1
|
Gabrienko AA, Chaemchuen S, Kou Z, Ogiwara N, Kitagawa H, Khudozhitkov AE, Stepanov AG, Kolokolov DI, Verpoort F. The Nature of Structural Defects in ZIF-8 Revealed with 1H and 31P MAS NMR and X-Ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2025; 64:e202414823. [PMID: 39291298 DOI: 10.1002/anie.202414823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The metal-organic frameworks (MOFs) attract interest as potential catalysts whose catalytic properties are driven by defects. Several methods have been proposed for the defects-inducing synthesis of MOFs. However, the active species formed on the defective sites remain elusive and uncharacterized, as the spectroscopic fingerprints of these species are hidden by the regular structure signals. In this work, we have performed the synthesis of ZIF-8 MOF with defect-inducing procedures using fully deuterated 2-methylimidazolate ligands to enhance the defective sites' visibility. By combining 1H and 31P MAS NMR spectroscopy and X-ray absorption spectroscopy, we have found evidence for the presence of different structural hydroxyl Zn-OH groups in the ZIF-8 materials. It is demonstrated that the ZIF-8 defect sites are represented by Zn-OH hydroxyl groups with the signals at 0.3 and -0.7 ppm in the 1H MAS NMR spectrum. These species are of basic nature and may be responsible for the catalytic activity of the ZIF-8 material.
Collapse
Affiliation(s)
- Anton A Gabrienko
- Boreskov Institute of Catalysis Novosibirsk, Ac. Lavrentiev av. 5, Novosibirsk, 630090, Russia
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | - Alexander G Stepanov
- Boreskov Institute of Catalysis Novosibirsk, Ac. Lavrentiev av. 5, Novosibirsk, 630090, Russia
| | - Daniil I Kolokolov
- Boreskov Institute of Catalysis Novosibirsk, Ac. Lavrentiev av. 5, Novosibirsk, 630090, Russia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China
- Joint Institute of Chemical Research (FFMiEN), Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia
| |
Collapse
|
2
|
Xu W, Wu Y, Yu X, Wang H, Qin Y, Yang W, Hu L, Zheng L, Gu W, Lin Y, Zhu C. Ru-OH-Zr Site over Metal-Organic Frameworks Boosts Coreactant Activation for Efficient Electrochemiluminescence. NANO LETTERS 2025; 25:276-283. [PMID: 39713969 DOI: 10.1021/acs.nanolett.4c04956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising electrochemiluminescent (ECL) nanoemitters. Great endeavors have been made to optimize the inherent luminescent properties, yet most MOFs suffer from poor coreactant activation ability, resulting in limited ECL. Therefore, it is urgent to integrate and design efficient catalytic centers within MOFs. Herein, we decorate atomically dispersed Ru onto the Zr-nodes of NU-1000, constructing Ru-OH-Zr centers to synergistically activate coreactants. The proposed NU-Ru enables 7.8 times enhancement in ECL efficiency. Theoretical investigations reveal that Ru atoms with strong electronegativity not only accelerate the charge transfer but also provide superior Lewis acid sites for promoting peroxysulfate binding and activation. Assisted by Bro̷nsted acid groups, the Ru-OH-Zr centers efficiently split the O-O bonds to enrich radicals through a proton-coupled electron transfer process. Furthermore, a direct mode sensor was established for sensitive organophosphorus pesticide analysis based on the interaction between the P═O bond and Lewis acid sites.
Collapse
Affiliation(s)
- Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xin Yu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hengjia Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing 100049, P.R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
3
|
Han W, Shi M, Jiang HL. Scalable and Low-Energy Synthesis of Metal-Organic Frameworks by a Seed-Mediated Approach. Angew Chem Int Ed Engl 2025:e202421942. [PMID: 39777778 DOI: 10.1002/anie.202421942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
The synthesis of metal-organic frameworks (MOFs) by low energy input has been a long-term target for practical applications yet remains a great challenge. Herein, we developed a low-energy MOF growth strategy at a temperature down to 50 °C by simply introducing seeds into the reaction system. The MOFs are continuously grown on the surface of the seeds at a growth rate dozens of times higher than that of conventional solvothermal synthesis at low temperature, while the resulting MOFs possess high crystallinity, porosity, and stability similar to solvothermal seeds. Remarkably, the obtained MOFs feature high-density structural defects with Lewis acidity, thereby displaying more than one order of magnitude higher activity than the MOFs obtained by the conventional solvothermal method in the iodination reaction of substituted arenes. This low-energy synthetic approach is readily scaled up, which would be a significant step forward in the dream of the MOF industry.
Collapse
Affiliation(s)
- Wentao Han
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Minghao Shi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
4
|
Ma M, Chen E, Yue H, Tian G, Feng S. Entropy engineering activation of UiO-66 for boosting catalytic transfer hydrogenation. Nat Commun 2025; 16:367. [PMID: 39753533 PMCID: PMC11699162 DOI: 10.1038/s41467-024-52225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/27/2024] [Indexed: 01/06/2025] Open
Abstract
High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.4 μmol/g, which increases the abundance of Lewis acid-base sites, thereby achieving a significant improvement in the performance of the catalytic transfer hydrogenation (CTH) reaction. Systematic investigation manifests that the special electronic structure of HE-UiO-66 enhances the interaction and bonding with substrate molecules and reduces the energy barrier of the hydrogen transfer process. Our approach offers a new strategy for constructing coordination unsaturated metal sites in MOFs.
Collapse
Affiliation(s)
- Mingwei Ma
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Enpeng Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Huijuan Yue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Ge Tian
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| |
Collapse
|
5
|
Wang Z, Yuan C, Yang D, Cui M, Tang J, Zhang Z, Qiao X. Defect-derived catalytic sites in Ce/Zr-UiO-66 for degradation of hexachlorobenzene. Dalton Trans 2024. [PMID: 39714129 DOI: 10.1039/d4dt02951h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
It is of great significance to develop catalysts for the degradation of hexachlorobenzene from the industrial thermal process. In this paper, formic acid was used as a modulator to generate defect sites in Ce/Zr-UiO-66 with intrinsic Brønsted acidity. The defective formate ligands were removed through methanol-water vapor treatment to expose additional open metal sites with Lewis acidity. The intrinsic Brønsted acid sites of the resulting Ce/Zr-UiO-66-FA-P achieved a hexachlorobenzene degradation efficiency of 99.5% at 250 °C. The generated Lewis acid sites facilitated the C-C cleavage of degradation intermediates. More than 95.0% of the final products were CO2/CO, coupled with chlorinated alkanes/alkenes, which outperformed other benchmark metal oxide catalysts. The Ce/Zr-UiO-66-FA-P catalyst maintained its catalytic activity in the model industrial flue gas and humid environment. The degradation pathway of hexachlorobenzene was tracked using in situ FT-IR spectra.
Collapse
Affiliation(s)
- Zhengyan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Chenhao Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Dong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, Nanjing 211816, China.
| |
Collapse
|
6
|
Zhang Y, Singh MP, Bian L, Cao T, Xiong W, Ju Q, Fang Z. Enhancing the Pseudocapacitive Energy Storage of Coordination Polymers by Artificially Constructed Defective Sites Anchoring Redox-Active Species. Inorg Chem 2024; 63:23926-23938. [PMID: 39639462 DOI: 10.1021/acs.inorgchem.4c04288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Coordination polymers (CPs) have emerged as potential energy storage materials for supercapacitors due to their tunable chemical composition, structural diversity, and multielectron redox-active sites. However, besides poor cycling stability, the practical application of dense CPs in supercapacitors is generally limited by low specific capacitance and high resistance, which are caused by their low specific surface area and dense frameworks, resulting in insufficient redox reactions of metal sites and poor ion diffusion, respectively. Here, we synthesize a new dense CP {CP-1: [Ce(obb)(HCOO)]∞} via self-assembly of the Ce cation and 4,4'-oxidibenzoate (obb2-). The specific capacitance of CP-1 increases by 156.7 times, and its lifetime after charge-discharge for 5000 cycles is elevated from 62 to 86.7%; meanwhile, the resistance of the positive electrode is reduced from 1.05 to 0.73 Ω through this defect engineering strategy (DES), i.e., cyclic voltammetry sweep in a sulfuric acid electrolyte to artificially construct defects for anchoring the redox-active species (ferricyanide anions). To investigate the universality of this strategy, we have applied it to the other two previously reported CPs {CP-2: [Ce4(obb)6(H2O)9·(H2O)]∞ and CP-3: [Ce2(obb)3(OH)(H2O)(DMF)]∞}, which are also obtained by self-assembly of the Ce cation and obb2- ligand. By comparing the electrochemical performances of the three pristine CPs and their corresponding defect-engineered CPs obtained through the DES, we have found that (i) this strategy is effective in enhancing the electrochemical performances for all three CP materials and (ii) the effect of this strategy on improving the electrochemical performance of CP-1 with a three-dimensional dense network is better than that of CP-3 with a layered structure, and both are better than that of CP-2 with small pores. This work demonstrates a new effective universal strategy for boosting the electrochemical performances of CPs, thus advancing their application in the energy storage field.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Munendra Pal Singh
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Li Bian
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Tian Cao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Weiwei Xiong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Qiang Ju
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Zhenlan Fang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
7
|
Leong ZY, Yao J, Boon N, Eral HB, Li DS, Hartkamp R, Yang HY. Electrochemical Selective Removal of Oxyanions in a Ferrocene-Doped Metal-Organic Framework. ACS NANO 2024; 18:29067-29077. [PMID: 39397348 PMCID: PMC11581342 DOI: 10.1021/acsnano.4c10206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Metal-organic frameworks (MOF) are a class of crystalline, porous materials possessing well-defined channels that have widespread applications across the sustainable landscape. Analogous to zeolites, these materials are well-suited for adsorption processes targeting environmental contaminants. Herein, a zirconium MOF, UiO-66, was functionalized with ferrocene for the selective removal of oxyanion contaminants, specifically NO3-, SO42-, and PO43-. Electrochemical oxidation of the embedded ferrocene pendants induces preferential adsorption of these oxyanions, even in the presence of Cl- in a 10-fold excess. Anion selectivity strongly favoring PO43- (Soxy/comp = 3.80) was observed following an adsorption trend of PO43- > SO42- > NO3- > (10-fold)Cl- in multi-ion solution mixtures. The underlying mechanisms responsible for ion selectivity were elucidated by performing ex situ X-ray photoelectron spectroscopy (XPS) on the heterogeneous electrode surface postadsorption and by calculating the electronic structure of various adsorption configurations. It was eventually shown that oxyanion selectivity stemmed from strong ion association with a positively charged pore interior due to the spatial distribution of charge by oxygen constituents. While ferrocenium provided the impetus for ion migration-diffusion, it was the formation of stable complexes with zirconium nodes that ultimately contributed to selective adsorption of oxyanions.
Collapse
Affiliation(s)
- Zhi Yi Leong
- Pillar
of Engineering Product Development (EPD), Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Jingjing Yao
- Pillar
of Engineering Product Development (EPD), Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Niels Boon
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, Delft 2628 CB, The Netherlands
| | - Hüseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, Delft 2628 CB, The Netherlands
| | - Dong-Sheng Li
- College
of Materials and Chemical Engineering, Key Laboratory of Inorganic
Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Remco Hartkamp
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, Delft 2628 CB, The Netherlands
| | - Hui Ying Yang
- Pillar
of Engineering Product Development (EPD), Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
8
|
Gallego-Villada LA, Cueto J, Alonso-Doncel MDM, Mäki-Arvela P, Alarcón EA, Serrano DP, Murzin DY. Dendritic ZSM-5 zeolites as highly active catalysts for the valorization of monoterpene epoxides. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:10512-10528. [PMID: 39309017 PMCID: PMC11409433 DOI: 10.1039/d4gc04003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Dendritic ZSM-5 zeolites were investigated in the isomerization of monoterpene epoxides, including limonene-1,2-epoxide (LE), α-pinene epoxide, and β-pinene epoxide, which yields high-value compounds used in fragrances, cosmetics, and pharmaceuticals. The fresh catalysts were thoroughly characterized using XRD, Ar physisorption, pyridine-FTIR, TEM, FTIR/DTBPyr, and 27Al MAS NMR. In comparison with conventional and hierarchical ZSM-5 materials, the dendritic zeolite with a crystallization time of 4 days (d-ZSM-5/4d) was the most active material, with a turnover frequency value of 4.4 min-1 for LE isomerization. Likewise, remarkable yields of dihydrocarvone (DHC, 63%, 70 °C, 2 h), campholenic aldehyde (72.4%, 70 °C, 5 min), and myrtanal (47.7%, 50 °C, 5 min) were obtained with this material that exhibited the largest mesopore/external surface area (360 m2 g-1), showing also the narrowest mesopore size distribution. A direct relationship was observed between the TOF values and the concentration of external Brønsted acid sites, showing the presence of strong steric/diffusional limitations that are greatly overcome with the dendritic zeolites. The lower reactivity of trans-LE compared to cis-LE was attributed to the larger steric hindrance of the oxygen atom. Exploration of the solvent influence revealed that the reaction rate of LE was favored by non-polar solvents, while highly selective DHC formation occurred in the solvents of medium polarity. The d-ZSM-5/4d sample was shown to be robust because catalytic activity could be completely recovered by air calcination.
Collapse
Affiliation(s)
- Luis A Gallego-Villada
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University Henriksgatan 2 20500 Turku/Åbo Finland
- Environmental Catalysis Research Group, Chemical Engineering Faculty, Universidad de Antioquia Medellín Colombia
| | - Jennifer Cueto
- Thermochemical Processes Unit, IMDEA Energy Institute Avda. Ramón de la Sagra 3 28935 Móstoles Madrid Spain
| | | | - Päivi Mäki-Arvela
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University Henriksgatan 2 20500 Turku/Åbo Finland
| | - Edwin A Alarcón
- Environmental Catalysis Research Group, Chemical Engineering Faculty, Universidad de Antioquia Medellín Colombia
| | - David P Serrano
- Thermochemical Processes Unit, IMDEA Energy Institute Avda. Ramón de la Sagra 3 28935 Móstoles Madrid Spain
- Chemical and Environmental Engineering Group, Rey Juan Carlos University c/Tulipán s/n 28933 Móstoles Madrid Spain
| | - Dmitry Yu Murzin
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University Henriksgatan 2 20500 Turku/Åbo Finland
| |
Collapse
|
9
|
Hossain SS, Akter S, Biswas S. A Luminescent MOF-Based Sensor for Monitoring of an Anticancer Drug and a Pyrethroid Fungicide Biomarker in Wastewater and Biological Fluids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47713-47723. [PMID: 39189326 DOI: 10.1021/acsami.4c10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The extensive use of insecticides, such as pyrethroids, and pharmaceutical drugs, such as doxorubicin (DOX) has significantly increased to meet the growing demand for food production and disease treatment. Among them, 3-phenoxybenzoic acid (3-PBA), a metabolite of pyrethroid insecticides, poses various health and environmental risks. Similarly, DOX is a well-known anticancer drug and has been continuously used for many years. The high demand and unregulated disposal of these substances raise concerns for both humans and the environment. To address this issue, there is a pressing need to monitor the presence of these analytes in wastewater to protect our ecosystems. This challenge has inspired us to develop an MOF-based fluorometric dual sensor capable of rapid and selective detection of these analytes in aqueous solutions. This work represents the first MOF-based dual probe for detecting these targeted analytes. There was a 98% fluorescence quenching upon the introduction of DOX whereas about a 11-fold increment of the probe's fluorescence intensity took place in the presence of 3-PBA. The sensitivity of the probe is notably high as limits of detection (LOD) are 8.7 nM for DOX and 1.2 nM for 3-PBA. Our designed probe has the highest KSV value for DOX which is 3.37 × 106 M-1. The MOF demonstrated remarkable rapid response time of just 5 and 10 s for DOX and 3-PBA, respectively. The MOF exhibited outstanding selectivity in detecting DOX and 3-PBA, even when other interfering substances were present. We tested the probe's sensing abilities in various environments, such as serum, urine, wastewater, and different pH levels. These findings underscore the sensor's practicality and usefulness in real-world applications. The underlying mechanisms driving the sensing processes were thoroughly investigated by using various modern analytical methods.
Collapse
Affiliation(s)
- Sk Sakir Hossain
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shamim Akter
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
10
|
Xing S, Ma X, Gu Q, Ma N, Zhang Z, Han G, Huang R, Feng X, Yang B, Duan C, Liu Y. Cluster-Cluster Co-Nucleation Induced Defective Polyoxometalate-Based Metal-Organic Frameworks for Efficient Tandem Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400410. [PMID: 38721986 DOI: 10.1002/smll.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The construction of defective sites is one of the effective strategies to create high-activity Metal-Organic frameworks (MOFs) catalysts. However, traditional synthesis methods usually suffer from cumbersome synthesis steps and disordered defect structures. Herein, a cluster-cluster co-nucleation (CCCN) strategy is presented that involves the in situ introduction of size-matched functional polyoxometalates (H6P2W18O62, {P2W18}) to intervene the nucleation process of cluster-based MOFs (UiO-66), achieving one-step inducement of exposed defective sites without redundant post-processing. POM-induced UiO-66 ({P2W18}-0.1@UiO-66) exhibits a classical reo topology for well-defined cluster defects. Moreover, the defective sites and the interaction between POM and skeletal cluster nodes are directly observed by Integrated Differential Phase Contrast in Scanning Transmission Electron Microscopy (iDPC-STEM). Owing to the molecular-level proximity between defective sites and POM in the same nano-reaction space, {P2W18}-0.1@UiO-66 exhibits efficient tandem catalysis in the preparation of γ-valerolactone (γ-GVL) from laevulinic acid (LA) by the combination of Lewis and Brønsted acids with 11 times higher performance than defective UiO-66 formed by conventional coordination modulation strategy. The CCCN strategy is applicable to different POM and has the potential to be extended to other cluster-based MOFs, which will pave a new way for the construction of functional MOFs with multi-centered synergistic catalysis.
Collapse
Affiliation(s)
- Songzhu Xing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xujiao Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nana Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Guoying Han
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunying Duan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Rosales-Martínez C, Assis M, Castillo-Blas C, Abánades Lázaro I. Tuning the electronic properties of Zr UiO-66 through defect-functionalised multivariate modulation. Chem Commun (Camb) 2024; 60:8280-8283. [PMID: 39016000 DOI: 10.1039/d4cc02581d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The multivariate modulation of Metal-Organic Frameworks is presented as a valuable tool to introduce multiple functional units into UiO-66 while increasing its porosity. This manuscript encloses a comprehensive study using p-functionalised benzoate -NO2, -SO3 and -SH modulators, rationalizing the defects introduced and their impact on properties.
Collapse
Affiliation(s)
- Carmen Rosales-Martínez
- Instituto de Ciencia Molecular, Universitat de Valencia, Calle catedrático José Beltrán Martínez, 46980, Paterna, Valencia, Spain.
| | - Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Universidad Catolica de Valencia San Vicente Mártir (UCV), Spain
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, 27 Charles Babbage road, University of Cambridge, CB30FS, Cambridge, UK
| | - Isabel Abánades Lázaro
- Instituto de Ciencia Molecular, Universitat de Valencia, Calle catedrático José Beltrán Martínez, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
12
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
13
|
Cheng L, Fan C, Deng W. Simultaneous size and defect control of metal-organic framework by deep eutectic solvent for efficient perfluoroalkyl substances adsorption: Delving into mechanism. CHEMOSPHERE 2024; 358:142155. [PMID: 38688351 DOI: 10.1016/j.chemosphere.2024.142155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
This study reports an environment-friendly protocol to prepare a metal-organic framework (MOF) with simultaneously controlled particle size and open metal site for adsorption removal of perfluoroalkyl substances (PFASs). The successful preparation of UiO-66 with defect and crystal size modulation was achieved using a green and straightforward method, adjusting the components and molar ratios of ammonium salt/glycolic acid deep eutectic solvents (DESs). The corresponding modulation mechanism primarily relied on the combined regulation of the deprotonation and competitive coordination abilities of the eutectic solvent components. The adsorption process was thoroughly examined using spectral analyses, adsorption behavior profiling, and ab initio molecular dynamics simulations. The results revealed that PFAS adsorption is driven by combined capturing effects, such as CF-π, acid/base coordination, C-F⋯Zr, hydrogen bonding, and hydrophobic interactions. Our findings were not thus that the smaller the crystal size of MOF and the higher the defect concentration in the material, the better the PFAS adsorption performance. The result demonstrated the combined effect of these adsorbent features on PFAS mixtures. Furthermore, they revealed unique differences in sorption properties between these targets with different carbon chain lengths. Extensive defects in DES-based UiO-66 led to larger pores, increasing the availability of many adsorption sites and aiding in PFAS adsorption and diffusion. Nevertheless, the surplus of larger pores in the substance increased the competitive adsorption, reducing the total quantity of PFASs absorbed. Furthermore, various interactions and a less restrictive configuration increased the contact of functional groups with adsorbates, substantially enhancing the adsorption. This study investigates the basic questions about how PFAS molecules are adsorbed on DES-based MOFs and the relationship among the structure, properties, and performance to improve the efficiency of this novel adsorbent.
Collapse
Affiliation(s)
- Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Wanlin Deng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
14
|
A Mohamed W, Chakraborty J, Bourda L, Lavendomme R, Liu C, Morent R, De Geyter N, Van Hecke K, Kaczmarek AM, Van Der Voort P. Engineering Porosity and Functionality in a Robust Twofold Interpenetrated Bismuth-Based MOF: Toward a Porous, Stable, and Photoactive Material. J Am Chem Soc 2024; 146:13113-13125. [PMID: 38700843 DOI: 10.1021/jacs.3c14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Defect engineering in metal-organic frameworks (MOFs) has gained worldwide research traction, as it offers tools to tune the properties of MOFs. Herein, we report a novel 2-fold interpenetrated Bi-based MOF made of a tritopic flexible organic linker, followed by missing-linker defect engineering. This procedure creates a gradually augmented micro- and mesoporosity in the parent (originally nonporous) network. The resulting MOFs can tolerate a remarkable extent of linker vacancy (with absence of up to 60% of linkers per Bi node) created by altering the crystal-growth rate as a function of synthesis temperature and duration. Owing to the enhanced porosity and availability of the uncoordinated Lewis acidic Bi sites, the defect-engineered MOFs manifested improved surface areas, augmented CO2 and water vapor uptake, and catalytic activity. Parallel to this, the impact of defect engineering on the optoelectronic properties of these MOFs has also been studied, offering avenues for new applications.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Jeet Chakraborty
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Laurens Bourda
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Roy Lavendomme
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- Laboratoire de Chimie Organique (LCO), Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels B-1050, Belgium
| | - Chunhui Liu
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- NanoSensing, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Rino Morent
- RUPT-Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41-B4, Ghent 9000, Belgium
| | - Nathalie De Geyter
- RUPT-Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41-B4, Ghent 9000, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Anna M Kaczmarek
- NanoSensing, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| |
Collapse
|
15
|
Chen C, Meng L, Cao L, Zhang D, An S, Liu L, Wang J, Li G, Pan T, Shen J, Chen Z, Shi Z, Lai Z, Han Y. Phase Engineering of Zirconium MOFs Enables Efficient Osmotic Energy Conversion: Structural Evolution Unveiled by Direct Imaging. J Am Chem Soc 2024; 146:11855-11865. [PMID: 38634945 DOI: 10.1021/jacs.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Creating structural defects in a controlled manner within metal-organic frameworks (MOFs) poses a significant challenge for synthesis, and concurrently, identifying the types and distributions of these defects is also a formidable task for characterization. In this study, we demonstrate that by employing 2-sulfonylterephthalic acid as the ligand for synthesizing Zr (or Hf)-based MOFs, a crystal phase transformation from the common fcu topology to the rare jmt topology can be easily facilitated using a straightforward mixed-solvent strategy. The jmt phase, characterized by an extensively open framework, can be considered a derivative of the fcu phase, generated through the introduction of missing-cluster defects. We have explicitly identified both MOF phases, their intermediate states, and the novel core-shell structures they form using ultralow-dose high-resolution transmission electron microscopy. In addition to facilitating phase engineering, the incorporation of sulfonic groups in MOFs imparts ionic selectivity, making them applicable for osmotic energy harvesting through mixed matrix membrane fabrication. The membrane containing the jmt-phase MOF exhibits an exceptionally high peak power density of 10.08 W m-2 under a 50-fold salinity gradient (NaCl: 0.5 M|0.01 M), which surpasses the threshold of 5 W m-2 for commercial applications and can be attributed to the combination of large pore size, extensive porosity, and abundant sulfonic groups in this novel MOF material.
Collapse
Affiliation(s)
- Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lingkun Meng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Li Cao
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Daliang Zhang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Shuhao An
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lingmei Liu
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jianjian Wang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tingting Pan
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jie Shen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
16
|
Yin Y, Fan C, Cheng L, Shan Y. Adsorption of perfluoroalkyl substances on deep eutectic solvent-based amorphous metal-organic framework: Structure and mechanism. ENVIRONMENTAL RESEARCH 2024; 248:118261. [PMID: 38272299 DOI: 10.1016/j.envres.2024.118261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of emerging organic pollutants characterized by high toxicity, environmental persistence, and widespread detection in water sources. The removal of PFASs from water is a matter of global concern, given their detrimental impact on both the environment and public health. Many commonly used PFAS adsorbents demonstrate limited adsorption capacities and/or slow adsorption kinetics. Therefore, there is an urgent need for the development of efficient adsorbents. For the first time, this work systematically investigated the performance of a deep eutectic solvent (DES)-based amorphous metal-organic framework (MOF) for the adsorption of PFASs with different carbon-chain lengths under the state of the mixture in aquatic environments. The adsorption mechanism was probed by a suite of adsorption kinetics studies, adsorption isotherm profiling, spectral characterization, and ab initio molecular dynamics (AIMD) simulations, revealing that PFAS adsorption is driven by synergistic capturing effects including acid/base coordination, CF-π (carbon-fluorine-π), hydrogen bonding, and hydrophobic interactions. Furthermore, the adsorption processes of short-chain and long-chain targets were found to involve different rate-controlling steps and interaction sites. Hydrophobic interactions facilitated the swift arrival of long-chain PFASs at the coordinatively interacting sites between carboxyl termini and Lewis acid Zr unsaturated sites, thanks to their lower reaction barriers. On the other hand, the adsorption of short-chain PFASs primarily relied on a Zr hydroxyl-based ligand exchange force, which would take place at Brønsted acid sites. The existence of massive structural disorder in amorphous UiO-66 led to the development of larger pores, thus improving the accessibility of abundant adsorption sites and facilitating adsorption and diffusion. The presence of multiple types of interactions and flexible structure in defect-rich amorphous UiO-66 significantly increased the exposure of functional groups to the adsorbates. Additionally, this material possessed outstanding regeneration efficiency and outperformed other MOF-based adsorbents with high affinity for targets. It enhances our understanding of the adsorption performances and mechanisms of amorphous materials toward PFASs, thereby paving the way for designing more efficient PFAS adsorbents.
Collapse
Affiliation(s)
- Yaqi Yin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuwei Shan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
17
|
Wang CY, Chang HE, Wang CY, Kurioka T, Chen CY, Mark Chang TF, Sone M, Hsu YJ. Manipulation of interfacial charge dynamics for metal-organic frameworks toward advanced photocatalytic applications. NANOSCALE ADVANCES 2024; 6:1039-1058. [PMID: 38356624 PMCID: PMC10866133 DOI: 10.1039/d3na00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.
Collapse
Affiliation(s)
- Chien-Yi Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Huai-En Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Cheng-Yu Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Tomoyuki Kurioka
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| |
Collapse
|
18
|
Shokouhfar N, Kilaparthi SK, Barras A, Abraham BM, Addad A, Roussel P, Bhatt S, Jain SL, Szunerits S, Morsali A, Boukherroub R. Solar-Driven Ammonia Production through Engineering of the Electronic Structure of a Zr-Based MOF. Inorg Chem 2024; 63:2327-2339. [PMID: 38270093 DOI: 10.1021/acs.inorgchem.3c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
As a hydrogen carrier and a vital component in fertilizer production, ammonia (NH3) is set to play a crucial role in the planet's future. While its industrial production feeds half of the global population, it uses fossil fuels and emits greenhouse gases. To tackle this issue, photocatalytic nitrogen fixation using visible light is emerging as an effective alternative method. This strategy avoids carbon dioxide (CO2) emissions and harnesses the largest share of sunlight. In this work, we successfully incorporated a 5-nitro isophthalic acid linker into MOF-808 to introduce structural defects and open metal sites. This has allowed modulation of the electronic structure of the MOF and effectively reduced the band gap energy from 3.8 to 2.6 eV. Combination with g-C3N4 enhanced further NH3 production, as these two materials possess similar band gap energies, and g-C3N4 has shown excellent performance for this reaction. The nitro groups serve as acceptors, and their integration into the MOF structure allowed effective interaction with the free electron pairs on N-(C)3 in the g-C3N4 network nodes. Based on DFT calculations, it was concluded that the adsorption of N2 molecules on open metal sites caused a decrease in their triple bond energy. The modified MOF-808 showed superior performance compared with the other MOFs studied in terms of N2 photoreduction under visible light. This design concept offers valuable information about how to engineer band gap energy in MOF structures and their combination with appropriate semiconductors for solar-powered photocatalytic reactions, such as N2 or CO2 photoreduction.
Collapse
Affiliation(s)
- Nasrin Shokouhfar
- Department of Chemistry, Tarbiat Modares University, Tehran 14117-13116, Iran
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| | - Sravan Kumar Kilaparthi
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| | - B Moses Abraham
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ahmed Addad
- Unité Matériaux et Transformations CNRS UMR 8207─Université de Lille, Villeneuve d'Ascq 59655, France
| | - Pascal Roussel
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS, Lille F59000, France
| | - Sakshi Bhatt
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
| | - Suman Lata Jain
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
| | - Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| | - Ali Morsali
- Department of Chemistry, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| |
Collapse
|
19
|
Qin H, Sun J, Yang X, Li H, Li X, Wang R, He S, Zhou C. Defective UiO-66 metal-organic gels for optimizing gaseous toluene capture. J Colloid Interface Sci 2024; 655:23-31. [PMID: 37924588 DOI: 10.1016/j.jcis.2023.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Developing high-performance sorbents for volatile organic compounds (VOCs) is urgently required for environmental cleaning and personnel protection. Zirconium-based metal-organic frameworks (Zr-MOFs) have been deemed attractive candidates for gaseous toluene capture due to their superior stability and high adsorption capacity. However, the practical application of powdered Zr-MOFs is hindered by inherent limitations. Here, we report a series of defective UiO-66 metal-organic gels (G66-X) with variable missing linker deficiency by altering the modulator concentration. The defect concentration of the adsorbents has a significant impact on the porosity and gaseous toluene adsorption capacity. Dynamic breakthrough results reveal that G66-9 demonstrates optimal breakthrough time of 336 min/g and uptake amount of 334 mg/g, outperforming those of many other typical toluene adsorbents. The breakthrough times and the uptake capacities dramatically decrease with the increase of adsorption temperature. An outstanding regeneration performance of adsorbents can almost maintain even after five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Haojie Qin
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Junwei Sun
- School of Safety Science and Emergency Management, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Xiaobin Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Xiaopeng Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Song He
- School of Safety Science and Emergency Management, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China.
| |
Collapse
|
20
|
Damacet P, Hannouche K, Gouda A, Hmadeh M. Controlled Growth of Highly Defected Zirconium-Metal-Organic Frameworks via a Reaction-Diffusion System for Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38230659 DOI: 10.1021/acsami.3c16327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The relentless growth of metal-organic framework (MOF) chemistry is paralleled by the persistent urge to control the MOFs physical and chemical properties. While this control is mostly achieved by solvothermal syntheses, room temperature procedures stand out as more convenient and sustainable pathways for the production of MOF materials. Herein, a novel approach to control the crystal size and defect numbers of a dihydroxy-functionalized zirconium-based metal-organic framework (UiO-66(OH)2) at room temperature is reported. Through a reaction-diffusion method in a 1D system, zirconium salt was diffused into an agar gel matrix containing the organic linker to form nanocrystals of UiO-66(OH)2 with tailored structural features that include crystal size distribution, surface area, and defect number. By variation of the synthesis parameters of the system, hierarchical MOF nanocrystals with an average size ranging from 30 nm up to 270 nm and surface areas between 201 and 500 m2 g-1 were obtained in a one-pot synthetic route. To stress the importance of crystal size, morphology, and structural defects on the adsorption properties of UiO-66(OH)2, the adsorption capacity of the MOF toward methylene blue dye was tested with the largest and most defected crystals achieving the best performance of 202 mg/g. The distinctive structural characteristics including the hierarchical micromesoporous frameworks, the nanosized particles, and the highly defective crystals obtained by our synthesis procedure are deemed challenging through the conventional synthesis methods. This work paves the way for engineering MOF crystals with tunable physical and chemical properties, using a green synthesis procedure, for their advantageous use in many desirable applications.
Collapse
Affiliation(s)
- Patrick Damacet
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Karen Hannouche
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Abdelaziz Gouda
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Canada
| | - Mohamad Hmadeh
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
21
|
Liu F, Lu W, Huang J, Pimenta V, Boles S, Demir-Cakan R, Tarascon JM. Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs. Nat Commun 2023; 14:7350. [PMID: 37963861 PMCID: PMC10645864 DOI: 10.1038/s41467-023-43110-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Challenges in enabling next-generation rechargeable batteries with lower cost, higher energy density, and longer cycling life stem not only from combining appropriate materials, but from optimally using cell components. One-size-fits-all approaches to operational cycling and monitoring are limited in improving sustainability if they cannot utilize and capture essential chemical dynamics and states of electrodes and electrolytes. Herein we describe and show how the use of tilted fiber Bragg grating (TFBG) sensors to track, via the monitoring of both temperature and refractive index metrics, electrolyte-electrode coupled changes that fundamentally control lithium sulfur batteries. Through quantitative sensing of the sulfur concentration in the electrolyte, we demonstrate that the nucleation pathway and crystallization of Li2S and sulfur govern the cycling performance. With this technique, a critical milestone is achieved, not only towards developing chemistry-wise cells (in terms of smart battery sensing leading to improved safety and health diagnostics), but further towards demonstrating that the coupling of sensing and cycling can revitalize known cell chemistries and break open new directions for their development.
Collapse
Affiliation(s)
- Fu Liu
- Collège de France, Chimie du Solide et de l'Energie-UMR 8260 CNRS, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)-FR CNRS 3459, Amiens, France
| | - Wenqing Lu
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, Paris, France
| | - Jiaqiang Huang
- The Hong Kong University of Science and Technology (Guangzhou), Sustainable Energy and Environment Thrust, Nansha, Guangzhou, Guangdong, 511400, P. R. China
| | - Vanessa Pimenta
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure, CNRS, PSL University, Paris, France
| | - Steven Boles
- Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rezan Demir-Cakan
- Institute of Nanotechnology, Gebze Technical University, Kocaeli, 41400, Turkey.
- Department of Chemical Engineering, Gebze Technical University, Kocaeli, 41400, Turkey.
| | - Jean-Marie Tarascon
- Collège de France, Chimie du Solide et de l'Energie-UMR 8260 CNRS, Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)-FR CNRS 3459, Amiens, France.
- Sorbonne Université-Université Pierre-et-Marie-Curie Paris (UPMC), Paris, France.
| |
Collapse
|
22
|
Pereira RW, Ramabhadran RO. Accurate Computation of Aqueous p Kas of Biologically Relevant Organic Acids: Overcoming the Challenges Posed by Multiple Conformers, Tautomeric Equilibria, and Disparate Functional Groups with the Fully Black-Box p K-Yay Method. J Phys Chem A 2023; 127:9121-9138. [PMID: 37862610 DOI: 10.1021/acs.jpca.3c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The use of static electronic structure calculations to compute solution-phase pKas offers a great advantage in that a macroscopic bulk property could be computed via microscopic computations involving very few molecules. There are various sources of errors in the quantum chemical calculations though. Overcoming these errors to accurately compute pKas of a plethora of acids is an active area of research in physical chemistry pursued by both computational as well as experimental chemists. We recently developed the pK-Yay method in our attempt to accurately compute aqueous pKas of strong and weak acids. The method is fully black-box, computationally inexpensive, and is very easy for even a nonexpert to use. However, the method was thus far tested on very few molecules (only 16 in all). Herein, in order to assess the future applicability of pK-Yay, we study the effect of multiple conformers, the presence of tautomers under equilibrium, and the impact of a wide variety of functional groups (derivatives of acetic acid with substituents at various positions, dicarboxylic acids, aromatic carboxylic acids, amines and amides, phenols and thiols, and fluorine bearing organic acids). Starting with more than 1000 conformers and tautomers, this study establishes that overall errors of ∼ 1.0 pKa units are routinely obtained for a majority of the molecules. Larger errors are noted in cases where multiple charges, intramolecular hydrogen bonding, and several ionizable functional groups are simultaneously present. An important conclusion to emerge from this work is that, the computed pKas are insensitive (difference <0.5) to whether we consider multiple conformers/tautomers or only choose the most stable conformer/tautomer. Further, pK-Yay captures the stereoelectronic effects arising due to differing axial vs equatorial pattern, and is useful to predict the dominant acid-base equilibrium in a system featuring several equilibria. Overall, pK-Yay may be employed in several chemical applications featuring organic molecules and biomonomers.
Collapse
Affiliation(s)
- Roshni W Pereira
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
23
|
Tatay S, Martínez-Giménez S, Rubio-Gaspar A, Gómez-Oliveira E, Castells-Gil J, Dong Z, Mayoral Á, Almora-Barrios N, M Padial N, Martí-Gastaldo C. Synthetic control of correlated disorder in UiO-66 frameworks. Nat Commun 2023; 14:6962. [PMID: 37907508 PMCID: PMC10618523 DOI: 10.1038/s41467-023-41936-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Changing the perception of defects as imperfections in crystalline frameworks into correlated domains amenable to chemical control and targeted design might offer opportunities for the design of porous materials with superior performance or distinctive behavior in catalysis, separation, storage, or guest recognition. From a chemical standpoint, the establishment of synthetic protocols adapted to control the generation and growth of correlated disorder is crucial to consider defect engineering a practicable route towards adjusting framework function. By using UiO-66 as experimental platform, we systematically explored the framework chemical space of the corresponding defective materials. Periodic disorder arising from controlled generation and growth of missing cluster vacancies can be chemically controlled by the relative concentration of linker and modulator, which has been used to isolate a crystallographically pure "disordered" reo phase. Cs-corrected scanning transmission electron microscopy is used to proof the coexistence of correlated domains of missing linker and cluster vacancies, whose relative sizes are fixed by the linker concentration. The relative distribution of correlated disorder in the porosity and catalytic activity of the material reveals that, contrarily to the common belief, surpassing a certain defect concentration threshold can have a detrimental effect.
Collapse
Affiliation(s)
- Sergio Tatay
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain.
| | | | - Ana Rubio-Gaspar
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain
| | - Eloy Gómez-Oliveira
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain
| | - Javier Castells-Gil
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain
| | - Zhuoya Dong
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P. R. China
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Álvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | | | - Natalia M Padial
- Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain
| | | |
Collapse
|
24
|
León-Alcaide L, López-Cabrelles J, Esteve-Rochina M, Ortí E, Calbo J, Huisman BAH, Sessolo M, Waerenborgh JC, Vieira BJC, Mínguez Espallargas G. Implementing Mesoporosity in Zeolitic Imidazolate Frameworks through Clip-Off Chemistry in Heterometallic Iron-Zinc ZIF-8. J Am Chem Soc 2023; 145:23249-23256. [PMID: 37813379 PMCID: PMC10603776 DOI: 10.1021/jacs.3c08017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/11/2023]
Abstract
Bond breaking has emerged as a new tool to postsynthetically modify the pore structure in metal-organic frameworks since it allows us to obtain pore environments in structures that are inaccessible by other techniques. Here, we extend the concept of clip-off chemistry to archetypical ZIF-8, taking advantage of the different stabilities of the bonds between imidazolate and Zn and Fe metal atoms in heterometallic Fe-Zn-ZIF-8. We demonstrate that Fe centers can be removed selectively without affecting the backbone of the structure that is supported by the Zn atoms. This allows us to create mesopores within the highly stable ZIF-8 structure. The strategy presented, combined with control of the amount of iron centers incorporated into the structure, permits porosity engineering of ZIF materials and opens a new avenue for designing novel hierarchical porous frameworks.
Collapse
Affiliation(s)
- Luis León-Alcaide
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Javier López-Cabrelles
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - María Esteve-Rochina
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Enrique Ortí
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Joaquín Calbo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Bas A. H. Huisman
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Michele Sessolo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - João C. Waerenborgh
- Centro
de Ciências e Tecnologias Nucleares, DECN, Instituto Superior
Técnico, Universidade de Lisboa, Bobadela LRS 2695-066, Portugal
| | - Bruno J. C. Vieira
- Centro
de Ciências e Tecnologias Nucleares, DECN, Instituto Superior
Técnico, Universidade de Lisboa, Bobadela LRS 2695-066, Portugal
| | | |
Collapse
|
25
|
Liang Y, Zhang Z, Su X, Feng X, Xing S, Liu W, Huang R, Liu Y. Coordination Defect-Induced Frustrated Lewis Pairs in Polyoxo-metalate-Based Metal-Organic Frameworks for Efficient Catalytic Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202309030. [PMID: 37488072 DOI: 10.1002/anie.202309030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Precise control of the structure and spatial distance of Lewis acid (LA) and Lewis base (LB) sites in a porous system to construct efficient solid frustrated Lewis pair (FLP) catalyst is vital for industrial application but remains challenging. Herein, we constructed FLP sites in a polyoxometalate (POM)-based metal-organic framework (MOF) by introducing coordination-defect metal nodes (LA) and surface-basic POM with abundant oxygen (LB). The well-defined and unique spatial conformation of the defective POM-based MOF ensure that the distance between LA and LB is at ~4.3 Å, a suitable distance to activate H2 . This FLP catalyst can heterolytically dissociate H2 into active Hδ- , thus exhibiting high activity in hydrogenation, which is 55 and 2.7 times as high as that of defect-free POM-based MOF and defective MOF without POM, respectively. This work provides a new avenue toward precise design multi-site catalyst to achieve specific activation of target substrate for synergistic catalysis.
Collapse
Affiliation(s)
- Yan Liang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaofang Su
- School of Chemistry and Chemical Engineering, Henan Normal University, Henan, 453007, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Songzhu Xing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
26
|
Ghadim EE, Walker M, Walton RI. Rapid synthesis of cerium-UiO-66 MOF nanoparticles for photocatalytic dye degradation. Dalton Trans 2023; 52:11143-11157. [PMID: 37496421 DOI: 10.1039/d3dt00890h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
An unprecedented synthesis method is used to form a series of Ce-UiO-66-X (X = NH2, OH, H, NO2, COOH) metal-organic frameworks by precipitation from mixed solvents, with instantaneous crystallisation on combining separate solutions of ligands and metal precursors. This allows the first direct synthesis of Ce-UiO-66-OH. Powder X-ray diffraction (PXRD) shows that all materials are pure phase with a broadened profile that indicates nano-scale crystallite domain size. The effect of different functional groups on the benzene-1,4-dicarboxylate linker within the UiO-66 structure has been investigated on degradation of two cationic (methylene blue and rhodamine B) and two anionic (Congo red, and Alizarin red S) dyes under UV and visible light irradiation at room temperature. Analysis of the dye adsorption in the absence of light is accounted for using pseudo-first order kinetics, and the Ce-UiO-66-NH2, Ce-UiO-66-OH, and Ce-UiO-66-H materials display a considerable photocatalytic activity to degrade Alizarin red S and Congo red rapidly between 1 and 3 minutes. The materials show excellent photostability and recyclability under UV and visible light, with no loss of crystallinity seen by PXRD and activity maintained over 5 cycles, with 16 hours photostability for Ce-UiO-66-NH2.
Collapse
Affiliation(s)
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Richard I Walton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
27
|
Van Speybroeck V. Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220239. [PMID: 37211031 PMCID: PMC10200353 DOI: 10.1098/rsta.2022.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 05/23/2023]
Abstract
The question is addressed in how far current modelling strategies are capable of modelling dynamic phenomena in realistic nanostructured materials at operating conditions. Nanostructured materials used in applications are far from perfect; they possess a broad range of heterogeneities in space and time extending over several orders of magnitude. Spatial heterogeneities from the subnanometre to the micrometre scale in crystal particles with a finite size and specific morphology, impact the material's dynamics. Furthermore, the material's functional behaviour is largely determined by the operating conditions. Currently, there exists a huge length-time scale gap between attainable theoretical length-time scales and experimentally relevant scales. Within this perspective, three key challenges are highlighted within the molecular modelling chain to bridge this length-time scale gap. Methods are needed that enable (i) building structural models for realistic crystal particles having mesoscale dimensions with isolated defects, correlated nanoregions, mesoporosity, internal and external surfaces; (ii) the evaluation of interatomic forces with quantum mechanical accuracy albeit at much lower computational cost than the currently used density functional theory methods and (iii) derivation of the kinetics of phenomena taking place in a multi-length-time scale window to obtain an overall view of the dynamics of the process. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
|
28
|
Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
29
|
Mohebali H, Moussavi G, Karimi M, Giannakis S. Development of a magnetic Ce-Zr bimetallic MOF as an efficient catalytic ozonation mediator: Preparation, characterization, and catalytic activity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
30
|
Zhao YG, Wang EJ, Zheng JJ, Guan F, Lu Y. Modeling and spectroscopic investigation of U(VI) removal on porous amidoxime-functionalized metal organic framework derived from macromolecular carbohydrate. Int J Biol Macromol 2023:125043. [PMID: 37224909 DOI: 10.1016/j.ijbiomac.2023.125043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The investigation of interaction mechanism of U(VI) selective removal on amidoxime-functionalized metal organic framework (i.e., UiO-66(Zr)-AO) derived from macromolecular carbohydrate is conducive to apply metal organic frameworks in actual environmental remediation. The batch experiments showed that UiO-66(Zr)-AO displayed the fast removal rate (equilibrium time of 0.5 h), high adsorption capacity (384.6 mg/g), excellent regeneration performance (<10 % decrease after three cycles) towards U(VI) removal due to the unprecedented chemical stability, large surface area and simple fabrication. U(VI) removal at different pH can be satisfactorily fitted by diffuse layer modeling with cation exchange at low pH and an inner-sphere surface complexation at high pH. The inner-sphere surface complexation was further demonstrated by X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis. These findings revealed that UiO-66(Zr)-AO can be an effective adsorbent to remove the radionuclides from aqueous solution, which is crucial for recycling of uranium resource and decreasing the uranium harm to the environment.
Collapse
Affiliation(s)
- Yong-Gang Zhao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - En-Jun Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun-Jie Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Fachun Guan
- Institute of Rural Energy and Ecology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yin Lu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
31
|
Mu M, Zhu S, Gao Y, Zhang N, Wang Y, Lu M. Construction of hierarchically porous metal-organic framework HP-UiO-66-30% for sensitive determination of benzoylurea insecticides. Talanta 2023; 260:124540. [PMID: 37116361 DOI: 10.1016/j.talanta.2023.124540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/30/2023]
Abstract
Due to widespread application of benzoylurea insecticides (BUs) and its persistence in environment, the effective capture of benzoylurea insecticides residues in environment is an important issue of environmental safety monitoring. To obtain excellent adsorption performance, creating defective structure in metal-organic frameworks (MOFs) can be employed as the method for adjusting its properties. Zirconium(Ⅳ)-based MOF termed as UiO-66-30% was constructed with 2-aminoterephthalic acid (NH2-BDC) and terephthalic acid (H2BDC) as building blocks. After calcination and removal of thermal-sensitive ligand (NH2-BDC), hierarchically porous UiO-66-30% (HP-UiO-66-30%) with multistage pore structure and good stability was obtained. The unique structure of HP-UiO-66-30% endowed it to achieve instantaneous equilibrium (within 2 min) when it was used as a dispersed solid phase extraction (d-SPE) adsorbent to extract BUs from environmental samples, greatly reducing the operation time. A wide linear range (0.05-200 ng mL-1), good linearity (R2 ≥ 0.9980), low detection limits (0.01-0.03 ng mL-1) and quantification limits (0.05-0.1 ng mL-1) were obtained for BUs. In addition, the HP-UiO-66-30% material possessed the good reusability and the adsorption capacity did not change significantly over 16 adsorption-desorption cycles. Finally, the established dispersed solid phase extraction-high performance liquid chromatography-diode array detector (d-SPE-HPLC-DAD) method was successfully applied to determination of BUs residues in environmental soil samples. The results demonstrated that HP-UiO-66-30% was an excellent sorbent for extraction BUs from environmental samples.
Collapse
Affiliation(s)
- Mengyao Mu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Shiping Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Yanmei Gao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
32
|
Fatima SF, Sabouni R, Garg R, Gomaa H. Recent advances in Metal-Organic Frameworks as nanocarriers for triggered release of anticancer drugs: Brief history, biomedical applications, challenges and future perspective. Colloids Surf B Biointerfaces 2023; 225:113266. [PMID: 36947901 DOI: 10.1016/j.colsurfb.2023.113266] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Metal-Organic Frameworks (MOFs) have emerged as a promising biomedical material due to its unique features such as high surface area, pore volume, variable pore size, flexible functional groups, and excellent efficiency for drug loading. In this review, we explored the use of novel and smart metal organic frameworks as drug delivery vehicles to discover a safer and more controlled mode of drug release aiming to minimize their side effects. Here, we systematically discussed the background of MOFs following a thorough review on structural and physical properties of MOFs, their synthesis techniques, and the important characteristics to establish a strong foundation for future research. Furthermore, the current status on the potential applications of MOF-based stimuli-responsive drug delivery systems, including pH-, ion-, temperature-, light-, and multiple responsive systems for the delivery of anticancer drugs has also been presented. Lastly, we discuss the prospects and challenges in implementation of MOF-based materials in the drug delivery. Therefore, this review will help researchers working in the relevant fields to enhance their understanding of MOFs for encapsulation of various drugs as well as their stimuli responsive mechanism.
Collapse
Affiliation(s)
- Syeda Fiza Fatima
- Master of Science in Biomedical Engineering Program, College of Engineering, American University of Sharjah, P.O. BOX 26666, Sharjah, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| | - Renuka Garg
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Hassan Gomaa
- Department of Chemical and Biochemical Engineering, Western University, London, Canada
| |
Collapse
|
33
|
Liang W, Wang X, Yang W, Zhao S, Wiley D, Haynes BS, Jiang Y, Liu P, Huang J. Tailoring and Identifying Brønsted Acid Sites on Metal Oxo-Clusters of Metal-Organic Frameworks for Catalytic Transformation. ACS CENTRAL SCIENCE 2023; 9:27-35. [PMID: 36712491 PMCID: PMC9881200 DOI: 10.1021/acscentsci.2c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) with Brønsted acidity are an alternative solid acid catalyst for many important chemical and fuel processes. However, the nature of the Brønsted acidity on the MOF's metal cluster or center is underexplored. To design and optimize the acid strength and density in these MOFs, it is important to understand the origin of their acidity at the molecular level. In the present work, isoreticular MOFs, ZrNDI and HfNDI (NDI = N,N'-bis(5-isophthalate)naphthalenediimide), were prepared as a prototypical system to unravel and compare their Brønsted and Lewis acid sites through an array of spectroscopic, computational, and catalytic characterization techniques. With the aid of solid-state nuclear magnetic resonance and density functional calculations, Hf6 oxo-clusters on HfNDI are quantitatively proved to possess a higher density Brønsted acid site, while ZrNDI-based MOFs display stronger and higher-population Lewis acidity. HfNDI-based MOFs exhibit a superior catalytic performance in activating dihydroxyacetone (DHA) and converting DHA to ethyl lactate, with 71.1% selectivity at 54.7% conversion after 6 h. The turnover frequency of BAS-dominated Hf-MOF in DHA conversion is over 50 times higher than that of ZSM-5, a strong BAS-based zeolite. It is worth noting that HfNDI is reported for the first time in the literature, which is an alternative platform catalyst for biorefining and green chemistry. The present study furthermore highlights the uniqueness of Hf-based MOFs in this important biomass-to-chemical transformation.
Collapse
Affiliation(s)
- Weibin Liang
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Xuelong Wang
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Wenjie Yang
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Shufang Zhao
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Dianne Wiley
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Brian S. Haynes
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| | - Yijiao Jiang
- Department
of Engineering, Macquarie University, Sydney, NSW2109, Australia
| | - Ping Liu
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York11794, United States
| | - Jun Huang
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, NSW2006, Australia
| |
Collapse
|
34
|
Rubio-Gaspar A, Navalón S, Tatay S, Cirujano FG, Fernández-Conde C, Padial NM, Martí-Gastaldo C. Metal Node Control of Brønsted Acidity in Heterobimetallic Titanium-Organic Frameworks. J Am Chem Soc 2023; 145:3855-3860. [PMID: 36689481 PMCID: PMC9951219 DOI: 10.1021/jacs.2c12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Compared to indirect framework modification, synthetic control of cluster composition can be used to gain direct access to catalytic activities exclusive of specific metal combinations. We demonstrate this concept by testing the aminolysis of epoxides with a family of isostructural mesoporous frameworks featuring five combinations of homometallic and heterobimetallic metal-oxo trimers (Fe3, Ti3, TiFe2, TiCo2, and TiNi2). Only TiFe2 nodes display activities comparable to benchmark catalysts based on grafting of strong acids, which here originate from the combination of Lewis Ti4+ and Brønsted Fe3+-OH acid sites. The applicability of MUV-101(Fe) to the synthesis of β-amino alcohols is demonstrated with a scope that also includes the gram scale synthesis of propranolol, a natural β-blocker listed as an essential medicine by the World Health Organization, with excellent yield and selectivity.
Collapse
Affiliation(s)
- Ana Rubio-Gaspar
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, 46980 València, Spain
| | - Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, 46022 València, Spain
| | - Sergio Tatay
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, 46980 València, Spain
| | - Francisco G. Cirujano
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, 46980 València, Spain
| | - Carmen Fernández-Conde
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, 46980 València, Spain
| | - Natalia M. Padial
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, 46980 València, Spain
| | - Carlos Martí-Gastaldo
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, 46980 València, Spain
| |
Collapse
|
35
|
Cao Y, Li X, Yu G, Wang B. Regulating defective sites for pharmaceuticals selective removal: Structure-dependent adsorption over continuously tunable pores. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130025. [PMID: 36166908 DOI: 10.1016/j.jhazmat.2022.130025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Developing efficient adsorbents with proper pore size for pharmaceutical removal is challenging. Water stable metal-organic frameworks (MOFs) are crystalline materials within the three-dimensional frameworks, which have already aroused increasing attention for their potential advantages with high surface area and abundant channels. However, whether or not the existing ones are performing their full capacities needs to be seriously considered. Herein, we precisely designed a series of fine-tuning hierarchically porous materials based on the water-stable Zr-based MOFs. The adsorption capacity and uptake rate of as-synthesized materials for pharmaceuticals are significantly improved. Fifteen isostructural frameworks with increasing finely tuned pore structures were successfully constructed with seven monocarboxylic modulators of increasing alkyl chain lengths. A strong correlated relationship between the mesoporous proportion and trapping kinetics can be found. Adsorption performance of 17 pharmaceuticals with various typical categories has been systematically studied over these as-synthesized materials. Competitors in natural wastewater were studied systematically. The competitive adsorption can selectively trap the target compounds in HA (humic acid), BSA (bovine serum albumin), and BHB (bovine hemoglobin) by an efficient size exclusion effect. Thus, this study offers helpful guidance for MOF modification to enhance the removal of micropollutants in natural wastewater and a fundamental understanding of the porosity-performance relationships.
Collapse
Affiliation(s)
- Yuhua Cao
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| | - Xiang Li
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China.
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100081, China
| | - Bo Wang
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| |
Collapse
|
36
|
Tabe H, Seki Y, Yamane M, Nakazono T, Yamada Y. Synergistic Effect of Fe II and Mn II Ions in Cyano-Bridged Heterometallic Coordination Polymers on Catalytic Selectivity of Benzene Oxygenation to Phenol. J Phys Chem Lett 2023; 14:158-163. [PMID: 36579843 DOI: 10.1021/acs.jpclett.2c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A cyano-bridged heterometallic coordination polymer with partial deficiencies of CN- ligands, [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)], forms open metal sites both on MnII and FeII ions by liberation of monodentate ligands such as NH3 and H2O. [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)] exhibits high catalytic activity and selectivity of benzene oxygenation to phenol in the presence of m-chloroperoxybenzoic acid as an oxidant. The postcatalytic spectroscopy of [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)] and catalysis comparison with a physical mixture of [MnII(H2O)3]2[FeII(CN)6] and [Fe(H2O)3/2]4/3[Fe(CN)6], which has open metal sites on both MnII and Fe ions separately, indicated that the high activity resulted from high oxidation ability and phenol adsorption ability of FeII and MnII ions, respectively.
Collapse
Affiliation(s)
- Hiroyasu Tabe
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study (IAS), Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Seki
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mari Yamane
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
37
|
Chen Z, Stroscio GD, Liu J, Lu Z, Hupp JT, Gagliardi L, Chapman KW. Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal-Organic Frameworks. J Am Chem Soc 2023; 145:268-276. [PMID: 36538759 DOI: 10.1021/jacs.2c09877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemically functionalized series of metal-organic frameworks (MOFs), with subtle differences in local structure but divergent properties, provide a valuable opportunity to explore how local chemistry can be coupled to long-range structure and functionality. Using in situ synchrotron X-ray total scattering, with powder diffraction and pair distribution function (PDF) analysis, we investigate the temperature dependence of the local- and long-range structure of MOFs based on NU-1000, in which Zr6O8 nodes are coordinated by different capping ligands (H2O/OH, Cl- ions, formate, acetylacetonate, and hexafluoroacetylacetonate). We show that the local distortion of the Zr6 nodes depends on the lability of the ligand and contributes to a negative thermal expansion (NTE) of the extended framework. Using multivariate data analyses, involving non-negative matrix factorization (NMF), we demonstrate a new mechanism for NTE: progressive increase in the population of a smaller, distorted node state with increasing temperature leads to global contraction of the framework. The transformation between discrete node states is noncooperative and not ordered within the lattice, i.e., a solid solution of regular and distorted nodes. Density functional theory calculations show that removal of ligands from the node can lead to distortions consistent with the Zr···Zr distances observed in the experiment PDF data. Control of the node distortion imparted by the nonlinker ligand in turn controls the NTE behavior. These results reveal a mechanism to control the dynamic structure of MOFs based on local chemistry.
Collapse
Affiliation(s)
- Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Gautam D Stroscio
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Lu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
38
|
Yang M, Bao YS, Zhou ML, Wang S, Cui YH, Liu W, Li LC, Meng LX, Zhang YY, Han ZB. An Efficient Bifunctional Core–Shell MIL-101(Cr)@MOF-867 Composite to Catalyze Deacetalization–Knoevenagel Tandem Reaction. Catal Letters 2023. [DOI: 10.1007/s10562-022-04259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Wu JQ, Wu XY, Lu JM, Shi Q, Shao LX. Highly Active La(III)-Based Metal-Organic Framework as a Heterogeneous Lewis Acid Catalyst for Friedel-Crafts Alkylation. Chemistry 2022; 28:e202202441. [PMID: 36082763 DOI: 10.1002/chem.202202441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 12/14/2022]
Abstract
In this study, a novel La(III)-based two-dimensional (2D) metal-organic framework, [La2/3 (qptca)1/2 ] (referred to as SLX-2), from LaCl3 and 1,1' : 4',1'' : 4'',1''' : 4''',1''''-quinquephenyl]-2,2'',2'''',5''-tetracarboxylic acid (H4 qptca) was synthesized by conventional solvothermal method and thoroughly characterized by using X-ray single-crystal diffraction, powder X-ray diffraction, and thermogravimetric analyses. The 2D SLX-2 features a unique lanthanum center exposed to the skeleton and was used as an efficient Lewis acid catalyst for the Friedel-Crafts alkylation of indole and pyrrole with β-nitrostyrene along with a wide substrate scope, giving the desired products in good-to-high yields under the optimal reaction conditions. Furthermore, the catalyst was used for twenty cycles, with nearly no effect on its activity, and the reaction was heterogeneous in nature. Moreover, compared to the previous hydrogen-bond-donating MOF catalysts for such alkylation reactions, SLX-2 showed an excellent stability toward harsh acidic and basic environment, and gave comparable catalytic activities.
Collapse
Affiliation(s)
- Jia-Qi Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Xin-Yuan Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Jian-Mei Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Li-Xiong Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| |
Collapse
|
41
|
Zhao Z, Lei R, Zhang Y, Cai T, Han B. Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Peralta RA, Lyu P, López‐Olvera A, Obeso JL, Leyva C, Jeong NC, Ibarra IA, Maurin G. Switchable Metal Sites in Metal-Organic Framework MFM-300(Sc): Lewis Acid Catalysis Driven by Metal-Hemilabile Linker Bond Dynamics. Angew Chem Int Ed Engl 2022; 61:e202210857. [PMID: 36165854 PMCID: PMC9828200 DOI: 10.1002/anie.202210857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 01/12/2023]
Abstract
Uncommon reversible guest-induced metal-hemilabile linker bond dynamics in MOF MFM-300(Sc) was unraveled to switch on/switch off catalytic open metal sites. The catalytic activity of this MOF with non-permanent open metal sites was demonstrated using a model Strecker hydrocyanation reaction as a proof-of-concept. Conclusively, the catalytic activity was evidenced to be fully reversible, preserving the conversion performance and structure integrity of MFM-300(Sc) over multiple cycles. These experimental findings were corroborated by quantum-calculations that revealed a reaction mechanism driven by the Sc-open metal sites. This discovery paves the way towards the design of new effective and easily regenerable heterogeneous MOF catalysts integrating switchable metal sites.
Collapse
Affiliation(s)
- Ricardo A. Peralta
- Department of Physics & ChemistryCenter for Basic Science, DGISTDaegu42988Korea,Departamento de Química, Divisiónde Ciencias Básicas e Ingeniería, UAM-I09340MéxicoMexico
| | - Pengbo Lyu
- ICGMUniv. Montpellier, CNRS ENSCMMontpellier34095France,Hunan Provincial Key Laboratory of Thin Film Materials and DevicesSchool of Material Sciences and EngineeringXiangtan UniversityXiangtan411105China
| | - Alfredo López‐Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS).Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CU, Coyoacán04510Ciudad de MéxicoMexico
| | - Juan L. Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS).Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CU, Coyoacán04510Ciudad de MéxicoMexico,Instituto Politécnico NacionalCICATA U. Legaria 694 Irrigación11500Miguel Hidalgo, CDMXMéxicoMexico
| | - Carolina Leyva
- Instituto Politécnico NacionalCICATA U. Legaria 694 Irrigación11500Miguel Hidalgo, CDMXMéxicoMexico
| | - Nak Cheon Jeong
- Department of Physics & ChemistryCenter for Basic Science, DGISTDaegu42988Korea
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS).Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n, CU, Coyoacán04510Ciudad de MéxicoMexico
| | | |
Collapse
|
43
|
Metal-organic framework as a heterogeneous catalyst for biodiesel production: A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Zhang HP, Zhang QY, Feng XF, Krishna R, Luo F. Creating High-Number Defect Sites through a Bimetal Approach in Metal-Organic Frameworks for Boosting Trace SO 2 Removal. Inorg Chem 2022; 61:16986-16991. [PMID: 36264301 DOI: 10.1021/acs.inorgchem.2c03177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we represent a bimetallic approach to enhance the defect number, leading to eight defect sites per node in a metal-organic framework, showing both a higher SO2 adsorption capacity and higher SO2/CO2 selectivity. The results can be further strongly supported by density functional theory calculations.
Collapse
Affiliation(s)
- Hui Ping Zhang
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Qing Yun Zhang
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Xue Feng Feng
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Feng Luo
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| |
Collapse
|
45
|
Peng WL, Liu F, Yi X, Sun S, Shi H, Hui Y, Chen W, Yu X, Liu Z, Qin Y, Song L, Zheng A. Structural and Acidic Characteristics of Multiple Zr Defect Sites in UiO-66 Metal-Organic Frameworks. J Phys Chem Lett 2022; 13:9295-9302. [PMID: 36173737 DOI: 10.1021/acs.jpclett.2c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although defects are prevalent in metal-organic frameworks (MOFs) and usually play a crucial role in modulating their performance in various applications, detailed structural characterizations of various defects remain a challenging task mainly due to their disordered, heterogeneous, and local nature. In this work, by using solid-state nuclear magnetic resonance spectroscopy (SSNMR) techniques in conjunction with density functional theory (DFT) calculations, it is clearly elucidated that the trimethylphosphine (TMP)-assisted 31P NMR strategy is capable of greatly facilitating the qualitative and quantitative description of the detailed structural and acidic characteristics as well as the evolution process of various Zr defects with subtle distinctions in UiO-66 upon moderate thermal treatment, hence surpassing most conventional analytical techniques. These results offer a fundamental understanding of the defect chemistry in MOFs.
Collapse
Affiliation(s)
- Wen-Li Peng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengqing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Shugang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yu Hui
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xin Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
46
|
Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
|
48
|
Cheang T, Huang W, Li W, Ren S, Wen H, Zhou T, Zhang Y, Lin W. Exposed carboxyl functionalized MIL-101 derivatives for rapid and efficient extraction of heavy metals from aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Zhong Y, Huang C, Cai J, Wang J, Zeng Z, Deng Q. A
2D
metal‐organic framework with dual‐acidic sites for the valorization of saccharides to 5‐hydroxymethylfurfural. AIChE J 2022. [DOI: 10.1002/aic.17890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yao Zhong
- School of Resources and Environment Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Cuiying Huang
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Jianxin Cai
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Jun Wang
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| | - Qiang Deng
- School of Resources and Environment Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
- School of Chemistry and Chemical Engineering Nanchang University, No. 999 Xuefu Avenue Nanchang PR China
| |
Collapse
|
50
|
Deng Q, Hou X, Zhong Y, Zhu J, Wang J, Cai J, Zeng Z, Zou J, Deng S, Yoskamtorn T, Tsang SCE. 2D MOF with Compact Catalytic Sites for the One-pot Synthesis of 2,5-Dimethylfuran from Saccharides via Tandem Catalysis. Angew Chem Int Ed Engl 2022; 61:e202205453. [PMID: 35700334 PMCID: PMC9544098 DOI: 10.1002/anie.202205453] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/20/2022]
Abstract
One pot synthesis of 2,5-dimethylfuran (2,5-DMF) from saccharides under mild conditions is of importance for the production of biofuel and fine chemicals. However, the synthesis requires a multitude of active sites and suffers from slow kinetics due to poor diffusion in most composite catalysts. Herein, a metal-acid functionalized 2D metal-organic framework (MOF; Pd/NUS-SO3 H), as an ultrathin nanosheet of 3-4 nm with Lewis acid, Brønsted acid, and metal active sites, was prepared based on the diazo method for acid modification and subsequent metal loading. This new composite catalyst gives substantially higher yields of DMF than all reported catalysts for different saccharides (fructose, glucose, cellobiose, sucrose, and inulins). Characterization suggests that a cascade of reactions including polysaccharide hydrolysis, isomerization, dehydration, and hydrodeoxygenation takes place with rapid molecular interactions.
Collapse
Affiliation(s)
- Qiang Deng
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Xuemeng Hou
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Yao Zhong
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Jiawei Zhu
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Jun Wang
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Jianxin Cai
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Zheling Zeng
- School of Chemistry and Chemical EngineeringNanchang UniversityNo. 999 Xuefu AvenueNanchang330031P. R. China
| | - Ji‐Jun Zou
- School of Chemical Engineering and TechnologyTianjin UniversityNo.92 Weijin RoadTianjin300072P. R. China
| | - Shuguang Deng
- School for Engineering of MatterTransport and EnergyArizona State University551 E. Tyler MallTempeAZ 85287USA
| | | | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| |
Collapse
|