1
|
Tang W, Liu S, Zhang G, Ren Z, Liu Z, Zhang M, Zhang SY, Zou C, Zhao B, Di D. Lead-Free Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411020. [PMID: 39449210 DOI: 10.1002/adma.202411020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Metal halide perovskites have been identified as a promising class of materials for light-emitting applications. The development of lead-based perovskite light-emitting diodes (PeLEDs) has led to substantial improvements, with external quantum efficiencies (EQEs) now surpassing 30% and operational lifetimes comparable to those of organic LEDs (OLEDs). However, the concern over the potential toxicity of lead has motivated a search for alternative materials that are both eco-friendly and possess excellent optoelectronic properties, with lead-free perovskites emerging as a strong contender. In this review, the properties of various lead-free perovskite emitters are analyzed, with a particular emphasis on the more well-reported tin-based variants. Recent progress in enhancing device efficiencies through refined crystallization processes and the optimization of device configurations is also discussed. Additionally, the remaining challenges are examined, and propose strategies that may lead to stable device operation. Looking forward, the potential future developments for lead-free PeLEDs are considered, including the extension of spectral range, the adoption of more eco-friendly deposition techniques, and the exploration of alternative materials.
Collapse
Affiliation(s)
- Weidong Tang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Shengnan Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Gan Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Zhixiang Ren
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Zhe Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Shi-Yuan Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Chen Zou
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Baodan Zhao
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Dawei Di
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Ben Messaoud E, Abid D, Elleuch S, Oueslati A, Guionneau P, Pechev S, Daro N, Elaoud Z. A 0D Ge(II)-Halide-Based Perovskite with Enhanced Semiconducting Behavior for Electronic Capacitors. ACS OMEGA 2024; 9:42868-42882. [PMID: 39464455 PMCID: PMC11500373 DOI: 10.1021/acsomega.4c05255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Perovskite materials have surged to the forefront of materials science, captivating researchers worldwide with their distinctive crystal lattice arrangement and remarkable optical, electric and dielectric attributes. The current study focuses on the development of a novel zero-dimensional (0D) Ge(II)-based hybrid perovskite, formulated as NH3(CH2)2NH3GeF6, and synthesized through a gradual evaporation process conducted at room temperature. The crystal structure is characterized by an arrangement of organic cations and isolated octahedral [GeF6]2- groups. This configuration is stabilized by relatively weak intermolecular bonds. A comprehensive analysis of the material's thermal properties using differential scanning calorimetry (DSC) revealed a distinct phase transition occurring at approximately 323 K, which was further confirmed through electrical measurements. The studied compound provided a broad absorption range across the visible spectrum and an optical band gap of 3.30 eV, indicating its potential for semiconducting applications in optoelectronic devices. Photoluminescence PL analysis displays a blueish broad-band emission with a high color rendering index CRI value of 91, when excited at 325 nm. This emission primarily originates from the self-trapped excitons (STEs) recombination in the inorganic [GeF6]2-. Herein, the temperature-dependent behavior of grain conductivity exhibited an Arrhenius-type pattern, with an activation energy (E a) of 0.46 eV, confirming the semiconductor nature of the investigated compound. In addition, a deep investigation of the alternating current conductivity, analyzed using Jonscher's law, demonstrates that the conduction mechanism is effectively described by the correlated barrier hopping (CBH) model. The dielectric performances show a significant dielectric constant (ε' ∼ 103). Thus, all these interesting physical properties of this hybrid perovskite have paved the way for advancements in various technological applications, particularly in the field of electronic capacitors.
Collapse
Affiliation(s)
- Emna Ben Messaoud
- Laboratory
Physical-Chemistry of Solid-State, Faculty of Sciences, University of Sfax, BP 1171, route soukra, 3000 Sfax, Tunisia
| | - Dhouha Abid
- Laboratory
Physical-Chemistry of Solid-State, Faculty of Sciences, University of Sfax, BP 1171, route soukra, 3000 Sfax, Tunisia
| | - Slim Elleuch
- Laboratory
of Applied Physics, Faculty of Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Abderrazek Oueslati
- Laboratory
of Spectroscopic Characterization and Optical Materials, Faculty of
Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Philippe Guionneau
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Stanislav Pechev
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Nathalie Daro
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Zakaria Elaoud
- Laboratory
Physical-Chemistry of Solid-State, Faculty of Sciences, University of Sfax, BP 1171, route soukra, 3000 Sfax, Tunisia
| |
Collapse
|
3
|
Ding K, Zhuang B, Deng BW, Li ZL, Lu HF, Zhang ZX, Fu DW. Stereo-Active Lone Pairs Induced Second Harmonic Generation Responses and Electrocatalytic Activity in Hybrid Material. Chemistry 2024; 30:e202402119. [PMID: 39007706 DOI: 10.1002/chem.202402119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
The lone pair electrons in the electronic structure of molecules have been a prominent research focus in chemistry for more than a century. Stable s2 lone pair electrons significantly influence material properties, including thermoelectric properties, nonlinear optical properties, ferroelectricity, and electro(photo)catalysis. While major advances have been achieved in understanding the influence of lone pair electrons on material characteristics, research on this effect in organic-inorganic hybrid materials is in its initial stage. In this work, we successfully obtained a novel organic-inorganic hybrid multifunctional material incorporating Ge with 4s2 lone pair electrons, (MeHDabco)2[GeBr3]4-H2O (MeHDabco=N-methyl-1,4-diazabicyclo[2.2.2]octane) (1). Driven by the stereochemically active lone pair electrons on the Ge2+, 1 crystallizes in the noncentrosymmetric space group P21 at room temperature and exhibits good second harmonic generation (SHG) responses. Interestingly, 1 also shows electrocatalytic activity for the hydrogen evolution reaction (HER) due to the existence of lone pair electrons on Ge2+ cations. The electrochemical experiment combined with the density functional theory (DFT) calculations revealed that the lone pair electrons act as both an active site for proton adsorption and facilitate the ionization of water. This work not only emphasizes the important role of lone pair electrons in material properties and functions but also provides new insight for designing novel Ge-based multifunctional hybrid materials.
Collapse
Affiliation(s)
- Kun Ding
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Bo Zhuang
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Bo-Wen Deng
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Zhi-Long Li
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321019, Jinhua, P. R. China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321019, Jinhua, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center College of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, P. R. China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321019, Jinhua, P. R. China
| |
Collapse
|
4
|
Brumberg A, Kuklinski O, Kent GT, Morgan EE, Mikhailovsky AA, Strom TA, Chabinyc ML, Seshadri R. Tuning the Optical Absorption Edge of Vacancy-Ordered Double Perovskites through Metal Precursor and Solvent Selection. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9625-9635. [PMID: 39398367 PMCID: PMC11467835 DOI: 10.1021/acs.chemmater.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
Vacancy-ordered double perovskites with the formula A 2 MX 6 (where A is a +1 cation, M is a +4 metal, and X is a halide ion) offer improved ambient stability over other main-group halide AMX 3 perovskites and potentially reduced toxicity compared to those containing lead. These compounds are readily formed through a number of synthetic routes; however, the manner in which the synthetic route affects the resulting structure or optoelectronic properties has not been examined. Here, we investigate the role of distinct precursors and solvents in the formation of the indirect band gap vacancy-ordered double perovskite Cs2TeBr6. While Cs2TeBr6 can be synthesized from TeBr4 or TeO2, we find that synthesis from TeBr4 is more sensitive to solvent selection, requiring a polar solvent to enable the conversion of TeBr4. Synthesis from TeO2 proceeds in all of the organic solvents tested, provided that HBr is added to solubilize TeO2 and enable the formation of [TeBr6]2-. Furthermore, the choice of metal precursor and solvent impacts the product color and optical absorption edge, which we find arises from particle size effects. The emission energy remains unaffected, consistent with the idea that emission in these zero-dimensional structures arises from the isolated [TeBr6]2- octahedra, which undergo dynamic Jahn-Teller distortion rather than band-edge recombination. Our work highlights how even minor changes in synthetic procedures can lead to variability in metrics such as the absorption edge and emission lifetime and sheds light on how the optical properties of these semiconductors can be controlled for light-emitting applications.
Collapse
Affiliation(s)
- Alexandra Brumberg
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Owen Kuklinski
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
| | - Greggory T. Kent
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Emily E. Morgan
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | | | - T. Amanda Strom
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
| | - Ram Seshadri
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Guli M, Li R, Bai L, Lan C, He W, Zhou Y. Effect of ABX 3 site changes on the performance of tin-lead mixed perovskite solar cells. NANOSCALE 2024; 16:17276-17299. [PMID: 39240060 DOI: 10.1039/d4nr00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Tin-lead mixed perovskite solar cells (TLMPSCs), with the advantage of approaching the Shockley-Queisser (S-Q) limit for photovoltaic applications, have been rapidly developed and achieved a power conversion efficiency (PCE) of 23.7%. Although the low toxicity of TLMPSCs is conducive to sustainable development, the oxidation of Sn2+ could destroy the perovskite structure easily. Thus, most researchers are devoted to improving the photoelectric performance and stability through additive engineering, interface engineering, device structure optimization, solvent engineering, etc. However, TLMPs with different A-sites and X-sites in the ABX3 model and an optimal ratio of Sn : Pb still need to be investigated; this is the basis of mechanistic analysis. In this paper, we introduce TLMPSCs with different A-sites, X-sites, and Sn-Pb ratios. The mechanism and properties of the cations are analyzed based on the performance of TLMPSCs. Finally, a series of prospects for optimizing ABX3 are put forward, with the hope of attracting the attention and interest of researchers.
Collapse
Affiliation(s)
- Mina Guli
- Beijing Key Laboratory of Novel Thin Film Solar Cells, School of New Energy, North China Electric Power University, Beijing 102206, People's Republic of China.
| | - Ran Li
- Beijing Key Laboratory of Novel Thin Film Solar Cells, School of New Energy, North China Electric Power University, Beijing 102206, People's Republic of China.
| | - Luyun Bai
- Beijing Key Laboratory of Novel Thin Film Solar Cells, School of New Energy, North China Electric Power University, Beijing 102206, People's Republic of China.
- Qinghai Communications Technical College, Xining 810003, People's Republic of China
| | - Cheng Lan
- Beijing Key Laboratory of Novel Thin Film Solar Cells, School of New Energy, North China Electric Power University, Beijing 102206, People's Republic of China.
| | - Wenkai He
- Beijing Key Laboratory of Novel Thin Film Solar Cells, School of New Energy, North China Electric Power University, Beijing 102206, People's Republic of China.
| | - Yancheng Zhou
- Beijing Key Laboratory of Novel Thin Film Solar Cells, School of New Energy, North China Electric Power University, Beijing 102206, People's Republic of China.
| |
Collapse
|
6
|
Zhang B, Zhang Y, Su H, Huang E, Zhao Z, Xu Z, Liu Y, Zhang L, Zeng Z, You J, Jen AKY, Liu SF. Rational Design of A-Site Cation for High Performance Lead-Free Perovskite X-Ray Detectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405071. [PMID: 39221666 DOI: 10.1002/smll.202405071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Design of hypotoxic lead-free perovskites, e.g. Bismuth(Bi)-based perovskites, is much beneficial for commercialization of perovskite X-ray detectors due to their strong radiation absorption. Nevertheless, the design principles governing the selection of A-site cations for achieving high-performance X-ray detectors remain elusive. Here, seven molecules (methylamine MA, amine NH3, dimethylbiguanide DGA, phenylethylamine PEA, 4-fluorophenethylamine p-FPEA, 1,3-propanediamine PDA, and 1,4-butanediamine BDA) and calculated their dipole moments and interaction strength with metal halide (BiI3) are selected. The first-principles calculations and related spectroscopy measurements confirm that organic molecules (DGA) with large dipole moments can have strong interactions with perovskite octahedron and improve the carrier transport between the organic and inorganic clusters. Consequently, zero-dimensional single crystal (SC) (DGA)BiI5∙H2O is synthesized. The (DGA)BiI5∙H2O SCs demonstrate an exceptional carrier mobility-lifetime product of 6.55 × 10-3 cm2 V-1, resulting in the high sensitivity of 5879.4 µCGyair -1cm-2, featuring a low detection limit (4.7 nGyair s-1) and remarkable X-ray irradiation stability even after 100 days of aging at a high electric field (100 V mm-1). Furthermore, the (DGA)BiI5∙H2O SCs for imaging, achieving a notable spatial resolution of 5.5 lp mm-1 are applied. This investigation establishes a pathway for systematically screening A-site cations to design low-dimensional SCs for high-performance X-ray detection.
Collapse
Affiliation(s)
- Bobo Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuefeng Zhang
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Hang Su
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Endai Huang
- Research Institute of Medical and Biological Engineering, Ningbo University, Zhejiang, 315211, China
| | - Zeqin Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiaxue You
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shengzhong Frank Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Tekin A, Kalpar M, Tekin E. Exploring the potential of Sn-Ge based hybrid organic-inorganic perovskites: A density functional theory based computational screening study. J Chem Phys 2024; 161:074703. [PMID: 39167549 DOI: 10.1063/5.0220297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Hybrid organic-inorganic perovskite solar cells have attracted significant attention in the field of optoelectronics due to their exceptional photovoltaic and optoelectronic properties. Although lead (Pb)-based perovskites exhibit the highest power conversion efficiencies, concerns about their toxicity and environmental impact have prompted significant research activities to explore alternative compositions. In this regard, a special emphasis has been devoted to tin (Sn) and germanium (Ge) based perovskites. In order to reveal the full potential of Sn-Ge based perovskites, we computationally screened perovskites with a general formula of A0.5A0.5'SnyGe1-yX3 (y = 0.00, 0.25, 0.50, 0.75, 1.00) at the density functional theory level, particularly using the HSE06 hybrid functional. By using 18 A/A'-cations, four X-anions, and five different y compositions, a total of 7695 perovskites in cubic (C), orthogonal (O), and tetragonal (T) phases were considered, and the most promising ones have been filtered out based on their formation energy and bandgap. More specifically, 596, 525, and 542 C-, O-, and T-phase perovskites have been identified with a HSE06 bandgap range of 1.0-2.0 eV. While the Sn1.00Ge0.00 composition was dominated for both C- and O-phases, for the T-phase, a higher number of promising perovskites were obtained with the Sn0.75Ge0.25 composition. It has also been found that Sn-rich perovskites exhibit more favorable bandgap characteristics compared to Ge-rich ones. FA, MS, MA, K, Cs, and Rb are the most favored A/A'-cations in these promising perovskites. Moreover, I- overwhelmingly prevails as the dominant anion. Further experimental validation may uncover the true capabilities and practical applicability of these promising perovskites.
Collapse
Affiliation(s)
- Adem Tekin
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
- Research Institute for Fundamental Sciences (TÜBİTAK-TBAE), Kocaeli, Türkiye
| | - Merve Kalpar
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Emine Tekin
- Chemisty Department, Düzce University, 81010 Düzce, Türkiye
| |
Collapse
|
8
|
Guo Z, Han D, Liu H, Hu Y, Zhang W, Chen R, Mao L. Controlling the Orientation-Dependent Second Harmonic Generation in Hybrid Germanium Perovskites. Angew Chem Int Ed Engl 2024; 63:e202407675. [PMID: 38770616 DOI: 10.1002/anie.202407675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Manipulating the crystal orientation plays a crucial role in the conversion efficiency during second harmonic generation (SHG). Here, we provide a new strategy in controlling the surface-dependent anisotropic SHG with the precise design of (101) and (21 ‾ ${\bar 1}$ 0) MAGeI3 facets. Based on the SHG measurement, the (101) MAGeI3 single crystal exhibits larger SHG (1.3×(21 ‾ ${\bar 1}$ 0) MAGeI3). Kelvin probe force microscopy imaging shows a smaller work function for the (101) MAGeI3 compared with the (21 ‾ ${\bar 1}$ 0), which indirectly demonstrates the stronger intrinsic polarization on the (101) surface. X-ray photoelectron spectroscopy confirms the band bending within the (101) facet. Temperature-dependent steady-state and time-resolved photoluminescence spectroscopy show shorter lifetime and wider emission band in the (101) MAGeI3 single crystal, revealing the higher defect states. Additionally, powder X-ray diffraction patterns show the (101) MAGeI3 possesses larger in-plane polar units [GeI3]- density, which could directly enhance the spontaneous polarization in the (101) facet. Density functional theory (DFT) calculation further demonstrates the higher intrinsic polarization in the (101) facet compared with the (21 ‾ ${\bar 1}$ 0) facet, and the larger built-in electric field in the (101) facet facilitates surface vacancy defect accumulation. Our work provides a new angle in tuning and optimizing hybrid perovskite-based nonlinear optical materials.
Collapse
Affiliation(s)
- Zhu Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Dingchong Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Huan Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yaoqiao Hu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Weixiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
9
|
Muzzillo CP, Ciobanu CV, Moore DT. High-entropy alloy screening for halide perovskites. MATERIALS HORIZONS 2024; 11:3662-3694. [PMID: 38767287 DOI: 10.1039/d4mh00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As the concept of high-entropy alloying (HEA) extends beyond metals, new materials screening methods are needed. Halide perovskites (HP) are a prime case study because greater stability is needed for photovoltaics applications, and there are 322 experimentally observed HP end-members, which leads to more than 1057 potential alloys. We screen HEAHP by first calculating the configurational entropy of 106 equimolar alloys with experimentally observed end-members. To estimate enthalpy at low computational cost, we turn to the delta-lattice parameter approach, a well-known method for predicting III-V alloy miscibility. To generalize the approach for non-cubic crystals, we introduce the parameter of unit cell volume coefficient of variation (UCV), which does a good job of predicting the experimental HP miscibility data. We use plots of entropy stabilization versus UCV to screen promising alloys and identify 102 HEAHP of interest.
Collapse
Affiliation(s)
| | | | - David T Moore
- National Renewable Energy Laboratory, Golden, CO, USA.
| |
Collapse
|
10
|
Dong P, Lin C, Ye N, Luo M. Dimensional Regulation in Metal-Free Perovskites by Compositional Engineering to Achieve Record Low X-Ray Detection Limits. Angew Chem Int Ed Engl 2024; 63:e202407048. [PMID: 38701362 DOI: 10.1002/anie.202407048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Utilizing the manipulation of perovskite dimensions has been proven as an effective approach in regulating perovskite properties. Nevertheless, achieving precise control over the dimensions of perovskites within the same system poses a significant challenge. In this study, we introduce a sophisticated method to attain precise dimensional control in metal-free perovskites (MFPs), specifically through the process of octahedron tailoring by compositional engineering. Accordingly, we successfully instigated a transition from HPIP-NH4I3 ⋅ H2O (3D), HPIP2-NH4I5 (2D) and HPIP3-NH4I7 (1D) structures. Notably, HPIP2-NH4I5 is the first 2D MFP. As anticipated, these perovskites exhibited completely distinct fluorescence and X-ray detection capabilities due to their differing dimensions. Remarkably, the 2D HPIP2-NH4I5 device effectively hindered ion migration perpendicular to the 2D layers, achieving the lowest detection limit of 12.2 nGyair s-1 among metal-free single crystals-based detectors. This study expands the dimensionality control strategies for MFPs and introduces, for the first time, the potential of 2D MFPs as high-performance X-ray detectors, thereby enriching the diversity of the MFPs family.
Collapse
Affiliation(s)
- Pengxiang Dong
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
| |
Collapse
|
11
|
Yang W, Jo SH, Lee TW. Perovskite Colloidal Nanocrystal Solar Cells: Current Advances, Challenges, and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401788. [PMID: 38708900 DOI: 10.1002/adma.202401788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Indexed: 05/07/2024]
Abstract
The power conversion efficiencies (PCEs) of polycrystalline perovskite (PVK) solar cells (SCs) (PC-PeSCs) have rapidly increased. However, PC-PeSCs are intrinsically unstable without encapsulation, and their efficiency drops during large-scale production; these problems hinder the commercial viability of PeSCs. Stability can be increased by using colloidal PVK nanocrystals (c-PeNCs), which have high surface strains, low defect density, and exceptional crystal quality. The use of c-PeNCs separates the crystallization process from the film formation process, which is preponderant in large-scale fabrication. Consequently, the use of c-PeNCs has substantial potential to overcome challenges encountered when fabricating PC-PeSCs. Research on colloidal nanocrystal-based PVK SCs (NC-PeSCs) has increased their PCEs to a level greater than those of other quantum-dot SCs, but has not reached the PCEs of PC-PeSCs; this inferiority significantly impedes widespread application of NC-PeSCs. This review first introduces the distinctive properties of c-PeNCs, then the strategies that have been used to achieve high-efficiency NC-PeSCs. Then it discusses in detail the persisting challenges in this domain. Specifically, the major challenges and solutions for NC-PeSCs related to low short-circuit current density Jsc are covered. Last, the article presents a perspective on future research directions and potential applications in the realm of NC-PeSCs.
Collapse
Affiliation(s)
- Wenqiang Yang
- Institute of Atomic Manufacturing, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Hyeon Jo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary program in Bioengineering, Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Wang H, Chen J, Sun Y, Wang F, Yang J, Zhang C, Kong J, Li L. Lead-free Cs 2Ag 1-xNa xIn 1 - yBi yCl 6 perovskite films with broad warm-yellow emission for lighting applications. Sci Rep 2024; 14:14740. [PMID: 38926459 PMCID: PMC11208565 DOI: 10.1038/s41598-024-65492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Lead-free halide double perovskite Cs2AgInCl6 has been extensively studied in recent years due to the lead toxicity and poor stability of common lead halide perovskites. In this study, sodium (Na+) and bismuth (Bi3+) doped into Cs2AgInCl6 double perovskite, then Cs2Ag1-xNaxIn1 - yBiyCl6 films with broadband warm-yellow emissions were achieved by the blade coating method. Herein, Na and Bi content were changed as variables at a series of parameter optimization experiments, respectively. In the Cs2Ag1-xNaxIn1 - yBiyCl6 systems, Na+ broke the parity-forbidden transition of Cs2AgInCl6, and Bi3+ suppressed non-radiative recombination. The partial replacement of Ag+ with Na+ ions and doping with Bi3+ cations were crucial for increasing the intensity of the PL emission. The experimental results showed that the photoluminescence quantum yield of the Cs2Ag0.4Na0.6In0.8Bi0.2Cl6 film was 66.38%, which was the highest data among all samples. It demonstrated remarkable stability under heat and ultraviolet conditions. After five thermal cycles, the PL intensity of the Cs2Ag0.4Na0.6In0.8Bi0.2Cl6 film is only reduced to approximately 5.7% of the initial value. After 720 h continuous ultraviolet irradiation, there occurred 31.9% emission decay of the film.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Jin Chen
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Yu Sun
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Fengchao Wang
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Jing Yang
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Canyun Zhang
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Jinfang Kong
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Lan Li
- College of Sciences, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| |
Collapse
|
13
|
Chang J, Xie Y, Shi W, Jiang J, Zhang H, Wang G. The lead-free perovskite-based heterojunction C 2N/CsGeI 3: an exploration for superior visible-light absorption. Phys Chem Chem Phys 2024; 26:17315-17323. [PMID: 38860395 DOI: 10.1039/d4cp01570c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Halide perovskites have distinguished themselves among the numerous optoelectronic materials due to their versatile processing technology and exceptional optical response. Unfortunately, their stability and toxicity from heavy metals severely hamper their development, in addition to the challenge of further improving photovoltaic performance. Hence, a lead-free perovskite-based heterojunction, C2N/CsGeI3, is investigated using a hybrid density functional, including electron structures, charge density differences, optical properties and more. The study reveals the presence of a built-in electric field directed from the CsGeI3 to the C2N layer. Moreover, based on the work function, it is confirmed that the electrons are transferred in a Z-scheme mechanism after the CsGeI3 contacts with the C2N layer. Under light irradiation, the construction of the C2N/CsGeI3 heterojunction significantly enhances optical absorption within the range of visible-light wavelengths. Additionally, the impact of interfacial strain on the C2N/CsGeI3 is explored and discussed. These findings not only suggest that the C2N/CsGeI3 heterojunction holds promise for photovoltaic applications but also provide a theoretical insight into lead-free perovskite-based functional materials.
Collapse
Affiliation(s)
- Junli Chang
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Yumeng Xie
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Wenwu Shi
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Jinguo Jiang
- School of Physical Science and Technology, Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Hongyan Zhang
- School of Medical Instrument, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
14
|
Balvanz A, Safdari M, Zacharias M, Kim D, Welton C, Oriel EH, Kepenekian M, Katan C, Malliakas CD, Even J, Klepov V, Manjunatha Reddy GN, Schaller RD, Chen LX, Seshadri R, Kanatzidis MG. Structural Evolution and Photoluminescence Quenching across the FASnI 3-xBr x ( x = 0-3) Perovskites. J Am Chem Soc 2024; 146:16128-16147. [PMID: 38815003 DOI: 10.1021/jacs.4c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
One of the primary methods for band gap tuning in metal halide perovskites has been halide (I/Br) mixing. Despite widespread usage of this type of chemical substitution in perovskite photovoltaics, there is still little understanding of the structural impacts of halide alloying, with the assumption being the formation of ideal solid solutions. The FASnI3-xBrx (x = 0-3) family of compounds provides the first example where the assumption breaks down, as the composition space is broken into two unique regimes (x = 0-2.9; x = 2.9-3) based on their average structure with the former having a 3D and the latter having an extended 3D (pseudo 0D) structure. Pair distribution function (PDF) analyses further suggest a dynamic 5s2 lone pair expression resulting in increasing levels of off-centering of the central Sn as the Br concentration is increased. These antiferroelectric distortions indicate that even the x = 0-2.9 phase space behaves as a nonideal solid-solution on a more local scale. Solid-state NMR confirms the difference in local structure yielding greater insight into the chemical nature and local distributions of the FA+ cation. In contrast to the FAPbI3-xBrx series, a drastic photoluminescence (PL) quenching is observed with x ≥ 1.9 compounds having no observable PL. Our detailed studies attribute this quenching to structural transitions induced by the distortions of the [SnBr6] octahedra in response to stereochemically expressed lone pairs of electrons. This is confirmed through density functional theory, having a direct impact on the electronic structure.
Collapse
Affiliation(s)
- Adam Balvanz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Majid Safdari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Marios Zacharias
- Univ Rennes, INSA Rennes, CNRS, Institute FOTON - UMR 6082, Rennes F-35000, France
| | - Daehan Kim
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Evan H Oriel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mikaël Kepenekian
- Univ Rennes, INSA Rennes, CNRS, ISCR - UMR 6226, Rennes F-35000, France
| | - Claudine Katan
- Univ Rennes, INSA Rennes, CNRS, ISCR - UMR 6226, Rennes F-35000, France
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institute FOTON - UMR 6082, Rennes F-35000, France
| | - Vladislav Klepov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ram Seshadri
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Chen D, Song Z, Yang C, Wei Y, Liu G, Meng L, Wu Q, Dang Y. Nonlinear Optical Effects of Hybrid Antimony(III) Halides Induced by Stereoactive 5s 2 Lone Pairs and Trimethylammonium Cations. Inorg Chem 2024; 63:10304-10311. [PMID: 38780359 DOI: 10.1021/acs.inorgchem.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Organic-inorganic hybrid metal halides have unique optical and electronic properties, which are advantageous in the study of nonlinear optical materials. To investigate the effect of stereoactive lone pair electrons and the induction of organic cations on the structure of hybrid antimony(III) halides on nonlinear optics, we synthesize two noncentrosymmetric hybrid antimony(III)-based halide single crystals (TMA)3Sb2X9 (TMA = NH(CH3)3+, X = Cl, Br) by a room-temperature slow evaporation method, and their single-crystal structures, phase transition, X-ray photoelectron spectroscopy, and energy-band structure calculations are studied. More importantly, second-harmonic generation results of (TMA)3Sb2X9 (X = Cl, Br) are about 0.7 and 0.8 × KH2PO4(KDP), respectively. Interestingly, (TMA)3Sb2Cl9 single crystals undergo a reversible structural transition from Pc (No. 7) at room temperature to P21/c (No. 14) at 400 K, while the (TMA)3Sb2Br9 single crystals belong to the noncentrosymmetric space group R3c (No. 161), which clarifies the previous results. This work not only deepens the understanding of the role in lone pair electrons and organic cations in the structural induction in antimony-based halide perovskite materials but also provides guidance for subsequent nonlinear optical explorations.
Collapse
Affiliation(s)
- Danping Chen
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhexin Song
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Can Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Lingqiang Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Qi Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Yangyang Dang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
16
|
Tashiro T, Suzuki H, Takahashi K. High-throughput calculation for the screening of formamidinium halide perovskite for solar cells. Phys Chem Chem Phys 2024; 26:14440-14447. [PMID: 38713097 DOI: 10.1039/d4cp00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
128 organic halide perovskites are systematically investigated using high-throughput first principles calculations where Ge and Sn-based materials are searched. The results revealed that all calculated materials exhibited exothermic reactions. Notably, a correlation between the heat of formation and X-site ions is identified. Six specific compounds, namely FA-Ge-I-I-I, FA-Sn-F-I-I, FA-Sn-Cl-I-I, FA-Sn-Br-Br-I, FA-Sn-Br-I-I, and FA-Sn-I-I-I, where FA stands for formamidinium, are found to have a bandgap ranging from 1.0 to 2.0 eV, characterized by a direct bandgap in their band structure. Electronic structure analysis indicated that the CBM (conduction band minimum) is influenced by the B-site p-orbital, while the VBM (valence band maximum) is influenced by the X-site p-orbitals. This study underscores the capability of high-throughput calculations to unveil hidden trends in perovskite materials, offering an effective approach for the exploration of promising perovskite materials.
Collapse
Affiliation(s)
- Tomoya Tashiro
- Department of Chemistry, Hokkaido University, North 10, West 8, Sapporo 060-0810, Japan.
| | - Hajime Suzuki
- Department of Chemistry, Hokkaido University, North 10, West 8, Sapporo 060-0810, Japan.
| | - Keisuke Takahashi
- Department of Chemistry, Hokkaido University, North 10, West 8, Sapporo 060-0810, Japan.
| |
Collapse
|
17
|
Xu R, Lai S, Zhang Y, Zhang X. Research Progress of Heavy-Metal-Free Quantum Dot Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:832. [PMID: 38786788 PMCID: PMC11124338 DOI: 10.3390/nano14100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
At present, heavy-metal-free quantum dot light-emitting diodes (QLEDs) have shown great potential as a research hotspot in the field of optoelectronic devices. This article reviews the research on heavy-metal-free quantum dot (QD) materials and light-emitting diode (LED) devices. In the first section, we discussed the hazards of heavy-metal-containing quantum dots (QDs), such as environmental pollution and human health risks. Next, the main representatives of heavy-metal-free QDs were introduced, such as InP, ZnE (E=S, Se and Te), CuInS2, Ag2S, and so on. In the next section, we discussed the synthesis methods of heavy-metal-free QDs, including the hot injection (HI) method, the heat up (HU) method, the cation exchange (CE) method, the successful ionic layer adsorption and reaction (SILAR) method, and so on. Finally, important progress in the development of heavy-metal-free QLEDs was summarized in three aspects (QD emitter layer, hole transport layer, and electron transport layer).
Collapse
Affiliation(s)
| | | | | | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Physics and Opto-Electronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (R.X.); (S.L.); (Y.Z.)
| |
Collapse
|
18
|
Le HKD, Zhang Y, Behera P, Vailionis A, Phang A, Brinn RM, Yang P. Room-Temperature Ferroelectric Epitaxial Nanowire Arrays with Photoluminescence. NANO LETTERS 2024; 24:5189-5196. [PMID: 38636084 DOI: 10.1021/acs.nanolett.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The development of large-scale, high-quality ferroelectric semiconductor nanowire arrays with interesting light-emitting properties can address limitations in traditional wide-bandgap ferroelectrics, thus serving as building blocks for innovative device architectures and next-generation high-density optoelectronics. Here, we investigate the optical properties of ferroelectric CsGeX3 (X = Br, I) halide perovskite nanowires that are epitaxially grown on muscovite mica substrates by vapor phase deposition. Detailed structural characterizations reveal an incommensurate heteroepitaxial relationship with the mica substrate. Furthermore, photoluminescence that can be tuned from yellow-green to red emissions by varying the halide composition demonstrates that these nanowire networks can serve as platforms for future optoelectronic applications. In addition, the room-temperature ferroelectricity and ferroelectric domain structures of these nanowires are characterized using second harmonic generation (SHG) polarimetry. The combination of room-temperature ferroelectricity with photoluminescence in these nanowire arrays unlocks new avenues for the design of novel multifunctional materials.
Collapse
Affiliation(s)
- Han K D Le
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ye Zhang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Piush Behera
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Arturas Vailionis
- Stanford Nano Shared Facilities, Stanford University, Stanford, California 94305, United States
- Department of Physics, Kaunas University of Technology, LT-51368 Kaunas, Lithuania
| | - Amelyn Phang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Rafaela M Brinn
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Sahoo S, Rana R, Samal SL. Structural Phase Transition in 0D (3,5-DMP) 2Bi 1-xSb xCl 5 Metal Halides: Expression of the Lone Pair Effect and Polyhedral Distortion. Inorg Chem 2024; 63:7364-7377. [PMID: 38588023 DOI: 10.1021/acs.inorgchem.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Low-dimensional Bi/Sb-based organic-inorganic metal halides (OIMHs) have attracted immense attention from the research community because of their structural diversity and efficient luminescence properties. Further understanding of the relationship between the structure and luminescence properties of these materials is of utmost importance for tuning the luminescence properties for various practical applications. Herein, we have synthesized two lead-free Bi/Sb-based novel OIMHs, (3,5-DMP)2BiCl5 and (3,5-DMP)2SbCl5 [(3,5-DMP) = 3,5-dimethylpiperidine], with zero-dimensional (0D) structures and crystallizing in triclinic (P1 ¯ space group) and monoclinic (P21/c space group) crystal systems, respectively. Both the compounds behave as typical semiconductors with indirect optical band gaps of 3.34 and 3.36 eV for pristine Bi and Sb compounds. These compounds exhibit higher environmental and thermal stability at ambient conditions. Gradual substitution of Sb at the Bi site in (3,5-DMP)2Bi1-xSbxCl5 resulted in the introduction of structural strain due to the significant expression of the lone pair effect, thus leading to a structural transition from the triclinic to monoclinic phase. The effect of the structural phase transition on the optical properties is also studied in (3,5-DMP)2Bi1-xSbxCl5. This work may offer new direction and guidance for exploring various 0D hybrid metal halides and tuning the structures for improvement in the luminescence properties.
Collapse
Affiliation(s)
- Subhasish Sahoo
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Rajanikanta Rana
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| | - Saroj L Samal
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
20
|
Sheng Y, Chen P, Gao Y, He Y, Li J, Muhammad, Xie X, Cheng C, Yang J, Chang Y, Tong G, Jiang Y. Tuneable Efficient White Emission of Sb 3+/Mn 2+ Co-Doped Lead-Free Perovskites for Single-Component White Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19175-19183. [PMID: 38573052 DOI: 10.1021/acsami.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Inorganic lead-free perovskite nanocrystals (NCs) with broadband self-trapped exciton (STEs) emission and low toxicity have shown enormous application prospects in the field of display and lighting. However, white light-emitting diodes (WLEDs) based on a single-component material with high photoluminescence quantum yield (PLQY) remain challenging. Here, we demonstrate a novel codoping strategy by introducing Sb3+/Mn2+ ions to achieve the tuneable dual emission in lead-free perovskite Cs3InCl6 NCs. The PLQY increases to 59.64% after doping with Sb3+. The codoped Cs3InCl6 NCs exhibit efficient white light emission due to the energy transfer channel from STEs to Mn2+ ions with PLQY of 51.38%. Density functional theory (DFT) calculations have been used to verify deeply the effects of Sb3+/Mn2+ doping. WLEDs based on Sb3+/Mn2+-codoped Cs3InCl6 NCs are explored with color rendering index of 85.5 and color coordinate of (0.398, 0.445), which have been successfully applied as photodetector lighting sources. This work provides a new perspective for designing novel lead-free perovskites to achieve single-component WLEDs.
Collapse
Affiliation(s)
- Yuanyuan Sheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ping Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yanpeng Gao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yong He
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junchun Li
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Muhammad
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Xie
- Jianghuai Advance Technology Center, Hefei 230000, People's Republic of China
| | - Chen Cheng
- School of Microelectronics, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jingting Yang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajing Chang
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, People's Republic of China
| | - Guoqing Tong
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Jiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
21
|
Fu Y, Liu Z, Yue S, Zhang K, Wang R, Zhang Z. Optical Second Harmonic Generation of Low-Dimensional Semiconductor Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:662. [PMID: 38668156 PMCID: PMC11054873 DOI: 10.3390/nano14080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
In recent years, the phenomenon of optical second harmonic generation (SHG) has attracted significant attention as a pivotal nonlinear optical effect in research. Notably, in low-dimensional materials (LDMs), SHG detection has become an instrumental tool for elucidating nonlinear optical properties due to their pronounced second-order susceptibility and distinct electronic structure. This review offers an exhaustive overview of the generation process and experimental configurations for SHG in such materials. It underscores the latest advancements in harnessing SHG as a sensitive probe for investigating the nonlinear optical attributes of these materials, with a particular focus on its pivotal role in unveiling electronic structures, bandgap characteristics, and crystal symmetry. By analyzing SHG signals, researchers can glean invaluable insights into the microscopic properties of these materials. Furthermore, this paper delves into the applications of optical SHG in imaging and time-resolved experiments. Finally, future directions and challenges toward the improvement in the NLO in LDMs are discussed to provide an outlook in this rapidly developing field, offering crucial perspectives for the design and optimization of pertinent devices.
Collapse
Affiliation(s)
- Yue Fu
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
| | - Zhengyan Liu
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Song Yue
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Kunpeng Zhang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
| | - Ran Wang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Zichen Zhang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| |
Collapse
|
22
|
Yu W, Zou Y, Wang H, Qi S, Wu C, Guo X, Liu Y, Chen Z, Qu B, Xiao L. Breaking the bottleneck of lead-free perovskite solar cells through dimensionality modulation. Chem Soc Rev 2024; 53:1769-1788. [PMID: 38269613 DOI: 10.1039/d3cs00728f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The emerging perovskite solar cell (PSC) technology has attracted significant attention due to its superior power conversion efficiency (PCE) among the thin-film photovoltaic technologies. However, the toxicity of lead and poor stability of lead halide materials hinder their commercialization. In this case, after a decade of effort, various categories of lead-free perovskites and perovskite-like materials have been developed, including tin halide perovskites, double perovskites, defect-structured perovskites, and rudorffites. However, the performance of the corresponding devices still falls short of expectations, especially their PCE. The limitations mainly originate from either the unstable lattice structure of these materials, which causes the distortion of their octahedra, or their low dimensionality (e.g., structural and electronic dimensionality)-correlated poor carrier transport and self-trapping effect, accelerating nonradiative recombination. Therefore, understanding the relationship between the structures and performance in these emerging candidates and leveraging these insights to design or modify new lead-free perovskites is of great significance. Herein, we review the variety of dimensionalities in different categories of lead-free perovskites and perovskite-like materials and conclude that dimensionality is an important aspect among the crucial indexes that determine the performance of lead-free PSCs. In addition, we summarize the modulation of both structural and electronic dimensionality, and the corresponding enhanced optoelectronic properties in different categories. Finally, perspectives on the future development of lead-free perovskites and perovskite-like materials for photovoltaic applications are provided. We hope that this review will provide researchers with a concise overview of these emerging materials and help them leverage dimensionality to break the bottleneck in photovoltaic applications.
Collapse
Affiliation(s)
- Wenjin Yu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Yu Zou
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Hantao Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Siyuan Qi
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Cuncun Wu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xinyu Guo
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Yueli Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Zhijian Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Bo Qu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China.
| | - Lixin Xiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China.
| |
Collapse
|
23
|
Zhang B, Lei G, You S, Zhao W, Liu H. DFT Investigation of Structural Stability, Optical Properties, and PCE for All-Inorganic Cs x(Pb/Sn) yX z Halide Perovskites. Inorg Chem 2024; 63:3303-3316. [PMID: 38329057 DOI: 10.1021/acs.inorgchem.3c03595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Employing all-inorganic perovskites as light harvesters has recently drawn increasing attention owing to the strong-bonded inorganic components in the crystal. To achieve the systematic and comprehensive understanding for the structures and properties of Csx(Pb/Sn)yXz (X = F, Cl, Br, I) perovskites, this work provides the comparison details about crystal structures, optical properties, electronic structures and power conversion efficiency (PCE) of 18 perovskites. The suitable band gaps are detected in CsSnCl3-Pm3̅m (0.96 eV), γ-CsPbI3-Pnma (1.75 eV), and CsPbBr3-Pm3̅m (1.78 eV), facilitating the conversion from absorbing photon energy to generating hole-electron pairs. γ-CsPbI3-Pnma and CsSnI3-P4/mbm show superior visible-absorption performance depending on their higher absorption coefficient (α); meanwhile, strong peaks can be observed in the real part (Re) of photoconductivity of CsPbBr3-Pbnm, γ-CsPbI3-Pnma, and CsSnI3-P4/mbm in the visible-light range, implying their better photoelectric conversion abilities. The perovskite/tungsten disulfide (WS2) heterojunctions are constructed to calculate the PCE. Although just the PCE result (14.43%) of CsSnI3-Pnma/WS2 is reluctantly competitive, the predictions of PCEs indicate that the PCE of PSCs (perovskite solar cells) can be improved by not only regulating the perovskite to upgrade its own performance but also designing the PSC structure reasonably including the selection of appropriate ETL/HTL (electron/hole transport layer), etc.
Collapse
Affiliation(s)
- Bo Zhang
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin 300384, PR China
| | - Guanghui Lei
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin 300384, PR China
| | - Shuyue You
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin 300384, PR China
| | - Wei Zhao
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin 300384, PR China
| | - Hongli Liu
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
- Tianjin Key Laboratory of Building Green Functional Materials, Tianjin 300384, PR China
| |
Collapse
|
24
|
Kang Y, Yang C, Gou J, Zhu Y, Zhu Q, Wu Q. From C 4H 7N 2Ge 0.4Sn 0.6Br 3 to C 6H 11N 2Ge 0.4Sn 0.6Br 3: Effective Modulation of the Second Harmonic Generation Effect and Optical Band Gap by Planar π-Conjugated Organic Cation Size. Inorg Chem 2024; 63:2725-2731. [PMID: 38247137 DOI: 10.1021/acs.inorgchem.3c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In the search for nonlinear optical (NLO) materials with excellent overall performance, we have devoted ourselves to organic-inorganic hybrids consisting of anionic groups containing stereochemically active lone-pair (SCALP) electron cations and organic planar π-conjugated group cations. Accordingly, in this paper, two novel organic-inorganic hybrid metal halides, C4H7N2Ge0.4Sn0.6Br3 (I) and C6H11N2Ge0.4Sn0.6Br3 (II), have been synthesized. The powder second-harmonic technique shows that both C4H7N2Ge0.4Sn0.6Br3 and C6H11N2Ge0.4Sn0.6Br3 have moderately strong second-order nonlinear optical effects, which are about 2.03 (I) and 1.16 (II) times that of KH2PO4 (KDP), respectively. They also have different optical band gaps of 2.75 (I) and 2.88 eV (II) due to the different sizes of the organic cations, and their photoluminescent and thermal properties were also investigated. This work provides new structural insights for the design and modulation of organic-inorganic hybrid halide materials with multiple excellent optical properties.
Collapse
Affiliation(s)
- Yuwei Kang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Can Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Jie Gou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yaolong Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Qingwen Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Qi Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
25
|
Jang WJ, Jang HW, Kim SY. Recent Advances in Wide Bandgap Perovskite Solar Cells: Focus on Lead-Free Materials for Tandem Structures. SMALL METHODS 2024; 8:e2300207. [PMID: 37203293 DOI: 10.1002/smtd.202300207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Indexed: 05/20/2023]
Abstract
A tandem solar cell, which is composed of a wide bandgap (WBG) top sub-cell and a narrow bandgap (NBG) bottom subcell, harnesses maximum photons in the wide spectral range, resulting in higher efficiency than single-junction solar cells. WBG (>1.6 eV) perovskites are currently being studied a lot based on lead mixed-halide perovskites, and the power conversion efficiency of lead mixed-halide WBG perovskite solar cells (PSCs) reaches 21.1%. Despite the excellent device performance of lead WBG PSCs, their commercialization is hampered by their Pb toxicity and low stability. Hence, lead-free, less toxic WBG perovskite absorbers are needed for constructing lead-free perovskite tandem solar cells. In this review, various strategies for achieving high-efficiency WBG lead-free PSCs are discussed, drawing inspiration from prior research on WBG lead-based PSCs. The existing issues of WBG perovskites such as VOC loss are discussed, and toxicity issues associated with lead-based perovskites are also addressed. Subsequently, the natures of lead-free WBG perovskites are reviewed, and recently emerged strategies to enhance device performance are proposed. Finally, their applications in lead-free all perovskite tandem solar cells are introduced. This review presents helpful guidelines for eco-friendly and high-efficiency lead-free all perovskite tandem solar cells.
Collapse
Affiliation(s)
- Won Jin Jang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
26
|
Zhang W, Liu H, Yan F, Dong B, Wang HL. Recent Progress of Low-Toxicity Poor-Lead All-Inorganic Perovskite Solar Cells. SMALL METHODS 2024; 8:e2300421. [PMID: 37350508 DOI: 10.1002/smtd.202300421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Organic-inorganic hybrid perovskite solar cells (PSCs) have achieved an impressive certified efficiency of 25.7%, which is comparatively higher than that of commercial silicon solar cells (23.3%), showing great potential toward commercialization. However, the low stability and high toxicity due to the presence of volatile organic components and toxic metal lead in the perovskites pose significant challenges. To obtain robust and low-toxicity PSCs, substituting organic cations with pure inorganic cations, and partially or fully replacing the toxic Pb with environmentally benign metals, is one of the promising methods. To date, continuous efforts have been made toward the construction of highly performed low-toxicity inorganic PSCs with astonishing breakthroughs. This review article provides an overview of recent progress in inorganic PSCs in terms of lead-reduced and lead-free compositions. The physical properties of poor-lead all-inorganic perovskites are discussed to unveil the major challenges in this field. Then, it reports notable achievements for the experimental studies to date to figure out feasible methods for efficient and stable poor-lead all-inorganic PSCs. Finally, a discussion of the challenges and prospects for poor-lead all-inorganic PSCs in the future is presented.
Collapse
Affiliation(s)
- Weihai Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Heng Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Furi Yan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baichuan Dong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hsing-Lin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Key Laboratory of Electric Driving Force Energy Materials of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
27
|
Mihalyi-Koch W, Folpini G, Roy CR, Kaiser W, Wu CS, Sanders KM, Guzei IA, Wright JC, De Angelis F, Cortecchia D, Petrozza A, Jin S. Tuning Structure and Excitonic Properties of 2D Ruddlesden-Popper Germanium, Tin, and Lead Iodide Perovskites via Interplay between Cations. J Am Chem Soc 2023; 145:28111-28123. [PMID: 38091498 DOI: 10.1021/jacs.3c09793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The compositional tunability of 2D metal halide perovskites enables exploration of diverse semiconducting materials with different structural features. However, rationally tuning the 2D perovskite structures to target physical properties for specific applications remains challenging, especially for lead-free perovskites. Here, we study the effect of the interplay of the B-site (Ge, Sn, and Pb), A-site (cesium, methylammonium, and formamidinium), and spacer cations on the structure and optical properties of a new series of 2D Ruddlesden-Popper perovskites using the previously unreported spacer cation 4-bromo-2-fluorobenzylammonium (4Br2FBZ). We report eight new crystal structures and study the consequence of varying the B-site (Pb, Sn, Ge) and dimension (n = 1, 2, vs 3D). Dimension strongly influences local distortion and structural symmetry, and the increased octahedral tilting and lone pair effects in Ge perovskites lead to a polar n = 2 perovskite that exhibits second harmonic generation, (4Br2FBZ)2(Cs)Ge2I7. In contrast, the analogous Sn and Pb perovskites remain centrosymmetric, but the B-site metal influences the photoluminescence properties. The Pb perovskites exhibit broad, defect-mediated emission at low temperature, whereas the Sn perovskites show purely excitonic emission over the entire temperature range, but the carrier recombination dynamics depend on dimensionality and dark excitonic states. Wholistic understanding of these differences that arise based on cations and dimensionality can guide the rational materials design of 2D perovskites for targeting physical properties for optoelectronic applications based on the interplay of cations and the connectivity of the inorganic framework.
Collapse
Affiliation(s)
- Willa Mihalyi-Koch
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Giulia Folpini
- Center for Nano Science and Technology @Polimi, Istituto Italiana di Tecnologia, 20134 Milano, Italy
| | - Chris R Roy
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Waldemar Kaiser
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), 06123 Perugia, Italy
| | - Chun-Sheng Wu
- Center for Nano Science and Technology @Polimi, Istituto Italiana di Tecnologia, 20134 Milano, Italy
| | - Kyana M Sanders
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Filippo De Angelis
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), 06123 Perugia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia and UdR INSTM, 06123 Perugia, Italy
- Department of Natural Sciences & Mathematics, College of Sciences & Human Studies, Prince Mohammad Bin Fahd University, Dhahran 34754, Saudi Arabia
- SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University, Suwon, Korea, 440-746
| | - Daniele Cortecchia
- Center for Nano Science and Technology @Polimi, Istituto Italiana di Tecnologia, 20134 Milano, Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, 40136 Bologna, Italy
| | - Annamaria Petrozza
- Center for Nano Science and Technology @Polimi, Istituto Italiana di Tecnologia, 20134 Milano, Italy
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Marjanowska A, El Karout H, Guichaoua D, Sahraoui B, Płóciennik P, Zawadzka A. Topography and Nonlinear Optical Properties of Thin Films Containing Iodide-Based Hybrid Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:50. [PMID: 38202504 PMCID: PMC10780914 DOI: 10.3390/nano14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
This article covers selected properties of organic-inorganic thin films of hybrid perovskites with the summary formulas CH3NH3MI3, where M = Pb, Cd, Ge, Sn, Zn. The paper discusses not only the history, general structure, applications of perovskites and the basics of the theory of nonlinear optics, but also the results of experimental research on their structural, spectroscopic, and nonlinear optical properties. The samples used in all presented studies were prepared in the physical vapor deposition process by using co-deposition from two independent thermal sources containing the organic and inorganic parts of individual perovskites. Ultimately, thin layers with a thickness of the order of nanometers were obtained on glass and crystalline substrates. Their structural properties were characterized by atomic force microscopy imaging. Spectroscopic tests were used to confirm the tested films' transmission quality and determine previously unknown physical parameters, such as the absorption coefficient and refractive index. Experimental results of the nonlinear optical properties were obtained by studying the second and third harmonic generation processes and using initial sample polarization in the so-called Corona poling process. The obtained experimental results allowed us to determine the second- and third-order nonlinear optical susceptibility of the tested materials.
Collapse
Affiliation(s)
- Agnieszka Marjanowska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
- LPhiA, SFR Matrix, University of Angers, Bd Lavoisier 2, 49045 Angers CEDEX 2, France; (H.E.K.); (D.G.); (B.S.)
| | - Houda El Karout
- LPhiA, SFR Matrix, University of Angers, Bd Lavoisier 2, 49045 Angers CEDEX 2, France; (H.E.K.); (D.G.); (B.S.)
- MOLTECH-Anjou-UMR CNRS 6200, SFR MATRIX, University of Angers, 49000 Angers, France
| | - Dominique Guichaoua
- LPhiA, SFR Matrix, University of Angers, Bd Lavoisier 2, 49045 Angers CEDEX 2, France; (H.E.K.); (D.G.); (B.S.)
| | - Bouchta Sahraoui
- LPhiA, SFR Matrix, University of Angers, Bd Lavoisier 2, 49045 Angers CEDEX 2, France; (H.E.K.); (D.G.); (B.S.)
| | - Przemysław Płóciennik
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Anna Zawadzka
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland;
| |
Collapse
|
29
|
Zhao YY, Sheng SY. The electronic and optical properties of Cs2BX6 (B = Zr, Hf) perovskites with first-principle method. PLoS One 2023; 18:e0292399. [PMID: 38134027 PMCID: PMC10745151 DOI: 10.1371/journal.pone.0292399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/19/2023] [Indexed: 12/24/2023] Open
Abstract
The electronic structures and absorption properties of Cs2BX6 halide compounds are investigated with first principle calculation and exchange correlation functional of GGA-PBE. Pressure and halogen ion doping are employed to regulate band gap. All materials suffer transition from indirect to direct band gap semiconductors but with different phase transition pressure. Structural and band structure calculating results show that the value of phase transition pressure is mainly determined by the volume of octahedron. When the volume of vacancy octahedron is much less than B-ion octahedron, the lowest band point of B-d orbitals transforms to Γ point, then the indirect semiconductors transform into direct band gap semiconductors. Calculating results of optical absorption implied that the systems have obvious blue shift, which result in the optical properties reduced. Based on suitable band gap and higher absorption coefficient, Cs2ZrI4Br2 can be an ideal candidate for perovskites solar cells.
Collapse
Affiliation(s)
- Yang-Yang Zhao
- Department of basic education, Criminal Investigation Police University of China, Shenyang, Liaoning, China
| | - Si-Yuan Sheng
- Department of Physics, Shenyang University of Chemical Technology, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Jung A, Li Y, Ok KM. Chiral amino acid-templated tin fluorides tailoring nonlinear optical properties, birefringence, and photoluminescence. Dalton Trans 2023; 53:105-114. [PMID: 38047538 DOI: 10.1039/d3dt03257d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In this study, we successfully synthesized two types of new chiral amino acid-templated tin fluoride crystals: (R)-[(C8H10NO3)2]Sn(IV)F6, (S)-[(C8H10NO3)2]Sn(IV)F6, (R)-[C8H10NO3]Sn(II)F3, and (S)-[C8H10NO3]Sn(II)F3, employing a slow evaporation method. The crystal structures of Sn(IV)-compounds were determined to belong to the noncentrosymmetric (NCS) nonpolar space group, P21212. Conversely, the structures of Sn(II)-compounds were found to crystallize in the NCS polar space group, P21, as revealed by single-crystal X-ray diffraction analysis. Remarkably, Sn(IV)-compounds exhibited a larger birefringence (0.328@546.1 nm), attributed to the well-stacked arrangement of planar π-conjugated benzene rings along the b-axis. The ability of tin(IV) fluorides to form more hydrogen bonds with ligands increased the probability of π-π interactions between benzene rings, enabling the growth of centimeter-sized crystals in Sn(IV)-compounds. In contrast, Sn(II)-compounds displayed a stronger second-harmonic generation (SHG) response (0.85 × KDP) than Sn(IV)-compounds (0.46 × KDP). This enhanced SHG response in Sn(II)-compounds was attributed to the increased dipole moments resulting from the presence of lone pairs. Additionally, Sn(II)-compounds exhibited photoluminescent properties due to the transition from the metal-to-ligand charge transfer state, facilitated by the presence of the lone pairs.
Collapse
Affiliation(s)
- Ahyung Jung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Yang Li
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
31
|
Qiu ZX, Zheng ZX, Jiang XM, Liu BW, Guo GC. The first polyanion-substitution-driven centrosymmetric-to-noncentrosymmetric structural transformation realizing an excellent nonlinear optical supramolecule [Cd 4P 2][CdBr 4]. Chem Sci 2023; 14:13568-13573. [PMID: 38033884 PMCID: PMC10685307 DOI: 10.1039/d3sc04818g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Crystallographically, noncentrosymmetricity (NCS) is an essential precondition and foundation of achieving nonlinear optical (NLO), pyroelectric, ferroelectric, and piezoelectric materials. Herein, structurally, octahedral [SmCl6]3- is substituted by the acentric tetrahedral polyanion [CdBr4]2-, which is employed as a templating agent to induce centrosymmetric (CS)-to-NCS transformation based on the new CS supramolecule [Cd5P2][SmCl6]Cl (1), thereby providing the NCS supramolecule [Cd4P2][CdBr4] (2). Meanwhile, this replacement further results in the host 2D ∞2[Cd5P2]4+ layers converting to yield the twisted 3D ∞3[Cd4P2]2+ framework, which promotes the growth of bulk crystals. Additionally, phase 2 possesses well-balanced NLO properties, enabling considerable second-harmonic generation (SHG) responses (0.8-2.7 × AgGaS2) in broadband spectra, the thermal expansion anisotropy (2.30) together with suitable band gap (2.37 eV) primarily leading to the favorable laser-induced damage threshold (3.33 × AgGaS2), broad transparent window, and sufficient calculated birefringence (0.0433) for phase-matching ability. Furthermore, the first polyanion substitution of the supramolecule plays the role of templating agent to realize the CS-to-NCS transformation, which offers an effective method to rationally design promising NCS-based functional materials.
Collapse
Affiliation(s)
- Zhi-Xin Qiu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Zhe-Xiong Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Opto-Electronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Opto-Electronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Opto-Electronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
32
|
Cui Q, Liu X, Li N, Zeng H, Chu D, Li H, Song X, Xu Z, Liu Y, Zhu H, Zhao K, Liu SF. A New Metal-Free Molecular Perovskite-Related Single Crystal with Quantum Wire Structure for High-Performance X-Ray Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308945. [PMID: 37948432 DOI: 10.1002/smll.202308945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 11/12/2023]
Abstract
The family of metal-free molecular perovskites, an emerging novel class of eco-friendly semiconductor, welcomes a new member with a unique 1D hexagonal perovskite structure. Lowering dimensionality at molecular level is a facile strategy for crystal structure conversion, optoelectronic property regulation, and device performance optimization. Herein, the study reports the design, synthesis, packing structure, and photophysical properties of the 1D metal-free molecular perovskite-related single crystal, rac-3APD-NH4 I3 (rac-3APD= racemic-3-Aminopiperidinium), that features a quantum wire structure formed by infinite chains of face-sharing NH4 I6 octahedra, enabling strong quantum confinement with strongly self-trapped excited (STE) states to give efficient warm orange emission with a photoluminescence quantum yield (PLQY) as high as ≈41.6%. The study accordingly unveils its photoexcited carrier dynamics: rac-3APD-NH4 I3 relaxes to STE state with a short lifetime of 10 ps but decays to ground state by emitting photons with a relatively longer lifetime of 560 ps. Additionally, strong quantum confinement effect is conducive to charge transport along the octahedral channels that enables the co-planar single-crystal X-ray detectors to achieve a sensitivity as high as 1556 µC Gyair -1 cm-2 . This work demonstrates the first case of photoluminescence mechanism and photophysical dynamics of 1D metal-free perovskite-related semiconductor, as well as the promise for high-performance X-ray detector.
Collapse
Affiliation(s)
- Qingyue Cui
- Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinmei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hanqing Zeng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Depeng Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yanping Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haiming Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Jan ST, Noman M. Comprehensive analysis of heterojunction compatibility of various perovskite solar cells with promising charge transport materials. Sci Rep 2023; 13:19015. [PMID: 37923910 PMCID: PMC10624924 DOI: 10.1038/s41598-023-46482-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
The allure of perovskite solar cells (PSCs), which has captivated the interest of researchers, lies in their versatility to incorporate a wide range of materials within the cell's structure. The compatibility of these materials plays a vital role in the performance enhancement of the PSC. In this study, multiple perovskite materials including FAPbI3, MAGeI3 and MASnI3 are numerically modelled along with the recently emerged kesterite (CBTS, CMTS, and CZTS) and zinc-based (ZnO and CdZnS) charge transport materials. To fully explore the potential of PSCs and comprehend the interplay among these materials, a total of 18 PSC structures are modeled from different material combinations. The impact of band gap, electron affinity, absorption, band alignment, band offset, electric field, recombination rate, thickness, defects, and work function were analyzed in detail through a systematic approach. The reasons for varying performance of different PSCs are also identified. Based on the simulated results, the most suitable charge transport materials are CdZnS/CMTS for FAPbI3 producing a power conversion efficiency (PCE) of 22.05%, ZnO/CZTS for MAGeI3 with PCE of 17.28% and ZnO/CBTS for MASnI3 with a PCE of 24.17%.
Collapse
Affiliation(s)
- Shayan Tariq Jan
- U.S.-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology, Peshawar, Pakistan
- Department of Energy Engineering Technology, University of Technology, Nowshera, Pakistan
| | - Muhammad Noman
- U.S.-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology, Peshawar, Pakistan.
| |
Collapse
|
34
|
Jiang X, Tao Y, Gu J, Jin L, Li C, Zhang W, Fu Y. Broadband emission originating from the stereochemical expression of 6s 2 lone pairs in two-dimensional lead bromide perovskites. Dalton Trans 2023; 52:15489-15495. [PMID: 37552134 DOI: 10.1039/d3dt01627g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The stereochemical expression of the 6s2 lone pair on the lead atom has a significant impact on the crystal structures and physical properties of lead halide perovskites. Two-dimensional (2D) lead bromide perovskites often exhibit a broadband emission, yet the structural origin of the broadband emission has been under debate. Here, we report the synthesis and characterization of a 2D lead bromide hybrid (4-chlorophenylammonium)2PbBr4 that consists of a combination of the octahedral unit PbBr6 and the rarely observed capped octahedral unit PbBr7 through corner-sharing and edge-sharing linkages. The seven-coordination geometry indicates a strong stereo-active lone pair on the Pb2+ cation. By comparing this structure with two representative 2D perovskites, (benzylammonium)2PbBr4 and (4-aminotetrahydropyran)2PbBr4, we establish how the lone pair expression affects the local coordination geometry of the Pb2+ cation and the resulting optical and electronic properties. As the Pb-Br bond length increases, the lone pair expression leads to off-centering displacement of Pb2+ within the octahedra and then the formation of seven-coordination capped octahedra. Density functional theory calculations indicate that the off-centering distorted octahedra and capped octahedra are due to the asymmetric distribution of the Pb electrons that have both s and p orbital characteristics. Spectroscopic studies show the photoluminescence spectra evolving from narrowband emission to broadband emission with increasing LPE, as well as softer and more anharmonic lattice vibrations that facilitate exciton self-trapping. Our results demonstrate that lone pairs could be a powerful design rule for developing light emitting materials.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Yu Tao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jiazhen Gu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Leyang Jin
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Chen Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
35
|
Wang H, Li J, Lu H, Gull S, Shao T, Zhang Y, He T, Chen Y, He T, Long G. Chiral Hybrid Germanium(II) Halide with Strong Nonlinear Chiroptical Properties. Angew Chem Int Ed Engl 2023; 62:e202309600. [PMID: 37610865 DOI: 10.1002/anie.202309600] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
Due to the pronounced anisotropic response to circularly polarized light, chiral hybrid organic-inorganic metal halides have been regarded as promising candidates for the application in nonlinear chiroptics, especially for the second-harmonic generation circular dichroism (SHG-CD) effect. However, designing novel lead-free chiral hybrid metal halides with large anisotropy factors and high laser-induced damage thresholds (LDT) of SHG-CD remains challenging. Herein, we develop the first chiral hybrid germanium halide, (R/S-NEA)3 Ge2 I7 ⋅H2 O (R/S-NGI), and systematically investigated its linear and nonlinear chiroptical properties. S-NGI and R-NGI exhibit large anisotropy factors (gSHG-CD ) of 0.45 and 0.48, respectively, along with a high LDT of 38.46 GW/cm2 ; these anisotropy factors were the highest values among the reported lead-free chiral hybrid metal halides. Moreover, the effective second-order nonlinear optical coefficient of S-NGI could reach up to 0.86 pm/V, which was 2.9 times higher than that of commercial Y-cut quartz. Our findings facilitate a new avenue toward lead-free chiral hybrid metal halides, and their implementation in nonlinear chiroptical applications.
Collapse
Affiliation(s)
- Hebin Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Junzi Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haolin Lu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Sehrish Gull
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tianyin Shao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yunxin Zhang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei He
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tingchao He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guankui Long
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
36
|
Matuhina A, Grandhi GK, Bergonzoni A, Pedesseau L, Grisorio R, Annurakshita S, Ali-Löytty H, Varghese R, Lahtonen K, Volonakis G, Pecunia V, Bautista G, Even J, Vivo P. Surface and optical properties of phase-pure silver iodobismuthate nanocrystals. NANOSCALE 2023; 15:14764-14773. [PMID: 37646120 DOI: 10.1039/d3nr02742b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The study of surface defects is one of the forefronts of halide perovskite research. In the nanoscale regime, where the surface-to-volume ratio is high, the surface plays a key role in determining the electronic properties of perovskites. Perovskite-inspired silver iodobismuthates are promising photovoltaic absorbers. Herein, we demonstrate the colloidal synthesis of phase pure and highly crystalline AgBiI4 nanocrystals (NCs). Surface-sensitive spectroscopic techniques reveal the rich surface features of the NCs that enable their impressive long-term environmental and thermal stabilities. Notably, the surface termination and its passivation effects on the electronic properties of AgBiI4 are investigated. Our atomistic simulations suggest that a bismuth iodide-rich surface, as in the case of AgBiI4 NCs, does not introduce surface trap states within the band gap region of AgBiI4, unlike a silver iodide-rich surface. These findings may encourage the investigation of surfaces of other lead-free perovskite-inspired materials.
Collapse
Affiliation(s)
- Anastasia Matuhina
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland.
| | - G Krishnamurthy Grandhi
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland.
| | - Ashanti Bergonzoni
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, F-35000 Rennes, France
| | - Laurent Pedesseau
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, F-35000 Rennes, France
| | - Roberto Grisorio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Shambhavee Annurakshita
- Photonics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Harri Ali-Löytty
- Surface Science Group, Photonics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Riya Varghese
- Photonics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Kimmo Lahtonen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, Tampere FI-33014, Finland
| | - George Volonakis
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35700 Rennes, France
| | - Vincenzo Pecunia
- School of Sustainable Energy Engineering, Simon Fraser University, 5118-10285 University Drive, Surrey, British Columbia V3T 0N1, Canada
| | - Godofredo Bautista
- Photonics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, F-35000 Rennes, France
| | - Paola Vivo
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland.
| |
Collapse
|
37
|
Morteza Najarian A, Dinic F, Chen H, Sabatini R, Zheng C, Lough A, Maris T, Saidaminov MI, García de Arquer FP, Voznyy O, Hoogland S, Sargent EH. Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites. Nature 2023; 620:328-335. [PMID: 37438526 DOI: 10.1038/s41586-023-06209-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/12/2023] [Indexed: 07/14/2023]
Abstract
Perovskites with low ionic radii metal centres (for example, Ge perovskites) experience both geometrical constraints and a gain in electronic energy through distortion; for these reasons, synthetic attempts do not lead to octahedral [GeI6] perovskites, but rather, these crystallize into polar non-perovskite structures1-6. Here, inspired by the principles of supramolecular synthons7,8, we report the assembly of an organic scaffold within perovskite structures with the goal of influencing the geometric arrangement and electronic configuration of the crystal, resulting in the suppression of the lone pair expression of Ge and templating the symmetric octahedra. We find that, to produce extended homomeric non-covalent bonding, the organic motif needs to possess self-complementary properties implemented using distinct donor and acceptor sites. Compared with the non-perovskite structure, the resulting [GeI6]4- octahedra exhibit a direct bandgap with significant redshift (more than 0.5 eV, measured experimentally), 10 times lower octahedral distortion (inferred from measured single-crystal X-ray diffraction data) and 10 times higher electron and hole mobility (estimated by density functional theory). We show that the principle of this design is not limited to two-dimensional Ge perovskites; we implement it in the case of copper perovskite (also a low-radius metal centre), and we extend it to quasi-two-dimensional systems. We report photodiodes with Ge perovskites that outperform their non-octahedral and lead analogues. The construction of secondary sublattices that interlock with an inorganic framework within a crystal offers a new synthetic tool for templating hybrid lattices with controlled distortion and orbital arrangement, overcoming limitations in conventional perovskites.
Collapse
Affiliation(s)
- Amin Morteza Najarian
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Filip Dinic
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hao Chen
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Randy Sabatini
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Chao Zheng
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alan Lough
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Makhsud I Saidaminov
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - F Pelayo García de Arquer
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oleksandr Voznyy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sjoerd Hoogland
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
AlZoubi T, Mourched B, Al Gharram M, Makhadmeh G, Abu Noqta O. Improving Photovoltaic Performance of Hybrid Organic-Inorganic MAGeI 3 Perovskite Solar Cells via Numerical Optimization of Carrier Transport Materials (HTLs/ETLs). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2221. [PMID: 37570538 PMCID: PMC10420907 DOI: 10.3390/nano13152221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
In this study, a hybrid organic-inorganic perovskite solar cell (PSC) based on methylammonium germanium triiodide (MAGeI3), which is composed of methylammonium (CH3NH3+) cations and germanium triiodide (GeI3-) anions, has been numerically studied using SCAPS-1d codes. An extensive investigation of various electron transport layers (ETLs) and hole transport layers (HTLs) was conducted to identify the most optimal device configuration. The FTO/ZnOS/MAGeI3/PEDOT-WO3 structure performed the highest efficiency of all combinations tested, with an impressive optimized efficiency of 15.84%. This configuration exhibited a Voc of 1.38 V, Jsc of 13.79 mA/cm2, and FF of 82.58%. J-V characteristics and external quantum efficiency (EQE) measurements indicate that this device offers superior performance, as it has reduced current leakage, improved electron and hole extraction characteristics, and reduced trap-assisted interfacial recombination. Optimum device performance was achieved at active layer thickness of 560 nm. These findings may also serve as a basis for developing lightweight and ultra-thin solar cells, in addition to improving overall efficiency. Furthermore, a comprehensive correlation study was conducted to evaluate the optimum thickness and doping level for both ZnOS-ETL and PEDOT-WO3-HTL. The photovoltaic performance parameters of the FTO/ZnOS/MAGeI3/PEDOT-WO3 structure were analyzed over a wide temperature range (275 K to 450 K). The structure exhibited stable performance at elevated operating temperatures up to 385 K, with only minimal degradation in PCE of approximately 0.42%. Our study underscores the promise of utilizing cost-effective and long-term stability materials like ZnOS and PEDOT-WO3 alongside the toxic-free MAGeI3 perovskite. This combination exhibits significant potential for eco-friendly PSC, paving the way for the development of highly efficient ultra-thin PSC.
Collapse
Affiliation(s)
- Tariq AlZoubi
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Bachar Mourched
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Mahmoud Al Gharram
- Department of Physics, School of Basic Sciences and Humanities, German Jordanian University, Amman 11180, Jordan
| | - Ghaseb Makhadmeh
- Bio-Medical Physics Laboratory, Department of Physics, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Osama Abu Noqta
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| |
Collapse
|
39
|
Lal S, Righetto M, Ulatowski AM, Motti SG, Sun Z, MacManus-Driscoll JL, Hoye RLZ, Herz LM. Bandlike Transport and Charge-Carrier Dynamics in BiOI Films. J Phys Chem Lett 2023; 14:6620-6629. [PMID: 37462354 PMCID: PMC10388347 DOI: 10.1021/acs.jpclett.3c01520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Following the emergence of lead halide perovskites (LHPs) as materials for efficient solar cells, research has progressed to explore stable, abundant, and nontoxic alternatives. However, the performance of such lead-free perovskite-inspired materials (PIMs) still lags significantly behind that of their LHP counterparts. For bismuth-based PIMs, one significant reason is a frequently observed ultrafast charge-carrier localization (or self-trapping), which imposes a fundamental limit on long-range mobility. Here we report the terahertz (THz) photoconductivity dynamics in thin films of BiOI and demonstrate a lack of such self-trapping, with good charge-carrier mobility, reaching ∼3 cm2 V-1 s-1 at 295 K and increasing gradually to ∼13 cm2 V-1 s-1 at 5 K, indicative of prevailing bandlike transport. Using a combination of transient photoluminescence and THz- and microwave-conductivity spectroscopy, we further investigate charge-carrier recombination processes, revealing charge-specific trapping of electrons at defects in BiOI over nanoseconds and low bimolecular band-to-band recombination. Subject to the development of passivation protocols, BiOI thus emerges as a superior light-harvesting semiconductor among the family of bismuth-based semiconductors.
Collapse
Affiliation(s)
- Snigdha Lal
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX13PU, United Kingdom
| | - Marcello Righetto
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX13PU, United Kingdom
| | - Aleksander M Ulatowski
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX13PU, United Kingdom
| | - Silvia G Motti
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX13PU, United Kingdom
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Zhuotong Sun
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Judith L MacManus-Driscoll
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Laura M Herz
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX13PU, United Kingdom
- Institute for Advanced Study, Technical University of Munich, D-85748 Garching, Germany
| |
Collapse
|
40
|
Fan Y, Qiao F, Du D, Bao J, Liang J, Liu H, Shen W. Carbohydrazide-Assisted Morphology and Structure Controlling for Lead-Free Cs 2AgBiBr 6 Double Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37486316 DOI: 10.1021/acsami.3c06149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The stability and toxicity problems have haunted the development and applications of metal halide perovskite materials, for which the lead-free inorganic double perovskite Cs2AgBiBr6 has emerged as a promising substitute in recent years. However, poor film quality has severely limited its photovoltaic performance that could have been induced by some key factors such as high annealing temperature. Herein, we present a facile strategy to fabricate high-quality pinhole-free Cs2AgBiBr6 films with large grain sizes by introducing carbohydrazide (CBH) into the precursor. Detailed characterizations have shown that the carbonyl group (C═O) in CBH plays the critical role in coordinating with Ag+ and Bi3+ cations during the film formation process. As another consequence, the as-fabricated devices have exhibited significantly higher reproducibility for fabrication. By optimizing the amount of CBH, the power conversion efficiency (PCE) relatively increased 37 to 1.57%, which remained 95.0% in an ambient environment for a 1000-h test. Hopefully, this work could facilitate the current technologies in the exploration of high-performance lead-free perovskites such as Cs2AgBiBr6 and better understanding of the mechanism in the additive engineering as well.
Collapse
Affiliation(s)
- Yunhao Fan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Institute of Solar Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feiyang Qiao
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Institute of Solar Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Daxue Du
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Institute of Solar Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiahao Bao
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Institute of Solar Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - JingJing Liang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Institute of Solar Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hong Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Institute of Solar Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenzhong Shen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Institute of Solar Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
41
|
Ašmontas S, Mujahid M. Recent Progress in Perovskite Tandem Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1886. [PMID: 37368318 DOI: 10.3390/nano13121886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Tandem solar cells are widely considered the industry's next step in photovoltaics because of their excellent power conversion efficiency. Since halide perovskite absorber material was developed, it has been feasible to develop tandem solar cells that are more efficient. The European Solar Test Installation has verified a 32.5% efficiency for perovskite/silicon tandem solar cells. There has been an increase in the perovskite/Si tandem devices' power conversion efficiency, but it is still not as high as it might be. Their instability and difficulties in large-area realization are significant challenges in commercialization. In the first part of this overview, we set the stage by discussing the background of tandem solar cells and their development over time. Subsequently, a concise summary of recent advancements in perovskite tandem solar cells utilizing various device topologies is presented. In addition, we explore the many possible configurations of tandem module technology: the present work addresses the characteristics and efficacy of 2T monolithic and mechanically stacked four-terminal devices. Next, we explore ways to boost perovskite tandem solar cells' power conversion efficiencies. Recent advancements in the efficiency of tandem cells are described, along with the limitations that are still restricting their efficiency. Stability is also a significant hurdle in commercializing such devices, so we proposed eliminating ion migration as a cornerstone strategy for solving intrinsic instability problems.
Collapse
Affiliation(s)
- Steponas Ašmontas
- Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Muhammad Mujahid
- Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
42
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
43
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
44
|
Sabbah H, Baki ZA. Device Simulation of Highly Stable and 29% Efficient FA0.75MA0.25Sn0.95Ge0.05I3-Based Perovskite Solar Cell. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091537. [PMID: 37177082 PMCID: PMC10180862 DOI: 10.3390/nano13091537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
A new type of perovskite solar cell based on mixed tin and germanium has the potential to achieve good power conversion efficiency and extreme air stability. However, improving its efficiency is crucial for practical application in solar cells. This paper presents a quantitative analysis of lead-free FA0.75MA0.25Sn0.95Ge0.05I3 using a solar cell capacitance simulator to optimize its structure. Various electron transport layer materials were thoroughly investigated to enhance efficiency. The study considered the impact of energy level alignment between the absorber and electron transport layer interface, thickness and doping concentration of the electron transport layer, thickness and defect density of the absorber, and the rear metal work function. The optimized structures included poly (3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS) as the hole transport layer and either zinc oxide (ZnO) or zinc magnesium oxide (Zn0.7Mg0.3O) as the electron transport layer. The power conversion efficiency obtained was 29%, which was over three times higher than the initial structure. Performing numerical simulations on FA0.75MA0.25Sn0.95Ge0.05I3 can significantly enhance the likelihood of its commercialization. The optimized values resulting from the conducted parametric study are as follows: a short-circuit current density of 30.13 mA·cm-2), an open-circuit voltage of 1.08 V, a fill factor of 86.56%, and a power conversion efficiency of 28.31% for the intended solar cell.
Collapse
Affiliation(s)
- Hussein Sabbah
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Zaher Abdel Baki
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| |
Collapse
|
45
|
Zhang H, Lee JW, Nasti G, Handy R, Abate A, Grätzel M, Park NG. Lead immobilization for environmentally sustainable perovskite solar cells. Nature 2023; 617:687-695. [PMID: 37225881 DOI: 10.1038/s41586-023-05938-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/10/2023] [Indexed: 05/26/2023]
Abstract
Lead halide perovskites are promising semiconducting materials for solar energy harvesting. However, the presence of heavy-metal lead ions is problematic when considering potential harmful leakage into the environment from broken cells and also from a public acceptance point of view. Moreover, strict legislation on the use of lead around the world has driven innovation in the development of strategies for recycling end-of-life products by means of environmentally friendly and cost-effective routes. Lead immobilization is a strategy to transform water-soluble lead ions into insoluble, nonbioavailable and nontransportable forms over large pH and temperature ranges and to suppress lead leakage if the devices are damaged. An ideal methodology should ensure sufficient lead-chelating capability without substantially influencing the device performance, production cost and recycling. Here we analyse chemical approaches to immobilize Pb2+ from perovskite solar cells, such as grain isolation, lead complexation, structure integration and adsorption of leaked lead, based on their feasibility to suppress lead leakage to a minimal level. We highlight the need for a standard lead-leakage test and related mathematical model to be established for the reliable evaluation of the potential environmental risk of perovskite optoelectronics.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin-Wook Lee
- Department of Nano Engineering and Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea
| | - Giuseppe Nasti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | | | - Antonio Abate
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy.
| | - Michael Grätzel
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Nam-Gyu Park
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
46
|
Mehrabian M, Akhavan O, Rabiee N, Afshar EN, Zare EN. Lead-free MAGeI 3 as a suitable alternative for MAPbI 3 in nanostructured perovskite solar cells: a simulation study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57032-57040. [PMID: 36930321 DOI: 10.1007/s11356-023-26497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The lead is a heavy metal with hazardous impacts on environment and human life. Lead-free perovskite solar cells have attracted much attention in recent years, due to eco-friendly characteristics. Meanwhile, Pb-containing cells showed the highest efficiencies among the various types of cells. Hence, designing novel Pb-free solar cells with comparable or better performance than the Pb-containing ones is highly required. In this work, a lead-free methyl-ammonium-germanium-iodide (MAGeI3)-based perovskite solar cell with ITO/TiO2/MAGeI3/Spiro-OMeTAD/Ag multilayer nanostructure has been proposed and its main characteristics including open-circuit voltage (VOC) and power conversion efficiency (η) have been evaluated and compared with those of MAPbI3-based cell, in simulation study. The VOC and η of the MAGeI3-based cell (1.18 V and 11.9%) have been found comparable with those of the MAPbI3 one (1.10 V and 14.6%). These results can excite more attention to Ge as a more environment-friendly element than Pb, in highly efficient upcoming perovskite solar cells.
Collapse
Affiliation(s)
- Masood Mehrabian
- Department of Physics, Faculty of Basic Science, University of Maragheh, P.O. Box, Maragheh, 55181-83111, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Islamic Republic of Iran.
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Islamic Republic of Iran
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Elham Norouzi Afshar
- Department of Physics, Faculty of Basic Science, University of Maragheh, P.O. Box, Maragheh, 55181-83111, Iran
| | | |
Collapse
|
47
|
Ayaydah W, Raddad E, Hawash Z. Sn-Based Perovskite Solar Cells towards High Stability and Performance. MICROMACHINES 2023; 14:806. [PMID: 37421039 DOI: 10.3390/mi14040806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 07/09/2023]
Abstract
Recent years have witnessed rapid development in the field of tin-based perovskite solar cells (TPSCs) due to their environmental friendliness and tremendous potential in the photovoltaic field. Most of the high-performance PSCs are based on lead as the light-absorber material. However, the toxicity of lead and the commercialization raise concerns about potential health and environmental hazards. TPSCs can maintain all the optoelectronic properties of lead PSCs, as well as feature a favorable smaller bandgap. However, TPSCs tend to undergo rapid oxidation, crystallization, and charge recombination, which make it difficult to unlock the full potential of such perovskites. Here, we shed light on the most critical features and mechanisms affecting the growth, oxidation, crystallization, morphology, energy levels, stability, and performance of TPSCs. We also investigate the recent strategies, such as interfaces and bulk additives, built-in electric field, and alternative charge transport materials that are used to enhance the performance of the TPSCs. More importantly, we have summarized most of the recent best-performing lead-free and lead-mixed TPSCs. This review aims to help future research in TPSCs to produce highly stable and efficient solar cells.
Collapse
Affiliation(s)
- Wafa' Ayaydah
- Department of Physics, Birzeit University, Birzeit, Ramallah 71939, Palestine
| | - Eman Raddad
- Department of Physics, Birzeit University, Birzeit, Ramallah 71939, Palestine
| | - Zafer Hawash
- Department of Physics, Birzeit University, Birzeit, Ramallah 71939, Palestine
| |
Collapse
|
48
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
49
|
Qin JP, Pan CY. Synthesis, structure and optical properties of (H2DMAPA)BiBr5, (H2DMAPA)BiBr2I3, (H2DMAPA)2AgBiBr8 and (H2EP)2AgBiBr8 lead-free perovskites. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
50
|
He N, Gong P, Zhang X, Liu Y, Dong L, Lin Z. (C 5N 2H 14)GeBr 4: A 2D Organic Germanium Bromide Perovskite with Strong Orange Photoluminescence Properties. Inorg Chem 2023; 62:823-829. [PMID: 36602526 DOI: 10.1021/acs.inorgchem.2c03432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hybrid organic-inorganic metal halide (OIMH) perovskites are regarded as potential photoluminescent (PL) materials and have attracted intensive attention. Here, we select 1-methylpiperazine as an organic component and successfully obtain a two-dimensional (2D) Ge-based OIMH perovskite, (1-mpz)GeBr4. It features a 2D layered structure composed of distorted [GeBr6]4- octahedra with organic (C5H14N2)2+ located between the layers. (1-mpz)GeBr4 exhibits strong orange color under ultraviolet (UV) light and possesses good PL stability for over 2 months. The photoluminescence quantum efficiency is measured to be 7.15% at room temperature, which is the largest among all reported low-dimensional Ge-based perovskites. Experimental measurements, combined with first-principles calculations, reveal that its PL property is attributed to self-trapped excitons (STEs) from [GeBr6]4- groups. From the deduced structure-property relationship, Ge-based OIMH PL perovskites with good stability and high PL efficiency can be expected.
Collapse
Affiliation(s)
- Nan He
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pifu Gong
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingyu Zhang
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youquan Liu
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Dong
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheshuai Lin
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|