1
|
Al-Thaibani A, Mostafa H, Alshamsi O, Moin A, Bansal N, Mudgil P, Maqsood S. Spray-drying and ultrasonication processing of camel whey protein concentrate: Characterization and impact on bioactive properties. J Dairy Sci 2024; 107:8824-8836. [PMID: 38908705 DOI: 10.3168/jds.2024-24900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024]
Abstract
The production of whey protein concentrates (WPC) from camel milk whey represents an effective approach to valorize this processing byproduct. These concentrates harbor active ingredients with significant bioactive properties. Camel WPC were spray-dried at inlet temperature of 170, 185 and 200°C, or ultrasonicated (US) for 5, 10, and 15 min, then freeze-dried to obtain fine powder. The effect of both treatments on protein degradation was studied by sodium dodecyl sulfate-PAGE and reverse-phase ultraperformance liquid chromatography techniques. Significantly Substantially enhanced protein degradation was observed after US treatment when compared with spray-drying (SPD). Both SPD and US treatments slightly enhanced the WPC samples' antioxidant activities. The US exposure for 15 min exhibited the highest 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity (12.12 mmol Trolox equivalent per gram). Moreover, US treatment for 10 min exhibited the highest in vitro antidiabetic properties (α-amylase and α-glucosidase inhibition), and dipeptidyl peptidase-IV inhibitory activity among all samples. In addition, the US for 10 min and SPD at 170°C showed the lowest median inhibitory concentration (IC50) values for in vitro antihypercholesterolemic activities in terms of pancreatic lipase and cholesteryl esterase inhibition. Conclusively, these green techniques can be adapted in the preservation and processing of camel milk whey into active ingredients with high bioactive properties.
Collapse
Affiliation(s)
- Alanoud Al-Thaibani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Ohood Alshamsi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Abeera Moin
- Department of Food Science and Technology, University of Karachi, Karachi 75270, Pakistan
| | - Nidhi Bansal
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, 4072 QLD, Australia
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Zayed Center for Health, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Mu S, Mu Z, Gantumur MA, Yang N, Sukhbaatar N, Sun Y, Jiang Z. Co-cold extrusion synergized with cysteine for enhancing physicochemical, rheological characteristics and in vitro digestibility of whey protein isolate. Food Chem X 2024; 23:101739. [PMID: 39263336 PMCID: PMC11388294 DOI: 10.1016/j.fochx.2024.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Impacts of co-cold extrusion (≤50 °C) of whey protein isolate (WPI) and cysteine (Cys, 0, 20, 40, 60, 80 and 100 mmol/L) on its physicochemical, in vitro digestion and rheological properties were investigated. As Cys concentration increased, the emulsifying properties and in vitro digestibility of co-extruded WPI-Cys products showed an increasing trend. Specifically, when Cys reached 100 mmol/L, surface hydrophobicity, emulsification activity index (EAI), emulsification stability index (ESI) and in vitro stomach digestibility of the co-extruded WPI-Cys products increased by 205.07%, 77.51%, 193.95% and 71.81% compared with WPI, respectively. Principal component analysis (PCA) results further indicated that co-extruded WPI-Cys at a concentration of 100 mmol/L had the best functional properties. In addition, co-extruded WPI-Cys exhibited the strongest Péclet number (Pe) value and apparent viscosity at a Cys concentration of 100 mmol/L among all samples. Therefore, co-extrusion would be an effective method for modifying WPI, providing whey protein-based ingredients with excellent functional properties for food processing.
Collapse
Affiliation(s)
- Sinan Mu
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Nan Yang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Narantuya Sukhbaatar
- School of Industrial Technology, Mongolian University of Science and Technology, 14191, Baga toiruu 34, Sukhbaatar district Ulaanbaatar, Mongolia
| | - Yuxue Sun
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
3
|
Zambrowicz A, Kapczyńska K, Kania P, Nowak JS, Kaszowska M, Szymczak-Kulus K, Kazana-Płuszka W, Piksa M, Górska S, Jakubczyk D, Macała J, Zabłocka A. Unravelling the potential of yolkin for nutraceutical use: the origin, structure, and functional insights of a hen egg yolk polypeptide complex. Food Funct 2024; 15:10746-10760. [PMID: 39387342 PMCID: PMC11465416 DOI: 10.1039/d4fo03023k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024]
Abstract
Nutraceuticals can reduce the risk of many diseases, such as cardiovascular disease, immune deficiencies, neurodegeneration, and others. Their delivery remains a challenge because it depends on many factors, most notably the stability of the bioactive compounds. Yolkin is a peptide complex isolated from hen egg yolk with immunomodulatory and neuroprotective potential. However, yolkin remains relatively poorly characterized. We aimed to determine the origin and glycosylation level of yolkin, its storage conditions, its thermal stability, and its aggregation ability and to assess its antioxidant, antihypertensive, and antidiabetic potential. The peptide composition of yolkin was shown to be homologous to that of vitellogenin II and vitellogenin I. These results indicate the stability of yolkin in a lyophilized form, preferably at 4 °C, with nonaggregation, antioxidant, and antidiabetic activities. As a result, yolkin can be considered to have significant therapeutic potential and represents a valuable tool for the development of novel nutraceuticals.
Collapse
Affiliation(s)
- Aleksandra Zambrowicz
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-640 Wroclaw, Poland
| | - Katarzyna Kapczyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| | - Paweł Kania
- Nanotempertech, Bobrzyńskiego 14, 30-348, Cracow, Poland
| | - Jakub Stanisław Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Cracow, Poland
| | - Marta Kaszowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| | - Katarzyna Szymczak-Kulus
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| | - Wioletta Kazana-Płuszka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| | - Marta Piksa
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| | - Dominika Jakubczyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| | - Józefa Macała
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| | - Agnieszka Zabłocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
4
|
Wojtaszek A, Salejda AM, Nawirska-Olszańska A, Zambrowicz A, Szmaja A, Ambrozik-Haba J. Physicochemical, Antioxidant, Organoleptic, and Anti-Diabetic Properties of Innovative Beef Burgers Enriched with Juices of Açaí ( Euterpe oleracea Mart.) and Sea Buckthorn ( Hippophae rhamnoides L.) Berries. Foods 2024; 13:3209. [PMID: 39410244 PMCID: PMC11475300 DOI: 10.3390/foods13193209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The aim of this study was to evaluate the selected quality parameters of innovative beef burgers produced with the addition of açaí and/or sea buckthorn berry juices. METHODS Five variants of innovative burgers were obtained, differing in the proportion of juices in the recipe. The pH of meat stuffing, thermal losses, production yield, color (CIE L*a*b*), content of polyphenolic compounds, degree of oxidation of the lipid fraction (TBARS), and antioxidant activity against ABTS radicals were determined. Anti-diabetic activity was measured as the ability to inhibit α-glucosidase and dipeptidyl peptidase-4 activity. A sensory evaluation was also performed. RESULTS Beef burgers formulated with açaí and sea buckthorn juices had up to five times higher total polyphenol content than burgers without added juices. The addition of the juices increased antioxidant activity against ABTS radicals (from 42 to 440 µmol/L/100 g) and effectively inhibited oxidation of the lipid fraction of the beef burgers. Recipe modifications resulted in changes in the color parameters of the beef burgers and had a positive effect on the sensory quality attributes evaluated. Beef burgers containing 0.5 g of açaí juice and 1.0 g of sea buckthorn juice were rated the best in terms of acceptability of appearance, aroma, color, juiciness, and tenderness. The addition of açaí and sea buckthorn juice did not increase the inhibitory activity against α-glucosidase and dipeptidyl peptidase-IV of the innovative beef burgers. CONCLUSIONS The proposed recipe modification may be an effective way to fortify beef burgers with phytochemicals with antioxidant properties while maintaining their sensory properties.
Collapse
Affiliation(s)
| | - Anna Marietta Salejda
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Str., 51−630 Wrocław, Poland (A.N.-O.); (A.Z.); (A.S.); (J.A.-H.)
| | | | | | | | | |
Collapse
|
5
|
Khan MZ, Chen W, Li M, Ren W, Huang B, Kou X, Ullah Q, Wei L, Wang T, Khan A, Zhang Z, Li L, Wang C. Is there sufficient evidence to support the health benefits of including donkey milk in the diet? Front Nutr 2024; 11:1404998. [PMID: 39385792 PMCID: PMC11462490 DOI: 10.3389/fnut.2024.1404998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Donkey milk has attracted attention due to its distinctive nutritional composition and potential health advantages, particularly because of its whey protein content, which includes lysozyme, α-lactalbumin, lactoferrin, and β-lactoglobulin and vitamin C, among other components. These elements contribute to immunoregulatory, antimicrobial, antioxidant, and anti-inflammatory properties, positioning donkey milk as a possible therapeutic option. In addition, due to the low levels of caseins, the casein-to-whey protein ratio, and the β-lactoglobulin content in donkey milk, it presents an optimal alternative for infant formula for individuals with cow's milk allergies. Moreover, research into donkey milk's potential for cancer prevention, diabetes management, and as a treatment for various diseases is ongoing, thanks to its bioactive peptides and components. Nevertheless, challenges such as its low production yield and the not fully understood mechanisms behind its potential therapeutic role necessitate more thorough investigation. This review consolidates the existing knowledge on the therapeutic possibilities of donkey milk, emphasizing its importance for human health and the need for more detailed studies to confirm its health benefits.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Mengmeng Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wei Ren
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
| | - Lin Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
6
|
Çebi K, Yangılar F. Evaluation of α-glucosidase inhibitor activity and bioactive compounds in purple wheat flour yogurts. Int J Biol Macromol 2024; 280:135373. [PMID: 39299423 DOI: 10.1016/j.ijbiomac.2024.135373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Nowadays, the food industry attaches more importance to studies on using purple components in food formulations due to their bioactive properties. This study evaluated the phenolic compound content, antioxidant activity, physicochemical properties, sensory properties, and α-glucosidase activities in yogurt enriched with purple wheat flour. Yogurts were produced using varying concentrations of purple wheat flour labeled as sample A (1.5 %), sample B (3 %), and sample C (4.5 %). It was observed that incorporating purple wheat flour led to a decrease in pH and an increase in L*, a*, and b* values, as well as the acidity and viscosity of the yogurts. Sample C contained the highest phenolic content (37.6 mg GAE/100 g dry matter) on day 14, along with the highest flavonoid content (14.59 mg CE/100 g) on day 21 when than control yogurt. In addition, sample C had the highest α-glucosidase activity (38.35 %) on day 14 and anthocyanin content (13.55 g/100 g) on day 21. As a result, C yogurt can be consumed as a diabetic product with antidiabetic and antihypertensive properties by reaching optimal α-glycosidase inhibition activity. Furthermore, yogurts containing purple wheat flour received higher sensory scores from panelists.
Collapse
Affiliation(s)
- Kadir Çebi
- Department of Nutrition and Dietetics, Health of Faculty, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Filiz Yangılar
- Department of Nutrition and Dietetics, Health of Faculty, Erzincan Binali Yıldırım University, Erzincan, Turkey.
| |
Collapse
|
7
|
Wang D, Huang X, Marnila P, Hiidenhovi J, Välimaa AL, Granato D, Mäkinen S. Baltic herring hydrolysates: Identification of peptides, in silico DPP-4 prediction, and their effects on an in vivo mice model of obesity. Food Res Int 2024; 191:114696. [PMID: 39059907 DOI: 10.1016/j.foodres.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Baltic herring is the main catch in the Baltic Sea; however, its usage could be improved due to the low processing rate. Previously we have shown that whole Baltic herring hydrolysates (BHH) and herring byproducts hydrolysates (BHBH) by commercial enzymes consisted of bioactive peptides and had moderate bioactivity in in vitro dipeptidyl peptidase (DPP)-4 assay. In this study, we identified the hydrolysate peptides by LC-MS/MS and predicted the potential bioactive DPP-4 inhibitory peptides using in silico tools. Based on abundance, peptide length and stability, 86 peptides from BHBH and 80 peptides from BHH were proposed to be novel DPP-4 inhibitory peptides. BHH was fed to a mice intervention of a high-fat, high-fructose diet to validate the bioactivity. The results of the glucose tolerance and insulin tolerance improved. Plasma DPP-4 activities, C-peptide levels, and HOMA-IR scores significantly decreased, while plasma glucagon-like peptide-1 content increased. In conclusion, BHH is an inexpensive and sustainable source of functional antidiabetic ingredients.
Collapse
Affiliation(s)
- Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Xin Huang
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Pertti Marnila
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Jaakko Hiidenhovi
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Anna-Liisa Välimaa
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-90570 Oulu, Finland.
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Sari Mäkinen
- Food and Bioproducts, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| |
Collapse
|
8
|
Nemati M, Shahosseini SR, Ariaii P. Review of fish protein hydrolysates: production methods, antioxidant and antimicrobial activity and nanoencapsulation. Food Sci Biotechnol 2024; 33:1789-1803. [PMID: 38752116 PMCID: PMC11091024 DOI: 10.1007/s10068-024-01554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 05/18/2024] Open
Abstract
Marine products have gained popularity due to their valuable components, especially protein, despite generating significant waste. Protein hydrolysates are widely recognized as the most effective method for transforming these low-value raw materials into high-value products. Fish protein hydrolysate (FPH), sourced from various aquatic wastes such as bones, scales, skin, and others, is rich in protein for value-added products. However, the hydrophobic peptides have limitations like an unpleasant taste and high solubility. Microencapsulation techniques provide a scientific approach to address these limitations and safeguard bioactive peptides. This review examines current research on FPH production methods and their antioxidant and antibacterial activities. Enzymatic hydrolysis using commercial enzymes is identified as the optimal method, and the antioxidant and antibacterial properties of FPH are substantiated. Microencapsulation using nanoliposomes effectively extends the inhibitory activity and enhances antioxidant and antibacterial capacities. Nevertheless, more research is needed to mitigate the bitter taste associated with FPH and enhance sensory attributes.
Collapse
Affiliation(s)
- Mahrokh Nemati
- Department of Fisheries Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
- Research Consultant of Parmida Gelatin Company, Amol, Iran
| | | | - Peiman Ariaii
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
- Managing Director of Parmida Gelatin Company, Amol, Iran
| |
Collapse
|
9
|
Wu Y, Zhang J, Zhu R, Zhang H, Li D, Li H, Tang H, Chen L, Peng X, Xu X, Zhao K. Mechanistic Study of Novel Dipeptidyl Peptidase IV Inhibitory Peptides from Goat's Milk Based on Peptidomics and In Silico Analysis. Foods 2024; 13:1194. [PMID: 38672866 PMCID: PMC11049645 DOI: 10.3390/foods13081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Two novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (YPF and LLLP) were discovered from goat milk protein by peptidomics, in silico analysis, and in vitro assessment. A total of 698 peptides (<23 AA) were successfully identified by LC-MS/MS from goat milk hydrolysates (hydrolyzed by papaian plus proteinase K). Then, 105 potential DPP-IV inhibitory peptides were screened using PeptideRanker, the ToxinPred tool, Libdock, iDPPIV-SCM, and sequence characteristics. After ADME, physicochemical property evaluation, and a literature search, 12 candidates were efficiently selected and synthesized in vitro for functional validation. Two peptides (YPF and LLLP) were found to exert relatively high in vitro chemical system (IC50 = 368.54 ± 12.97 μM and 213.99 ± 0.64 μM) and in situ (IC50 = 159.46 ± 17.40 μM and 154.96 ± 8.41 μM) DPP-IV inhibitory capacities, and their inhibitory mechanisms were further explored by molecular docking. Our study showed that the formation of strong non-bonding interactions with the core residues from the pocket of DPP-IV (such as ARG358, PHE357, GLU205, TYR662, TYR547, and TYR666) might primarily account for the DPP-IV inhibitory activity of two identified peptides. Overall, the two novel DPP-IV inhibitory peptides rapidly identified in this study can be used as functional food ingredients for the control of diabetes.
Collapse
Affiliation(s)
- Yulong Wu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Jin Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Ruikai Zhu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Hong Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Dapeng Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
- College of Life Science, Yantai University, Yantai 264005, China;
| | - Huanhuan Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Honggang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Lihong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China;
| | - Xianrong Xu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| |
Collapse
|
10
|
Ayoub MA, Yap PG, Mudgil P, Khan FB, Anwar I, Muhammad K, Gan CY, Maqsood S. Invited review: Camel milk-derived bioactive peptides and diabetes-Molecular view and perspectives. J Dairy Sci 2024; 107:649-668. [PMID: 37709024 DOI: 10.3168/jds.2023-23733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial effect on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic β-cells and insulin secretion. Thus, CM consumption may help manage diabetes; however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecules behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (1) insulin receptor signaling and glucose uptake, (2) the pancreatic β-cell structure and function, and (3) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Irfa Anwar
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Harizi N, Zouari A, Rokbeni N, Ben Zid M, M’hiri N, Salem A, Ayadi MA, Boudhrioua N. Amino acids and protein profiles of defatted camel and cow milk fractions: correlation with their in vitro antioxidant and antidiabetic activities. Front Nutr 2024; 10:1295878. [PMID: 38274210 PMCID: PMC10809393 DOI: 10.3389/fnut.2023.1295878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction This work presents proteins, amino acids profiles and antioxidant and properties of camel and cow milk fractions produced using an integrated coagulation-centrifugation process. Methods Antioxidant activity using DPPH radical scavenging assay; and antidiabetic activity antidiabetic activity using in vitro α-amylase inhibitory activity were assessed on defatted milk fractions and their extracts using water/ethanol or HCl/ethanol solvents. Protein profiles and amino acids composition were analyzed by high-performance liquid chromatography. Results and discussions The predominant protein found in cow and camel milk was β-casein in sodium caseinate, β-lactoglobulin was found in the whey of cow milk, whereas α-lactalbumin was detected in the whey fractions of camel. The primary amino acids (comprising 1% to 5.2%) in skim milk and sweet whey milk were leucine, proline, and lysine. However, acid whey, casein fractions (sodium caseinate, and β-casein) from both camel and cow milk exhibited elevated concentrations of histidine, leucine, lysine and proline (1.12 - 6.62%). Camel milk and its different protein fractions showed an interesting in vitro α-amylase inhibitory activity varying, according to different milk fractions and extraction methods, from 19.10 ± 1.40 to 97.40 ± 1.50%. Whatever the used method, the whey fractions from camel milk, both acid and sweet, displayed ed the highest antioxidant activity. Principal components analysis showed a positive correlation between the total phenols content, antioxidant (DPPH assay) and antidiabetic (α amylase inhibition test) activities within the milk fractions. Sweet and acid cow milk fractions seem to be the most promising for deeper exploration of in vivo biological activities and are promising milk derivatives for specific nutritional diet and/or functional food formulation.
Collapse
Affiliation(s)
- Nouha Harizi
- Laboratory of Physiopathology, Food and Biomolecules, LR17ES03, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Ahmed Zouari
- Laboratory of Analyses, Valorization and Food Safety, Food Engineering School of Sfax, University of Sfax, Sfax, Tunisia
- Biological Engineering Department, University Institute of Technology of Saint-Brieuc (IUT Saint-Brieuc), University of Rennes, Saint-Brieuc, France
| | - Nesrine Rokbeni
- Laboratory of Physiopathology, Food and Biomolecules, LR17ES03, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Malek Ben Zid
- Laboratory of Physiopathology, Food and Biomolecules, LR17ES03, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Nouha M’hiri
- Laboratory of Physiopathology, Food and Biomolecules, LR17ES03, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Ali Salem
- Laboratory of Enzyme Engineering and Microbiology, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
- High Institute of Applied Biology of Medenine, University of Gabes, Medinine, Tunisia
| | - Mohamed Ali Ayadi
- Laboratory of Analyses, Valorization and Food Safety, Food Engineering School of Sfax, University of Sfax, Sfax, Tunisia
- Laboratory of Quality and Safety of Agro-food Products, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Nourhene Boudhrioua
- Laboratory of Physiopathology, Food and Biomolecules, LR17ES03, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia
| |
Collapse
|
12
|
Hassane Hamadou A, Zhang J, Li H, Chen C, Xu B. Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities. Crit Rev Food Sci Nutr 2023; 63:11942-11966. [PMID: 35900010 DOI: 10.1080/10408398.2022.2097638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, diverse natural bioactive compounds (polyphenols, proteins, fatty acids, dietary fibers) are used as inhibitors of starch digestive enzymes for lowering glycemic index (GI) and preventing type 2 diabetes mellitus (T2DM). In recent years, organic nanomaterials (ONMs) have drawn a great attention because of their ability to overcome the stability and solubility issues of bioactive. This review aimed to elucidate the implications of ONMs in lowering GI and as encapsulating agents of enzymes inhibitors. The major ONMs are presented. The mechanisms underlying the inhibition of enzymes, the stability within the gastrointestinal tract (GIT) and safety of ONMs are also provided. As a result of encapsulation of bioactive in ONMs, a more pronounced inhibition of enzymes was observed compared to un-encapsulated bioactive. More importantly, the lower the size of ONMs, the higher their inhibitory effects due to facile binding with enzymes. Additionally, in vivo studies exhibited the potentiality of ONMs for protection and sustained release of insulin for GI management. Overall, regulating the GI using ONMs could be a safe, robust and viable alternative compared to synthetic drugs (acarbose and voglibose) and un-encapsulated bioactive. Future researches should prioritize ONMs in real food products and evaluate their safety on a case-by-case basis.
Collapse
Affiliation(s)
| | - Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiteng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
13
|
Yan S, Wang Q, Yu J, Li Y, Qi B. Ultrasound-assisted preparation of protein-polyphenol conjugates and their structural and functional characteristics. ULTRASONICS SONOCHEMISTRY 2023; 100:106645. [PMID: 37837709 PMCID: PMC10582743 DOI: 10.1016/j.ultsonch.2023.106645] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Herein, ultrasound-assisted conventional covalent binding methods (alkali treatment, free radical mediation, and an enzymatic method) were used to prepare soybean protein isolate (SPI)-(-)-epigallocatechin gallate (EGCG) conjugates to investigate the enhancement effect of the ultrasound synergistic treatment. In addition, the influence of EGCG grafting on the structure and properties of SPI was evaluated via reactive group analysis, spectral analysis, surface hydrophobicity measurements, emulsification property assessment, and α-glucosidase inhibition analysis. The obtained results revealed that the enzymatic method produced the highest polyphenol grafting content among the conventional techniques. Meanwhile, ultrasound treatment increased the amount of grafted polyphenol species during the alkali treatment and free radical mediation procedure, decreased the grafting efficiency in the enzymatic method, and maximized the grafting efficiency during the alkali treatment. In addition, reactive group and spectral analyses demonstrated that EGCG formed C-N and C-S bonds with SPI and decreased the α-helix content in the protein structure, thereby increasing the molecular flexibility of SPI. It also produced hydrogen bonds and hydrophobic interactions, as demonstrated by the results of molecular docking. Furthermore, the EGCG grafting of SPI conducted under the ultrasound-assisted conditions endowed SPI with unique functional characteristics, including good emulsification and antioxidant properties and high α-glucosidase inhibitory activity, while the ultrasound-assisted alkali treatment resulted in the optimal functional properties. The results of this study provide new insights into the effective preparation of SPI-EGCG complexes with multiple functionalities, thereby expanding the scope of high-value SPI utilization.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaye Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
14
|
Ren F, Ji N, Zhu Y. Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications. Foods 2023; 12:3344. [PMID: 37761053 PMCID: PMC10529981 DOI: 10.3390/foods12183344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Based on the easy cultivation of microorganisms and their short cycle time, research on α-glucosidase inhibitors (α-GIs) of microbial origin is receiving extensive attention. Raw materials used in food production, such as cereals, dairy products, fruits, and vegetables, contain various bioactive components, like flavonoids, polyphenols, and alkaloids. Fermentation with specific bacterial strains enhances the nutritional value of these raw materials and enables the creation of hypoglycemic products rich in diverse active ingredients. Additionally, conventional food processing often results in significant byproduct generation, causing resource wastage and environmental issues. However, using bacterial strains to ferment these byproducts into α-GIs presents an innovative solution. This review describes the microbial-derived α-GIs that have been identified. Moreover, the production of α-GIs using industrial food raw materials and processing byproducts as a medium in fermentation is summarized. It is worth analyzing the selection of strains and raw materials, the separation and identification of key compounds, and fermentation broth research methods. Notably, the innovative ideas in this field are described as well. This review will provide theoretical guidance for the development of microbial-derived hypoglycemic foods.
Collapse
Affiliation(s)
- Fei Ren
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Nairu Ji
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Lesgards JF. Benefits of Whey Proteins on Type 2 Diabetes Mellitus Parameters and Prevention of Cardiovascular Diseases. Nutrients 2023; 15:nu15051294. [PMID: 36904293 PMCID: PMC10005124 DOI: 10.3390/nu15051294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality, and it is a major risk factor for the early onset of cardiovascular diseases (CVDs). More than genetics, food, physical activity, walkability, and air pollution are lifestyle factors, which have the greatest impact on T2DM. Certain diets have been shown to be associated with lower T2DM and cardiovascular risk. Diminishing added sugar and processed fats and increasing antioxidant-rich vegetable and fruit intake has often been highlighted, as in the Mediterranean diet. However, less is known about the interest of proteins in low-fat dairy and whey in particular, which have great potential to improve T2DM and could be used safely as a part of a multi-target strategy. This review discusses all the biochemical and clinical aspects of the benefits of high-quality whey, which is now considered a functional food, for prevention and improvement of T2DM and CVDs by insulin- and non-insulin-dependent mechanisms.
Collapse
Affiliation(s)
- Jean-François Lesgards
- Ingénierie des Peptides Thérapeutiques, Ambrilia-Cellpep, Faculté de Médecine Nord, Aix-Marseille University, Boulevard Pierre Dramard, 13015 Marseille, France
| |
Collapse
|
16
|
Comprehensive in silico analysis of the probiotics, and preparation of compound probiotics-Polygonatum sibiricum saponin with hypoglycemic properties. Food Chem 2023; 404:134569. [DOI: 10.1016/j.foodchem.2022.134569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
17
|
Liang Z, Li H, Lu X, Lin G, Li Y, Zhang R. 3D-QSAR, in vitro assay and MD simulations studies on the design, bioactivities and different inhibitory modes of the novel DPP-IV inhibitory peptides. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Althnaibat RM, Bruce HL, Gӓnzle MG. Identification of peptides from camel milk that inhibit starch digestion. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
19
|
Nutraceutical and bioactive potential of high-quality date fruit varieties (Phoenix dactylifera L.) as a function of in-vitro simulated gastrointestinal digestion. J Pharm Biomed Anal 2023; 223:115113. [DOI: 10.1016/j.jpba.2022.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
20
|
Carrera-Alvarado G, Toldrá F, Mora L. DPP-IV Inhibitory Peptides GPF, IGL, and GGGW Obtained from Chicken Blood Hydrolysates. Int J Mol Sci 2022; 23:ijms232214140. [PMID: 36430616 PMCID: PMC9696969 DOI: 10.3390/ijms232214140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Blood is a meat by-product rich in proteins with properties that can be improved after hydrolysis, making it a sustainable alternative for use in the generation of bioactive peptides. The objective of this study was to identify dipeptidyl peptidase IV (DPP-IV) inhibitory peptides obtained from different chicken blood hydrolysates prepared using combinations of four different enzymes. Best results were observed for AP (2% Alcalase + 5% Protana Prime) and APP (2% Alcalase + 5% Protana Prime + 3% Protana UBoost) hydrolysates obtaining inhibition values of 60.55 and 53.61%, respectively, assayed at a concentration of 10 mg/mL. Free amino acids were determined to establish the impact of exopeptidase activity in the samples. A total of 79 and 12 sequences of peptides were identified by liquid chromatography and mass spectrometry in tandem (LC-MS/MS) in AP and APP samples, respectively. Nine of the identified peptides were established as potential DPP-IV inhibitory using in silico approaches and later synthesized for confirmation. Thus, peptides GPF, IGL, and GGGW showed good DPP-IV inhibitory activity with IC50 values of 0.94, 2.22, and 2.73 mM, respectively. This study confirmed the potential of peptides obtained from chicken blood hydrolysates to be used as DPP-IV inhibitors and, therefore, in the control or modulation of type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Leticia Mora
- Correspondence: ; Tel.: +34-960-308222 (ext. 435217); Fax: +34-963-636-301
| |
Collapse
|
21
|
A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Rodríguez-Arana N, Jiménez-Aliaga K, Intiquilla A, León JA, Flores E, Zavaleta AI, Izaguirre V, Solis-Calero C, Hernández-Ledesma B. Protection against Oxidative Stress and Metabolic Alterations by Synthetic Peptides Derived from Erythrina edulis Seed Protein. Antioxidants (Basel) 2022; 11:2101. [PMID: 36358473 PMCID: PMC9686657 DOI: 10.3390/antiox11112101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/21/2024] Open
Abstract
The ability of multifunctional food-derived peptides to act on different body targets make them promising alternatives in the prevention/management of chronic disorders. The potential of Erythrina edulis (pajuro) protein as a source of multifunctional peptides was proven. Fourteen selected synthetic peptides identified in an alcalase hydrolyzate from pajuro protein showed in vitro antioxidant, anti-hypertensive, anti-diabetic, and/or anti-obesity effects. The radical scavenging properties of the peptides could be responsible for the potent protective effects observed against the oxidative damage caused by FeSO4 in neuroblastoma cells. Moreover, their affinity towards the binding cavity of angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) were predicted by molecular modeling. The results demonstrated that some peptides such as YPSY exhibited promising binding at both enzymes, supporting the role of pajuro protein as a novel ingredient of functional foods or nutraceuticals for prevention/management of oxidative stress, hypertension, and metabolic-alteration-associated chronic diseases.
Collapse
Affiliation(s)
- Nathaly Rodríguez-Arana
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Karim Jiménez-Aliaga
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Arturo Intiquilla
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - José A. León
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Eduardo Flores
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Amparo Iris Zavaleta
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Víctor Izaguirre
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Christian Solis-Calero
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
23
|
Production of Bioactive Peptides from Baltic Herring (Clupea harengus membras): Dipeptidyl Peptidase-4 Inhibitory, Antioxidant and Antiproliferative Properties. Molecules 2022; 27:molecules27185816. [PMID: 36144552 PMCID: PMC9500839 DOI: 10.3390/molecules27185816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to produce bioactive protein hydrolysates from undervalued fish, namely Baltic herring, and its filleting by-products. Protein hydrolysates were produced with Alcalase and Flavourzyme to achieve effective hydrolysis. The hydrolysates were evaluated for chemical composition, molecular weight distribution, antioxidant capacity, dipeptidyl-peptidase 4 (DPP4) inhibitory activity, effects on cell proliferation and surface hydrophobicity. The protein content of the hydrolysates was high, from 86% to 91% (dm), while the fat content was low, from 0.3% to 0.4% (dm). The hydrolysates showed high DPP4 inhibition activities with IC50 values from 5.38 mg/mL to 7.92 mg/mL. The scavenging activity of the hydrolysates towards DPPH was low, but an intermediate Folin–Ciocalteu reducing capacity and Cu2+ chelating ability was observed. The solid phase extraction with Sep-Pak C18 cartridges increased the DPP4 inhibition activity and antioxidant capacity, indicating peptides’ crucial role in the bioactivities. The cytotoxicity of the hydrolysates was evaluated on the HCT8, IMR90, and A549 cell lines. The hydrolysates inhibited cell growth in the cancer and normal cells, although they did not reduce cell viability and were not lethal. Overall, our results indicate that protein hydrolysates from Baltic herring have potential as health-promoting foods and nutraceuticals, especially for enhancing healthy blood glucose regulation.
Collapse
|
24
|
Akan E, Yerlikaya O, Bayram OY, Kinik O. The effect of aqueous extracts of some plants on in vitro antioxidant and antidiabetic activity of probiotic yogurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3359-3366. [PMID: 35875228 PMCID: PMC9304500 DOI: 10.1007/s13197-021-05319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 06/15/2023]
Abstract
In this study, aqueous extracts of some medicinal and aromatic plants (garlic, Turkish Oregano, rosemary, basil, and peppermint) were used in probiotic yogurt production to increase functionality of probiotic yogurt. The in vitro antidiabetic, antioxidant activity, total phenolic compound content and phenolic compounds of yogurts were evaluated during the 28 day of storage period. Yogurt sample with Turkish Oregano had the highest α-amylase and α-glucosidase inhibitory activity. A strong correlation was found between total phenolic compound content and antioxidant activity (r = 0.84) and between total phenolic compounds content and α-amylase inhibitory activity (r = 0.82). In conclusion, it can be said that the total phenolic compound content and in vitro antioxidant and antidiabetic activities of probiotic yogurt could be increased by adding aqueous extracts of some plants.
Collapse
Affiliation(s)
- Ecem Akan
- Faculty of Agriculture, Department of Dairy Technology, Aydin Adnan Menderes University, Koçarli, Aydin, Turkey
| | - Oktay Yerlikaya
- Faculty of Agriculture, Department of Dairy Technology, Ege University, Bornova, Izmir, Turkey
| | - Ozge Yildiz Bayram
- Technology Laboratory, Aegean Agricultural Research Institute, Menemen, Izmir, Turkey
| | - Ozer Kinik
- Faculty of Agriculture, Department of Dairy Technology, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
25
|
Insights into in vitro digestion properties and peptide profiling of Chinese rubing PDO cheese prepared using different acidification technology. Food Res Int 2022; 158:111564. [DOI: 10.1016/j.foodres.2022.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
|
26
|
Identification of two novel dipeptidyl peptidase-IV inhibitory peptides from sheep whey protein and inhibition mechanism revealed by molecular docking. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Patange SR, Sabikhi L, Shelke PA, Rathod N, Shaik AH, Khetra Y, Kumar M H S. Encapsulation of dipeptidyl peptidase‐IV inhibitory peptides from alpha‐lactalbumin extracted from milk of
Gir
cows – A
Bos indicus
species. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Latha Sabikhi
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Prashant Ashok Shelke
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Nilesh Rathod
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Abdul Hussain Shaik
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Yogesh Khetra
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001 India
| | - Sathish Kumar M H
- Dairy Technology Section SRS‐ICAR‐National Dairy Research Institute Bengaluru Karnataka 560 030 India
| |
Collapse
|
28
|
Abbasi S, Moslehishad M, Salami M. Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. Int J Biol Macromol 2022; 213:602-609. [PMID: 35659938 DOI: 10.1016/j.ijbiomac.2022.05.189] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
The quinoa protein is gaining global attraction due to high content of gluten-free protein. It is a rich source of high-quality protein with all essential amino acids. The objective of this study was to evaluate the antioxidant activity and alpha-glucosidase inhibition effect of bioactive peptides obtained from quinoa protein that was hydrolyzed by alcalase and trypsin. Peptides were fractionated using ultrafiltration with MW cut-off = 3, 10 kDa. The peptide concentration was evaluated using OPA solution and peptide bonds were studied by SDS-PAGE. The highest antioxidant activity obtained from quinoa bioactive peptides by alcalase and trypsin was observed after 0.5 h (10 kDa≤) and 4 h (3 kDa≥), respectively. The highest α-glucosidase inhibition activity was observed in peptides with MW 3 kDa ≥ when hydrolyzed by trypsin. The amino acid composition of the most effective samples has been determined. Comparing the results showed that MW and the composition of peptides influenced the studied traits. From the result of this study, it concluded that bioactive peptides obtained from quinoa protein could be used in functional food and supplements formulation.
Collapse
Affiliation(s)
- Shiva Abbasi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Moslehishad
- Department of Food Science and Technology, Safadasht Branch, Islamic Azad University, Tehran, Iran.
| | - Maryam Salami
- Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
29
|
Kumar A, Kumar M H S, C S R, Sabikhi L, Naik N L. Dipeptidyl peptidase‐IV inhibitory potential of alpha‐lactalbumin extracted from milk of
Gir
cows: A
Bos indicus
species. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ashok Kumar
- Rajasthan Cooperative Dairy Federation Jaipur Rajasthan 302 015India
| | - Sathish Kumar M H
- Dairy Technology Section SRS‐ICAR‐National Dairy Research Institute Adugodi Bengaluru Karnataka 560 030India
| | - Rajani C S
- Dairy Technology Section SRS‐ICAR‐National Dairy Research Institute Adugodi Bengaluru Karnataka 560 030India
| | - Latha Sabikhi
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal Haryana 132 001India
| | - Laxmana Naik N
- Dairy Chemistry Section SRS‐ICAR‐NDRI Bengaluru Karnataka 560 030 India
| |
Collapse
|
30
|
Jiang X, Wu J. Structure and activity study of tripeptide IRW in TNF-α induced insulin resistant skeletal muscle cells. Food Funct 2022; 13:4061-4068. [PMID: 35315845 DOI: 10.1039/d1fo02893f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Egg white protein ovotransferrin derived peptide IRW (Ile-Arg-Trp) was found to improve tumor necrosis factor alpha (TNF-α) or angiotensin II induced insulin resistance in L6 cells. Our recent study further showed that this peptide can improve glucose tolerance in high fat diet fed C57BL/6 mice. However, the structural requirements of IRW, especially the significance of each amino acid residue of IRW, is unknown. The study was aimed to investigate the structure and activity relationships of IRW in TNF-α induced insulin resistance L6 cells. The peptides were designed to determine the significance of individual amino acids in IRW using alanine scanning (replacing one amino acid at one time), the order of the peptide sequence and the constituting elements of IRW. Among the tested peptides and amino acids, only IRA and IR showed the same effects as that of IRW: enhanced glucose uptake, improvement in the impaired insulin signaling pathway and increased glucose transporter protein 4 (GLUT4) translocation in TNF-α treated L6 myotubes. This study demonstrated that C-terminal W is not essential to the activity of IRW. Further study is necessary to establish if IR and IRA show similar effects to that of IRW in vivo.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
31
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
32
|
Iram D, Sansi MS, Zanab S, Vij S, Ashutosh, Meena S. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins-a molecular docking study. J Food Biochem 2022; 46:e14137. [PMID: 35352361 DOI: 10.1111/jfbc.14137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023]
Abstract
An in silico approach was used for hydrolysis of sheep milk proteins (α-s1, α-s2, β-casein, κ-Cn, α-lactalbumin, and β-lactoglobulin) by gastrointestinal enzymes in order to generate bioactive peptides (BAPs) that can inhibit ACE and DPP-IV. Sheep milk proteins showed higher similarity with goat milk proteins. These data were acquired via the Clustal Omega tool to perform sequence alignment analysis. The BIOPEP-UWM database was used to examine the ability of sheep milk protein sequences to generate BAPs, which included a description of their potential bioactivity as well as the frequency of fragments with specified activities. Using the "Enzyme(s) action" tool (BIOPEP-UWM), digestive enzymes pepsin, trypsin, and chymotrypsin, and three enzyme combinations were selected to computationally hydrolyze milk proteins for obtaining information about ACE and DPP-IV inhibitory peptides. Other online programs were used to test potential peptides for bioactivity, toxicity, and physicochemical properties. BAPs produced from PTC-hydrolyzed proteins were analyzed using a peptide ranker, and their inhibitory effects on ACE and DPP-IV were determined using molecular docking. Consequently, the results of molecular docking analysis show that the peptide PSGAW (αS1-Cn f155-159) binds to DPP-IV with binding energy (-8.9 kcal/mol). But in the case of ACE, two potential BAPs were selected: QPPQPL (β-Cn f161-166) and PSGAW. These two BAPs revealed a higher binding affinity for ACE with a binding energy of -9.8 kcal/mol. Thus, the results showed that sheep milk proteins were a promising source of antidiabetic and hypotensive peptides. However, experimental and pre-clinical studies are necessary to assay their therapeutic effects. PRACTICAL APPLICATIONS: Sheep milk proteins are known as a high-quality milk protein resource. Effective enzymatic hydrolysis of sheep milk proteins can release bioactive peptides and also release potential ACE and DPP-IV inhibitory peptides. This in silico study specifies a theoretical root for sheep milk proteins as a novel source of potential bioactive peptides and may offer guidance for invitro hydrolysis of proteins for the production of bioactive peptides valuable for human consumption.
Collapse
Affiliation(s)
- Daraksha Iram
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Ashutosh
- Animal Physiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sunita Meena
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
33
|
Yang D, Li C, Li L, Wang Y, Chen S, Zhao Y, Hu X, Rong H. Discovery and functional mechanism of novel dipeptidyl peptidase Ⅳ inhibitory peptides from Chinese traditional fermented fish (Chouguiyu). Curr Res Food Sci 2022; 5:1676-1684. [PMID: 36204708 PMCID: PMC9529664 DOI: 10.1016/j.crfs.2022.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from fermented foods exhibit great potential to alleviate type 2 diabetes mellitus (T2DM). In this study, the DPP-IV inhibition activity of peptide extract from Chouguiyu was obviously enhanced after 4–8 d fermentation. A total of 125 DPP-IV inhibitory peptides in Chouguiyu were identified by peptidomics and were obtained from 46 precursor proteins, mainly including nebulin, titin, muscle-type creatine kinase, hemoglobin, and actin. After molecular docking with DPP-IV, four novel DPP-IV inhibitory peptides possessing the lowest docking energy were selected, including EPAEAVGDWR (D37), IPHESVDVIK (D22), PDLSKHNNHM (D35), and PFGNTHNNFK (D1). The DPP-IV inhibition activity of D37, D22, D35, and D1 were further verified after synthesis with the IC50 of 0.10 mM, 2.69 mM, 3.88 mM, and 8.51 mM, respectively, in accordance with their docking energies. Energy interaction showed that the structures of EP-, IPH-, -NHM, and PF- in these peptides were easy to connect with DPP-IV enzyme through hydrogen bond, salt bridge, and alkyl. The surface force including the H-bond interaction, hydrophobicity, aromatic interaction, and SAS, played a major role in the interaction between DPP-IV enzyme and peptides. The peptides that possess high hydrophobicity and can form strong hydrogen bond and salt bridge are potential DPP-IV inhibitory peptides using for T2DM remission. DPP-Ⅳ inhibition activity of peptide extract in Chouguiyu increased by fermentation. The main precursor proteins of DPP-Ⅳ inhibitory peptides were nebulin and titin. Inhibition mechanism was explored by energy interaction and surface force. Docking energy was an effective index to select DPP-IV inhibitory peptides. DPP-IV inhibitory peptides formed hydrogen bond and salt bridge with DPP-IV.
Collapse
|
34
|
Mirzapour-Kouhdasht A, Lee CW, Yun H, Eun JB. Structure-function relationship of fermented skate skin gelatin-derived bioactive peptides: a peptidomics approach. Food Sci Biotechnol 2021; 30:1685-1693. [PMID: 34925943 DOI: 10.1007/s10068-021-00998-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the multi-functionality of bioactive peptides derived from fermented skate (Raja kenojei) skin gelatin hydrolysates. The extracted gelatin was hydrolyzed using a combination of food grade subtilisin and actinidin. The hydrolysates were then fractionated via ultrafiltration, and the fractions with the highest dipeptidyl peptidase-IV (DPP-IV) inhibitory, angiotensin-converting enzyme (ACE) inhibitory, and antibacterial proprieties were further purified via ion exchange, solid phase extraction, and reverse phase high performance liquid chromatography. Analysis of the obtained extract revealed a direct relationship between hydrolysis time, degree of hydrolysis, and biological activities. The peptides GRPGNRGE (P1) and AKDYEVDAT (P2), with a molecular weight of 841.42 and 1010.46 Da, respectively, were identified through tandem mass spectrometry. P1 had a lower ACE and DPP-IV inhibitory activity, with a half maximal inhibitory concentration [IC50] of 0.74 and 0.69 mg.mL-1, respectively, than P2 (0.52 and 0.58 mg.mL-1, respectively). Antibacterial analysis showed similar results, with a minimum inhibitory concentration of 0.52 and 0.46 mg.mL-1 against Staphylococcus aureus (highest activity) and 1.75 and 1.44 mg.mL-1 against Klebsiella pneumonia (lowest activity) for P1 and P2, respectively. Overall, this study revealed two fish gelatin-derived multifunctional peptides, exhibiting ACE inhibitory, DPP-IV inhibitory, and antibacterial activities, as natural nutraceuticals. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00998-6.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Food Science and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea.,School of Agriculture and Food Science, University College Dublin, Belfield 4 Dublin, Ireland
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186 South Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, 61186 South Korea
| | - Jong-Bang Eun
- Department of Food Science and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
| |
Collapse
|
35
|
Exploring the DPP-IV Inhibitory, Antioxidant and Antibacterial Potential of Ovine "Scotta" Hydrolysates. Foods 2021; 10:foods10123137. [PMID: 34945689 PMCID: PMC8701287 DOI: 10.3390/foods10123137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this work was to valorize the by-product derived from the ricotta cheese process (scotta). In this study, ovine scotta was concentrated by ultrafiltration and then subjected to enzymatic hydrolyses using proteases of both vegetable (4% E:S, 4 h, 50 °C) and animal origin (4% E:S, 4 h, 40 °C). The DPP-IV inhibitory, antioxidant, and antibacterial activities of hydrolysates from bromelain (BSPH) and pancreatin (PSPH) were measured in vitro. Both the obtained hydrolysates showed a significantly higher DPP-IV inhibitory activity compared to the control. In particular, BSPH proved to be more effective than PSPH (IC50 8.5 ± 0.2 vs. 13 ± 1 mg mL−1). Moreover, BSPH showed the best antioxidant power, while PSPH was more able to produce low-MW peptides. BSPH and PSPH hydrolysates showed a variable but slightly inhibitory effect depending on the species or strain of bacteria tested. BSPH and PSPH samples were separated by gel permeation chromatography (GPC). LC-MS/MS analysis of selected GPC fractions allowed identification of differential peptides. Among the peptides 388 were more abundant in BSPH than in the CTRL groups, 667 were more abundant in the PSPH group compared to CTRL, and 97 and 75 of them contained sequences with a reported biological activity, respectively.
Collapse
|
36
|
Santos-Hernández M, Cermeño M, Recio I, FitzGerald RJ. In vitro dipeptidyl peptidase IV inhibitory activity and in situ insulinotropic activity of milk and egg white protein digests. Food Funct 2021; 12:12372-12380. [PMID: 34854453 DOI: 10.1039/d1fo00641j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dietary proteins are involved in the regulation of glucose homeostasis by different mechanisms. Food protein digestion products are reported to inhibit dipeptidyl peptidase IV (DPP-IV), induce incretin secretion or directly exert an insulinotropic effect in pancreatic β-cells. This study illustrates the DPP-IV inhibitory activity of gastric and intestinal digests of casein, whey and egg white proteins determined in vitro, using Gly-Pro-AMC, and in situ using non-differentiated Caco-2 cells. Comparable trends in the DPP-IV inhibitory profiles were obtained by these two methods although the extent of inhibition in situ was consistently lower than the inhibition observed in vitro. Casein intestinal digests and whey protein gastric and intestinal digests showed potent DPP-IV inhibitory activities in Caco-2 cells with IC50 values ranging from 0.8 to 1.2 mg mL-1. The absorbed fraction of the intestinal digests from whey and egg white protein induced insulin secretion in BRIN-BD11 cells when determined using a two-tiered cellular model (Caco-2 and BRIN-BD11). However, the gastric digests from the same substrates showed no insulin secretion. This may be related to limited trans-epithelial transport through the Caco-2 monolayer of the gastric digestion products. However, both, gastric and intestinal digests were able to induce insulin secretion in BRIN-BD11 cells when the monolayer was composed of a co-culture of STC-1 and Caco-2 cells. This result may be attributed to the activation of STC-1 cells and subsequent incretin secretion, induced by the gastric digest, as shown by an enhanced intracellular calcium uptake.
Collapse
Affiliation(s)
- Marta Santos-Hernández
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain.,Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland.
| | - Maria Cermeño
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland.
| | - Isidra Recio
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Richard J FitzGerald
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland.
| |
Collapse
|
37
|
Ayati S, Eun J, Atoub N, Mirzapour‐Kouhdasht A. Functional yogurt fortified with fish collagen‐derived bioactive peptides: Antioxidant capacity, ACE and DPP‐IV inhibitory. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Samaneh Ayati
- Department of Food Science and Technology Faculty of Agriculture Jahrom University Jahrom Iran
| | - Jong‐Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology Chonnam National University Gwangju South Korea
| | - Najme Atoub
- Atoub Sanat Nanotechnologists Company Agricultural Growth Center, Science and Technology Park Shiraz Iran
| | - Armin Mirzapour‐Kouhdasht
- Atoub Sanat Nanotechnologists Company Agricultural Growth Center, Science and Technology Park Shiraz Iran
- School of Agriculture and Food Science University College Dublin Dublin Ireland
| |
Collapse
|
38
|
Unravelling the α-glucosidase inhibitory properties of chickpea protein by enzymatic hydrolysis and in silico analysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Oluwagunwa OA, Alashi AM, Aluko RE. Inhibition of the in vitro Activities of α-Amylase and Pancreatic Lipase by Aqueous Extracts of Amaranthus viridis, Solanum macrocarpon and Telfairia occidentalis Leaves. Front Nutr 2021; 8:772903. [PMID: 34820413 PMCID: PMC8606662 DOI: 10.3389/fnut.2021.772903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibition of digestive enzymes such as α-amylase and pancreatic lipase (PL) is a promising therapeutic strategy for the treatment and management of chronic health conditions such as diabetes and obesity. Therefore, the aim of this work was to determine the enzyme inhibitory activity of polyphenol-rich aqueous extracts of Amaranthus viridis (AV), Solanum macrocarpon (SM) and Telfairia occidentalis (TO) leaves, which were harvested from plants produced using multiple urea fertilizer doses (0-80 kg N/ha). Fertilizer application was applied at two time points (at planting or 2 weeks after seedling emergence). Leaf extracts were obtained using aqueous extraction (1:20, leaves:water) for 4 h at 60°C followed by centrifugation and freeze-drying of the supernatant. Results showed that the extracts inhibited α-amylase, and pancreatic lipase dose-dependently with TO extracts having significantly (p < 0.05) higher inhibitory activities for both enzymes. Fluorescence intensity and circular dichroism spectra in the presence and absence of leaf extracts indicate significant changes to the enzyme protein secondary and tertiary conformations. We conclude that the leaf extracts, especially from TO are potential agents for reducing calorie intake as a preventive or treatment tool against chronic diseases such as diabetes and obesity.
Collapse
Affiliation(s)
- Olayinka A. Oluwagunwa
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
40
|
Anti-diabetic properties of bioactive components from fish and milk. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
41
|
Identifying Dipeptidyl Peptidase-IV Inhibitory Peptides Based on Correlation Information of Physicochemical Properties. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10280-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Akan E. An evaluation of the in vitro antioxidant and antidiabetic potentials of camel and donkey milk peptides released from casein and whey proteins. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3743-3751. [PMID: 34471298 DOI: 10.1007/s13197-020-04832-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022]
Abstract
In this study, some biological activities including antioxidant activity (DPPH radical scavenging activity, ABTS radical scavenging activity, and CUPRAC assay), DPP-IV enzyme inhibitory activity, and α-glucosidase enzyme inhibitory activity of peptides released from in vitro gastrointestinal digested casein and the whey proteins of camel and donkey milk were evaluated. While the highest antioxidant activity was determined to be in the digested camel casein fraction using the ABTS and CUPRAC methods, the digested donkey casein fraction was determined to have the highest radical scavenging activity using the DPPH method. The highest DPP-IV inhibitory activity was detected in digested camel and donkey milk casein fractions. Digested whey fractions of camel and donkey milk had a lower DPP-IV inhibitory activity compared to the digested casein fractions. However, digested whey fractions of camel and donkey milk did not show α-glucosidase inhibitory activity, and digested donkey casein fraction showed the highest α-glucosidase inhibitory activity with a 12.5 µg/mL IC50 value. It was concluded that peptides released from digested casein fraction of camel and donkey milk have potent antioxidant and particularly antidiabetic properties.
Collapse
Affiliation(s)
- Ecem Akan
- Faculty of Agriculture, Department of Dairy Technology, Aydın Adnan Menderes University, 09970 Koçarlı Aydın, Turkey
| |
Collapse
|
43
|
Phenotypic and probiotic characterization of isolated LAB from Himalayan cheese (Kradi/Kalari) and effect of simulated gastrointestinal digestion on its bioactivity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int J Mol Sci 2021; 22:ijms22179508. [PMID: 34502417 PMCID: PMC8431147 DOI: 10.3390/ijms22179508] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.
Collapse
|
45
|
Hayes M. Bioactive Peptides in Preventative Healthcare: An Overview of Bioactivities and Suggested Methods to Assess Potential Applications. Curr Pharm Des 2021; 27:1332-1341. [PMID: 33550961 DOI: 10.2174/1381612827666210125155048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Food derived bioactive peptides can be generated from various protein sources and usually consist of between 2-30 amino acids with bulky, side-chain aromatic amino acids preferred in the ultimate and penultimate positions at the C-terminal end of the amino acid chain. They are reported to impart a myriad of preventative health beneficial effects to the consumer once ingested and these include heart health benefits through inhibition of enzymes including renin (EC 3.4.23.15) and angiotensin- I-converting enzyme (ACE-1; EC 3.4.15.1) within the renin angiotensin aldosterone system (RAAS) anti-inflammatory (due to inhibition of ACE-I and other enzymes) and anti-cancer benefits, prevention of type-2 diabetes through inhibition of dipeptidyl peptidase IV (DPP-IV), bone and dental strength, antimicrobial and immunomodulatory effects and several others. Peptides have also reported health benefits in the treatment of asthma, neuropathic pain, HIV and wound healing. However, the structure, amino acid composition and length of these peptides, along with the quantity of peptide that can pass through the gastrointestinal tract and often the blood-brain barrier (BBB), intact and reach the target organ, are important for the realisation of these health effects in an in vivo setting. This paper aims to collate recent important research concerning the generation and detection of peptides in the laboratory. It discusses products currently available as preventative healthcare peptide options and relevant legislation barriers to place a food peptide product on the market. The review also highlights useful in silico computer- based methods and analysis that may be used to generate specific peptide sequences from proteins whose amino acid sequences are known and also to determine if the peptides generated are unique and bioactive. The topic of food-derived bioactive peptides for health is of great interest to scientific research and industry due to evolving drivers in food product innovation, including health and wellness for the elderly, infant nutrition and optimum nutrition for sports athletes and the humanisation of pets. This paper provides an overview of what is required to generate bioactive peptide containing hydrolysates, what methods should be used in order to characterise the beneficial health effects of these hydrolysates and the active peptide sequences, potential applications of bioactive peptides and legislative requirements in Europe and the United States. It also highlights success stories and barriers to the development of peptide-containing food products that currently exist.
Collapse
Affiliation(s)
- Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
46
|
T. C. S, Ghosh BC. Bio‐functional attributes in Cheddar cheese made from the milk of indigenous and crossbred cows. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Soumyashree T. C.
- Dairy Technology Division ICAR‐National Dairy Research Institute Bengaluru India
| | - Bikash C. Ghosh
- Dairy Technology Division ICAR‐National Dairy Research Institute Bengaluru India
| |
Collapse
|
47
|
SYABANA MA, YULIANA ND, BATUBARA I, FARDIAZ D. Antidiabetic activity screening and nmr profile of vegetable and spices commonly consumed in Indonesia. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Castañeda-Pérez E, Jiménez-Morales K, Castellanos-Ruelas A, Chel-Guerrero L, Betancur-Ancona D. Antidiabetic Potential of Protein Hydrolysates and Peptide Fractions from Lima Bean (Phaseolus lunatus L): An In Vitro Study. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10226-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Swelum AA, El-Saadony MT, Abdo M, Ombarak RA, Hussein EO, Suliman G, Alhimaidi AR, Ammari AA, Ba-Awadh H, Taha AE, El-Tarabily KA, Abd El-Hack ME. Nutritional, antimicrobial and medicinal properties of Camel's milk: A review. Saudi J Biol Sci 2021; 28:3126-3136. [PMID: 34025186 PMCID: PMC8117040 DOI: 10.1016/j.sjbs.2021.02.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 01/20/2023] Open
Abstract
Camel's milk is an important part of staple diet in several parts of the world, particularly in the arid and semi-arid zones. Camel's milk is rich in health-beneficial substances, such as bioactive peptides, lactoferrin, zinc, and mono and polyunsaturated fatty acids. These substances could help in the treatment of some important human diseases like tuberculosis, asthma, gastrointestinal diseases, and jaundice. Camel's milk composition is more variable compared to cow's milk. The effects of feed, breed, age, and lactation stage on milk composition are more significant in camel. Region and season significantly change the ratio of compounds in camel's milk. Camel's whey protein is not only composed of numerous soluble proteins, but also has indigenous proteases such as chymotrypsin A and cathepsin D. In addition to their high nutritional value, these whey proteins have unique characteristics, including physical, chemical, physiological, functional, and technological features that are useful in the food application. The hydrolysis of camel's milk proteins leads to the formation of bioactive peptides, which affect major organ systems of the body and impart physiological functions to these systems. The camel's milk has antioxidant, antimicrobial, angiotensin-I-converting enzyme (ACE)-inhibitory peptides, antidiabetic as well as anticholesterol activities.
Collapse
Affiliation(s)
- Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Rabee A. Ombarak
- Department Food Hygiene & Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Elsayed O.S. Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Gamaleldin Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ahmed R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aiman A. Ammari
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | | |
Collapse
|
50
|
Ram H, Kumar P, Purohit A, Kashyap P, Kumar S, Kumar S, Singh G, Alqarawi AA, Hashem A, Abd-Allah EF, Al-Arjani ABF, Singh BP. Improvements in HOMA indices and pancreatic endocrinal tissues in type 2-diabetic rats by DPP-4 inhibition and antioxidant potential of an ethanol fruit extract of Withania coagulans. Nutr Metab (Lond) 2021; 18:43. [PMID: 33882957 PMCID: PMC8059290 DOI: 10.1186/s12986-021-00547-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/20/2021] [Indexed: 01/12/2023] Open
Abstract
CONTEXT Withania coagulans (Stocks) Dunal fruits are used in the therapeutics of several ailments due to possessing of potent phytoconstituents which is also used traditionally for curing the diabetes. OBJECTIVE The present study was assessing the amelioration potential of the phytochemicals of an ethanol fruit extract of W. coagulans (Stocks) Dunal in the HOMA (Homeostatic model assessment) indices and pancreatic endocrinal tissues by inhibition of DPP-4 and antioxidants activities. MATERIAL AND METHODS The identification of phytoconstituents of the test extract was performed by LCMS. Further, assessments of in-vitro, in-vivo and in-silico were achieved by following standard methods. In-vivo studies were conducted on type-2 diabetic rats. RESULTS The chosen extract inhibited DPP-4 activity by 63.2% in an in vitro assay as well as significantly inhibit serum DPP-4 levels. Accordingly, the administration of the ethanol fruit extract resulted in a significant (P ≤ 0.001) alterations in the lipid profile, antioxidant levels, and HOMA indices. Moreover, pancreatic endocrinal tissues (islet of Langerhans) appeared to have the restoration of normal histoarchitecture as evidenced by increased cellular mass. Molecular docking (Protein-ligands) of identified phytoconstituents with DPP-4 (target enzyme) shown incredibly low binding energy (Kcal/mol) as required for ideal interactions. ADMET analysis of the pharmacokinetics of the identified phytoconstituents indicated an ideal profile as per Lipinski laws. CONCLUSION It can be concluded that the phytoconstituents of an ethanol fruit extract of W. coagulans have the potential to inhibit DPP-4 which result in improved glucose homeostasis and restoration of pancreatic endocrinal tissues in type-2 diabetic rats.
Collapse
Affiliation(s)
- Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India.
| | - Pramod Kumar
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Ashok Purohit
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Priya Kashyap
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, India
| | - Suresh Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, India
| | - Shivani Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, India
| | - Garima Singh
- Department of Botany, Pachhunga University College, Aizawl, Mizoram, 796001, India
| | - Abdulaziz A Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, 12511, Egypt
| | - Al-Bandari Fahad Al-Arjani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Bhim Pratap Singh
- Department of Agriculture and Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, 131028, Haryana, India.
| |
Collapse
|