng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Diego Rosas Villalva
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Derya Baran
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Shao B, Chen Z, Su H, Peng S, Song M. The Latest Advances in Ink-Based Nanogenerators: From Materials to Applications. Int J Mol Sci 2024; 25:6152. [PMID: 38892343 PMCID: PMC11172637 DOI: 10.3390/ijms25116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Nanogenerators possess the capability to harvest faint energy from the environment. Among them, thermoelectric (TE), triboelectric, piezoelectric (PE), and moisture-enabled nanogenerators represent promising approaches to micro-nano energy collection. These nanogenerators have seen considerable progress in material optimization and structural design. Printing technology has facilitated the large-scale manufacturing of nanogenerators. Although inks can be compatible with most traditional functional materials, this inevitably leads to a decrease in the electrical performance of the materials, necessitating control over the rheological properties of the inks. Furthermore, printing technology offers increased structural design flexibility. This review provides a comprehensive framework for ink-based nanogenerators, encompassing ink material optimization and device structural design, including improvements in ink performance, control of rheological properties, and efficient energy harvesting structures. Additionally, it highlights ink-based nanogenerators that incorporate textile technology and hybrid energy technologies, reviewing their latest advancements in energy collection and self-powered sensing. The discussion also addresses the main challenges faced and future directions for development.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Zhitao Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Hengzhe Su
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Gao Y, Ke Y, Wang T, Shi Y, Wang C, Ding S, Wang Y, Deng Y, Hu W, Geng Y. An n-Type Conjugated Polymer with Low Crystallinity for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202402642. [PMID: 38453641 DOI: 10.1002/anie.202402642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Conjugated polymers (CPs) with low crystallinity are promising candidates for application in organic thermoelectrics (OTEs), particularly in flexible devices, because the disordered structures of these CPs can effectively accommodate dopants and ensure robust resistance to bending. However, n-doped CPs usually exhibit poor thermoelectric performance, which hinders the development of high-performance thermoelectric generators. Herein, we report an n-type CP (ThDPP-CNBTz) comprising two acceptor units: a thiophene-flanked diketopyrrolopyrrole and a cyano-functionalized benzothiadiazole. ThDPP-CNBTz shows a low LUMO energy level of below -4.20 eV and features low crystallinity, enabling high doping efficiency. Moreover, the dual-acceptor design enhances polaron delocalization, resulting in good thermoelectric performance. After n-doping, ThDPP-CNBTz exhibits an average electrical conductivity (σ) of 50.6 S cm-1 and a maximum power factor (PF) of 126.8 μW m-1 K-2, which is among the highest values reported for solution-processed n-type CPs to date. Additionally, a solution-processed flexible OTE device based on doped ThDPP-CNBTz exhibits a maximum PF of 70 μW m-1 K-2; the flexible device also shows remarkable resistance to bending strain, with only a marginal change in σ after 600 bending cycles. The findings presented in this work will advance the development of n-type CPs for OTE devices, and flexible devices in particular.
Collapse
Affiliation(s)
- Yuexin Gao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunzhe Ke
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Tianzuo Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Shuaishuai Ding
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Yupu Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
11
|
Matsuo T, Kawabata K, Takimiya K. A Novel N-Type Molecular Dopant With a Closed-Shell Electronic Structure Applicable to the Vacuum-Deposition Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311047. [PMID: 38227266 DOI: 10.1002/adma.202311047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Rational design, synthesis, and characterization of a new efficient versatile n-type dopant with a closed-shell electronic structure are described. By employing the tetraphenyl-dipyranylidene (DP0) framework with two 7π-electron systems modified with N,N-dimethylamino groups as the strong electron-donating substituent, 2,2',6,6'-tetrakis[4-(dimethylamino)phenyl]-4,4'-dipyranylidene (DP7), a closed-shell molecule with an extremely high-lying energy level of the highest occupied molecular orbital, close to 4.0 eV below the vacuum level, is successfully developed. Thanks to its thermal stability, DP7 is applicable to vacuum deposition, which allows utilization of DP7 in bulk doping for the development of n-type organic thermoelectric materials and contact doping for reducing contact resistance in n-type organic field-effect transistors. As vacuum-deposition processable n-type dopants are very limited, DP7 stands out as a useful n-type dopant, particularly for the latter purpose.
Collapse
Affiliation(s)
- Takaya Matsuo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kohsuke Kawabata
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuo Takimiya
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
12
|
Hussain W, Algarni S, Rasool G, Shahzad H, Abbas M, Alqahtani T, Irshad K. Advances in Nanoparticle-Enhanced Thermoelectric Materials from Synthesis to Energy Harvesting: A Review. ACS OMEGA 2024; 9:11081-11109. [PMID: 38497021 PMCID: PMC10938428 DOI: 10.1021/acsomega.3c07758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review analysis examines the domain of composite thermoelectric materials that integrate nanoparticles, providing a critical assessment of their methods for improving thermoelectric properties and the procedures used for their fabrication. This study examines several approaches to enhance power factor and lattice thermal conductivity, emphasizing the influence of secondary phases and structural alterations. This study investigates the impact of synthesis methods on the electrical characteristics of materials, with a particular focus on novel techniques such as electrodeposition onto carbon nanotubes. The acquired insights provide useful guidance for the creation of new thermoelectric materials. The review also compares and contrasts organic and inorganic thermoelectric materials, with a particular focus on the potential of inorganic materials in the context of waste heat recovery and power production within industries. This analysis highlights the role of inorganic materials in improving energy efficiency and promoting environmental sustainability.
Collapse
Affiliation(s)
- Wajid Hussain
- Faculty
of Material and Manufacturing, Beijing University
of Technology, Beijing 100124, China
| | - Salem Algarni
- Mechanical
Engineering Department, College of Engineering, King Khalid University, Abha 9004, Saudi Arabia
| | - Ghulam Rasool
- Faculty
of Material and Manufacturing, Beijing University
of Technology, Beijing 100124, China
- Department
of Mechanical Engineering, Lebanese American
University, Beirut, Lebanon
| | - Hasan Shahzad
- Faculty
of Energy and Power Engineering, School of Chemical Engineering and
Energy Technology, Dongguan University of
Technology, Dongguan, Guangdong, China
| | - Mujahid Abbas
- Faculty
of Material and Manufacturing, Beijing University
of Technology, Beijing 100124, China
| | - Talal Alqahtani
- Mechanical
Engineering Department, College of Engineering, King Khalid University, Abha 9004, Saudi Arabia
| | - Kashif Irshad
- Interdisciplinary
Research Centre for Sustainable Energy Systems (IRC-SES), Research
Institute, King Fahd University of Petroleum
and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
13
|
Xu C, Wang D. Theoretical Perspective of Enhancing Order in n-Doped Thermoelectric Polymers through Side Chain Engineering: The Interplay of Counterion-Backbone Interaction and Side Chain Steric Hindrance. NANO LETTERS 2024; 24:1776-1783. [PMID: 38284760 DOI: 10.1021/acs.nanolett.3c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Donor-acceptor (D-A) copolymers doped with n-type dopants are widely sought after for their potential in organic thermoelectric devices. However, the existing structural disorder significantly hampers their charge transport and thermoelectric performance. In this Letter, we propose a mechanism to mitigate this disorder through side chain engineering. Utilizing molecular dynamics simulations, we demonstrate that strong Coulomb interactions between counterions and charged polymer backbones induce a transition in the stacking arrangement of the polymer backbones from a slipped to a vertical configuration. However, the presence of side chain steric hindrance impedes the formation of closely packed and ordered vertical stacking arrangements, resulting in greater distances between adjacent backbones and a higher level of structural disorder in the doped films. Therefore, we propose minimizing side chain steric hindrance to enhance the structural order in doped films. Our findings provide essential insights for advancing high-performance thermoelectric polymers.
Collapse
Affiliation(s)
- Chunlin Xu
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, People's Republic of China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dong Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, People's Republic of China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
14
|
Lee S, Lee J, Sim HR, So C, Chung DS. Shortwave Infrared Organic Photodiodes Realized by Polaron Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310250. [PMID: 38016048 DOI: 10.1002/adma.202310250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 11/30/2023]
Abstract
A novel approach for developing shortwave IR (SWIR) organic photodiodes (OPDs) using doped polymers is presented. SWIR OPDs are challenging to produce because of the limitations in extending the absorption of conjugated molecules and the high dark currents of SWIR-absorbing materials. Herein, it is shown that the conversion of bound polarons to free polarons by light energy can be utilized as an SWIR photodetection mechanism. To maximize the bound-polaron density and bound-to-free polaron ratio of the doped polymer film, the doping process is engineered and dopant molecules are diffused into the crystalline domain of the polymer matrix and a direct correlation between the bound-to-free polaron ratio and device performance is confirmed. The optimized double-doped SWIR OPD exhibits a high external quantum efficiency of 77 100% and specific detectivity of 1.11 × 1011 Jones against SWIR. These findings demonstrate the application potential of polarons as alternatives for Frenkel excitons in SWIR OPDs.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juhyeok Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hye Ryun Sim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chan So
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
15
|
Deng S, Kuang Y, Liu L, Liu X, Liu J, Li J, Meng B, Di CA, Hu J, Liu J. High-Performance and Ecofriendly Organic Thermoelectrics Enabled by N-Type Polythiophene Derivatives with Doping-Induced Molecular Order. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309679. [PMID: 38051134 DOI: 10.1002/adma.202309679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Indexed: 12/07/2023]
Abstract
The ability of n-type polymer thermoelectric materials to tolerate high doping loading limits further development of n-type polymer conductivity. Herein, two alcohol-soluble n-type polythiophene derivatives that are n-PT3 and n-PT4 are reported. Due to the ability of two polymers to tolerate doping loading more significantly than 100 mol%, both achieve electrical conductivity >100 S cm-1 . Moreover, the conductivity of both polythiophenes remains almost constant at high doping concentrations with excellent doping tunability, which may be related to their ability to overcome charging-induced backbone torsion and morphology change caused by saturated doping. The characterizations reveal that n-PT4 has a high doping level and carrier concentration (>3.10 × 1020 cm-3 ), and the carrier concentration continues to increase as the doping concentration increases. In addition, doping leads to improved crystal structure of n-PT4, and the crystallinity does not decrease significantly with increasing doping concentration; even the carrier mobility increases with it. The synergistic effect of these two leads to both n-PT3 and n-PT4 achieving a breakthrough of 100 in conductivity and power factor. The DMlmC-doped n-PT4 achieves a power factor of over 150 µW m-1 K-2 . These values are among the highest for n-type organic thermoelectric materials.
Collapse
Affiliation(s)
- Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liyao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jingyu Li
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, 130024, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, 130024, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
16
|
Li Y, Wu W, Wang Y, Huang E, Jeong SY, Woo HY, Guo X, Feng K. Multi-Selenophene Incorporated Thiazole Imide-Based n-Type Polymers for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202316214. [PMID: 37996990 DOI: 10.1002/anie.202316214] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Developing polymers with high electrical conductivity (σ) after n-doping is a great challenge for the advance of the field of organic thermoelectrics (OTEs). Herein, we report a series of thiazole imide-based n-type polymers by gradually increasing selenophene content in polymeric backbone. Thanks to the strong intramolecular noncovalent N⋅⋅⋅S interaction and enhanced intermolecular Se⋅⋅⋅Se interaction, with the increase of selenophene content, the polymers show gradually lowered LUMOs, more planar backbone, and improved film crystallinity versus the selenophene-free analogue. Consequently, polymer PDTzSI-Se with the highest selenophene content achieves a champion σ of 164.0 S cm-1 and a power factor of 49.0 μW m-1 K-2 in the series when applied in OTEs after n-doping. The σ value is the highest one for n-type donor-acceptor OTE materials reported to date. Our work indicates that selenophene substitution is a powerful strategy for developing high-performance n-type OTE materials and selenophene incorporated thiazole imides offer an excellent platform in enabling n-type polymers with high backbone coplanarity, deep-lying LUMO and enhanced mobility/conductivity.
Collapse
Affiliation(s)
- Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
17
|
Yang W, Feng K, Ma S, Liu B, Wang Y, Ding R, Jeong SY, Woo HY, Chan PKL, Guo X. High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors: The Impacts of Halogen Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305416. [PMID: 37572077 DOI: 10.1002/adma.202305416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Developing high-performance n-type polymer mixed ionic-electronic conductors (PMIECs) is a grand challenge, which largely determines their applications in vaious organic electronic devices, such as organic electrochemical transistors (OECTs) and organic thermoelectrics (OTEs). Herein, two halogen-functionalized PMIECs f-BTI2g-TVTF and f-BTI2g-TVTCl built from fused bithiophene imide dimer (f-BTI2) as the acceptor unit and halogenated thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. Compared to the control polymer f-BTI2g-TVT, the fluorinated f-BTI2g-TVTF shows lower-positioned lowest unoccupied molecular orbital (LUMO), improved charge transport property, and greater ion uptake capacity. Consequently, f-BTI2g-TVTF delivers a state-of-the-art µC* of 90.2 F cm-1 V-1 s-1 with a remarkable electron mobility of 0.41 cm2 V-1 s-1 in OECTs and an excellent power factor of 64.2 µW m-1 K-2 in OTEs. An OECT-based inverter amplifier is further demonstrated with voltage gain up to 148 V V-1 , which is among the highest values for OECT inverters. Such results shed light on the impacts of halogen atoms on developing high-performing n-type PMIECs.
Collapse
Affiliation(s)
- Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Riqing Ding
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Paddy Kwok Leung Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science and Technology Park, Shatin, Hong Kong, 999077, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
18
|
Liu T, Heimonen J, Zhang Q, Yang CY, Huang JD, Wu HY, Stoeckel MA, van der Pol TPA, Li Y, Jeong SY, Marks A, Wang XY, Puttisong Y, Shimolo AY, Liu X, Zhang S, Li Q, Massetti M, Chen WM, Woo HY, Pei J, McCulloch I, Gao F, Fahlman M, Kroon R, Fabiano S. Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers. Nat Commun 2023; 14:8454. [PMID: 38114560 PMCID: PMC10730874 DOI: 10.1038/s41467-023-44153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics.
Collapse
Affiliation(s)
- Tiefeng Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Johanna Heimonen
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Qilun Zhang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- n-Ink AB, Norrköping, Sweden
| | - Jun-Da Huang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
- n-Ink AB, Norrköping, Sweden
| | - Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Marc-Antoine Stoeckel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
- n-Ink AB, Norrköping, Sweden
| | - Tom P A van der Pol
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Yuxuan Li
- Electronic and Photonic Materials, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuttapoom Puttisong
- Electronic and Photonic Materials, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Asaminew Y Shimolo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Silan Zhang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Matteo Massetti
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Weimin M Chen
- Electronic and Photonic Materials, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Feng Gao
- Electronic and Photonic Materials, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden.
- n-Ink AB, Norrköping, Sweden.
| |
Collapse
|
19
|
Feng K, Wang J, Jeong SY, Yang W, Li J, Woo HY, Guo X. High-Performance n-Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302629. [PMID: 37553779 PMCID: PMC10582446 DOI: 10.1002/advs.202302629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Indexed: 08/10/2023]
Abstract
n-Doped polymers with high electrical conductivity (σ) are still very scarce in organic thermoelectrics (OTEs), which limits the development of efficient organic thermoelectric generators. A series of fused bithiophene imide dimer-based polymers, PO8, PO12, and PO16, incorporating distinct oligo(ethylene glycol) side-chain to optimize σ is reported here. Three polymers show a monotonic electron mobility decrease as side-chain size increasing due to the gradually lowered film crystallinity and change of backbone orientation. Interestingly, polymer PO12 with a moderate side-chain size delivers a champion σ up to 92.0 S cm-1 and a power factor (PF) as high as 94.3 µW m-1 K-2 in the series when applied in OTE devices. The PF value is among the highest ones for the solution-processing n-doped polymers. In-depth morphology studies unravel that the moderate crystallinity and the formation of 3D conduction channel derived from bimodal orientation synergistically contribute to high doping efficiency and large charge carrier mobility, thus resulting in high performance for the PO12-based OTEs. The results demonstrate the great power of simple tuning of side chain in developing n-type polymers with substantial σ for improving organic thermoelectric performance.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Junwei Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sang Young Jeong
- Department of ChemistryKorea UniversityAnamro 145Seoul02841Republic of Korea
| | - Wanli Yang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Jianfeng Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Han Young Woo
- Department of ChemistryKorea UniversityAnamro 145Seoul02841Republic of Korea
| | - Xugang Guo
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
20
|
Abstract
Chemical doping of organic semiconductors (OSCs) enables feasible tuning of carrier concentration, charge mobility, and energy levels, which is critical for the applications of OSCs in organic electronic devices. However, in comparison with p-type doping, n-type doping has lagged far behind. The achievement of efficient and air-stable n-type doping in OSCs would help to significantly improve electron transport and device performance, and endow new functionalities, which are, therefore, gaining increasing attention currently. In this review, the issue of doping efficiency and doping air stability in n-type doped OSCs was carefully addressed. We first clarified the main factors that influenced chemical doping efficiency in n-type OSCs and then explain the origin of instability in n-type doped films under ambient conditions. Doping microstructure, charge transfer, and dissociation efficiency were found to determine the overall doping efficiency, which could be precisely tuned by molecular design and post treatments. To further enhance the air stability of n-doped OSCs, design strategies such as tuning the lowest unoccupied molecular orbital (LUMO) energy level, charge delocalization, intermolecular stacking, in situ n-doping, and self-encapsulations are discussed. Moreover, the applications of n-type doping in advanced organic electronics, such as solar cells, light-emitting diodes, field-effect transistors, and thermoelectrics are being introduced. Finally, an outlook is provided on novel doping ways and material systems that are aimed at stable and efficient n-type doped OSCs.
Collapse
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
Hameed F, Mohanan M, Ibrahim N, Ochonma C, Rodríguez-López J, Gavvalapalli N. Controlling π-Conjugated Polymer-Acceptor Interactions by Designing Polymers with a Mixture of π-Face Strapped and Nonstrapped Monomers. Macromolecules 2023; 56:3421-3429. [PMID: 38510570 PMCID: PMC10950295 DOI: 10.1021/acs.macromol.3c00175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 03/22/2024]
Abstract
Controlling π-conjugated polymer-acceptor complex interaction, including the interaction strength and location along the polymer backbone, is central to organic electronics and energy applications. Straps in the strapped π-conjugated polymers mask the π-face of the polymer backbone and hence are useful to control the interactions of the π-face of the polymer backbone with other polymer chains and small molecules compared to the conventional pendant solubilizing chains. Herein, we have synthesized a series of strapped π-conjugated copolymers containing a mixture of strapped and nonstrapped comonomers to control the polymer-acceptor interactions. Simulations confirmed that the acceptor is directed toward the nonstrapped repeat unit. More importantly, strapped copolymers overcome a major drawback of homopolymers and display higher photoinduced photoluminescence (PL) quenching, which is a measure of electron transfer from the polymer to acceptor, compared to that of both the strapped homopolymer and the conventional polymer with pendant solubilizing chains. We have also shown that this strategy applies not only to strapped polymers, but also to the conventional polymers with pendant solubilizing chains. The increase in PL quenching is attributed to the absence of a steric sheath around the comonomers and their random location along the polymer backbone, which enhances the probability of non-neighbor acceptor binding events along the polymer backbone. Thus, by mixing insulated and noninsulated monomers along the polymer backbone, the location of the acceptor along the polymer backbone, polymer-acceptor interaction strength, and the efficiency of photoinduced charge transfer are controllable compared to the homopolymers.
Collapse
Affiliation(s)
- Fatima Hameed
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Manikandan Mohanan
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Nafisa Ibrahim
- Department
of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles Ochonma
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Joaquín Rodríguez-López
- Department
of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nagarjuna Gavvalapalli
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
22
|
Wang XY, Yu ZD, Lu Y, Yao ZF, Zhou YY, Pan CK, Liu Y, Wang ZY, Ding YF, Wang JY, Pei J. Density of States Engineering of n-Doped Conjugated Polymers for High Charge Transport Performances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300634. [PMID: 36905682 DOI: 10.1002/adma.202300634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Indexed: 05/26/2023]
Abstract
Charge transport of conjugated polymers in functional devices closely relates to their density of states (DOS) distributions. However, systemic DOS engineering for conjugated polymers is challenging due to the lack of modulated methods and the unclear relationship between DOS and electrical properties. Here, the DOS distribution of conjugated polymers is engineered to enhance their electrical performances. The DOS distributions of polymer films are tailored using three processing solvents with different Hansen solubility parameters. The highest n-type electrical conductivity (39 ± 3 S cm-1 ), the highest power factor (63 ± 11 µW m-1 K-2 ), and the highest Hall mobility (0.14 ± 0.02 cm2 V-1 s-1 ) of the polymer (FBDPPV-OEG) are obtained in three films with three various DOS distributions, respectively. Through theoretical and experimental exploration, it is revealed that the carrier concentration and transport property of conjugated polymers can be efficiently controlled by DOS engineering, paving the way for rationally fabricating organic semiconductors.
Collapse
Affiliation(s)
- Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zi-Di Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang-Yang Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chen-Kai Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi-Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
23
|
Yu ZD, Lu Y, Wang ZY, Un HI, Zelewski SJ, Cui Y, You HY, Liu Y, Xie KF, Yao ZF, He YC, Wang JY, Hu WB, Sirringhaus H, Pei J. High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. SCIENCE ADVANCES 2023; 9:eadf3495. [PMID: 36827372 PMCID: PMC9956111 DOI: 10.1126/sciadv.adf3495] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The charge transport properties of conjugated polymers are commonly limited by the energetic disorder. Recently, several amorphous conjugated polymers with planar backbone conformations and low energetic disorder have been investigated for applications in field-effect transistors and thermoelectrics. However, there is a lack of strategy to finely tune the interchain π-π contacts of these polymers that severely restricts the energetic disorder of interchain charge transport. Here, we demonstrate that it is feasible to achieve excellent conductivity and thermoelectric performance in polymers based on thiophene-fused benzodifurandione oligo(p-phenylenevinylene) through reducing the crystallization rate of side chains and, in this way, carefully controlling the degree of interchain π-π contacts. N-type (p-type) conductivities of more than 100 S cm-1 (400 S cm-1) and power factors of more than 200 μW m-1 K-2 (100 μW m-1 K-2) were achieved within a single polymer doped by different dopants. It further demonstrated the state-of-the-art power output of the first flexible single-polymer thermoelectric generator.
Collapse
Affiliation(s)
- Zi-Di Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hio-Ieng Un
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Szymon J. Zelewski
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Ying Cui
- Department of Polymer Science and Engineering, State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao-Yang You
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ke-Feng Xie
- Department of Polymer Science and Engineering, State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu-Cheng He
- Department of Polymer Science and Engineering, State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Bing Hu
- Department of Polymer Science and Engineering, State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Henning Sirringhaus
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Duan J, Ding J, Wang D, Zhu X, Chen J, Zhu G, Chen C, Yu Y, Liao H, Li Z, Di C, Yue W. Enhancing the Performance of N-Type Thermoelectric Devices via Tuning the Crystallinity of Small Molecule Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204872. [PMID: 36437037 PMCID: PMC9875661 DOI: 10.1002/advs.202204872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Indexed: 05/28/2023]
Abstract
In the development of high-performance organic thermoelectric devices, n-type materials, especially with small molecule semiconductors, lags far behind p-type materials. In this paper, three small molecules are synthesized based on electron-deficient naphthalene bis-isatin building blocks bearing different alkyl chains with the terminal functionalized with 3-ethylrhodanine unit and studied their aggregation and doping mechanism in detail. It is found that crystallinity plays an essential role in tuning the doping behavior of small molecules. Molecules with too strong crystallinity tend to aggregate with each other to form large crystalline domains, which cause significant performance degradation. While molecules with weak crystallinity can tolerate more dopants, most of them exhibit low mobility. By tuning the crystallinity carefully, organic thermoelectric devices based on C12NR can maintain high mobility and realize effective doping simultaneously, and a high power factor of 1.07 µW m-1 K-2 at 100 °C is realized. This delicate molecular design by modulating crystallinity provides a new avenue for realizing high-performance organic thermoelectric devices.
Collapse
Affiliation(s)
- Jiayao Duan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Jiamin Ding
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Dongyang Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Xiuyuan Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Junxin Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Genming Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Chaoyue Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Yaping Yu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Hailiang Liao
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Zhengke Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Chong‐an Di
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| |
Collapse
|
25
|
Wood ND, Gillie LJ, Cooke DJ, Molinari M. A Review of Key Properties of Thermoelectric Composites of Polymers and Inorganic Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8672. [PMID: 36500167 PMCID: PMC9738949 DOI: 10.3390/ma15238672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This review focusses on the development of thermoelectric composites made of oxide or conventional inorganic materials, and polymers, with specific emphasis on those containing oxides. Discussion of the current state-of-the-art thermoelectric materials, including the individual constituent materials, i.e., conventional materials, oxides and polymers, is firstly presented to provide the reader with a comparison of the top-performing thermoelectric materials. Then, individual materials used in the inorganic/polymer composites are discussed to provide a comparison of the performance of the composites themselves. Finally, the addition of carbon-based compounds is discussed as a route to improving the thermoelectric performance. For each topic discussed, key thermoelectric properties are tabulated and comparative figures are presented for a wide array of materials.
Collapse
Affiliation(s)
| | | | | | - Marco Molinari
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| |
Collapse
|
26
|
Ueda K, Fukuzaki R, Ito T, Toyama N, Muraoka M, Terao T, Manabe K, Hirai T, Wu CJ, Chuang SC, Kawano S, Murata M. A Highly Conductive n-Type Coordination Complex with Thieno[3,2- b]thiophene Units: Facile Synthesis, Orientation, and Thermoelectric Properties. J Am Chem Soc 2022; 144:18744-18749. [PMID: 36166343 DOI: 10.1021/jacs.2c07888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An organometallic nickel complex containing thieno[3,2-b]thiophene units was designed and synthesized. Composite films of the resulting nickel complex and polyvinylidene difluoride, which can be fabricated via a simple solution process under atmospheric conditions, exhibit remarkably high n-type conductivity (>200 S cm-1). Moreover, the thermoelectric power factor of the n-type composite film was proven to be air stable. A grazing-incidence wide-angle X-ray diffraction analysis indicated a significant impact of introducing the thieno[3,2-b]thiophene core into the backbone of the nickel complex on the orientation within the composite films.
Collapse
Affiliation(s)
- Kazuki Ueda
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Riku Fukuzaki
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Takumu Ito
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Nana Toyama
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Masahiro Muraoka
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Toshiki Terao
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Kei Manabe
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Ching-Ju Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Shintaro Kawano
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Michihisa Murata
- Department of Applied Chemistry, Osaka Institute of Technology, Osaka 535-8585, Japan
| |
Collapse
|
27
|
Li W, Yin M, Liu J, Fu H, Shao X, Dong Y, Song Q, Zhang C, Wong WY. Reversible color modulation of luminescent conjugated polymers based on a chemical redox mechanism and applications in rewritable paper and multiple information encryption. MATERIALS HORIZONS 2022; 9:2198-2206. [PMID: 35699133 DOI: 10.1039/d2mh00566b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reversible color modulation plays a key role in the field of information recording and encryption, but for the common colorful conjugated polymer materials, currently a convenient method to achieve their reversible color modulation is still lacking. Herein, six luminescent conjugated polymers P1 to P6 were successfully designed and synthesized, all of which could realize reversible color modulation through a similar reversible chemical redox behavior accompanied by reversible color and fluorescence changes. The same absorption spectral changes as those under electrochemical redox conditions strongly confirmed that these polymers underwent reversible redox reactions in the Fe3+ and H2O system, which happened spontaneously according to the theoretical analysis of the reaction thermodynamics. Based on the reversible color modulation in the Fe3+ and H2O system, polymers P1, P2 and P3, with different colors (yellow, orange and red) and fluorescence emissions, were successfully applied as rewritable paper with multi-color and multi-fluorescence printing as well as long-term recording capabilities. Meanwhile, polymers P1, P4, P5 and P6, which showed similar green fluorescence and yellow color but different oxidation potentials, were also introduced to accomplish multiple encryption and decryption of information, based on the step-by-step selective oxidation of the four polymers by adjusting the concentration of Fe3+.
Collapse
Affiliation(s)
- Weijun Li
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Maoxing Yin
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jin Liu
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Haichang Fu
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiongchao Shao
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yujie Dong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qingbao Song
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
28
|
Han J, Tiernan E, Lee T, Chiu A, McGuiggan P, Adams N, Tomko JA, Hopkins PE, Thon SM, Tovar JD, Katz HE. A New Polystyrene-Poly(vinylpyridinium) Ionic Copolymer Dopant for n-Type All-Polymer Thermoelectrics with High and Stable Conductivity Relative to the Seebeck Coefficient giving High Power Factor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201062. [PMID: 35441380 DOI: 10.1002/adma.202201062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
A novel n-type copolymer dopant polystyrene-poly(4-vinyl-N-hexylpyridinium fluoride) (PSpF) with fluoride anions is designed and synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. This is thought to be the first polymeric fluoride dopant. Electrical conductivity of 4.2 S cm-1 and high power factor of 67 µW m-1 K-2 are achieved for PSpF-doped polymer films, with a corresponding decrease in thermal conductivity as the PSpF concentration is increased, giving the highest ZT of 0.1. An especially high electrical conductivity of 58 S cm-1 at 88 °C and outstanding thermal stability are recorded. Further, organic transistors of PSpF-doped thin films exhibit high electron mobility and Hall mobility of 0.86 and 1.70 cm2 V-1 s-1 , respectively. The results suggest that polystyrene-poly(vinylpyridinium) salt copolymers with fluoride anions are promising for high-performance n-type all-polymer thermoelectrics. This work provides a new way to realize organic thermoelectrics with high conductivity relative to the Seebeck coefficient, high power factor, thermal stability, and broad processing window.
Collapse
Affiliation(s)
- Jinfeng Han
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Emma Tiernan
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Taein Lee
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Arlene Chiu
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Patty McGuiggan
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Nicholas Adams
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - John A Tomko
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Patrick E Hopkins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Physics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Susanna M Thon
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - John D Tovar
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Howard E Katz
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| |
Collapse
|
29
|
Chen XX, Li JT, Fang YH, Deng XY, Wang XQ, Liu G, Wang Y, Gu X, Jiang SD, Lei T. High-mobility semiconducting polymers with different spin ground states. Nat Commun 2022; 13:2258. [PMID: 35474302 PMCID: PMC9042904 DOI: 10.1038/s41467-022-29918-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Organic semiconductors with high-spin ground states are fascinating because they could enable fundamental understanding on the spin-related phenomenon in light element and provide opportunities for organic magnetic and quantum materials. Although high-spin ground states have been observed in some quinoidal type small molecules or doped organic semiconductors, semiconducting polymers with high-spin at their neutral ground state are rarely reported. Here we report three high-mobility semiconducting polymers with different spin ground states. We show that polymer building blocks with small singlet-triplet energy gap (ΔES-T) could enable small ΔES-T gap and increase the diradical character in copolymers. We demonstrate that the electronic structure, spin density, and solid-state interchain interactions in the high-spin polymers are crucial for their ground states. Polymers with a triplet ground state (S = 1) could exhibit doublet (S = 1/2) behavior due to different spin distributions and solid-state interchain spin-spin interactions. Besides, these polymers showed outstanding charge transport properties with high hole/electron mobilities and can be both n- and p-doped with superior conductivities. Our results demonstrate a rational approach to obtain high-mobility semiconducting polymers with different spin ground states. Semiconducting polymers with high-spin at their neutral ground state are rarely reported. Here the authors synthesize three semiconducting polymers with different spin ground states and high hole/electron mobility, by appropriate choice of the building blocks’ singlet-triplet energy gap, spin distributions and solid-state interchain interactions.
Collapse
Affiliation(s)
- Xiao-Xiang Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jia-Tong Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Hui Fang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xue-Qing Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Guangchao Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China. .,Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Wang S, Zuo G, Kim J, Sirringhaus H. Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Li QY, Yao ZF, Wu HT, Luo L, Ding YF, Yang CY, Wang XY, Shen Z, Wang JY, Pei J. Regulation of High Miscibility for Efficient Charge-Transport in n-Doped Conjugated Polymers. Angew Chem Int Ed Engl 2022; 61:e202200221. [PMID: 35107203 DOI: 10.1002/anie.202200221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/10/2022]
Abstract
Strong interchain interactions of conjugated polymers usually result in poor miscibility with molecular dopants, limiting the doping efficiency because of uncontrolled phase separation. We have developed a strategy to achieve efficient charge-transport and high doping miscibility in n-doped conjugated polymers. We solve the miscibility issue through disorder side-chains containing dopants better. Systemic structural characterization reveals a farther side-chain branching point will lead to higher disorders, which provides appropriate sites to accommodate extrinsic molecular dopants without harming original chain packings and charge-transport channels. Therefore, better sustainability of solid-state microstructure is obtained, yielding a stable conductivity even when overloading massive dopants. This work highlights the importance of realizing high host-dopant miscibility in molecular doping of conjugated polymers.
Collapse
Affiliation(s)
- Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi-Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chi-Yuan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
32
|
Marks A, Chen X, Wu R, Rashid RB, Jin W, Paulsen BD, Moser M, Ji X, Griggs S, Meli D, Wu X, Bristow H, Strzalka J, Gasparini N, Costantini G, Fabiano S, Rivnay J, McCulloch I. Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers. J Am Chem Soc 2022; 144:4642-4656. [PMID: 35257589 PMCID: PMC9084553 DOI: 10.1021/jacs.2c00735] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
A series
of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing
the alkyl side chain content, are synthesized via an inexpensive,
nontoxic, precious-metal-free aldol polycondensation. Employing these
polymers as channel materials in organic electrochemical transistors
(OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 ×
10–2 cm2 V–1 s–1 and a μC* figure of merit
of 1.83 F cm–1 V–1 s–1. In parallel to high OECT performance, upon solution doping with
(4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine
(N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of
7.67 S cm–1 and a power factor of 10.4 μW
m–1 K–2. These results are among
the highest reported for n-type polymers. Importantly, while this
series of fused polylactam organic mixed ionic–electronic conductors
(OMIECs) highlights that synthetic molecular design strategies to
bolster OECT performance can be translated to also achieve high organic
thermoelectric (OTE) performance, a nuanced synthetic approach must
be used to optimize performance. Herein, we outline the performance
metrics and provide new insights into the molecular design guidelines
for the next generation of high-performance n-type materials for mixed
conduction applications, presenting for the first time the results
of a single polymer series within both OECT and OTE applications.
Collapse
Affiliation(s)
- Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Xingxing Chen
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Wenlong Jin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, NorrköpingSE-60174, Sweden
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Maximilian Moser
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Dilara Meli
- Department of Material Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaocui Wu
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Helen Bristow
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Joseph Strzalka
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | | | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, NorrköpingSE-60174, Sweden
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
33
|
Dexter Tam TL, Moudgil A, Teh WJ, Wong ZM, Handoko AD, Chien SW, Yang SW, Yeo BS, Leong WL, Xu J. Polaron Delocalization Dependence of the Conductivity and the Seebeck Coefficient in Doped Conjugated Polymers. J Phys Chem B 2022; 126:2073-2085. [PMID: 35200014 DOI: 10.1021/acs.jpcb.2c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conjugated polymers are promising materials for thermoelectrics as they offer good performances at near ambient temperatures. The current focus on polymer thermoelectric research mainly targets a higher power factor (PF; a product of the conductivity and square of the Seebeck coefficient) through improving the charge mobility. This is usually accomplished via structural modification in conjugated polymers using different processing techniques and doping. As a result, the structure-charge transport relationship in conjugated polymers is generally well-established. In contrast, the relationship between the structure and the Seebeck coefficient is poorly understood due to its complex nature. A theoretical framework by David Emin (Phys. Rev. B, 1999, 59, 6205-6210) suggests that the Seebeck coefficient can be enhanced via carrier-induced vibrational softening, whose magnitude is governed by the size of the polaron. In this work, we seek to unravel this relationship in conjugated polymers using a series of highly identical pro-quinoid polymers. These polymers are ideal to test Emin's framework experimentally as the quinoid character and polaron delocalization in these polymers can be well controlled even by small atomic differences (<10 at. % per repeating unit). By increasing the polaron delocalization, that is, the polaron size, we demonstrate that both the conductivity and the Seebeck coefficient (and hence PF) can be increased simultaneously, and the latter is due to the increase in the polaron's vibrational entropy. By using literature data, we also show that this phenomenon can be observed in two closely related diketopyrrolopyrrole-conjugated polymers as well as in p-doped P3HT and PANI systems with an increasing molecular order.
Collapse
Affiliation(s)
- Teck Lip Dexter Tam
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Akshay Moudgil
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wei Jie Teh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zicong Marvin Wong
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, Singapore 138632, Singapore
| | - Albertus Denny Handoko
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Sheau Wei Chien
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Shuo-Wang Yang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, Singapore 138632, Singapore
| | - Boon Siang Yeo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637459, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
34
|
Kukhta N, Marks A, Luscombe CK. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors. Chem Rev 2022; 122:4325-4355. [PMID: 34902244 PMCID: PMC8874907 DOI: 10.1021/acs.chemrev.1c00266] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Expanding the toolbox of the biology and electronics mutual conjunction is a primary aim of bioelectronics. The organic electrochemical transistor (OECT) has undeniably become a predominant device for mixed conduction materials, offering impressive transconduction properties alongside a relatively simple device architecture. In this review, we focus on the discussion of recent material developments in the area of mixed conductors for bioelectronic applications by means of thorough structure-property investigation and analysis of current challenges. Fundamental operation principles of the OECT are revisited, and characterization methods are highlighted. Current bioelectronic applications of organic mixed ionic-electronic conductors (OMIECs) are underlined. Challenges in the performance and operational stability of OECT channel materials as well as potential strategies for mitigating them, are discussed. This is further expanded to sketch a synopsis of the history of mixed conduction materials for both p- and n-type channel operation, detailing the synthetic challenges and milestones which have been overcome to frequently produce higher performing OECT devices. The cumulative work of multiple research groups is summarized, and synthetic design strategies are extracted to present a series of design principles that can be utilized to drive figure-of-merit performance values even further for future OMIEC materials.
Collapse
Affiliation(s)
- Nadzeya
A. Kukhta
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christine K. Luscombe
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
35
|
Wang J, Liu L, Wu F, Liu Z, Fan Z, Chen L, Chen Y. Recent Developments of n-Type Organic Thermoelectric Materials: Influence of Structure Modification on Molecule Arrangement and Solution Processing. CHEMSUSCHEM 2022; 15:e202102420. [PMID: 34964275 DOI: 10.1002/cssc.202102420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Organic semiconductor (OSCs) thermoelectric materials have been studied widely due to their low thermal conductivity and solution processing characteristics. Currently, the high conductivity (up to 1000 s cm-1 ) has boosted the performance of p-type organic thermoelectric materials substantially. In contrast, the development of n-type organic thermoelectric materials is still limited by their low mobility, inferior air stability, and poor doping efficiency, which is relevant to the molecule structure and dopant dispersion. Herein, the recent development of n-type organic thermoelectric materials was reviewed with an emphasis on molecule structure modification and solution processing. Methods for optimizing conjugate structure were summarized from the effects of conjugated backbone modification and side chains diversification on molecular stacking. The primary n-type dopants were also summarized briefly. Especially, the role of solution aggregation controlling on film preparation and properties was given special attention. Additionally, the emergence of organic diradicals with low lowest unoccupied molecular orbital energy level and no doping was introduced, which shows great potential in n-type organic thermoelectric materials. All these endeavors have led to the development of n-type OSCs materials. This Review is aimed at illustrating the state-of-the-art progress and providing some guideline for the design of organic thermoelectric materials in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Liang Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Feiyan Wu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Zuoji Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Zhiping Fan
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
- Institute of Advanced Scientific Research (IASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
36
|
Li Q, Yao Z, Wu H, Luo L, Ding Y, Yang C, Wang X, Shen Z, Wang J, Pei J. Regulation of High Miscibility for Efficient Charge‐Transport in n‐Doped Conjugated Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi‐Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ze‐Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hao‐Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yi‐Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Chi‐Yuan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xin‐Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
37
|
Alsufyani M, Stoeckel M, Chen X, Thorley K, Hallani RK, Puttisong Y, Ji X, Meli D, Paulsen BD, Strzalka J, Regeta K, Combe C, Chen H, Tian J, Rivnay J, Fabiano S, McCulloch I. Lactone Backbone Density in Rigid Electron‐Deficient Semiconducting Polymers Enabling High n‐type Organic Thermoelectric Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Xingxing Chen
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Karl Thorley
- Department of Chemistry University of Kentucky Lexington KY 40506-0055 USA
| | - Rawad K. Hallani
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yuttapoom Puttisong
- Department of Physics, Chemistry and Biology Linköping University 58183 Linköping Sweden
| | - Xudong Ji
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Dilara Meli
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Bryan D. Paulsen
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Joseph Strzalka
- X-Ray Science Division Argonne National Laboratory Lemont IL 60439 USA
| | - Khrystyna Regeta
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Craig Combe
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hu Chen
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Junfu Tian
- Department of Chemistry University of Oxford Oxford OX1 3TA UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Simpson Querrey Institute Northwestern University Chicago IL 60611 USA
| | - Simone Fabiano
- Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Iain McCulloch
- Department of Chemistry University of Oxford Oxford OX1 3TA UK
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
38
|
Sartucci JL, Maity A, Mohanan M, Bertke J, Kertesz M, Gavvalapalli N. Molecular tetrominoes: selective masking of the donor π-face to control the configuration of donor-acceptor complexes. Org Biomol Chem 2022; 20:375-386. [PMID: 34904145 DOI: 10.1039/d1ob02293h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the doping mechanism in organic semiconductors and generating molecular design rules to control the doping process are crucial for improving the performance of organic electronics. Even though controlling the location and orientation of the dopant along the semiconductor backbone is an important step in the doping mechanism, studies in this direction are scarce as it is a challenging task. To address this, herein, we incorporated π-face masked (strapped) units in 1,4-bis(phenylethynylene)benzene (donor) to control the acceptor (dopant) location along the trimer, donor-acceptor binding strength, and acceptor ionization. Two strapped trimers, PCP and CPC, are synthesized with control over the location of the strapped repeat unit in the trimer. The trimers are complexed with the 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) acceptor in solution. DFT calculations show that DDQ residing on the non-strapped repeat unit (the percentage of this configuration is at least ca. 73%) has the highest binding energy for both PCP and CPC. The percentage of dopant ionization is higher in the case of strapped trimers (PCP and CPC) compared to that of linear control trimers (PLP and LPL) and the completely non-strapped (PPP) trimer. The percentage of dopant ionization increased by 15 and 59% in the case of PCP and CPC respectively compared to that of PPP.
Collapse
Affiliation(s)
- Jenna L Sartucci
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Arindam Maity
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Manikandan Mohanan
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Jeffery Bertke
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA.
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Nagarjuna Gavvalapalli
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| |
Collapse
|
39
|
Han J, Chiu A, Ganley C, McGuiggan P, Thon SM, Clancy P, Katz HE. 3,4,5-Trimethoxy Substitution on an N-DMBI Dopant with New N-Type Polymers: Polymer-Dopant Matching for Improved Conductivity-Seebeck Coefficient Relationship. Angew Chem Int Ed Engl 2021; 60:27212-27219. [PMID: 34695285 DOI: 10.1002/anie.202110505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Achieving high electrical conductivity and thermoelectric power factor simultaneously for n-type organic thermoelectrics is still challenging. By constructing two new acceptor-acceptor n-type conjugated polymers with different backbones and introducing the 3,4,5-trimethoxyphenyl group to form the new n-type dopant 1,3-dimethyl-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole (TP-DMBI), high electrical conductivity of 11 S cm-1 and power factor of 32 μW m-1 K-2 are achieved. Calculations using Density Functional Theory show that TP-DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of -1.94 eV than that of the common dopant 4-(1, 3-dimethyl-2, 3-dihydro-1H-benzoimidazol-2-yl) phenyl) dimethylamine (N-DMBI) (-2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n-type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N-DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP-DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V-1 s-1 than films with N-DMBI doping, demonstrating the potential of TP-DMBI, and 3,4,5-trialkoxy DMBIs more broadly, for high performance n-type organic thermoelectrics.
Collapse
Affiliation(s)
- Jinfeng Han
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Arlene Chiu
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Connor Ganley
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Patty McGuiggan
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Susanna M Thon
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Paulette Clancy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Howard E Katz
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| |
Collapse
|
40
|
Han J, Chiu A, Ganley C, McGuiggan P, Thon SM, Clancy P, Katz HE. 3,4,5‐Trimethoxy Substitution on an N‐DMBI Dopant with New N‐Type Polymers: Polymer‐Dopant Matching for Improved Conductivity‐Seebeck Coefficient Relationship. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinfeng Han
- Department of Materials Science and Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| | - Arlene Chiu
- Department of Electrical and Computer Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| | - Connor Ganley
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland 21218 USA
| | - Patty McGuiggan
- Department of Materials Science and Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| | - Susanna M. Thon
- Department of Electrical and Computer Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| | - Paulette Clancy
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland 21218 USA
| | - Howard E. Katz
- Department of Materials Science and Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| |
Collapse
|
41
|
Alsufyani M, Stoeckel MA, Chen X, Thorley K, Hallani RK, Puttisong Y, Ji X, Meli D, Paulsen BD, Strzalka J, Regeta K, Combe C, Chen H, Tian J, Rivnay J, Fabiano S, McCulloch I. Lactone Backbone Density in Rigid Electron-Deficient Semiconducting Polymers Enabling High n-type Organic Thermoelectric Performance. Angew Chem Int Ed Engl 2021; 61:e202113078. [PMID: 34797584 DOI: 10.1002/anie.202113078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Three lactone-based rigid semiconducting polymers were designed to overcome major limitations in the development of n-type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P-0), to 50 % (P-50), and 75 % (P-75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N-DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 μWm-1 K-2 were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n-type organic thermoelectrics.
Collapse
Affiliation(s)
- Maryam Alsufyani
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Marc-Antoine Stoeckel
- Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Xingxing Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Karl Thorley
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Rawad K Hallani
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yuttapoom Puttisong
- Department of Physics, Chemistry and Biology, Linköping University, 58183, Linköping, Sweden
| | - Xudong Ji
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Dilara Meli
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Khrystyna Regeta
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Craig Combe
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hu Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Junfu Tian
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Simone Fabiano
- Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.,Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
42
|
Sahu H, Li H, Chen L, Rajan AC, Kim C, Stingelin N, Ramprasad R. An Informatics Approach for Designing Conducting Polymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53314-53322. [PMID: 34038635 DOI: 10.1021/acsami.1c04017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Doping conjugated polymers, which are potential candidates for the next generation of organic electronics, is an effective strategy for manipulating their electrical conductivity. However, selecting a suitable polymer-dopant combination is exceptionally challenging because of the vastness of the chemical, configurational, and morphological spaces one needs to search. In this work, high-performance surrogate models, trained on available experimentally measured data, are developed to predict the p-type electrical conductivity and are used to screen a large candidate hypothetical data set of more than 800 000 polymer-dopant combinations. Promising candidates are identified for synthesis and device fabrication. Additionally, new design guidelines are extracted that verify and extend knowledge on important molecular fragments that correlate to high conductivity. Conductivity prediction models are also deployed at www.polymergenome.org for broader open-access community use.
Collapse
Affiliation(s)
- Harikrishna Sahu
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hongmo Li
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lihua Chen
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Arunkumar Chitteth Rajan
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chiho Kim
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Natalie Stingelin
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Massetti M, Jiao F, Ferguson AJ, Zhao D, Wijeratne K, Würger A, Blackburn JL, Crispin X, Fabiano S. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chem Rev 2021; 121:12465-12547. [PMID: 34702037 DOI: 10.1021/acs.chemrev.1c00218] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat is an abundant but often wasted source of energy. Thus, harvesting just a portion of this tremendous amount of energy holds significant promise for a more sustainable society. While traditional solid-state inorganic semiconductors have dominated the research stage on thermal-to-electrical energy conversion, carbon-based semiconductors have recently attracted a great deal of attention as potential thermoelectric materials for low-temperature energy harvesting, primarily driven by the high abundance of their atomic elements, ease of processing/manufacturing, and intrinsically low thermal conductivity. This quest for new materials has resulted in the discovery of several new kinds of thermoelectric materials and concepts capable of converting a heat flux into an electrical current by means of various types of particles transporting the electric charge: (i) electrons, (ii) ions, and (iii) redox molecules. This has contributed to expanding the applications envisaged for thermoelectric materials far beyond simple conversion of heat into electricity. This is the motivation behind this review. This work is divided in three sections. In the first section, we present the basic principle of the thermoelectric effects when the particles transporting the electric charge are electrons, ions, and redox molecules and describe the conceptual differences between the three thermodiffusion phenomena. In the second section, we review the efforts made on developing devices exploiting these three effects and give a thorough understanding of what limits their performance. In the third section, we review the state-of-the-art thermoelectric materials investigated so far and provide a comprehensive understanding of what limits charge and energy transport in each of these classes of materials.
Collapse
Affiliation(s)
- Matteo Massetti
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Fei Jiao
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Andrew J Ferguson
- National Renewable Energy Laboratory, Golden, Colorado, 80401 United States
| | - Dan Zhao
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Kosala Wijeratne
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Alois Würger
- Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux, 351 cours de la Libération, F-33405 Talence Cedex, France
| | | | - Xavier Crispin
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Simone Fabiano
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
44
|
Abstract
Doping has been widely used to control the charge carrier concentration in organic semiconductors. However, in conjugated polymers, n-doping is often limited by the tradeoff between doping efficiency and charge carrier mobilities, since dopants often randomly distribute within polymers, leading to significant structural and energetic disorder. Here, we screen a large number of polymer building block combinations and explore the possibility of designing n-type conjugated polymers with good tolerance to dopant-induced disorder. We show that a carefully designed conjugated polymer with a single dominant planar backbone conformation, high torsional barrier at each dihedral angle, and zigzag backbone curvature is highly dopable and can tolerate dopant-induced disorder. With these features, the designed diketopyrrolopyrrole (DPP)-based polymer can be efficiently n-doped and exhibit high n-type electrical conductivities over 120 S cm−1, much higher than the reference polymers with similar chemical structures. This work provides a polymer design concept for highly dopable and highly conductive polymeric semiconductors. In conjugated polymers, n-doping is often limited by the tradeoff between doping efficiency and charge carrier mobilities, since dopants often randomly distribute within polymers, leading to significant structural and energetic disorder. Here, the authors screen a large number of polymer building block combinations and explore the possibility of designing n-type conjugated polymers with good tolerance to dopant-induced disorder.
Collapse
|
45
|
Wang X, Liu Y, Wang Z, Lu Y, Yao Z, Ding Y, Yu Z, Wang J, Pei J. Revealing the effect of oligo(ethylene glycol) side chains on
n‐doping
process in
FBDPPV
‐based polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin‐Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
| | - Yi Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
| | - Zi‐Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
| | - Ze‐Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
| | - Yi‐Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
| | - Zi‐Di Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing China
| |
Collapse
|
46
|
Dong C, Deng S, Meng B, Liu J, Wang L. A Distannylated Monomer of a Strong Electron-Accepting Organoboron Building Block: Enabling Acceptor-Acceptor-Type Conjugated Polymers for n-Type Thermoelectric Applications. Angew Chem Int Ed Engl 2021; 60:16184-16190. [PMID: 33956396 DOI: 10.1002/anie.202105127] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 01/20/2023]
Abstract
Acceptor-acceptor (A-A) copolymerization is an effective strategy to develop high-performance n-type conjugated polymers. However, the development of A-A type conjugated polymers is challenging due to the synthetic difficulty. Herein, a distannylated monomer of strong electron-deficient double B←N bridged bipyridine (BNBP) unit is readily synthesized and used to develop A-A type conjugated polymers by Stille polycondensation. The resulting polymers show ultralow LUMO energy levels of -4.4 eV, which is among the lowest value reported for organoboron polymers. After n-doping, the resulting polymers exhibit electric conductivity of 7.8 S cm-1 and power factor of 24.8 μW m-1 K-2 . This performance is among the best for n-type polymer thermoelectric materials. These results demonstrate the great potential of A-A type organoboron polymers for high-performance n-type thermoelectrics.
Collapse
Affiliation(s)
- Changshuai Dong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
47
|
Dong C, Deng S, Meng B, Liu J, Wang L. A Distannylated Monomer of a Strong Electron‐Accepting Organoboron Building Block: Enabling Acceptor–Acceptor‐Type Conjugated Polymers for n‐Type Thermoelectric Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Changshuai Dong
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
48
|
Griggs S, Marks A, Bristow H, McCulloch I. n-Type organic semiconducting polymers: stability limitations, design considerations and applications. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:8099-8128. [PMID: 34277009 PMCID: PMC8264852 DOI: 10.1039/d1tc02048j] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/10/2021] [Indexed: 04/14/2023]
Abstract
This review outlines the design strategies which aim to develop high performing n-type materials in the fields of organic thin film transistors (OTFT), organic electrochemical transistors (OECT) and organic thermoelectrics (OTE). Figures of merit for each application and the limitations in obtaining these are set out, and the challenges with achieving consistent and comparable measurements are addressed. We present a thorough discussion of the limitations of n-type materials, particularly their ambient operational instability, and suggest synthetic methods to overcome these. This instability originates from the oxidation of the negative polaron of the organic semiconductor (OSC) by water and oxygen, the potentials of which commonly fall within the electrochemical window of n-type OSCs, and consequently require a LUMO level deeper than ∼-4 eV for a material with ambient stability. Recent high performing n-type materials are detailed for each application and their design principles are discussed to explain how synthetic modifications can enhance performance. This can be achieved through a number of strategies, including utilising an electron deficient acceptor-acceptor backbone repeat unit motif, introducing electron-withdrawing groups or heteroatoms, rigidification and planarisation of the polymer backbone and through increasing the conjugation length. By studying the fundamental synthetic design principles which have been employed to date, this review highlights a path to the development of promising polymers for n-type OSC applications in the future.
Collapse
Affiliation(s)
- Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Adam Marks
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Helen Bristow
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
49
|
Lu Y, Wang JY, Pei J. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants. Acc Chem Res 2021; 54:2871-2883. [PMID: 34152131 DOI: 10.1021/acs.accounts.1c00223] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ConspectusMolecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the "doping dilemma." Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers.In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the "doping dilemma." For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era.
Collapse
Affiliation(s)
- Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Li QY, Yao ZF, Wang JY, Pei J. Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076601. [PMID: 33887704 DOI: 10.1088/1361-6633/abfaad] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Aggregation of molecules is a multi-molecular phenomenon occurring when two or more molecules behave differently from discrete molecules due to their intermolecular interactions. Moving beyond single molecules, aggregation usually demonstrates evolutive or wholly emerging new functionalities relative to the molecular components. Conjugated small molecules and polymers interact with each other, resulting in complex solution-state aggregates and solid-state microstructures. Optoelectronic properties of conjugated small molecules and polymers are sensitively determined by their aggregation states across a broad range of spatial scales. This review focused on the aggregation ranging from molecular structure, intermolecular interactions, solution-state assemblies, and solid-state microstructures of conjugated small molecules and polymers. We addressed the importance of such aggregation in filling the gaps from the molecular level to device functions and highlighted the multi-scale structures and properties at different scales. From the view of multi-level aggregation behaviors, we divided the whole process from the molecule to devices into several parts: molecular design, solvation, solution-state aggregation, crystal engineering, and solid-state microstructures. We summarized the progress and challenges of relationships between optoelectronic properties and multi-level aggregation. We believe aggregation science will become an interdisciplinary research field and serves as a general platform to develop future materials with the desired functions.
Collapse
Affiliation(s)
- Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|