1
|
Liu M, Yang W, Xiao R, Li J, Tan R, Qin Y, Bai Y, Zheng L, Hu L, Gu W, Zhu C. Lattice atom-bridged chemical bond interface facilitates charge transfer for boosted photoelectric response. Natl Sci Rev 2025; 12:nwae465. [PMID: 39926201 PMCID: PMC11804805 DOI: 10.1093/nsr/nwae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 11/29/2024] [Indexed: 02/11/2025] Open
Abstract
The construction of chemical bonds at heterojunction interfaces currently presents a promising avenue for enhancing photogenerated carrier interfacial transfer. However, the deliberate modulation of these interfacial chemical bonds remains a significant challenge. In this study, we successfully established a p-n junction composed of atomic-level Pt-doped CeO2 and 2D metalloporphyrins metal-organic framework nanosheets (Pt-CeO2/CuTCPP(Fe)), which enables the realization of photoelectric enhancement by regulating the interfacial Fe-O bond and optimizing the built-in electric field. Atomic-level Pt doping in CeO2 leads to an increased density of oxygen vacancies and lattice mutation, which induces a transition in interfacial Fe-O bonds from adsorbed oxygen (Fe-OA) to lattice oxygen (Fe-OL). This transition changes the interfacial charge flow pathway from Fe-OA-Ce to Fe-OL, effectively reducing the carrier transport distance along the atomic-level charge transport highway. This results in a 2.5-fold enhancement in photoelectric performance compared with the CeO2/CuTCPP(Fe). Furthermore, leveraging the peroxidase-like activity of the p-n junction, we employed this functional heterojunction interface to develop a photoelectrochemical immunoassay for the sensitive detection of prostate-specific antigens.
Collapse
Affiliation(s)
- Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinli Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Bai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Luo S, Fan S, Yuan J, Xiao J, Sun X, Wang L, Zhang Y, Zhang Z, Fu X, Dai W. Regulation of electron density in Pt nanoparticles via bimetallic metal-organic frameworks for enhancing photothermal catalysis of toluene decomposition. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136561. [PMID: 39571375 DOI: 10.1016/j.jhazmat.2024.136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/18/2024] [Revised: 10/27/2024] [Accepted: 11/16/2024] [Indexed: 01/26/2025]
Abstract
Volatile Organic Compounds (VOCs) are omnipresent in the sphere of human industrial, harboring latent adverse consequences for health and the ecological system. The photothermal catalytic oxidation of VOCs is an advanced integrated technology that harnesses the combined effects of light and heat energy to enhance the efficiency of VOCs degradation. Herein, a bimetallic Metal-Organic Framework (MOF) was synthesized with the incorporation of Ce into the UiO-66-NH2(Zr) (i.e., UNH(Zr)), UiO-66-NH2(Zr2Ce) (i.e., UNH(Z2C)), which was achieved with Ce atom substituting for a portion of Zr atom within the Zr-oxo clusters. Pt nanoparticles (NPs) are integrated with MOFs to form composites using the dual-solvent method. Ce-oxo fulfills a bifunctional role: it not only facilitates the enhancement of the ligand-to-metal charge transfer (LMCT), but also establishes interaction with Pt NPs. Ce-oxo mediates an enhancement of electron density on Pt NPs. This phenomenon enhances the adsorption and activation of oxygen, significantly boosting the photocatalytic performance for toluene degradation, as demonstrated by a reduction of 30 ℃ for complete mineralization of toluene as compared to that of Pt@UiO-66-NH2(Zr) (i.e., PUNH(Zr)). This study potentially offers new insights into the relationship between electron transfer effects in bimetallic MOF-based catalysts and their efficient catalytic performance for VOCs degradation.
Collapse
Affiliation(s)
- Songyu Luo
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Shipeng Fan
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jie Yuan
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianyu Xiao
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xu Sun
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liang Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yongfan Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zizhong Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Xianzhi Fu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| |
Collapse
|
3
|
Wu L, Liu Y, Yu X, Gao R, Jia Y, Sun Q, Feng Y, Jing L, Hou Z, Deng J, Dai H. Constructing Bridge Hydroxyl Groups on the Ru/MO x/HZSM-5 (M = W, Mo) Catalysts to Promote the Hydrolysis Oxidation of Multicomponent VOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:945-955. [PMID: 39718825 DOI: 10.1021/acs.est.4c09649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2024]
Abstract
Chlorinated and oxygenated volatile organic compounds (CVOCs and OVOCs) pose a significant threat to human health. Catalytic oxidation effectively removes these pollutants, but catalyst deactivation is a challenge. Our study focused on the hydrolysis oxidation of chlorobenzene (CB) and ethyl acetate (EA) over Ru/MOx/HZSM-5 (M = W, Mo). It was found that doping MoOx to the catalyst increased the structural hydroxyl amount and balanced surface acidity, thus significantly improving the catalytic stability, with Ru/MoOx/HZSM-5 exhibiting a better activity for CB and EA oxidation (T90% = 438 and 276 °C at space velocity = 20,000 mL g-1 h-1, respectively). Water vapor introduction considerably promoted hydrolysis oxidation and protected the active sites from being poisoned by cumulative chlorine. The synergistic interaction of the Mo-O(H)-Al structure in Ru/MoOx/HZSM-5 with the Si-OH-Al structure promotes the activation of H2O to form bridging hydroxyl groups, which provide a proton-rich environment for hydrolysis oxidation. It was also found that dissociated H2O reacted with adsorbed oxygen species to form highly active *OOH, accelerating the deep oxidation of intermediates. We believe that the present study can provide a unique strategy for the effective elimination of multicomponent VOCs under complex conditions.
Collapse
Affiliation(s)
- Linke Wu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yiwen Jia
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qinpei Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Bañares MA, Alcolea-Rodriguez V, Portela R. A catalytic perspective to nanomaterials reactivity-based toxicity; implications for single- and multiple-component nanomaterials (nanocomposites). NANOIMPACT 2025; 37:100542. [PMID: 39814225 DOI: 10.1016/j.impact.2025.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The extended use of a given product normally precedes concerns about it. The reactivity-based nanotoxicity is a major concern that must be tackled from its fundamental understanding to its regulatory management. Moreover, concepts and ideas must seamlessly flow between relevant performers. Functional nanomaterials have been used in many fields; among these, catalysis is probably the earliest more extended application of nanomaterials, these are engineered to afford specific properties, and are typically known as Engineered Nanomaterials (ENMs). Heterogenous catalysis shares its basic features with reactivity-based toxicity. In both cases, we are dealing with phenomena triggered by reactions occurring at the surface of the nanomaterial. Therefore, the extensive knowledge in heterogeneous catalysis is key to understanding reactivity-based nanotoxicology. In this regard, determining surface exposure is fundamental to mechanistically comprehend dose-response, similar to how catalysis shifted from mass-based to surface-centered metrics. Catalysis science made a further refinement iteration: reactions occur at surfaces, though not all surfaces are necessarily reactive, making it crucial to normalize per reactive site. This perspective focuses on two key aspects that link heterogeneous catalysis and reactivity-based nanotoxicity: the reactive sites on the surface of nanomaterials and how different combinations of nanomaterials appear and perform. A comment is also made regarding the somewhat vague term 'multicomponent nanomaterial,' which is contrasted with the well-defined, established, and widely accepted term 'nanocomposite' within the chemical community. Clear and precise terminology and concepts are essential for effective research and regulation.
Collapse
Affiliation(s)
| | | | - Raquel Portela
- CSIC - Insituto de Catálisis y Petroleoquímica, Madrid, Spain
| |
Collapse
|
5
|
Li J, Chen J, Zeng J, Xie H, Zhou G. Tuning the crystallinity of the MnO x catalysts to promote toluene catalytic oxidation. ENVIRONMENTAL TECHNOLOGY 2025; 46:98-110. [PMID: 38648336 DOI: 10.1080/09593330.2024.2342573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/04/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
In this paper, the MnOx catalysts with excellent toluene oxidation performance were prepared by a simple precipitation method. The physicochemical properties of the prepared MnOx catalysts were investigated by XRD, BET, H2-TPR, O2-TPD and XPS. The obtained results revealed that the crystallinity of the prepared MnOx catalysts could be effectively regulated by changing the (NH4)2CO3/Mn(NO3)2 molar ratio, and thus affecting the oxygen vacancy concentration of the prepared MnOx catalysts. The prepared MnOx-4 catalyst with the (NH4)2CO3/Mn(NO3)2 molar ratio of 4.0 had the poor crystallinity and small grain size, which effectively promoted the oxygen defects in the MnOx catalyst to be formed. At the same time, the MnOx-4 catalyst had a large specific surface area, the highest low temperature reducibility and the largest number of oxygen vacancies and surface adsorbed oxygen species, which allowed more surface oxygen species to participate in the redox reaction, and promoted the toluene deep oxidation. Therefore, when the (NH4)2CO3/Mn(NO3)2 molar ratio was 4.0, the prepared MnOx-4 catalyst exhibited an excellent toluene catalytic oxidation performance and robust catalytic stability. What's more, the toluene oxidation conversion on the MnOx-4 catalyst reached 99% at 230°C, and the MnOx-4 catalyst showed excellent resistance to water vapour.
Collapse
Affiliation(s)
- Jingyi Li
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Jiyan Chen
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Jia Zeng
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Hongmei Xie
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Guilin Zhou
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, People's Republic of China
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Zhou Q, Gao W, Wang D, Chang Y, Guan H, Lim KH, Yang X, Liu P, Wang W, Li B, Wang Q. Upcycling of Polyethylene Wastes to Valuable Chemicals over Group VIII Metal-decorated WO 3 Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410574. [PMID: 39639845 PMCID: PMC11789578 DOI: 10.1002/advs.202410574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Catalytic cracking of polyolefin wastes into valuable chemicals at mild conditions using non-noble metal catalysts is highly attractive yet challenging. Herein it is reported that 2D tungsten trioxide (2D WO3) nanosheets, after decorating with group VIII metal promoters (i.e., Fe, Co, or Ni), convert high-density polyethylene (HDPE) into alkylaromatics and olefins at low temperature and ambient pressure without using any solvent or hydrogen: 2D Ni/WO3 with abundant Brønsted acidic sites initiates HDPE cracking at a low temperature of 240 °C; 2D Fe/WO3 with low energy barrier of cyclization achieves a high HDPE conversion to 84.2% liquid hydrocarbons with a selectivity of 30.9% to aromatics at 300 °C. In-situ spectroscopic investigations and supplementary theoretical calculations illustrate that these aromatics are formed through the cyclization of alkene intermediates. These 2D catalysts also display high efficiency in the low-temperature cracking of single-use commercial polyethylene wastes such as packaging bags and bottles. This work has demonstrated the high potential of 2D non-noble metal catalysts in the efficient upcycling of waste polyolefin at mild conditions.
Collapse
Affiliation(s)
- Qimin Zhou
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RdQuzhouZhejiang324000P. R. China
| | - Weiqiang Gao
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RdQuzhouZhejiang324000P. R. China
| | - Deliang Wang
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RdQuzhouZhejiang324000P. R. China
| | - Yinlong Chang
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RdQuzhouZhejiang324000P. R. China
| | - Hanxi Guan
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RdQuzhouZhejiang324000P. R. China
| | - Khak Ho Lim
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RdQuzhouZhejiang324000P. R. China
| | - Xuan Yang
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
| | - Pingwei Liu
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- State Key Laboratory of Chemical Engineering at Zhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
| | - Wen‐Jun Wang
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- State Key Laboratory of Chemical Engineering at Zhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
| | - Bo‐Geng Li
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- State Key Laboratory of Chemical Engineering at Zhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
| | - Qingyue Wang
- College of Chemical and Biological EngineeringZhejiang University866 Yuhangtang RdHangzhouZhejiang310058P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RdQuzhouZhejiang324000P. R. China
| |
Collapse
|
7
|
Chen H, Qin B, Zhang Q, Hu X, Ma L, Zhang X, Tang Z, Chen L. Enhancement of Selective Catalytic Oxidation of Lignin β-O-4 Bond via Orbital Modulation and Surface Lattice Reconstruction. CHEMSUSCHEM 2024:e202402194. [PMID: 39555777 DOI: 10.1002/cssc.202402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
The orbital modulation and surface lattice reconstruction represent an effective strategy to regulate the interaction between catalyst interface sites and intermediates, thereby enhancing catalytic activity and selectivity. In this study, the crystal surface of Au-K/CeO2 catalyst can undergo reversible transformation by tuning the coordination environment of Ce, which enables the activation of the Cβ-H bond and the oxidative cleavage of the Cβ-O and Cα-Cβ bonds, leading to the cleavage of 2-phenoxy-1-phenylethanol. The t2g orbitals of Au 5d hybridize with the 2p orbitals of lattice oxygen in CeO2 via π-coordination, modulating the coordination environment of Ce 4 f and reconstructing the lattice oxygen in the CeO2 framework, as well as increasing the oxygen vacancies. The interface sites formed by the synergy between Au clusters in the reconstructed Ce-OL1-Au structure and doped K play dual roles. On the one hand, it activates the Cβ-H bond, facilitating the enolization of the pre-oxidized 2-phenoxy-1-phenylethanone. On the other hand, through single-electron transfer involving Ce3+ 4f1 and the adsorption by oxygen vacancies, it enhances the oxidative cleavage of the Cβ-O and Cα-Cβ bonds. This study elucidates the complex mechanistic roles of the structure and properties of Au-K/CeO2 catalyst in the selective catalytic oxidation of lignin β-O-4 bond.
Collapse
Affiliation(s)
- Haonan Chen
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Baolong Qin
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Qi Zhang
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xiaohong Hu
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xinghua Zhang
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhiyuan Tang
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
8
|
Alcolea-Rodriguez V, Portela R, Calvino-Casilda V, Bañares MA. In chemico methodology for engineered nanomaterial categorization according to number, nature and oxidative potential of reactive surface sites. ENVIRONMENTAL SCIENCE. NANO 2024; 11:3744-3760. [PMID: 39280766 PMCID: PMC11392058 DOI: 10.1039/d3en00810j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/10/2023] [Accepted: 07/05/2024] [Indexed: 09/18/2024]
Abstract
Methanol probe chemisorption quantifies the number of reactive sites at the surface of engineered nanomaterials, enabling normalization per reactive site in reactivity and toxicity tests, rather than per mass or physical surface area. Subsequent temperature-programmed surface reaction (TPSR) of chemisorbed methanol identifies the reactive nature of surface sites (acidic, basic, redox or combination thereof) and their reactivity. Complementary to the methanol assay, a dithiothreitol (DTT) probe oxidation reaction is used to evaluate the oxidation capacity. These acellular approaches to quantify the number, nature, and reactivity of surface sites constitute a new approach methodology (NAM) for site-specific classification of nanomaterials. As a proof of concept, CuO, CeO2, ZnO, Fe3O4, CuFe2O4, Co3O4 and two TiO2 nanomaterials were probed. A harmonized reactive descriptor for ENMs was obtained: the DTT oxidation rate per reactive surface site, or oxidative turnover frequency (OxTOF). CuO and CuFe2O4 ENMs exhibit the largest reactive site surface density and possess the highest oxidizing ability in the series, as estimated by the DTT probe reaction, followed by CeO2 NM-211 and then titania nanomaterials (DT-51 and NM-101) and Fe3O4. DTT depletion for ZnO NM-110 was associated with dissolved zinc ions rather than the ZnO particles; however, the basic characteristics of the ZnO NM-110 particles were evidenced by methanol TPSR. These acellular assays allow ranking the eight nanomaterials into three categories with statistically different oxidative potentials: CuO, CuFe2O4 and Co3O4 are the most reactive; ceria exhibits a moderate reactivity; and iron oxide and the titanias possess a low oxidative potential.
Collapse
Affiliation(s)
- V Alcolea-Rodriguez
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC Marie Curie 2 28049-Madrid Spain
| | - R Portela
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC Marie Curie 2 28049-Madrid Spain
| | - V Calvino-Casilda
- Departamento de Ingeniería Eléctrica, Electrónica, Control, Telemática y Química Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, UNED Juan del Rosal 12 28040-Madrid Spain
| | - M A Bañares
- Instituto de Catálisis y Petroleoquímica, ICP-CSIC Marie Curie 2 28049-Madrid Spain
| |
Collapse
|
9
|
Liu H, Yang S, Mi J, Sun C, Chen J, Li J. 4d-2p-4f Gradient Orbital Coupling Enables Tandem Catalysis for Simultaneous Abatement of N 2O and CO on Atomically Dispersed Rh/CeO 2 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39259756 DOI: 10.1021/acs.est.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/13/2024]
Abstract
N2O and CO coexist in various industrial and mobile sources. The synergistic reaction of N2O and CO to generate N2 and CO2 has garnered significant research interest, but it remains extremely challenging. Herein, we constructed an atomically dispersed Rh-supported CeO2 catalyst with asymmetric Rh-O-Ce sites through gradient Rh 4d-O 2p-Ce 4f orbital coupling. This design effectively regulates the 4f electron states of Ce and promotes the electron filling of the O 3π* antibonding orbital to facilitate N-O bond cleavage. Near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) reveals that CO reacts with the surface-adsorbed O* generated by N2O decomposition through self-tandem catalysis, accelerating the rate-limiting step in N2O decomposition and activating the synergistic reaction of N2O and CO at temperatures as low as 115 °C. This work can guide the development of high-performance catalysts using the strategy of high-order orbital hybridization combined with the tandem concept to achieve versatile catalytic applications.
Collapse
Affiliation(s)
- Hao Liu
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
- College of Geography and Environment, Shandong Normal University, Jinan 250014, P. R. China
| | - Shan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jinxing Mi
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianjun Chen
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
10
|
Qu W, Xu Z, Gruber CG, Li H, Hu X, Zhou L, Duan H, Zhang J, Liu M, Cortés E, Zhang D. Accelerating Toluene Oxidation over Boron-Titanium-Oxygen Interface: Steric Hindrance of the Methyl Group Induced by the Plane-Adsorption Configuration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16215-16224. [PMID: 39190430 DOI: 10.1021/acs.est.4c06079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/28/2024]
Abstract
Elimination of dilute gaseous toluene is one of the critical concerns within the field of indoor air remediation. The typical degradation route on titanium-based catalysts, "toluene-benzaldehyde-carbon dioxide", necessitates the oxidation of the methyl group as a prerequisite for photocatalytic toluene oxidation. However, the inherent planar adsorption configuration of toluene molecules, dominated by the benzene rings, leads to significant steric hindrance for the methyl group. This steric hindrance prevents the methyl group from contacting the active species on the catalyst surface, thereby limiting the removal of toluene under indoor conditions. To date, no effective strategy to control the steric hindrance of the methyl group has been identified. Herein, we showed a B-Ti-O interface that exhibits significantly enhanced toluene removal efficiency under indoor conditions. In-depth investigations revealed that, compared to typical Ti-based photocatalysts, the steric hindrance between the methyl group and the catalyst surface decreased from 3.42 to 3.03 Å on the designed interface. This reduction originates from the matching of orbital energy levels between Ti 3dz2 and C 2pz of the benzene ring. The decreased steric hindrance improved the efficiency of toluene being attacked by surface active species, allowing for rapid conversion into benzaldehyde and benzoic acid species for subsequent reactions. Our work provides novel insights into the steric hindrance effect in the elimination of aromatic volatile organic compounds.
Collapse
Affiliation(s)
- Wenqiang Qu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zixiang Xu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Christoph G Gruber
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Xiaonan Hu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Haiyan Duan
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Dengsong Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Luo H, Wang J, Zhang S, Sun B, Chen Z, Ren X, Luo Z, Han X, Hu W. In Situ Symbiosis of Cerium Oxide Nanophase for Enhancing the Oxygen Electrocatalysis Performance of Single-Atom Fe─N─C Catalyst with Prolonged Stability for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400357. [PMID: 38778724 DOI: 10.1002/smll.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Revised: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The Fenton reaction, induced by the H2O2 formed during the oxygen reduction reaction (ORR) process leads to significant dissolution of Fe, resulting in unsatisfactory stability of the iron-nitrogen-doped carbon catalysts (Fe-NC). In this study, a strategy is proposed to improve the ORR catalytic activity while eliminating the effect of H2O2 by introducing CeO2 nanoparticles. Transmission electron microscopy and subsequent characterizations reveal that CeO2 nanoparticles are uniformly distributed on the carbon substrate, with atomically dispersed Fe single-atom catalysts (SACs) adjacent to them. CeO2@Fe-NC achieves a half-wave potential of 0.89 V and a limiting current density of 6.2 mA cm-2, which significantly outperforms Fe-NC and commercial Pt/C. CeO2@Fe-NC also shows a half-wave potential loss of only 1% after 10 000 CV cycles, which is better than that of Fe-NC (7%). Further, H2O2 elimination experiments show that the introduction of CeO2 significantly accelerate the decomposition of H2O2. In situ Raman spectroscopy results suggest that CeO2@Fe-NC significantly facilitates the formation of ORR intermediates compared with Fe-NC. The Zn-air batteries utilizing CeO2@Fe-NC cathodes exhibit satisfactory peak power density and open-circuit voltage. Furthermore, theoretical calculations show that the introduction of CeO2 enhances the ORR activity of Fe-NC SAC. This study provides insights for optimizing SAC-based electrocatalysts with high activity and stability.
Collapse
Affiliation(s)
- Hao Luo
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jiajun Wang
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Shiyu Zhang
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Buwei Sun
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zanyu Chen
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xixi Ren
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ziyi Luo
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Wenbin Hu
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
12
|
Li R, Huang Y, Zhu Y, Guo M, Peng W, Zhi Y, Wang L, Cao J, Lee S. Enhancing Oxygen Activation Ability by Composite Interface Construction over a 2D Co 3O 4-Based Monolithic Catalyst for Toluene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14906-14917. [PMID: 39104092 DOI: 10.1021/acs.est.4c04157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/07/2024]
Abstract
Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe-S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe-S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe-S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir-Hinshelwood (L-H) and Mars-van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Yimai Zhu
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Mingzhi Guo
- School of Civil Engineering, Shaoxing University, Shaoxing 312000, P. R. China
| | - Wei Peng
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Yizhou Zhi
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Key Laboratory of Multiscale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, P. R. China
| | - Liqin Wang
- Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| |
Collapse
|
13
|
Wang D, Jiang L, Tian M, Liu J, Zhan Y, Li X, Wang Z, He C. Efficacious destruction of typical aromatic hydrocarbons over CoMn/Ni foam monolithic catalysts with boosted activity and water resistance. J Colloid Interface Sci 2024; 668:98-109. [PMID: 38670000 DOI: 10.1016/j.jcis.2024.04.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Developing cost-effective monolith catalyst with superior low-temperature activity is critical for oxidative efficacious removal of industrial volatile organic compounds (VOCs). However, the complexity of the industrial flue gas conditions demands the need for high moisture tolerance, which is challenging. Herein, CoMn-Metal Organic Framework (CoMn-MOF) was in situ grown on Ni foam (NiF) at room temperature to synthesize the cost-effective monolith catalyst. The optimized catalyst, Co1Mn1/NiF, exhibited excellent performance in toluene oxidation (T90 = 239 °C) due to the substitution of manganese into the cobalt lattice. This substitution weakened the Co-O bond strength, creating more oxygen vacancies and increasing the active oxygen species content. Additionally, experimentally and computationally evidence revealed that the mutual inhibiting effect of three typical aromatic hydrocarbons (benzene, toluene and m-xylene) over the Co1Mn1/NiF catalyst was attributed to the competitive adsorption occurring on the active site. Furthermore, the Co1Mn1/NiF catalyst also presents outstanding water resistance, particularly at a concentration of 3 vol%, where the activity is even enhanced. This was attributed to the lower water adsorption and dissociation energy derived from the interaction between the bimetals. Results demonstrate that the dissociation of water vapor enables more reactive oxygen species to participate in the reaction which reduces the formation of intermediates and facilitates the reaction. This investigation provides new insights into the preparation of oxygen vacancy-rich monolith catalysts with high water resistance for practical applications.
Collapse
Affiliation(s)
- Dengtai Wang
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China
| | - Luxiang Jiang
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China
| | - Mingjiao Tian
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Jing Liu
- Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, PR China
| | - Yi Zhan
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China
| | - Xiaoxiao Li
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China
| | - Zuwu Wang
- School of Resources and Environmental Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, PR China.
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| |
Collapse
|
14
|
Peng R, Wen S, Zhang H, Zhang Y, Sun Y, Liang Z, Ye D. Catalytic Oxidation of Toluene over Pt/CeO 2 Catalysts: A Double-Edged Sword Effect of Strong Metal-Support Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13984-13994. [PMID: 38913777 DOI: 10.1021/acs.langmuir.4c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/26/2024]
Abstract
Strong metal-support interaction (SMSI), which has drawn widespread attention in heterogeneous catalysis, is thought to significantly affect the catalytic performance for volatile organic chemical (VOC) abatement. In the present study, strong interactions between platinum and ceria are constructed by modulating the oxygen vacancy concentration of CeO2 through a NaBH4 reduction method. For a catalyst with higher content of oxygen vacancy, more electrons would transfer from ceria to Pt, which is attributed to the stronger effect of SMSI. The obtained electron-richer Pt sites exhibit higher ability for toluene activation, contributing to better performance for toluene oxidation. On the other hand, the stronger metal-support interaction would facilitate CeOx species migrating to the Pt nanoparticle surface and forming an encapsulated structure. Smaller Pt dispersion leads to fewer sites for toluene adsorption and activation, which is to the disadvantage of the reaction. Therefore, taking the negative and positive effects together, the Pt/CeO2-0.5 catalyst has the highest catalytic performance for toluene abatement. Our study provides new insights into strong metal-support interaction on toluene oxidation and contributes to designing noble metal catalysts for VOC abatement.
Collapse
Affiliation(s)
- Ruosi Peng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shuxian Wen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Haozhi Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - You Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuhai Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zheng Liang
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Jiang B, Hua H, Lin J, Guchen Y, Han J, Sun Y. The modification of surface basicity and its role in naphthalene oxidation: The effect of the basic sites introduced by Ce. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121334. [PMID: 38824890 DOI: 10.1016/j.jenvman.2024.121334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
A series of V-xCe/Ti catalysts was prepared by a step impregnation method with gradual increased Ce amount. Compared to the commercial V-W/Ti catalysts, the V-xCe/Ti catalysts exhibited considerably higher COx selectivity during the oxidation of naphthalene (Nap), and less intermediates or by-products were detected both in gas phase and on the surface of the catalysts. Through a series of characterizations, it was found that abundance of weak basic sites in the form of OH was introduced by Ce, as well as the oxygen vacancies caused by the redox cycle of V4++Ce4+↔V5++Ce3+. The weak basic sites introduced by Ce could greatly enhance the Nap adsorption, and the Nap adsorbed was quickly converted to naphthol on Ce-OH. Furthermore, V existed at a high valence with the interaction of V and Ce, and the oxygen vacancies also increased the Oads and OOH. It improved the redox ability and the regeneration of Ce-OH on V-xCe/Ti catalysts. The intermediates could be further oxidized, and the Ce-OH consumed in the reaction could recover quickly. Therefore, almost 100% Nap conversion and a high COx selectivity was observed in the V-xCe/Ti catalysts system.
Collapse
Affiliation(s)
- Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Hao Hua
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jianxiang Lin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yijing Guchen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jingyi Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuhai Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China.
| |
Collapse
|
16
|
Zhao Q, Zhang Y, He G, Ma J, Wang L, He H. Modulating the Electronic Structures of Pt on Pt/TiO 2 Catalyst for Boosting Toluene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9361-9369. [PMID: 38687995 DOI: 10.1021/acs.est.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/02/2024]
Abstract
Surface hydroxyl groups commonly exist on the catalyst and present a significant role in the catalytic reaction. Considering the lack of systematical researches on the effect of the surface hydroxyl group on reactant molecule activation, the PtOx/TiO2 and PtOx-y(OH)y/TiO2 catalysts were constructed and studied for a comprehensive understanding of the roles of the surface hydroxyl group in the oxidation of volatiles organic compounds. The PtOx/TiO2 formed by a simple treatment with nitric acid presented greatly enhanced activity for toluene oxidation in which the turnover frequency of toluene oxidation on PtOx/TiO2 was around 14 times as high as that on PtOx-y(OH)y/TiO2. Experimental and theoretical results indicated that adsorption/activation of toluene and reactivity of oxygen atom on the catalyst determined the toluene oxidation on the catalyst. The removal of surface hydroxyl groups on PtOx promoted strong electronic coupling of the Pt 5d orbital in PtOx and C 2p orbital in toluene, facilitating the electron transfers from toluene to PtOx and subsequently the adsorption/activation of toluene. Additionally, the weak Pt-O bond promoted the activation of surface lattice oxygen, accelerating the deep oxidation of activated toluene. This study clarifies the inhibiting effect of surface hydroxyl groups on PtOx in toluene oxidation, providing a further understanding of hydrocarbon oxidation.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Niu B, Wang Y, Zhao T, Duan X, Xu W, Zhao Z, Yang Z, Li G, Li J, Cheng J, Hao Z. Modulating the Electronic States of Pt Nanoparticles on Reducible Metal-Organic Frameworks for Boosting the Oxidation of Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4428-4437. [PMID: 38400916 DOI: 10.1021/acs.est.3c09422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/26/2024]
Abstract
The adsorption and activation of pollutant molecules and oxygen play a critical role in the oxidation reaction of volatile organic compounds (VOCs). In this study, superior adsorption and activation ability was achieved by modulating the interaction between Pt nanoparticles (NPs) and UiO-66 (U6) through the spatial position effect. Pt@U6 exhibits excellent activity in toluene, acetone, propane, and aldehyde oxidation reactions. Spectroscopic studies, 16O2/18O2 kinetic isotopic experiments, and density functional theory (DFT) results jointly reveal that the encapsulated Pt NPs of Pt@U6 possess higher electron density and d-band center, which is conducive for the adsorption and dissociation of oxygen. The toluene oxidation reaction and DFT results indicate that Pt@U6 is more favorable to activate the C-H of toluene and the C═C of maleic anhydride, while Pt/U6 with lower electron density and d-band center exhibits a higher oxygen dissociation temperature and higher reactant activation energy barriers. This study provides a deep insight into the architecture-performance relation of Pt-based catalysts for the catalytic oxidation of VOCs.
Collapse
Affiliation(s)
- Ben Niu
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Yang Wang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| | - Ting Zhao
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Xiaoxiao Duan
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing 100049, People's Republic of China
| | - Zeyu Zhao
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Zhenwen Yang
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Ganggang Li
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| | - Jie Cheng
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| |
Collapse
|
18
|
Bai Y, Yang X, Chen J, Shen B. The removal of toluene by thermoscatalytic oxidation using CeO 2-based catalysts:a review. CHEMOSPHERE 2024; 351:141253. [PMID: 38242517 DOI: 10.1016/j.chemosphere.2024.141253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Volatile organic compounds (VOCs) pose a serious threat to human health and the ecological environment. Thermal catalytic oxidation based on cerium dioxide based (CeO2-based) catalysts is widely used in the degradation of toluene. However, new problems and challenges such as how to reduce the energy consumption during catalytic oxidation, improve the anti-poisoning performance of catalysts, and enhance the multi-species synergistic catalytic ability of catalysts continue to emerge. On this basis, we systematically summarize the current status of research progress on the thermocatalytic oxidation of toluene based on CeO2-based catalysts. Firstly, we summarized the rules on how to improve the catalytic performance and anti-poisoning performance of CeO2-based catalysts; Secondly, we discussed the effect of light reaction conditions on the thermal coupled catalytic oxidation of toluene; In addition to this, we explored the current status of synergistic multi-pollutant degradation, mainly of toluene; Finally, we summarized the mechanism of catalytic oxidation of toluene by combining theoretical simulation calculations, in-situ infrared analyses, and other means. We present the promising applications of CeO2-based catalysts in the catalytic oxidation of toluene, and hope that these summaries will provide an important reference for the catalytic treatment of VOCs.
Collapse
Affiliation(s)
- Yang Bai
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Xu Yang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiateng Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
19
|
Liu XH, Lu T, Jiao X, Jiang Z, Chen C, Wang Y, Jian Y, He C. Formaldehyde Ambient-Temperature Decomposition over Pd/Mn 3O 4-MnO Driven by Active Sites' Self-Tandem Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1752-1762. [PMID: 38190653 DOI: 10.1021/acs.est.3c06876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2024]
Abstract
The widespread presence of formaldehyde (HCHO) pollutant has aroused significant environmental and health concerns. The catalytic oxidation of HCHO into CO2 and H2O at ambient temperature is regarded as one of the most efficacious and environmentally friendly approaches; to achieve this, however, accelerating the intermediate formate species formation and decomposition remains an ongoing obstacle. Herein, a unique tandem catalytic system with outstanding performance in low-temperature HCHO oxidation is proposed on well-structured Pd/Mn3O4-MnO catalysts possessing bifunctional catalytic centers. Notably, the optimized tandem catalyst achieves complete oxidation of 100 ppm of HCHO at just 18 °C, much better than the Pd/Mn3O4 (30%) and Pd/MnO (27%) counterparts as well as other physical tandem catalysts. The operando analyses and physical tandem investigations reveal that HCHO is primarily activated to gaseous HCOOH on the surface of Pd/Mn3O4 and subsequently converted to H2CO3 on the Pd/MnO component for deep decomposition. Theoretical studies disclose that Pd/Mn3O4 exhibits a favorable reaction energy barrier for the HCHO → HCOOH step compared to Pd/MnO; while conversely, the HCOOH → H2CO3 step is more facilely accomplished over Pd/MnO. Furthermore, the nanoscale intimacy between two components enhances the mobility of lattice oxygen, thereby facilitating interfacial reconstruction and promoting interaction between active sites of Pd/Mn3O4 and Pd/MnO in local vicinity, which further benefits sustained HCHO tandem catalytic oxidation. The tandem catalysis demonstrated in this work provides a generalizable platform for the future design of well-defined functional catalysts for oxidation reactions.
Collapse
Affiliation(s)
- Xiao-He Liu
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Tong Lu
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Xinguo Jiao
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Yadi Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| |
Collapse
|
20
|
Li K, Xue T, Chen L, Li J, Dong F, Sun Y. Dual function of H 2O on interfacial intermediate conversion and surface poisoning regulation in simultaneous photodegradation of NO and toluene. ENVIRONMENTAL RESEARCH 2024; 240:117526. [PMID: 37898225 DOI: 10.1016/j.envres.2023.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Co-existing air pollutants, especially NOx and VOCs, will generate secondary photochemical pollution under light irradiation. However, simultaneous elimination of multi-pollutants has long been a challenge. Photocatalysis could turn the reaction pathway between pollutants to convert them into harmless products, which is a promising technology for multi-pollutant control. Here we achieved synergistic photocatalytic degradation of NO and C7H8 on InOOH photocatalyst, and the performance can be adjusted by H2O through affecting the interaction between surface species and catalyst. In situ DRIFTS and GC-MS revealed that the improved efficiency originated from the fast conversion of C-N coupling intermediates led by additional H2O. Surface characterizations and DFT simulation determined that accumulated nitrates will compete with the adsorption of NO and C7H8, resulting in a decline in efficiency in the later stage. Although improved efficiency would bring more nitrates, as H2O has comparable adsorption to nitrate at the same site, high humidity can mitigate the deactivation. The photocatalyst can be also simply regenerated by water washing. This work reveals the complex interaction in the multi-pollutant system and provides guidelines for precisely regulating the synergistic removal of NOx and VOCs.
Collapse
Affiliation(s)
- Kanglu Li
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ting Xue
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lvcun Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jianjun Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
21
|
Liu P, Men YL, Meng XY, Peng C, Zhao Y, Pan YX. Electronic Interactions on Platinum/(Metal-Oxide)-Based Photocatalysts Boost Selective Photoreduction of CO 2 to CH 4. Angew Chem Int Ed Engl 2023; 62:e202309443. [PMID: 37523150 DOI: 10.1002/anie.202309443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
By supporting platinum (Pt) and cadmium sulfide (CdS) nanoparticles on indium oxide (In2 O3 ), we fabricated a CdS/Pt/In2 O3 photocatalyst. Selective photoreduction of carbon dioxide (CO2 ) to methane (CH4 ) was achieved on CdS/Pt/In2 O3 with electronic Pt-In2 O3 interactions, with CH4 selectivity reaching to 100 %, which is higher than that on CdS/Pt/In2 O3 without electronic Pt-In2 O3 interactions (71.7 %). Moreover, the enhancement effect of electronic Pt-(metal-oxide) interactions on selective photoreduction of CO2 to CH4 also occurs by using other common metal oxides, such as photocatalyst supports, including titanium oxide, gallium oxide, zinc oxide, and tungsten oxide. The electronic Pt-(metal-oxide) interactions separate photogenerated electron-hole pairs and convert CO2 into CO2 δ- , which can be easily hydrogenated into CH4 via a CO2 δ- →HCOO*→HCO*→CH*→CH4 path, thus boosting selective photoreduction of CO2 to CH4 . This offers a new way to achieve selective photoreduction of CO2 .
Collapse
Affiliation(s)
- Peng Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yu-Long Men
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xin-Yu Meng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, Liaoning, P. R. China
| | - Yiyi Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yun-Xiang Pan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| |
Collapse
|
22
|
Liu Z, Navas JL, Han W, Ibarra MR, Cho Kwan JK, Yeung KL. Gel transformation as a general strategy for fabrication of highly porous multiscale MOF architectures. Chem Sci 2023; 14:7114-7125. [PMID: 37416716 PMCID: PMC10321590 DOI: 10.1039/d3sc00905j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
The structure and chemistry of metal-organic frameworks or MOFs dictate their properties and functionalities. However, their architecture and form are essential for facilitating the transport of molecules, the flow of electrons, the conduction of heat, the transmission of light, and the propagation of force, which are vital in many applications. This work explores the transformation of inorganic gels into MOFs as a general strategy to construct complex porous MOF architectures at nano, micro, and millimeter length scales. MOFs can be induced to form along three different pathways governed by gel dissolution, MOF nucleation, and crystallization kinetics. Slow gel dissolution, rapid nucleation, and moderate crystal growth result in a pseudomorphic transformation (pathway 1) that preserves the original network structure and pores, while a comparably faster crystallization displays significant localized structural changes but still preserves network interconnectivity (pathway 2). MOF exfoliates from the gel surface during rapid dissolution, thus inducing nucleation in the pore liquid leading to a dense assembly of percolated MOF particles (pathway 3). Thus, the prepared MOF 3D objects and architectures can be fabricated with superb mechanical strength (>98.7 MPa), excellent permeability (>3.4 × 10-10 m2), and large surface area (1100 m2 g-1) and mesopore volumes (1.1 cm3 g-1).
Collapse
Affiliation(s)
- Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- HKUST Shenzhen Research Institute Hi-tech Park Shenzhen 518057 China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian Shenzhen China
| | - Javier Lopez Navas
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- HKUST Shenzhen Research Institute Hi-tech Park Shenzhen 518057 China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian Shenzhen China
- Guangzhou HKUST Fok Ying Tung Research Institute Nansha IT Park Guangzhou 511458 China
| | - Manuel Ricardo Ibarra
- Instituto de Nanociencia y Materiales de Aragón (INMA), Laboratory of Advanced Microscopies (LMA), Universidad de Zaragoza 50018 Zaragoza Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza 50009 Zaragoza Spain
| | - Joseph Kai Cho Kwan
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- HKUST Shenzhen Research Institute Hi-tech Park Shenzhen 518057 China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian Shenzhen China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
- HKUST Shenzhen Research Institute Hi-tech Park Shenzhen 518057 China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian Shenzhen China
- Guangzhou HKUST Fok Ying Tung Research Institute Nansha IT Park Guangzhou 511458 China
| |
Collapse
|
23
|
Chong Y, Li Y, Lin J, Chen T, Zhao S, Wu P, Li A, Feng C, Qiu Y, Ye D. Constructing Highly Active Metal Oxides for Toluene Degradation by Fenton Iron Mud Modulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22075-22084. [PMID: 37116203 DOI: 10.1021/acsami.3c01231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/11/2023]
Abstract
Fenton iron mud (IM) is a hazardous solid waste produced by Fenton oxidation technology after treating industrial wastewater. Thus, it is necessary and challenging to develop a recycling technology to back-convert dangerous materials into useful products. Herein, we develop a sustainable approach to prepare highly active metal oxides via a solid-state grinding method. IM, as an amorphous material, can disperse and interact well with these supported metal oxides, boosting toluene degradation significantly. Among these IM-based catalysts, the catalyst 8% MnOx/IM-0.2VC exhibits the best performance (T100 = 290 °C), originating from the oxide-support interaction and optimal balance between low-temperature reducibility and oxygen vacancy concentration. In addition, in situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) results expound that ring breakage is prone to occur on MnOx, and oxygen vacancies are beneficial to adsorb oxygen and activate oxygen species to boost toluene oxidation following the Mars-van Krevelen mechanism. This work advances a complete industrial hazardous waste recycling route to develop extremely active catalysts.
Collapse
Affiliation(s)
- Yanan Chong
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Yifei Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Jiajin Lin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Tingyu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Shuaiqi Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Peng Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Anqi Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Daiqi Ye
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| |
Collapse
|
24
|
Li G, Zhang M, Chen J, Li Q, Jia H. Combined effects of Pt nanoparticles and oxygen vacancies to promote photothermal catalytic degradation of toluene. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131041. [PMID: 36821902 DOI: 10.1016/j.jhazmat.2023.131041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/01/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Pt/Mn-TiO2 photothermal catalysts with abundant oxygen vacancies are prepared by loading Pt onto a composite of MnOx and TiO2 using MIL-125 as precursor (abbreviated as Mn-TiO2) and subsequent hydrogen reduction treatment. Under light irradiation with intensity of 625 mW/cm2, the optimal 0.65Pt/Mn-TiO2 catalyst can achieve toluene conversion of 90.4 % and CO2 yield of 85.6 %, respectively, and maintain stable activity for at least 30 h in the presence of coke and water. The introduction of Pt nanoparticles improves the utilization of solar spectrum and facilitates the generation of more oxygen vacancies. The comparative experiments of photothermal catalysis and thermal catalysis further verify that light not only acts as a heat source but also enhances catalytic reaction through photocatalysis and photoactivation of lattice oxygen. In the follow-up work, catalytic oxidation under natural sunlight is performed on 0.65Pt/Mn-TiO2 to reach 75.0 % of toluene conversion, displaying a good practical application potential.
Collapse
Affiliation(s)
- Guanghui Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meng Zhang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Chen
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongpeng Jia
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Chong Y, Chen T, Li Y, Lin J, Huang WH, Chen CL, Jin X, Fu M, Zhao Y, Chen G, Wei J, Qiu Y, Waterhouse GIN, Ye D, Lin Z, Guo L. Quenching-Induced Defect-Rich Platinum/Metal Oxide Catalysts Promote Catalytic Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5831-5840. [PMID: 36995339 DOI: 10.1021/acs.est.2c09795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/19/2023]
Abstract
Enhancing oxygen activation through defect engineering is an effective strategy for boosting catalytic oxidation performance. Herein, we demonstrate that quenching is an effective strategy for preparing defect-rich Pt/metal oxide catalysts with superior catalytic oxidation activity. As a proof of concept, quenching of α-Fe2O3 in aqueous Pt(NO3)2 solution yielded a catalyst containing Pt single atoms and clusters over defect-rich α-Fe2O3 (Pt/Fe2O3-Q), which possessed state-of-the-art activity for toluene oxidation. Structural and spectroscopic analyses established that the quenching process created abundant lattice defects and lattice dislocations in the α-Fe2O3 support, and stronger electronic interactions between Pt species and Fe2O3 promote the generation of higher oxidation Pt species to modulate the adsorption/desorption behavior of reactants. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) characterization studies and density functional theory (DFT) calculations determined that molecular oxygen and Fe2O3 lattice oxygen were both activated on the Pt/Fe2O3-Q catalyst. Pt/CoMn2O4, Pt/MnO2, and Pt/LaFeO3 catalysts synthesized by the quenching method also offered superior catalytic activity for toluene oxidation. Results encourage the wider use of quenching for the preparation of highly active oxidation catalysts.
Collapse
Affiliation(s)
- Yanan Chong
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Tingyu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Yifei Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Jiajin Lin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan
| | - Xiaojing Jin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Mingli Fu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Jiake Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | | | - Daiqi Ye
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
26
|
Gong P, He F, Xie J, Fang D. Catalytic removal of toluene using MnO 2-based catalysts: A review. CHEMOSPHERE 2023; 318:137938. [PMID: 36702414 DOI: 10.1016/j.chemosphere.2023.137938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) have serious hazard to human health and ecological environment. Due to its low cost and high activity, the catalytic oxidation technology considered to be the most effective method to remove VOCs. Toluene is one of the typical VOCs, hence its catalytic elimination is crucial for the regulation of VOCs. Manganese dioxide (MnO2) has been extensively studied for its excellent redox performance and low-temperature operation conditions. In this review, we summarize the research progresses in the toluene catalytic oxidation of MnO2-based catalysts, which contain single MnO2, metal-doped MnO2 and supported MnO2 catalyst. In particular, we pay much attention on the relationship between the chemical properties and toluene oxidation performance over MnO2 catalyst, as well as the catalytic reaction mechanisms. Moreover, the effects of different crystal forms and morphologies on the catalytic toluene reaction were discussed. And the perspective on MnO2 catalysts for the catalytic oxidation of toluene has been proposed. We expect that the summary of these important findings can serve as an important reference for the catalytic treatment of VOCs.
Collapse
Affiliation(s)
- Pijun Gong
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, PR China.
| | - Feng He
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Junlin Xie
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - De Fang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
27
|
Li H, Pei W, Yang X, Zhou S, Zhao J. Pt overlayer for direct oxidation of CH4 to CH3OH. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/07/2023]
|
28
|
Su Z, Li X, Si W, Artiglia L, Peng Y, Chen J, Wang H, Chen D, Li J. Probing the Actual Role and Activity of Oxygen Vacancies in Toluene Catalytic Oxidation: Evidence from In Situ XPS/NEXAFS and DFT + U Calculation. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/25/2023]
Affiliation(s)
- Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Xiansheng Li
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Luca Artiglia
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Houlin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Deli Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
29
|
Sun Y, Li G, Sun W, Zhou X. Research progress on the formation, detection methods and application in photocatalytic reduction of CO2 of oxygen vacancy. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
30
|
Duan X, Zhao T, Niu B, Wei Z, Li G, Zhang Z, Cheng J, Hao Z. Simultaneously Constructing Active Sites and Regulating Mn-O Strength of Ru-Substituted Perovskite for Efficient Oxidation and Hydrolysis Oxidation of Chlorobenzene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205054. [PMID: 36437038 PMCID: PMC9875690 DOI: 10.1002/advs.202205054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated volatile organic compounds (CVOCs) are a class of hazardous pollutants that severely threaten environmental safety and human health. Although the catalytic oxidation technique for CVOCs elimination is effective, enhancing the catalytic efficiency and simultaneously inhibiting the production of organic byproducts is still of great challenge. Herein, Ru-substituted LaMn(Ru)O3+ δ perovskite with Ru-O-Mn structure and weakened Mn-O bond strength has been developed for catalytic oxidation of chlorobenzene (CB). The formed Ru-O-Mn structure serves as favorable sites for CB adsorption and activation, while the weakening of Mn-O bond strength facilitates the formation of active oxygen species and improves oxygen mobility and catalyst reducibility. Therefore, LaMn(Ru)O3+ δ exhibits superior low-temperature activity with the temperature of 90% CB conversion decreasing by over 90 °C compared with pristine perovskite, and the deep oxidation of chlorinated byproducts produced in low temperature is also accelerated. Furthermore, the introduction of water vapor into reaction system triggers the process of hydrolysis oxidation that promotes CB destruction and inhibits the generation of chlorinated byproducts, due to the higher-activity *OOH species generated from the dissociated H2 O reacting with adsorbed oxygen. This work can provide a unique, high-efficiency, and facile strategy for CVOCs degradation and environmental improvement.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Ting Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Ben Niu
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Zheng Wei
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyResearch Center for Environmental Material and Pollution Control TechnologyUniversity of Chinese Academy of SciencesBeijing101408P. R. China
| |
Collapse
|
31
|
Ren Q, Zhao X, Zhong J, Zhang J, Tian J, Yan D, Liu P, Fu M, Chen L, Wu J, Ye D. Unravelling the role of oxygen species in toluene oxidation over Co3O4-base catalysts: in situ DRIFTS coupled with quasi in situ XPS. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
|
32
|
Zhang L, Zhu Z, Tan W, Ji J, Cai Y, Tong Q, Xiong Y, Wan H, Dong L. Thermal-Driven Optimization of the Strong Metal-Support Interaction of a Platinum-Manganese Oxide Octahedral Molecular Sieve to Promote Toluene Oxidation: Effect of the Interface Pt 2+-O v-Mn δ. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56790-56800. [PMID: 36524882 DOI: 10.1021/acsami.2c16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/17/2023]
Abstract
Strong metal-support interactions (SMSIs) have a significant effect on the performance of supported noble-metal catalysts for volatile organic compound (VOC) elimination. Herein, the strength of the SMSI of Pt/OMS-2 between Pt and the OMS-2 support is regulated by simply changing calcination temperatures, and the catalyst calcined at 300 °C (Pt/OMS-2-300) performs the best in the catalytic combustion of toluene. Through systematic structural characterizations, it is revealed that much more Pt2+-Ov-Mnδ+ species are formed in Pt/OMS-2-300, which can help facilitate the generation of more reactive oxygen species and promote lattice oxygen mobility. Moreover, the results of in situ DRIFTS experiments further confirm that abundant Pt2+-Ov-Mnδ+ species at the Pt-MnO2 interface on Pt/OMS-2-300 can better enhance the adsorption and activation of toluene, thus boosting the catalytic performance in toluene combustion. This newly developed strategy of thermal-driven regulation of the SMSI provides a novel perspective for constructing highly efficient catalysts for VOC emission control.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Zhengxuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Jiawei Ji
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, P.R. China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Qing Tong
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, P.R. China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
33
|
Li G, Shui Z, Duan X, Yang H, Zhao Z, Zhao T, Zhang Z, Jiang G, Ren H, Cheng J, Hao Z. Unveiling the Balance between Catalytic Activity and Water Resistance over Co 3O 4 Catalysts for Propane Oxidation: The Role of Crystal Facet and Oxygen Vacancy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Ziyi Shui
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Hongling Yang
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing100037, China
| | - Zeyu Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Ting Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Guoxia Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Hongna Ren
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, China
| |
Collapse
|
34
|
Huang Q, Zhao P, Wang W, Lv L, Zhang W, Pan B. In Situ Fabrication of Highly Dispersed Co-Fe-Doped-δ-MnO 2 Catalyst by a Facile Redox-Driving MOFs-Derived Method for Low-Temperature Oxidation of Toluene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53872-53883. [PMID: 36426993 DOI: 10.1021/acsami.2c16620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
Cost-efficient and durable manganese-based catalysts are in great demand for the catalytic elimination of volatile organic compounds (VOCs), which are dominated not only by the nanostructures but also by the oxygen vacancies and Mn-O bond in the catalysts. Herein, a series of nanostructured Co-Fe-doped-δ-MnO2 catalysts (Co-Fe-δ-MnO2) with high dispersion were in situ fabricated by employing metal-organic-frameworks (MOFs) as reducing agents, dopants, and templates all at the same time. The as-obtained Co-Fe-δ-MnO2-20% catalyst exhibited robust durability and high catalytic activity (225 °C) for toluene combustion even in the presence of 5 vol % water vapor, which is 50 °C lower than that of pristine δ-MnO2. Various characterizations revealed that the homogeneously dispersed codoping of Co and Fe ions into δ-MnO2 promotes the generation of oxygen vacancies and weakens the strength of the Mn-O bond, thus increasing the amount of adsorbed oxygen (Oads) and improving the mobility of lattice oxygen (Olatt). Meanwhile, due to successfully inheriting the framework structures of MOFs, the obtained catalyst exhibited a high surface area and three-dimensional mesoporous structure, which contributes to diffusion and increases the number of active sites. Moreover, in situ DRIFTS results confirmed that the toluene degradation mechanism on the Co-Fe-δ-MnO2-20% follows the MVK mechanism and revealed that more Oads and high-mobility Olatt induced by this novel method contribute to accumulating and mineralizing key intermediates (benzoate) and thus promote toluene oxidation. In conclusion, this work stimulates the opportunities to develop Co-Fe-δ-MnO2 as a class of nonprecious-metal-based catalysts for controlling VOC emissions.
Collapse
Affiliation(s)
- Qianlin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Puzhen Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Weiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
35
|
Bi F, Zhao Z, Yang Y, Gao W, Liu N, Huang Y, Zhang X. Chlorine-Coordinated Pd Single Atom Enhanced the Chlorine Resistance for Volatile Organic Compound Degradation: Mechanism Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17321-17330. [PMID: 36332104 DOI: 10.1021/acs.est.2c06886] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
The development of catalysts with high chlorine resistance for volatile organic compound (VOC) degradation is of great significance to achieve air purification. Herein, Pd@ZrO2 catalysts with monodispersed Pd atoms coordinated with Cl were prepared using an in situ grown Zr-based metal-organic framework (MOF) as the sacrifice templates to enhance the chlorine resistance for VOC elimination. The residual Cl species from the Zr-MOF coordinated with Pd, forming Pd1-Cl species during the pyrolysis. Meanwhile, abundant oxygen vacancies (VO) were generated, which enhanced the adsorption and activation of gaseous oxygen molecules, accelerating the degradation of VOCs. In addition, the Pd@ZrO2 catalysts exhibited satisfactory water resistance, long-term stability, and great resistance to CO and dichloromethane (DCM) for VOC elimination. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results elucidated that the generation of Pd1-Cl species in Pd@ZrO2 suppressed the absorption of DCM, releasing more active sites for toluene and its intermediate adsorption. Simultaneously, the monodispersed Pd atoms and VO improved the reactivity of gaseous oxygen molecule adsorption and dissociation, boosting the deep decomposition of toluene and its intermediates. This work may provide a new strategy for rationally designing high-chlorine resistance catalysts for VOC elimination to improve the atmospheric environment.
Collapse
Affiliation(s)
- Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenyuan Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Weikang Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ning Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuandong Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
36
|
Jia H, Zhao M, Du A, Dou Y, Zhang CY. Symmetry-breaking synthesis of Janus Au/CeO 2 nanostructures for visible-light nitrogen photofixation. Chem Sci 2022; 13:13060-13067. [PMID: 36425489 PMCID: PMC9667935 DOI: 10.1039/d2sc03863c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2022] [Accepted: 10/23/2022] [Indexed: 10/14/2023] Open
Abstract
Precise manipulation of the reactive site spatial distribution in plasmonic metal/semiconductor photocatalysts is crucial to their photocatalytic performance, but the construction of Janus nanostructures through symmetry-breaking synthesis remains a significant challenge. Here we demonstrate a synthetic strategy for the selective growth of a CeO2 semi-shell on Au nanospheres (NSs) to fabricate Janus Au NS/CeO2 nanostructures with the assistance of a SiO2 hard template and autoredox reaction between Ag+ ions and a ceria precursor. The obtained Janus nanostructures possess a spatially separated architecture and exhibit excellent photocatalytic performance toward N2 photofixation under visible-light illumination. In this scenario, N2 molecules are reduced by hot electrons on the CeO2 semi-shell, while hole scavengers are consumed by hot holes on the exposed Au NS surface, greatly promoting the charge carrier separation. Moreover, the exposed Au NS surface in the Janus structures offers an additional opportunity for the fabrication of ternary Janus noble metal/Au NS/CeO2 nanostructures. This work highlights the genuine superiority of the spatially separated nanoarchitectures in the photocatalytic reaction, offering instructive guidance for the design and construction of novel plasmonic photocatalysts.
Collapse
Affiliation(s)
- Henglei Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Mengxuan Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Aoxuan Du
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Yanrong Dou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| |
Collapse
|
37
|
Shi Y, Wan J, Kong F, Wang Y, Zhou R. Influence of Pt dispersibility and chemical states on catalytic performance of Pt/CeO2-TiO2 catalysts for VOCs low-temperature removal. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
38
|
Synergistic Catalytic Performance of Toluene Degradation Based on Non-Thermal Plasma and Mn/Ce-Based Bimetal-Organic Frameworks. Molecules 2022; 27:molecules27217363. [DOI: 10.3390/molecules27217363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
A series of Mn/Ce-based bimetal-organic frameworks, recorded as MCDx (x = 1, 2, 4, 6), were prepared by a solvothermal synthesis method to explore their effects and performance in the synergistic catalysis of toluene under the irradiation of non-thermal plasma. The catalytic properties of different manganese loadings in MCDx for degradation of toluene were investigated. The microphysical structures of the material were analyzed by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The results showed that a MCDx coupling with non-thermal plasma can greatly improve the degradation efficiency, the energy efficiency and the CO2 selectivity, and could also significantly reduce the generation of O3 in the by-products. Among the test samples, MCD6 with Mn:Ce = 6:1 (molar ratio) showed the best catalytic performance and stability, exhibited toluene catalytic efficiency 95.2%, CO2 selectivity 84.2% and energy efficiency 5.99 g/kWh, and reduced O3 emission concentration 81.6%. This research provides a reference for the development and application of synergistic catalysis based on bimetal-organic frameworks and non-thermal plasma in the reduction of industrial volatile organic compounds.
Collapse
|
39
|
Feng Y, Wei L, Wang Z, Liu Y, Dai H, Wang C, Hsi HC, Duan E, Peng Y, Deng J. Boosting catalytic stability for VOCs removal by constructing PtCu alloy structure with superior oxygen activation behavior. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129612. [PMID: 35872456 DOI: 10.1016/j.jhazmat.2022.129612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The elimination of volatile organic compounds (VOCs) emitted from the process of industry production is of great significance to improve the atmospheric environment. Herein the catalytic oxidation of the toluene and iso-hexane mixture, as the typical components from furniture paint industry, and the enhancement in the catalytic stability for toluene oxidation were investigated in detail. The formation rate of active oxygen species was very important for the development of the catalyst with high catalytic stability. Compared with the Pt/M catalyst, the Pt-Cu/M catalyst owned stronger ability of VOCs adsorption and gaseous oxygen activation by introducing additional sites for activating O2. The Langmuir-Hinshelwood (adsorbed oxygen) and Mars-van Krevelen (lattice oxygen) mechanism existed in toluene oxidation over the present Pt/M and Pt-Cu/M catalysts, respectively. The change in the involved active oxygen species during toluene oxidation was resulted from the Pt-Cu alloy structure. In addition to the adsorption of O2, a part of active lattice oxygen species can also be replenished by the migration of bulk lattice oxygen over Pt-Cu/M. With a rise in the reaction temperature, weakly adsorbed iso-hexane could be timely reacted with the more active lattice oxygen species to keep the catalytic stability over the Pt/M and Pt-Cu/M catalysts. Generally, we not only prepared a promising material for the catalytic removal of VOCs from the furniture paint industry, but also provided a new strategy for the generation of active oxygen species, making the catalyst exhibit high catalytic oxidation stability.
Collapse
Affiliation(s)
- Yuan Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lu Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, 26th Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
40
|
Chen L, Zhao X, Dong F, Sun Y. Substitution of B-site in BaSb 2O 6 perovskite for surface lattice oxygen activation and boosted photocatalytic toluene mineralization. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129089. [PMID: 35596985 DOI: 10.1016/j.jhazmat.2022.129089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Perovskite oxides possess significant prospects in environment application because of their compositional versatility and controllable band structure for redox reactions. Nevertheless, low charge separation and limited reactants activation restrict their performance for practical applications. In this work, we reveal that the electronic structure of BaSb2O6 can be modulated effectively by substituting B-site cations, leading to broadened light response range and promoted carrier separation. The Ga atoms substitute the Sb atoms to form GaO bonds and enable octahedral distortion, resulting in the electron transfer from Ga atom to O atoms and realizing lattice oxygen activation. The unique electronic localization in the BaSb2O6 surface facilitates the adsorption and activation of O2, H2O, toluene and reaction intermediates, thus enhancing ROS generation for toluene mineralization. Compared with the performance of pure BaSb2O6, the photocatalytic toluene degradation and mineralization of 5 wt% Ga-BaSb2O6 are increased by 4.5 times and 4.8 times without obvious deactivation. The reported facile and valid strategy for in situ controlling of B-site in perovskite and their unique effects on the electronic structure would benefit the development of high-performance perovskites for environmental applications.
Collapse
Affiliation(s)
- Lvcun Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xiaoli Zhao
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; State Centre for International Cooperation on Designer Low Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjuan Sun
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
41
|
PtPd/Molecular sieve as dual-functional monolithic adsorbent/catalyst for effective removal of trace toluene at low-temperature and their electric-heating performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
|
42
|
Methanol Oxidation Catalytic Performance Enhancement via Constructing Pd-MgAl2O4 Interface and its Reaction Mechanism Investigation. Catal Letters 2022. [DOI: 10.1007/s10562-022-04107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2022]
|
43
|
Shen Y, Deng J, Han L, Ren W, Zhang D. Low-Temperature Combustion of Toluene over Cu-Doped SmMn 2O 5 Mullite Catalysts via Creating Highly Active Cu 2+-O-Mn 4+ Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10433-10441. [PMID: 35758155 DOI: 10.1021/acs.est.2c02866] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
Catalytic combustion of volatile organic compounds (VOCs) at low temperatures is still an urgent issue to be solved. Herein, low-temperature combustion of toluene over Cu-doped SmMn2O5 mullite catalysts via creating highly active Cu2+-O-Mn4+ sites has been originally demonstrated. Cu-doped SmMn2O5 mullite catalysts exhibited 90% conversion of toluene at 206 °C and displayed robust stability even in the presence of water. It has been demonstrated that Cu doping created Cu2+-O-Mn4+ active composite sites that were more exposed after removing surface Sm species via acid-etching. Benefiting from this, the redox and oxygen activation ability of catalysts was significantly enhanced. The consumption of benzaldehyde and benzoic acid as intermediate species and the CO2 generation ability were apparently promoted, which were the direct reasons for the enhanced low-temperature combustion of toluene. This work provides novel ideas for the development of high-performance catalysts for low-temperature VOC combustion, which has great industrial application prospects.
Collapse
Affiliation(s)
- Yongjie Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lupeng Han
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
44
|
Excellent Catalytic Performance of Ce–MOF with Abundant Oxygen Vacancies Supported Noble Metal Pt in the Oxidation of Toluene. Catalysts 2022. [DOI: 10.3390/catal12070775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Metal organic framework (MOF) is a type of porous organic material. In this work, three catalysts loaded with noble metal Pt were prepared by NaBH4 reduction method with three different morphologies of Ce–MOF as carriers. Their physicochemical properties were characterized by XRD, Raman, FTIR, N2 adsorption, SEM, XPS, and TGA. The catalytic performances of different catalysts were evaluated via toluene oxidation and CO2 selectivity. Rod–shaped Pt/MOF–BTC exhibited best catalytic performance compared to Pt/MOF–808 and Pt/UiO–66, its T50 and T90 were 140 °C and 149 °C, respectively. After deducting the effect of specific surface, Pt/MOF–BTC still had the lowest apparent activation energy (62.8 kJ·mol−1), which is due to the abundant atomic Pt and oxygen vacancy content on its surface. After the reaction, the structure of Pt/MOF–BTC may become amorphous according to XRD results. Furthermore, the presence of amorphous structure had no effect on the catalytic activity of the catalyst. In the stability test of Pt/MOF–BTC to toluene oxidation, both toluene conversion and CO2 selectivity remained at 100%, and remained stable for 11 h. Moreover, Pt/MOF–BTC also had better resistance to high weight hourly space velocity (WHSV) or water resistance. The catalyst maintained high catalytic activity for 3 times reusability. This study provides valuable experience for the future work of MOF in the field of VOC catalytic oxidation.
Collapse
|
45
|
Jiang Z, Tian M, Jing M, Chai S, Jian Y, Chen C, Douthwaite M, Zheng L, Ma M, Song W, Liu J, Yu J, He C. Modulating the Electronic Metal-Support Interactions in Single-Atom Pt 1 -CuO Catalyst for Boosting Acetone Oxidation. Angew Chem Int Ed Engl 2022; 61:e202200763. [PMID: 35347821 DOI: 10.1002/anie.202200763] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2022] [Indexed: 01/17/2023]
Abstract
The development of highly active single-atom catalysts (SACs) and identifying their intrinsic active sites in oxidizing industrial hazardous hydrocarbons are challenging prospects. Tuning the electronic metal-support interactions (EMSIs) is valid for modulating the catalytic performance of SACs. We propose that the modulation of the EMSIs in a Pt1 -CuO SAC significantly promotes the activity of the catalyst in acetone oxidation. The EMSIs promote charge redistribution through the unified Pt-O-Cu moieties, which modulates the d-band structure of atomic Pt sites, and strengthens the adsorption and activation of reactants. The positively charged Pt atoms are superior for activating acetone at low temperatures, and the stretched Cu-O bonds facilitate the activation of lattice oxygen atoms to participate in subsequent oxidation. We believe that this work will guide researchers to engineer efficient SACs for application in hydrocarbon oxidation reactions.
Collapse
Affiliation(s)
- Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China.,Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China.,Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Meizan Jing
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Shouning Chai
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China
| | - Mark Douthwaite
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, P. R. China.,National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| |
Collapse
|
46
|
Identification of key reaction intermediates during toluene combustion on a Pd/CeO2 catalyst using operando modulated DRIFT spectroscopy. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
47
|
Zhou J, Wang P, Chen A, Qu W, Zhao Y, Zhang D. NO x Reduction over Smart Catalysts with Self-Created Targeted Antipoisoning Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6668-6677. [PMID: 35500206 DOI: 10.1021/acs.est.2c00758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction of NOx in the presence of alkali (earth) metals and heavy metals is still a challenge due to the easy deactivation of catalysts. Herein, NOx reduction over smart catalysts with self-created targeted antipoisoning sites is originally demonstrated. The smart catalyst consisted of TiO2 pillared montmorillonite with abundant cation exchange sites to anchor poisoning substances and active components to catalyze NOx into N2. It was not deactivated during the NOx reduction process in the presence of alkali (earth) metals and heavy metals. The enhanced surface acidity, reducible active species, and active chemisorbed oxygen species of the smart catalyst accounted for the remarkable NOx reduction efficiency. More importantly, the self-created targeted antipoisoning sites expressed specific anchoring effects on poisoning substances and protected the active components from poisoning. It was demonstrated that the tetrahedrally coordinated aluminum species of the smart catalyst mainly acted as self-created targeted antipoisoning sites to stabilize the poisoning substances into the interlayers of montmorillonite. This work paves a new way for efficient reduction of NOx from the complex flue gas in practical applications.
Collapse
Affiliation(s)
- Jialun Zhou
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Zhao
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
48
|
Jiang Z, Tian M, Jing M, Chai S, Jian Y, Chen C, Douthwaite M, Zheng L, Ma M, Song W, Liu J, Yu J, He C. Modulating the Electronic Metal‐Support Interactions in Single‐Atom Pt
1
−CuO Catalyst for Boosting Acetone Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
| | - Meizan Jing
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Shouning Chai
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Mark Douthwaite
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis School of Chemistry Cardiff University Cardiff CF10 3AT UK
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology University of Chinese Academy of Sciences Beijing 101408 P. R. China
| |
Collapse
|
49
|
Liu H, Chen J, Wang Y, Yin R, Yang W, Wang G, Si W, Peng Y, Li J. Interaction Mechanism for Simultaneous Elimination of Nitrogen Oxides and Toluene over the Bifunctional CeO 2-TiO 2 Mixed Oxide Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4467-4476. [PMID: 35254804 DOI: 10.1021/acs.est.1c08424] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
Simultaneous catalytic elimination of nitrogen oxides (NOx, x = 1 and 2) and volatile organic compounds (VOCs) is of great importance for environmental preservation in China. In this work, the interactions of simultaneous removal of NOx and methylbenzene (PhCH3) were investigated on a CeO2-TiO2 mixed oxide catalyst, which demonstrated excellent bifunctional removal efficiencies for the two pollutants. The results indicated that NOx positively promotes PhCH3 oxidation, while NH3 negatively inhibits through competitive adsorption with PhCH3. The underlying mechanism is that a pseudo PhCH3-SCR reaction happened in this process is parallel to NH3-SCR. Combined with in situ diffuse reflectance infrared Fourier transform spectroscopy and quasi in situ X-ray photoelectron spectroscopy, the interaction mechanism between NOx and PhCH3 is proposed. Specifically, NOx is adsorbed on the catalyst surface to produce nitrate species, which reacts with the carboxylate generated during PhCH3 oxidation to form organic nitrogen intermediates that create N2 and CO2 in the following reactions. In the reaction process, the superoxide (O2-) generated by O2 activation on the catalyst surface is an important species for the propelling of oxidation reaction. This work could provide guidelines for the design of state-of-the-art catalysts for simultaneous catalytic removal of NOx and VOCs.
Collapse
Affiliation(s)
- Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Ya Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Rongqiang Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Wenhao Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Guimin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
50
|
Yin R, Chen J, Mi J, Liu H, Yan T, Shan L, Lang J, Li J. Breaking the Activity–Selectivity Trade-Off for Simultaneous Catalytic Elimination of Nitric Oxide and Chlorobenzene via FeVO 4–Fe 2O 3 Interfacial Charge Transfer. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rongqiang Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinxing Mi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiyan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Yan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liang Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junyu Lang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|