1
|
Miao S, Wang X, Zhu Q, Liao C, Jiang G. Migration patterns of organophosphate esters from plastic food packaging simulants to foods: Donors, behaviours, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176272. [PMID: 39278500 DOI: 10.1016/j.scitotenv.2024.176272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
In recent years, organophosphate esters (OPEs) have been widely produced and used as flame retardants and plasticizer additives, posing significant ecological and health risks. Dietary intake is considered to be the primary route of human exposure to OPEs. Plastic food packaging materials are considered a crucial source for contamination of OPEs in food. However, the migration behaviour of OPEs from plastic food packaging materials into foods has received limited attention. In this study, we employed a novel method to prepare migration donors containing 13 kinds of OPEs. The migration behaviours of OPEs from food packaging simulants (polypropylene) to foods (full-fat milk powder) were simulated, and factors influencing the migration of OPEs were examined, including the properties of the target compounds, migration temperature, fat content of the migration receptors, and mass transfer mode. The results indicated that OPEs exhibited a significant migration tendency. Low molecular weight OPEs (< 300 Da) had faster migration efficiency compared to high molecular weight OPEs. The mean migration efficiencies of various OPEs showed a significant negative correlation with their molecular weights (p < 0.01) and a significant positive correlation with temperature (p < 0.01). Except for resorcinol bis(diphenyl phosphate) (RDP), which showed almost no migration, the mean migration efficiencies of other OPEs at 25 °C, 40 °C, and 60 °C were 3.1-37.5 %, 9.0-60.0 %, and 23.9-80.4 %, respectively. Most of the OPEs demonstrated higher migration efficiency in high-fat content food than low-fat content food. The migration of OPEs from food packaging simulants to foods primarily occurred through contact rather than gas-phase mass transfer. Overall, this study uncovers the migration behaviours of OPEs from food packaging simulants to foods and scrutinized the relevant factors influencing the migration. It is expected that the research in terms of the contamination control of OPEs in food will benefit from this work.
Collapse
Affiliation(s)
- Shiyu Miao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Desnoes E, Deshaies P, Bideau B, Rubiano J. Thermoformed products from high-density polyethylene and Softwood kraft pulp. NORDIC PULP & PAPER RESEARCH JOURNAL 2024; 39:339-348. [PMID: 39211427 PMCID: PMC11350244 DOI: 10.1515/npprj-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/09/2024] [Indexed: 09/04/2024]
Abstract
Plastic recycling, waste minimization such as process outfall valorization promotes a circular economy. Herein, food trays have been produced in the moulded pulp thermoforming process. To this end, high-density polyethylene (HDPE) outfall has been dispersed in water via Poly vinyl alcohol (PVA) addition in a Northern Bleached Softwood Kraft Pulp (NBSKP) slurry. Samples physical and mechanical properties have been evaluated. With an increasing HDPE content, parts air permeability was drastically reduced to a minimum of 2.4 ± 0.8 mL min-1. In addition, water and grease hold out properties have been increased with minimum water Cobb1800 value of 10.9 ± 5.4 gm-2 and oil Cobb1800 value of 13.18 ± 6.5 gm-2. Samples with high HDPE content demonstrated hydrophobic surface with water contact angle value above 90°. HDPE melting and binding to wood pulp fibers was monitored by SEM images. Regarding the mechanical properties, HDPE induced plastic deformation with a reduced Young modulus by 17 %. Moreover, the addition of HDPE increased wet strength by 81 %. However, the produced food tray composites with high HDPE content demonstrated low repulpability index.
Collapse
Affiliation(s)
- Eric Desnoes
- Innofibre Research Group, CEGEP de Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QuébecG9A5H7, Canada
| | - Pascale Deshaies
- Innofibre Research Group, CEGEP de Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QuébecG9A5H7, Canada
| | - Benoit Bideau
- Innofibre Research Group, CEGEP de Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QuébecG9A5H7, Canada
| | - Jorge Rubiano
- Dupont inc., 461 Front Road, Kingston, ON, K7L 5A5, Canada
| |
Collapse
|
3
|
Wang X, Dong S, Zhu Q, Wu X, Zhou W, Liao C, Jiang G. Nationwide Investigation on Organophosphate Flame Retardants in Tea from China: Migration from Packaging Materials and Implications for Global Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14786-14796. [PMID: 39106076 DOI: 10.1021/acs.est.4c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In this study, we measured 15 common organophosphate flame retardants (OPFRs) in six categories of tea samples across China. OPFRs were found in all the tea samples, with the total concentrations of OPFRs (∑OPFRs) at 3.44-432 ng/g [geometric mean (GM): 17.6 ng/g]. Triphenyl phosphate (TPhP) was the dominant OPFR, accounting for 39.0-76.2% of ∑OPFRs across all tea categories. The potential factors influencing the residual OPFRs in tea were thoroughly examined, including the agricultural environment, fermentation, and packaging of teas. Tea packaging materials (TPMs) were then identified as the primary sources of OPFRs in teas. The migration test revealed that OPFRs with lower molecular weights and log Kow values exhibited a higher propensity for facilitating the migration of OPFRs from TPMs to teas. The estimated daily intakes of OPFRs from teas were relatively higher for the general populations in Mauritania, Gambia, Togo, Morocco, and Senegal (3.18-9.79 ng/kg bw/day) than China (3.12 ng/kg bw/day). The health risks arising from OPFRs in Chinese teas were minor. This study established a baseline concentration and demonstrated the contamination sources of OPFRs in Chinese tea for the first time, with an emphasis on enhancing the hygiene standards for TPMs.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, and Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingyi Wu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Wenfeng Zhou
- College of Science, China Agricultural University, Beijing 100193, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Pham PC, Taylor M, Nguyen GTH, Beltran J, Bennett JL, Ho J, Donald WA. Binding of Per- and Polyfluoroalkyl Substances to β-Lactoglobulin from Bovine Milk. Chem Res Toxicol 2024; 37:757-770. [PMID: 38625865 DOI: 10.1021/acs.chemrestox.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are known for their high environmental persistence and potential toxicity. The presence of PFAS has been reported in many dairy products. However, the mechanisms underlying the accumulation of PFAS in these products remain unclear. Here, we used native mass spectrometry and molecular dynamics simulations to probe the interactions between 19 PFAS of environmental concern and two isoforms of the major bovine whey protein β-lactoglobulin (β-LG). We observed that six of these PFAS bound to both protein isoforms with low- to mid-micromolar dissociation constants. Based on quantitative, competitive binding experiments with endogenous ligands, PFAS can bind orthosterically and preferentially to β-LG's hydrophobic ligand-binding calyx. β-Cyclodextrin can also suppress binding of PFAS to β-LG owing to the ability of β-cyclodextrin to directly sequester PFAS from solution. This research sheds light on PFAS-β-LG binding, suggesting that such interactions could impact lipid-fatty acid transport in bovine mammary glands at high PFAS concentrations. Furthermore, our results highlight the potential use of β-cyclodextrin in mitigating PFAS binding, providing insights toward the development of strategies to reduce PFAS accumulation in dairy products and other biological systems.
Collapse
Affiliation(s)
- P Chi Pham
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mackenzie Taylor
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jeunesse Beltran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Aker A, Nguyen V, Ayotte P, Ricard S, Lemire M. Characterizing Important Dietary Exposure Sources of Perfluoroalkyl Acids in Inuit Youth and Adults in Nunavik Using a Feature Selection Tool. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47014. [PMID: 38683744 PMCID: PMC11057678 DOI: 10.1289/ehp13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Previous studies have identified the consumption of country foods (hunted/harvested foods from the land) as the primary exposure source of perfluoroalkyl acids (PFAA) in Arctic communities. However, identifying the specific foods associated with PFAA exposures is complicated due to correlation between country foods that are commonly consumed together. METHODS We used venous blood sample data and food frequency questionnaire data from the Qanuilirpitaa? ("How are we now?") 2017 (Q2017) survey of Inuit individuals ≥ 16 y of age residing in Nunavik (n = 1,193 ). Adaptive elastic net, a machine learning technique, identified the most important food items for predicting PFAA biomarker levels while accounting for the correlation among the food items. We used generalized linear regression models to quantify the association between the most predictive food items and six plasma PFAA biomarker levels. The estimates were converted to percent changes in a specific PFAA biomarker level per standard deviation increase in the consumption of a food item. Models were also stratified by food type (market or country foods). RESULTS Perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with frequent consumption of beluga misirak (rendered fat) [14.6%; 95% confidence interval (CI): 10.3%, 18.9%; 14.6% (95% CI: 10.1%, 19.0%)], seal liver [9.3% (95% CI: 5.0%, 13.7%); 8.1% (95% CI: 3.5%, 12.6%)], and suuvalik (fish roe mixed with berries and fat) [6.0% (95% CI: 1.3%, 10.7%); 7.5% (95% CI: 2.7%, 12.3%)]. Beluga misirak was also associated with higher concentrations of perfluorohexanesulphonic acid (PFHxS) and perfluorononanoic acid (PFNA), albeit with lower percentage changes. PFHxS, perfluorooctanoic acid (PFOA), and PFNA followed some similar patterns, with higher levels associated with frequent consumption of ptarmigan [6.1% (95% CI: 3.2%, 9.0%); 5.1% (95% CI: 1.1%, 9.1%); 5.4% (95% CI: 1.8%, 9.0%)]. Among market foods, frequent consumption of processed meat and popcorn was consistently associated with lower PFAA exposure. CONCLUSIONS Our study identifies specific food items contributing to environmental contaminant exposure in Indigenous or small communities relying on local subsistence foods using adaptive elastic net to prioritize responses from a complex food frequency questionnaire. In Nunavik, higher PFAA biomarker levels were primarily related to increased consumption of country foods, particularly beluga misirak, seal liver, suuvalik, and ptarmigan. Our results support policies regulating PFAA production and use to limit the contamination of Arctic species through long-range transport. https://doi.org/10.1289/EHP13556.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
| | - Vy Nguyen
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
6
|
Li S, Ma J, Cheng J, Wu G, Wang S, Huang C, Li J, Chen L. Metal-Organic Framework-Based Composites for the Adsorption Removal of Per- and Polyfluoroalkyl Substances from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38301280 DOI: 10.1021/acs.langmuir.3c02939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The increasing health risks posed by per- and polyfluoroalkyl substances (PFASs) in the environment highlight the importance of implementing effective removal techniques. Conventional wastewater treatment processes are inadequate for removing persistent organic pollutants. Recent studies have increasingly demonstrated that metal-organic frameworks (MOFs) are capable of removing PFASs from water through adsorption techniques. However, there is still constructive discussion on the potential of MOFs in adsorbing and removing PFASs for large-scale engineering applications. This review systematically investigates the use of MOFs as adsorbents for the removal of PFAS in water treatment. This primarily involved a comprehensive analysis of existing literature to understand the adsorption mechanisms of MOFs and to identify factors that enhance their efficiency in removing PFASs. We also explore the critical aspects of regeneration and stability of MOFs, assessing their reusability and long-term performance, which are essential for large-scale water treatment applications. Finally, our study highlights the challenges of removing PFASs using MOFs. Especially, the efficient removal of short-chain PFASs with hydrophilicity is a major challenge, while medium- to long-chain PFASs are frequently susceptible to being captured from water by MOFs through multiple synergistic effects. The ion-exchange force may be the key to solving this difficulty, but its susceptibility to ion interference in water needs to be addressed in practical applications. We hope that this review can provide valuable insights into the effective removal and adsorption mechanisms of PFASs as well as advance the sustainable utilization of MOFs in the field of water treatment, thereby presenting a novel perspective.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Jiawen Cheng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Gege Wu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Shasha Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Chaonan Huang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, People's Republic of China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, People's Republic of China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, People's Republic of China
| |
Collapse
|
7
|
Xing Y, Zhou Y, Zhang X, Lin X, Li J, Liu P, Lee HK, Huang Z. The sources and bioaccumulation of per- and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167313. [PMID: 37742961 DOI: 10.1016/j.scitotenv.2023.167313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have attracted increasing attention due to their environmental persistence and potential toxicity. Diet is one of the main routes of human exposure to PFAS, particularly through the consumption of animal-derived foods (e.g., aquatic products, livestock and poultry, and products derived from them). This review summarizes the source, bioaccumulation, and distribution of PFAS in animal-derived foods and key influential factors. In most environmental media, perfluorooctanoic acid and perfluorooctane sulfonate are the dominant PFAS, with the levels of short-chain PFAS such as perfluorobutyric acid and perfluorohexane sulfonate surpassing them in some watersheds and coastal areas. The presence of PFAS in environmental media is mainly influenced by suspended particulate matter, microbial communities as well as temporal and spatial factors, such as season and location. Linear PFAS with long carbon chains (C ≥ 7) and sulfonic groups tend to accumulate in organisms and contribute significantly to the contamination of animal-derived foods. Furthermore, PFAS, due to their protein affinity, are prone to accumulate in the blood and protein-rich tissues such as the liver and kidney. Species differences in PFAS bioaccumulation are determined by diet, variances in protein content in the blood and tissues and species-specific activity of transport proteins. Carnivorous fish usually show higher PFAS accumulation than omnivorous fish. Poultry typically metabolize PFAS more rapidly than mammals. PFAS exposures in the processing of animal-derived foods are also attributable to the migration of PFAS from food contact materials, especially those in higher-fat content foods. The human health risk assessment of PFAS exposure from animal-derived foods suggests that frequent consumption of aquatic products potentially engender greater risks to women and minors than to adult males. The information and perspectives from this review would help to further identify the toxicity and migration mechanism of PFAS in animal-derived foods and provide information for food safety management.
Collapse
Affiliation(s)
- Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
8
|
Lin X, Xing Y, Chen H, Zhou Y, Zhang X, Liu P, Li J, Lee HK, Huang Z. Characteristic and health risk of per- and polyfluoroalkyl substances from cosmetics via dermal exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122685. [PMID: 37804905 DOI: 10.1016/j.envpol.2023.122685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
In this work, 45 cosmetic samples were collected from China, and 27 target per- and polyfluoroalkyl substances (PFAS) were analyzed by ultrahigh-performance liquid chromatography-high resolution mass spectrometry. PFAS were found in all samples, including the products marketed for pregnant women, and the total concentrations of PFAS measured in each sample were in the range of 4.05 - 94.9 ng/g. Short-chain perfluorinated carboxylic acids were the dominant compounds contributing to over 60% of the total content. Perfluorobutanoic acid, with high placental transfer efficiency, was the major PFAS in cosmetics for pregnant women. Three emerging PFAS, 2-perfluorohexyl ethanoic acid, 3-perfluoropentyl propanoic acid (5:3) and perfluoro-2-propoxypropanoic acid, were also identified in the cosmetic samples at quantifiable levels. Significantly, positive correlations between individual PFAS were observed, indicating that there may be a common source for PFAS in these samples. Statistical analyses suggested that using plastic containers and precursor substances may be potential sources of PFAS in terminal products, and product aging may increase PFAS levels. From the PFAS analysis of the cosmetics, the margin of safety (MoS) and hazard quotient (HQ) were calculated to assess human health risks through dermal exposure by using these products. Although the MoS and HQ values obtained were deemed acceptable, the cumulative effect caused by composite and long-term exposure to these contaminants needs to be given greater attention by health authorities.
Collapse
Affiliation(s)
- Xia Lin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Huijun Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
9
|
Mikołajczyk S, Warenik-Bany M, Pajurek M. Occurrence of perfluoroalkyl substances in cow's, goat's and sheep's milk - dietary intake and risk assessment. J Vet Res 2023; 67:593-602. [PMID: 38130456 PMCID: PMC10730547 DOI: 10.2478/jvetres-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Milk from cows, goats and sheep was analysed in terms of content of fourteen perfluoroalkyl substances (PFASs). Material and Methods Altogether, 73 milk samples from cows (n = 38), goats (n = 20) and sheep (n = 15) were collected from various regions of Poland. Concentrations of analytes were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results The lower-bound sum of four PFAS (∑4 PFASs) concentrations (perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid, perfluorononanoic acid and perfluorohexanesulfonic acid) were highest in sheep's (0.0055 μg/kg), lower in goat's (0.0046 μg/kg), and lowest in cow's milk (0.0008 μg/kg). Goat's and sheep's milk was statistically significantly more contaminated than cow's milk. None of the samples exceeded the indicative values set by Commission Recommendation (EU) 2022/1431, and even the maximum detected concentrations were an order of magnitude lower. The most frequently detected was linear PFOS, which was found in 33%, 76% and 93% of cow's, goat's and sheep's milk samples, respectively. Based on mean upper-bound ∑4 PFAS concentrations and average milk consumption, the estimated intake of ∑4 PFASs ranged from 0.153 to 0.266 ng/kg body weight (b.w.) for children and from 0.050 to 0.88 ng/kg b.w. for adults, which indicates that exposure is very low and is merely <7% of the tolerable weekly intake (TWI) for children and <2% of the TWI for adults. Conclusion Regardless of the milk type, the intake of PFASs via consumption of Polish milk does not contribute significantly to the overall PFAS intake of either adults or children.
Collapse
Affiliation(s)
- Szczepan Mikołajczyk
- Radiobiology Department, National Veterinary Research Institute, 24-100Puławy, Poland
| | | | - Marek Pajurek
- Radiobiology Department, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
10
|
Hoang AQ, Tran TL, Tuyen LH, Nguyen TAH, Pham DM, Nguyen TC, Nguyen TN, Phan DQ, Nguyen MK, Tran VQ, Pham CT, Do Bui Q, Nguyen TQH. Perfluoroalkyl substances in food contact materials: preliminary investigation in Vietnam and global comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104181-104193. [PMID: 37698798 DOI: 10.1007/s11356-023-29746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of concerned persistent toxic substances, especially for their application or unintentional formation in food contact materials (FCMs). However, information about the occurrence, sources, and fate of these pollutants in food packaging materials from Vietnam as well as Southeast Asian countries is probably still obscured. In this study, levels of 13 perfluoroalkyl carboxylic acids (PFCAs) and 4 sulfonates (PFSs) were determined in various types of food packaging samples collected from Vietnamese markets. Generally low concentrations of total 17 PFASs (median 0.341; max 624 ng/g) suggested that these compounds were mainly inadvertently produced rather than intentionally added to the packaging materials. A few mochi paper tray samples had relatively high PFAS levels (372-624 ng/g), which were dominated by long-chain (C8-C12) PFCAs. A comprehensive and updated overview of PFASs in FCMs from different countries in the world was also provided. Current database could not provide conclusive trends of PFAS concentrations and profiles in FCMs between continents and countries. The highest levels up to ppm were reported for PFCAs (e.g., PFBA, PFHxA, PFOA, and PFDA) and several fluorotelomer alcohols and carboxylic acids, while PFSs were almost absent in FCMs. FPASs can emit from FCMs, migrate to food, and then contribute to dietary exposure in humans and animals. Additional investigations on the occurrence, sources, behavior and fate, and impacts of PFASs in FCMs are critically needed, especially in emerging and developing countries.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| | - Thi Lieu Tran
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
- Vietnam National Institute of Occupational Safety and Health, 99 Tran Quoc Toan, Hanoi, 10000, Vietnam
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| | - Thi Anh Huong Nguyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| | - Dang Minh Pham
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| | - Thi Chuc Nguyen
- Faculty of Chemical Technology and Environment, Hung Yen University of Technology and Education, Khoai Chau, Hung Yen, 17000, Vietnam
| | - Trong Nghia Nguyen
- Faculty of Chemical Technology and Environment, Hung Yen University of Technology and Education, Khoai Chau, Hung Yen, 17000, Vietnam
| | - Dinh Quang Phan
- Vietnam National Institute of Occupational Safety and Health, 99 Tran Quoc Toan, Hanoi, 10000, Vietnam
| | - Manh Khai Nguyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| | - Van Quy Tran
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| | - Chau Thuy Pham
- University of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Hanoi, 10000, Vietnam
| | - Quang Do Bui
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| | - Thi Quynh Hoa Nguyen
- Faculty of Chemical Technology and Environment, Hung Yen University of Technology and Education, Khoai Chau, Hung Yen, 17000, Vietnam.
| |
Collapse
|
11
|
Zhang W, Liang Y. The wide presence of fluorinated compounds in common chemical products and the environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108393-108410. [PMID: 37775629 DOI: 10.1007/s11356-023-30033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The C-F bonds, due to their many unique features, have been incorporated into numerous compounds in countless products and applications. These fluorinated compounds eventually are disposed of and released into the environment through different pathways. In this review, we analyzed the occurrence of these fluorinated compounds in seven types of products (i.e., refrigerants/propellants, aqueous film-forming foam, cosmetics, food packaging, agrochemicals, pharmaceuticals, coating materials) and discussed their fate in the environment. This is followed by describing the quantity of fluorinated compounds from each source based on available data. Total on- and off-site disposal or other releases of 536 fluorinated compounds in 2021 were analyzed using the data sourced from the U.S. EPA Toxics Release Inventory (TRI). Among the chemicals examined, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) were the primary contributors in terms of total mass. Upon examining the seven sources of fluorinated compounds, it became evident that additional contributors are also responsible for the presence of organofluorine compounds in the environment. Although various toxic degradation products of fluorinated compounds could form in the environment, trifluoroacetic acid (TFA) was specifically highlighted in this review given the fact that it is a common dead-end degradation product of > 1 million chemicals. This paper ended with a discussion of several questions raised from this study. The path forward was elaborated as well for the purpose of protecting the environment and human health.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA.
- , Albany, USA.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
12
|
Jiao E, Larsson P, Wang Q, Zhu Z, Yin D, Kärrman A, van Hees P, Karlsson P, Qiu Y, Yeung LWY. Further Insight into Extractable (Organo)fluorine Mass Balance Analysis of Tap Water from Shanghai, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14330-14339. [PMID: 37710968 PMCID: PMC10537424 DOI: 10.1021/acs.est.3c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
The ubiquitous occurrence of per- and polyfluoroalkyl substances (PFAS) and the detection of unexplained extractable organofluorine (EOF) in drinking water have raised growing concerns. A recent study reported the detection of inorganic fluorinated anions in German river systems, and therefore, in some samples, EOF may include some inorganic fluorinated anions. Thus, it might be more appropriate to use the term "extractable fluorine (EF) analysis" instead of the term EOF analysis. In this study, tap water samples (n = 39) from Shanghai were collected to assess the levels of EF/EOF, 35 target PFAS, two inorganic fluorinated anions (tetrafluoroborate (BF4-) and hexafluorophosphate (PF6-)), and novel PFAS through suspect screening and potential oxidizable precursors through oxidative conversion. The results showed that ultra-short PFAS were the largest contributors to target PFAS, accounting for up to 97% of ΣPFAS. To the best of our knowledge, this was the first time that bis(trifluoromethanesulfonyl)imide (NTf2) was reported in drinking water from China, and p-perfluorous nonenoxybenzenesulfonate (OBS) was also identified through suspect screening. Small amounts of precursors that can be oxidatively converted to PFCAs were noted after oxidative conversion. EF mass balance analysis revealed that target PFAS could only explain less than 36% of EF. However, the amounts of unexplained extractable fluorine were greatly reduced when BF4- and PF6- were included. These compounds further explained more than 44% of the EF, indicating the role of inorganic fluorinated anions in the mass balance analysis.
Collapse
Affiliation(s)
- Enmiao Jiao
- Key
Laboratory of Yangtze River Water Environment, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Pontus Larsson
- Man-Technology-Environment
Research Centre (MTM), School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Qi Wang
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Hong Kong 999077, China
| | - Zhiliang Zhu
- Key
Laboratory of Yangtze River Water Environment, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key
Laboratory of Yangtze River Water Environment, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Anna Kärrman
- Man-Technology-Environment
Research Centre (MTM), School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Patrick van Hees
- Man-Technology-Environment
Research Centre (MTM), School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
- Eurofins
Food and Feed Testing Sweden AB, Sjöhagsgatan 3, SE-531 40 Lidköping, Sweden
| | - Patrik Karlsson
- Eurofins
Food and Feed Testing Sweden AB, Sjöhagsgatan 3, SE-531 40 Lidköping, Sweden
| | - Yanling Qiu
- Key
Laboratory of Yangtze River Water Environment, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Leo W. Y. Yeung
- Man-Technology-Environment
Research Centre (MTM), School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| |
Collapse
|
13
|
Draghi S, Pavlovic R, Pellegrini A, Fidani M, Riva F, Brecchia G, Agradi S, Arioli F, Vigo D, Di Cesare F, Curone G. First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction. Foods 2023; 12:2449. [PMID: 37444187 DOI: 10.3390/foods12132449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bovine milk is a pillar of the human diet and plays a key role in the nutrition of infants. Perfluoroalkyl substances (PFASs) are well-recognized highly stable organic compounds that are able to pollute ecosystems persistently and threaten both human and animal health. The study aimed to analyze the distribution of 14 PFASs within the milk matrix by comparing their content in whole milk, and its skimmed and creamed fractions. Raw milk samples were individually collected from 23 healthy cows (10 primiparous and 13 multiparous) reared on a farm in Northern Italy not surrounded by known point sources of PFASs. Each sample was fractioned in whole, skim, and cream components to undergo PFAS analysis using liquid chromatography-high-resolution mass spectrometry. All samples contained at least one PFAS, with perfluorobutanoic acid (PFBA) being the primary contaminant in all three fractions, followed by perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). PFOS was shown to be significantly (p < 0.001) more concentrated in cream than in raw and skimmed milk. Multiparous cows showed a higher frequency of positive samples in all analyzed fractions. Further research is necessary to assess the risk of dairy diets and high-fat dairy products and to investigate the toxicological effects of PFASs on cattle, even in environments without known PFAS sources.
Collapse
Affiliation(s)
- Susanna Draghi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | | | - Marco Fidani
- UNIRELAB Srl, Via Gramsci 70, 20019 Settimo Milanese, Italy
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Francesco Arioli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Federica Di Cesare
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
14
|
Sun Q, Zhang J, Wang T, Xiong Y, Zhan X, Zhao H, Wang J, Fan Y, Bi R, Wang S, Hong S, Khim JS. Cooking methods effectively alter perfluoroalkyl substances and nutrients in cultured and wild bullfrogs. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130555. [PMID: 37055966 DOI: 10.1016/j.jhazmat.2022.130555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/19/2023]
Abstract
The ubiquitous distribution of perfluoroalkyl substances (PFASs) poses a threat to the health of aquatic organisms and humans. Bullfrogs are considered a popular aquatic food product in South China, providing high protein and tasty cuisine; however bullfrogs have been shown to contain significant concentrations of PFASs. However, the risk-benefit ratios of PFASs and nutrient contents in cooked bullfrogs are not well understood. PFASs and nutrients were investigated in raw and cooked specimens of cultured and wild bullfrogs in this study. Novel PFASs showed higher detection levels and accumulation in wild bullfrogs than in cultured bullfrogs. Potential factors such as fat and fatty acid ratio affected PFASs accumulation in different tissues and by different cooking methods of bullfrogs. All cooking methods can reduce PFASs in edible tissues while significantly enhancing the nutritive value index (NVI) compared to raw bullfrogs. Steaming was the most effective way to reduce PFASs (rate of reduction was over 66%) and resulted in a lower risk of contributing to arteriosclerosis than other cooking methods assessed by atherogenicity index (AI) values. Cultured bullfrogs instead of wild bullfrogs were recommended for human consumption, and steaming was regarded as a better cooking method in terms of risk-benefit concerns. Overall, this work provides quantitative analysis of cooking methods that alter PFASs and nutrients in bullfrogs.
Collapse
Affiliation(s)
- Qiongping Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jiaer Zhang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Yonglong Xiong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xinyi Zhan
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Hancheng Zhao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jianwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yueyao Fan
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ran Bi
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shuqing Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Food simulants and real food – What do we know about the migration of PFAS from paper based food contact materials? Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Mroczko O, Preisendanz HE, Wilson C, Mashtare ML, Elliott HA, Veith TL, Soder KJ, Watson JE. Spatiotemporal patterns of PFAS in water and crop tissue at a beneficial wastewater reuse site in central Pennsylvania. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1282-1297. [PMID: 36070520 PMCID: PMC9828414 DOI: 10.1002/jeq2.20408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a collective name for thousands of synthetic compounds produced to enhance consumer and industrial products since the 1940s. They do not easily degrade, and some are known to pose serious ecological and human health concerns at trace concentrations (ng L-1 levels). Per- and polyfluoroalkyl substances persist in treated wastewater and are inadvertently introduced into the environment when treated wastewater is reused as an irrigation source. The Pennsylvania State University (PSU) has been spray-irrigating its wastewater at a 2.45 km2 mixed-use agricultural and forested site known as the "Living Filter" since the 1960s. To understand the spatiotemporal patterns of 20 PFAS at the Living Filter, water samples were collected bimonthly from fall 2019 through winter 2021 from the PSU's wastewater effluent and from each of the site's 13 monitoring wells. Crop tissue was collected at the time of harvest to assess PFAS presence in corn silage and tall fescue grown at the study site. Total measured PFAS concentrations in the monitoring wells ranged from nondectable to 155 ng L-1 , with concentrations increasing with the direction of groundwater flow. Concentrations within each well exhibited little temporal variability across sampling events, with mixed relationships between PFAS and groundwater elevation observed between wells. Further, >84% of the PFAS present in livestock feed crops were short-chain compounds, with PFAS consumed annually by livestock fed crops harvested from the site estimated to be 2.46-7.67 mg animal-1 yr-1 . This research provides insight into the potential impacts of long-term beneficial reuse of treated wastewater on groundwater and crop tissue quality.
Collapse
Affiliation(s)
- Olivia Mroczko
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Heather E Preisendanz
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
- Institute for Sustainable Agricultural, Food, and Environmental Science, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Christopher Wilson
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Michael L Mashtare
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Herschel A Elliott
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Tamie L Veith
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - Kathy J Soder
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - John E Watson
- Dep. of Ecosystem Science and Management, The Pennsylvania State Univ., University Park, PA, 16802, USA
| |
Collapse
|
17
|
Taylor RB, Sapozhnikova Y. Comparison and validation of the QuEChERSER mega-method for determination of per- and polyfluoroalkyl substances in foods by liquid chromatography with high-resolution and triple quadrupole mass spectrometry. Anal Chim Acta 2022; 1230:340400. [DOI: 10.1016/j.aca.2022.340400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022]
|
18
|
Zhong ZT, He YF, Tang YJ, Ashraf G, Yang H, Chen W, Liu B, Wang GP, Zhao YD. Terminal deoxynucleotidyl transferase associated with split G-quadruplex/hemin deoxyribozyme amplification detection for various contaminants in milk based on pregnancy test strip platform. Biosens Bioelectron 2022; 216:114644. [PMID: 36007409 DOI: 10.1016/j.bios.2022.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Contaminant residue analysis in milk can provide essential assistance for safety quality and contamination level management of milk production, which is critical for safeguarding public health. In this study, the pregnancy test strip is employed to achieve multiple analytes detection based on the specific recognition of aptamer and terminal deoxynucleotidyl transferase associated with split G-quadruplex/hemin deoxyribozyme system. Through the subsequent enzyme catalyzed reaction, the detection signal can be further amplified to improve the sensitivity. The method does not need to assemble test strip, prepare and purify antibodies/haptens, nor design complex probe sequences. By coupling human chorionic gonadotrophin with DNA probes and combining magnetic separation technology, the targets can be determined via the test strip. Under the optimized conditions, the visual detection limits for mercury ion, bisphenol A, and penicillin are 1, 0.1 and 0.05 nM, respectively. The detection results show that the method displays good accuracy and practicability in spiked milk sample. The method presents a simple scheme, low cost as well as good design versatility, which demonstrates great application prospect for the sensitive, low-cost, and convenient detection of food matrices.
Collapse
Affiliation(s)
- Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Yan-Fei He
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Yuan-Ju Tang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Huai Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Guo-Ping Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China.
| |
Collapse
|
19
|
Meng P, DeStefano NJ, Knappe DRU. Extraction and Matrix Cleanup Method for Analyzing Novel Per- and Polyfluoroalkyl Ether Acids and Other Per- and Polyfluoroalkyl Substances in Fruits and Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4792-4804. [PMID: 35188387 DOI: 10.1021/acs.jafc.1c07665] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl ether acids (PFEAs) are a subclass of per- and polyfluoroalkyl substances (PFAS) that are detected with increasing frequency in environmental matrices. Diet can be an important route of PFEA exposure, but the presence of PFEAs in food is poorly understood. Extraction methods for food samples exist for traditionally studied PFAS, but their suitability for PFEAs and other novel PFAS remains unknown. In this study, an extraction and matrix cleanup method was developed to quantify 45 PFAS, including 13 PFEAs, 3 perfluoroalkane sulfonamides, and 6 fluorotelomer carboxylic acids in 10 types of fruits and vegetables. Homogenized samples were extracted with basic methanol, and resulting extracts were diluted with water and cleaned up using solid-phase extraction with weak anion-exchange cartridges. The method was validated by performing spike-recovery experiments at spike levels of 1 ng/g in all 10 matrices and 0.1 ng/g in 2 matrices. For PFAS without a corresponding isotopically labeled internal standard (IS), adopting an IS with a similar chromatographic retention time generated the most accurate recoveries. Dependent upon the matrix, recoveries of 38-44 PFAS (including 10-13 PFEAs) fell within 50-150% for samples spiked at 1 ng/g. Recoveries of 40 and 38 PFAS in blueberries and corn, respectively, fell within 50-150% for samples spiked at 0.1 ng/g. Method quantification limits (MQLs) of PFAS in pure solvents were determined as the lowest calibration level with an accuracy between 70 and 130%. To compensate for matrix effects, a matrix factor was applied on the basis of the analyte response in different matrices relative to the pure solvent. The MQLs of 45 PFAS (including 13 PFEAs) in 10 matrices ranged from 0.025 to 0.25 ng/g. Overall, this method is capable of sensitively quantifying 45 PFAS in many fruits and vegetables.
Collapse
Affiliation(s)
- Pingping Meng
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Noelle J DeStefano
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
20
|
Barhoumi B, Sander SG, Tolosa I. A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials. ENVIRONMENTAL RESEARCH 2022; 206:112595. [PMID: 34929191 DOI: 10.1016/j.envres.2021.112595] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Plastic, paper and cardboard are widely used as food contact materials (FCMs), due to its numerous favourable characteristics. However, they are usually coated with hazardous substances, such as per- and polyfluorinated alkyl substances (PFASs). PFASs, with its functional properties of oil- and water-repellency, can migrate from FCMs into the food and cause potential risk to human health. There are also increasing concerns about the harm that FCMs can cause to the environment. These concerns include accumulation of non-degradable plastics in the environment, generation of microplastics (MPs) and nanoplastics, and release of PFASs from FCMs. While many reviews have been conducted on PFASs in the environment, including their occurrence, fate, toxicity, biodegradation, migration in ecosystems and remediation technologies, a systematic review of PFASs in FCMs and MPs is currently lacking. In addition, our knowledge of the PFAS sorption processes on MPs is rather limited, and in particular their desorption processes. Thus, this review aims to (1) review the presence of various classes of PFASs in FCMs and their migration into food, (2) review the PFASs in MPs and summarize the sorption mechanisms, and factors that influence their sorption behaviour on MPs in the aquatic environment, and (3) identify the current research gaps and future research directions to predict the risks associated with the presence and sorption of PFASs in FCMs and MPs.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of, Monaco.
| | - Sylvia G Sander
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of, Monaco; GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Imma Tolosa
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of, Monaco.
| |
Collapse
|
21
|
Hill NI, Becanova J, Lohmann R. A sensitive method for the detection of legacy and emerging per- and polyfluorinated alkyl substances (PFAS) in dairy milk. Anal Bioanal Chem 2022; 414:1235-1243. [PMID: 34355253 PMCID: PMC8727491 DOI: 10.1007/s00216-021-03575-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023]
Abstract
There is widespread contamination by per- and polyfluoroalkyl substances (PFAS) across the globe, with adverse effects on human and environmental health. For human exposure, drinking water and dietary exposure have been recognized as important PFAS exposure pathway for the general population. Several documented cases of dairy milk contamination by PFAS have raised concerns over this exposure pathway in general. A sensitive method for determination of 27 PFAS in milk was hence modified and applied on raw and processed milk samples from 13 farms across the United States (U.S.). A combination of acid and basic extraction method and ENVI-Carb clean-up achieved recoveries of targeted PFAS between 70 and 141%. The method detection limits (MDL) ranged from 0.8 to 22 ng/L (for 26 PFAS) and 144 ng/L for perfluorobutanoic acid (PFBA). The uniqueness of this method is considered in the targeted screening of a broad range of legacy PFAS, as well as perfluorinated sulfonamide species and fluorotelomer sulfonates. No legacy PFAS were detected in 13 milk samples from regions of concern given local use of biosolids or proximity to fire training areas. Overall, then, the uptake of perfluoroalkyl acids (PFAA) from dairy milk in the U.S. is considered low.
Collapse
Affiliation(s)
- Nicholas I Hill
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| |
Collapse
|
22
|
Seshasayee SM, Rifas-Shiman SL, Chavarro JE, Carwile JL, Lin PID, Calafat AM, Sagiv SK, Oken E, Fleisch AF. Dietary patterns and PFAS plasma concentrations in childhood: Project Viva, USA. ENVIRONMENT INTERNATIONAL 2021; 151:106415. [PMID: 33706127 PMCID: PMC7979513 DOI: 10.1016/j.envint.2021.106415] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Diet is thought to account for most adult human exposure to per- and polyfluoroalkyl substances (PFAS). Children are particularly vulnerable to adverse health effects of PFAS and may have different eating habits than adults. However, studies of dietary patterns and PFAS in children are limited. METHODS We studied 548 Boston-area children with food frequency questionnaire data (89 food items) in early childhood (median age 3.3 years) and plasma concentrations of 6 PFAS quantified in mid-childhood (median age 7.7 years). We used univariate linear regression to examine associations between each food item and PFAS, accounting for multiple comparisons. We next used reduced rank regression (RRR) to estimate overall percent variation in PFAS explained by diet and identify dietary patterns most correlated with PFAS. All models were adjusted for race/ethnicity, maternal education, and household income. RESULTS In univariate analyses, 2-(N-methyl-perfluorooctane sulfonamide) acetate (MeFOSAA) plasma concentrations were 17.8% (95% CI: 7.2, 29.5) and 17.0% (95% CI: 6.4, 28.7) higher per SD increment in intake of ice cream and soda, respectively. RRR identified 6 dietary patterns that together explained 18% variation in the plasma concentrations of the 6 PFAS, of which 50% was explained by a dietary pattern consisting of primarily packaged foods (including ice cream and soda) and fish. Children with higher intake of the packaged foods and fish dietary pattern had higher plasma concentrations of all PFAS, particularly MeFOSAA and PFOS. CONCLUSIONS Our analysis examined food intake in association with several PFAS in children and identified dietary determinants that may be sources of PFAS exposure or reflect correlated lifestyle or toxicokinetic factors. Further investigation may help inform measures to modify childhood PFAS exposure.
Collapse
Affiliation(s)
- Shravanthi M Seshasayee
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Nutrition and Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jenny L Carwile
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA.
| |
Collapse
|
23
|
Investigating Molecular Mechanisms of Immunotoxicity and the Utility of ToxCast for Immunotoxicity Screening of Chemicals Added to Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073332. [PMID: 33804855 PMCID: PMC8036665 DOI: 10.3390/ijerph18073332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/07/2023]
Abstract
The development of high-throughput screening methodologies may decrease the need for laboratory animals for toxicity testing. Here, we investigate the potential of assessing immunotoxicity with high-throughput screening data from the U.S. Environmental Protection Agency ToxCast program. As case studies, we analyzed the most common chemicals added to food as well as per- and polyfluoroalkyl substances (PFAS) shown to migrate to food from packaging materials or processing equipment. The antioxidant preservative tert-butylhydroquinone (TBHQ) showed activity both in ToxCast assays and in classical immunological assays, suggesting that it may affect the immune response in people. From the PFAS group, we identified eight substances that can migrate from food contact materials and have ToxCast data. In epidemiological and toxicological studies, PFAS suppress the immune system and decrease the response to vaccination. However, most PFAS show weak or no activity in immune-related ToxCast assays. This lack of concordance between toxicological and high-throughput data for common PFAS indicates the current limitations of in vitro screening for analyzing immunotoxicity. High-throughput in vitro assays show promise for providing mechanistic data relevant for immune risk assessment. In contrast, the lack of immune-specific activity in the existing high-throughput assays cannot validate the safety of a chemical for the immune system.
Collapse
|
24
|
Glenn G, Shogren R, Jin X, Orts W, Hart-Cooper W, Olson L. Per- and polyfluoroalkyl substances and their alternatives in paper food packaging. Compr Rev Food Sci Food Saf 2021; 20:2596-2625. [PMID: 33682364 DOI: 10.1111/1541-4337.12726] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used in food contact paper and paperboard for decades due to their unique ability to provide both moisture and oil/grease resistance. Once thought to be innocuous, it is now clear that long chain PFAS bioaccumulate and are linked to reproductive and developmental abnormalities, suppressed immune response, and tumor formation. Second-generation PFAS have shorter biological half-lives but concerns about health risks from chronic exposure underscore the need for safe substitutes. Waxes and polymer film laminates of polyethylene, poly(ethylene-co-vinyl alcohol), and polyethylene terephthalate are commonly used alternatives. However, such laminates are neither compostable nor recyclable. Lamination with biodegradable polymers, including polyesters, such as polylactic acid (PLA), polybutylene adipate terephthalate, polybutylene succinate, and polyhydroxyalkanoates, are of growing research and commercial interest. PLA films are perhaps the most viable alternative, but performance and compostability are suboptimal. Surface sizings and coatings of starches, chitosan, alginates, micro- and nanofibrilated cellulose, and gelatins provide adequate oil barrier properties but have poor moisture resistance without chemical modification. Plant proteins, including soy, wheat gluten, and corn zein, have been tested as paper coatings with soy being the most commercially important. Internal sizing agents, such as alkyl ketene dimers, alkenyl succinic anhydride, and rosin, improve moisture resistance but are poor oil/grease barriers. The difficulty in finding a viable replacement for PFAS chemicals that is cost-effective, fully biodegradable, and environmentally sound underscores the need for more research to improve barrier properties and process economics in food packaging products.
Collapse
Affiliation(s)
- Gregory Glenn
- Bioproduct Research Unit, USDA-ARS, Western Regional Research Center, Albany, California, USA
| | | | - Xing Jin
- World Centric, Rohnert Park, California, USA
| | - William Orts
- Bioproduct Research Unit, USDA-ARS, Western Regional Research Center, Albany, California, USA
| | - William Hart-Cooper
- Bioproduct Research Unit, USDA-ARS, Western Regional Research Center, Albany, California, USA
| | | |
Collapse
|
25
|
Macheka LR, Olowoyo JO, Mugivhisa LL, Abafe OA. Determination and assessment of human dietary intake of per and polyfluoroalkyl substances in retail dairy milk and infant formula from South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142697. [PMID: 33065506 DOI: 10.1016/j.scitotenv.2020.142697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Dairy milk and infant formula play important roles in the diet of adolescents, adults and infants, respectively, in the South African population. However, data on the occurrence of legacy and emerging contaminants such as PFAS in these important food sources is lacking. In this study, the concentration of fifteen PFAS were measured in 23 pooled retail dairy milk and 7 pooled infant formulas by means of an ultrahigh performance liquid chromatography tandem mass spectrometric method. The concentrations of Σ15PFAS ranged from 0.08-15.51 ng mL-1 and 0.42-5.74 ng mL-1 in dairy milk and infant formulas, respectively. PFBA, PFPeA, PFuDA, PFTrDA and PFDoA were the most prevalent PFAS in both matrices with detection frequency > 96%. Highest PFAS concentrations of 2.02 ng ml-1 and 2.76 ng ml-1 were recorded for PFDoA in infant formulas and dairy milk, respectively. The concentrations of legacy PFAS -PFOA and PFOS, shows resemblance with global data, however, elevated concentrations of long chain C9 - C14 PFAS were observed in this study. Though, higher concentrations of PFAS were measured in full cream dairy milk, no statistical significant difference (P = 0.546) was observed for the various classes of dairy milk. The EDI of Σ15PFAS through infant formulas were 184.92, 329.47 and 166 ngkg-1BWday-1 for partially breastfed, exclusively formula fed and older infants, respectively. Similarly, the EDI of PFAS through dairy milk for toddlers, adolescents, female and male adults for the rural population were 14.17, 1.09, 2.59 and 3.16 ngkg-1BWday-1 respectively while they were 20.41, 3.84, 4.13 and 4.26 ngkg-1BWday-1 respectively in the urban population. Although, the EDI of PFAS through the consumption of infant formulas and dairy milk are lower than the daily tolerable limits, the relative importance of long-term exposure and the cumulative effects of multiple exposure pathways cannot be overemphasized.
Collapse
Affiliation(s)
- Linda R Macheka
- Sefako Makgatho Health Sciences University, School of Science and Technology, Pretoria 0204, South Africa; Agricultural Research Council-OVR, Residue Analysis Laboratory, Pretoria 0110, South Africa
| | - Joshua O Olowoyo
- Sefako Makgatho Health Sciences University, School of Science and Technology, Pretoria 0204, South Africa
| | - Liziwe L Mugivhisa
- Sefako Makgatho Health Sciences University, School of Science and Technology, Pretoria 0204, South Africa
| | - Ovokeroye A Abafe
- Agricultural Research Council-OVR, Residue Analysis Laboratory, Pretoria 0110, South Africa; School of Health Sciences, University of KwaZulu-Natal, Private Bag x5400, Durban 4001, South Africa.
| |
Collapse
|
26
|
Berendsen B, Lakraoui F, Leenders L, van Leeuwen S. The analysis of perfluoroalkyl substances at ppt level in milk and egg using UHPLC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1707-1718. [DOI: 10.1080/19440049.2020.1794053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- B.J.A. Berendsen
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - F. Lakraoui
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - L. Leenders
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - S.P.J. van Leeuwen
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Sun X, Ji W, Hou S, Wang X. Facile synthesis of trifluoromethyl covalent organic framework for the efficient microextraction of per-and polyfluorinated alkyl substances from milk products. J Chromatogr A 2020; 1623:461197. [DOI: 10.1016/j.chroma.2020.461197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/27/2022]
|
28
|
Hung MD, Jung HJ, Jeong HH, Lam NH, Cho HS. Perfluoroalkyl substances (PFASs) in special management sea areas of Korea: Distribution and bioconcentration in edible fish species. MARINE POLLUTION BULLETIN 2020; 156:111236. [PMID: 32510380 DOI: 10.1016/j.marpolbul.2020.111236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Thirteen PFASs in water (n = 58), sediment (n = 58) and edible fish samples (n = 81) collected from three special management sea areas of Korea including Gwangyang bay, Masan bay and Busan harbor in July 2018 were investigated. The mean PFASs concentration in water (ng/L) were in order Masan (5.09) > Busan (2.82) > Gwangyang (1.74). PFASs levels were found as the low concentration in sediment. The greatest total PFASs concentration in each fish tissue was found as 3.04 (ng/g ww) in a Japanese amberjack fish for muscle in Busan, 66.23 (ng/mL) in Japanese amberjack fish for blood in Masan and 125.03 (ng/g ww) flathead grey mullet in Busan bay. The BCF (L/kg) of PFDoDA was found as the highest in muscle of all species with values from 30,922 (grey mullet in Gwangyang) to 69,131 (grey mullet in Busan). PFDS was the highest BCF's PFASs (110,599 L/kg) in muscle which was found in Japanese amberjack in Busan bay.
Collapse
Affiliation(s)
- Mai Duc Hung
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyeon Ji Jung
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hui Ho Jeong
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Nguyen Hoang Lam
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyeon Seo Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea.
| |
Collapse
|
29
|
Vavrouš A, Ševčík V, Dvořáková M, Čabala R, Moulisová A, Vrbík K. Easy and Inexpensive Method for Multiclass Analysis of 41 Food Contact Related Contaminants in Fatty Food by Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10968-10976. [PMID: 31487165 DOI: 10.1021/acs.jafc.9b02544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Food contact materials (FCMs) may release their chemical components into food and thus raise safety concerns. This paper attempted to study the presence of four major groups of FCM-related endocrine disruptors in fatty food: dialkyl phthalates, bisphenols, printing ink photoinitiators, and polyfluoroalkyl substances. All 41 target compounds were analyzed simultaneously by means of liquid chromatography coupled to tandem mass spectrometry. The sample preparation was significantly streamlined to reduce analysis costs by employing acetonitrile extraction, extract modification by water, and refrigeration at 5 °C. The new method was validated and applied to 60 real samples, including edible oils, butter, and chocolate, where 16 target compounds were measured at levels ≤13000 ng/g. The study also described the blank level increase and sensitivity loss caused by impurities present in the HPLC methanol solvent.
Collapse
Affiliation(s)
- Adam Vavrouš
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
- Department of Analytical Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , 128 43 Praha 2 , Czech Republic
| | - Václav Ševčík
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
- Department of Analytical Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , 128 43 Praha 2 , Czech Republic
| | - Markéta Dvořáková
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
- Third Faculty of Medicine , Charles University in Prague , Ruska 87 , 100 00 Prague 10 , Czech Republic
| | - Radomír Čabala
- Department of Analytical Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , 128 43 Praha 2 , Czech Republic
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine , Charles University in Prague and General University Hospital , 121 08 Prague 2 , Czech Republic
| | - Alena Moulisová
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
| | - Karel Vrbík
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
| |
Collapse
|
30
|
Sznajder-Katarzyńska K, Surma M, Wiczkowski W, Cieślik E. The perfluoroalkyl substance (PFAS) contamination level in milk and milk products in Poland. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
32
|
Jian JM, Guo Y, Zeng L, Liang-Ying L, Lu X, Wang F, Zeng EY. Global distribution of perfluorochemicals (PFCs) in potential human exposure source-A review. ENVIRONMENT INTERNATIONAL 2017; 108:51-62. [PMID: 28800414 DOI: 10.1016/j.envint.2017.07.024] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 07/29/2017] [Indexed: 05/20/2023]
Abstract
Human exposure to perfluorochemicals (PFCs) has attracted mounting attention due to their potential harmful effects. Breathing, dietary intake, and drinking are believed to be the main routes for PFC entering into human body. Thus, we profiled PFC compositions and concentrations in indoor air and dust, food, and drinking water with detailed analysis of literature data published after 2010. Concentrations of PFCs in air and dust samples collected from home, office, and vehicle were outlined. The results showed that neutral PFCs (e.g., fluorotelomer alcohols (FTOHs) and perfluorooctane sulfonamide ethanols (FOSEs)) should be given attention in addition to PFOS and PFOA. We summarized PFC concentrations in various food items, including vegetables, dairy products, beverages, eggs, meat products, fish, and shellfish. We showed that humans are subject to the dietary PFC exposure mostly through fish and shellfish consumption. Concentrations of PFCs in different drinking water samples collected from various countries were analyzed. Well water and tap water contained relatively higher PFC concentrations than other types of drinking water. Furthermore, PFC contamination in drinking water was influenced by the techniques for drinking water treatment and bottle-originating pollution.
Collapse
Affiliation(s)
- Jun-Meng Jian
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Guo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Lixi Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Liu Liang-Ying
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
33
|
Sammut G, Sinagra E, Helmus R, de Voogt P. Perfluoroalkyl substances in the Maltese environment - (I) surface water and rain water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:182-190. [PMID: 28259432 DOI: 10.1016/j.scitotenv.2017.02.128] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 05/28/2023]
Abstract
The presence of perfluoroalkyl substances (PFASs) in rain water on the Maltese Islands is reported here for the first time and an extensive survey of these substances in surface water also reported. The Maltese archipelago lies at the centre of the Mediterranean Sea and consists of three main inhabited islands: Malta, Gozo and Comino. Surface water was collected from 41 valleys during the months of February and March 2015 at the peak of the wet season. Rain water was collected during the months of December 2014, February, August, September and October 2015. PFASs were extracted from the water samples using solid phase extraction and the extracts were then analysed using ultra performance liquid chromatography coupled to mass spectrometry in tandem (UPLC-MS/MS). All surface and rain water samples were contaminated with at least one PFAS. PFOS (<LOD - 8.6ng/L) and PFOA (ND - 16ng/L) were the two major PFASs being detected in 100% and 95% of the surface waters respectively. The ΣPFAS concentrations in rain water ranged between 0.38ng/L (1st October 2015) and 6ng/L (21st February 2015). The Maltese archipelago is surrounded by sea and disconnected from any other mainland; therefore the results confirm that remote environments can become contaminated by PFASs from rain events depending on wind prevailing trajectories.
Collapse
Affiliation(s)
- G Sammut
- Department of Chemistry, University of Malta, Malta
| | - E Sinagra
- Department of Chemistry, University of Malta, Malta.
| | - R Helmus
- IBED, University of Amsterdam, Amsterdam, Netherlands
| | - P de Voogt
- IBED, University of Amsterdam, Amsterdam, Netherlands; KWR, Watercycle Research Institute, Nieuwegein, Netherlands
| |
Collapse
|
34
|
Yang H, Li G, Rao Z, Guo F, Li Z, Xie F, Tan H. Occurrence and incidence of 18 per- and polyfluoroalkyl compounds in edible oils commonly consumed in Guiyang, China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1573-1583. [PMID: 28583010 DOI: 10.1080/19440049.2017.1339330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A systematic examination was conducted for the first time of a wide carbon-chain range of per- and polyfluoroalkyl compounds (PFASs) in 83 samples of edible vegetable and animal oils from Guiyang, China. The occurrence and levels of 18 PFASs in seven types of edible oil were analysed. Analytes were determined based on a simplified, sensitive and reliable solvent extraction and liquid chromatography-tandem mass spectrometry method. Ten target PFASs were found and the most frequently detected compounds with maximum concentration were PFOS (88%, 1.93 ng g-1), PFNA (55.4%; 6.76 ng g-1), PFHxS (39.8%; 0.36 ng g-1), and PFOA (16.9%; 0.15 ng g-1), respectively. The total PFASs concentrations ranged from 0.02 to 6.76 ng g-1, with a mean of 0.94 ng g-1. Significant differences of occurrence between vegetable oils and animal oils were demonstrated based on comparative analysis of the existing data. The investigation results showed that the effect of production reductions of PFOS and PFOA by regulatory was also reflected in edible oils. The dietary intakes of PFOS and PFOA for adults were estimated, which were lower than the available tolerable daily intake (TDI). Because of the global lack of food regulatory thresholds for most per- or polyfluoroalkyl compounds, it was difficult to draw any conclusion at this stage as to how human health is affected through exposure to these compounds. The baseline information of this study will assist in guiding the direction for future investigations and monitoring studies on occurrence, fate and human health-effect research of PFASs.
Collapse
Affiliation(s)
- Hongbo Yang
- a School of Science , Beijing University of Chemical Technology , Beijing , China.,b National Research Center for Geoanalysis, Chinese Academy of Geological Sciences , Beijing , China.,c Guizhou Academy of Testing and Analysis, Guiyang , Guizhou , China
| | - Guihong Li
- a School of Science , Beijing University of Chemical Technology , Beijing , China.,b National Research Center for Geoanalysis, Chinese Academy of Geological Sciences , Beijing , China.,c Guizhou Academy of Testing and Analysis, Guiyang , Guizhou , China
| | - Zhu Rao
- b National Research Center for Geoanalysis, Chinese Academy of Geological Sciences , Beijing , China
| | - Feng Guo
- b National Research Center for Geoanalysis, Chinese Academy of Geological Sciences , Beijing , China
| | - Zhanbin Li
- a School of Science , Beijing University of Chemical Technology , Beijing , China.,c Guizhou Academy of Testing and Analysis, Guiyang , Guizhou , China
| | - Feng Xie
- a School of Science , Beijing University of Chemical Technology , Beijing , China.,c Guizhou Academy of Testing and Analysis, Guiyang , Guizhou , China
| | - Hong Tan
- a School of Science , Beijing University of Chemical Technology , Beijing , China.,c Guizhou Academy of Testing and Analysis, Guiyang , Guizhou , China
| |
Collapse
|
35
|
Xing Z, Lu J, Liu Z, Li S, Wang G, Wang X. Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1037. [PMID: 27775680 PMCID: PMC5086776 DOI: 10.3390/ijerph13101037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Although perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been identified in milk and dairy products in many regions, knowledge on their occurrence in Xinjiang (China) is rare. This study was conducted to measure the levels of PFOA and PFOS in milk and yogurt from Xinjiang and to investigate the average daily intake (ADI) of these two compounds. PFOA and PFOS levels were analyzed using ultrasonic extraction with methanol and solid-phase extraction followed by liquid chromatography-mass spectrometry. Retail milk and yogurt samples present higher detection rates (39.6% and 48.1%) and mean concentrations (24.5 and 31.8 ng/L) of PFOS than those of PFOA (33.0% and 37.0%; 16.2 and 22.6 ng/L, respectively). For raw milk samples, only PFOS was detected. The differences in the levels of the two compounds between samples from the north and south regions were observed, and northern regions showed higher pollution levels than southern regions. On the basis of the retail milk measurements and consumption data, the ADIs of PFOA and PFOS for Xinjiang adults were calculated to be 0.0211 and 0.0318 ng/kg/day, respectively. Furthermore, the estimated intakes of PFOA and PFOS varied among different groupings (age, area, gender, and race) and increased with increasing age. Relevant hazard ratios were found to be far less than 1.0, and this finding suggested that no imminent health damages were produced by PFOA and PFOS intake via milk and yogurt consumption in the Xinjiang population.
Collapse
Affiliation(s)
- Zhenni Xing
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Zilong Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Shanman Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Gehui Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xiaolong Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
36
|
Shoeib T, Hassan Y, Rauert C, Harner T. Poly- and perfluoroalkyl substances (PFASs) in indoor dust and food packaging materials in Egypt: Trends in developed and developing countries. CHEMOSPHERE 2016; 144:1573-81. [PMID: 26517384 DOI: 10.1016/j.chemosphere.2015.08.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 05/21/2023]
Abstract
PFASs concentrations in dust samples collected from three microenvironments in Cairo ranged from 1.3 to 69 ng g(-1) with FTOHs being dominant. The 8:2 FTOH was detected in all samples. Among the FOSAs and FOSEs the MeFOSE was dominant while among ionic PFASs, PFOS and PFOA were most prominent. The concentrations of PFASs were among the lowest worldwide. Correlations between worldwide concentrations of PFOS + PFOA and country development indexes highlight higher usage and human exposure in more developed countries. Food packaging was analyzed for PFSAs, PFCAs and PAPs. The 6:2 and 8:2 monoPAPs were found to be above the MDL in 18% of the samples. PFOA was detected in 79% of the samples with median concentration of 2.40 ng g(-1). PFOS was detected in 58% of the samples with median concentration of 0.29 ng g(-1) while PFHxS and PFDS were below detection limit. Different human exposure scenarios were estimated.
Collapse
Affiliation(s)
- Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt; Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | - Yasmeen Hassan
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Cassandra Rauert
- Air Quality Processes Research Section, Environment Canada, 4905 Dufferin St., Toronto, ON M3H 5T4, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment Canada, 4905 Dufferin St., Toronto, ON M3H 5T4, Canada
| |
Collapse
|
37
|
Fromme H, Dreyer A, Dietrich S, Fembacher L, Lahrz T, Völkel W. Neutral polyfluorinated compounds in indoor air in Germany--the LUPE 4 study. CHEMOSPHERE 2015; 139:572-578. [PMID: 26340371 DOI: 10.1016/j.chemosphere.2015.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/26/2015] [Accepted: 07/07/2015] [Indexed: 06/05/2023]
Abstract
Perfluoroalkyl- and polyfluoroalkyl-substances (PFAS) have been detected in many types of environmental media and biota including humans. We determined volatile PFAS, including fluorotelomer alcohols (FTOHs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs), in indoor air of residences and schools in Germany. FTOHs, FTACs, FOSEs, and FOSAs were quantified with median levels in schools (in residences) of 11,783pg/m(3) (13,198pg/m(3)), 737pg/m(3) (450pg/m(3)), 130pg/m(3) (278pg/m(3)), and 243pg/m(3) (110pg/m(3)), respectively. Using our data and previously published results in a simplified model based on the medians and 95th percentiles, the "typical" and "high" daily non-dietary exposures were calculated to be 4.2ng/kg body weight (9.9ng/kgb.w.) for Σ-FTOHs and 0.1ng/kgb.w. (0.8ng/kgb.w.) for Σ-FOSEs/FOSAs in children. Inhalation was the dominant intake pathway for FTOHs; however, dust ingestion contributed significantly to the total intake of FOSEs/FOSAs. In organisms, 8:2 FTOH is degraded to perfluorooctanoate (PFOA). Assuming that 1% of 8:2 FTOH is converted to PFOA, 8:2 FTOH exposure in Germany has a negligible contribution to the total daily PFOA exposure, which is mainly driven by dietary intake.
Collapse
Affiliation(s)
- Hermann Fromme
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany; Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University, Ziemssenstrasse 1, D-80336 Munich, Germany.
| | | | - Silvio Dietrich
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Ludwig Fembacher
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Thomas Lahrz
- Berlin-Brandenburg State Laboratory, Department of Environmental Health Protection, Invalidenstr. 60, D-10557 Berlin, Germany
| | - Wolfgang Völkel
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| |
Collapse
|
38
|
Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14546-59. [PMID: 25854201 PMCID: PMC4592498 DOI: 10.1007/s11356-015-4202-7] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 05/18/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are used in a wide range of products of all day life. Due to their toxicological potential, an emerging focus is directed towards their exposure to humans. This study investigated the PFAS load of consumer products in a broad perspective. Perfluoroalkyl sulfonic acids (C4, C6-C8, C10-PFSA), carboxylic acids (C4-C14-PFCA) and fluorotelomer alcohols (4:2, 6:2; 8:2 and 10:2 FTOH) were analysed in 115 random samples of consumer products including textiles (outdoor materials), carpets, cleaning and impregnating agents, leather samples, baking and sandwich papers, paper baking forms and ski waxes. PFCA and PFSA were analysed by HPLC-MS/MS, whereas FTOH were detected by GC/CI-MS. Consumer products such as cleaning agents or some baking and sandwich papers show low or negligible PFSA and PFCA contents. On the other hand, high PFAS levels were identified in ski waxes (up to about 2000 μg/kg PFOA), leather samples (up to about 200 μg/kg PFBA and 120 μg/kg PFBS), outdoor textiles (up to 19 μg/m(2) PFOA) and some other baking papers (up to 15 μg/m(2) PFOA). Moreover, some test samples like carpet and leather samples and outdoor materials exceeded the EU regulatory threshold value for PFOS (1 μg/m(2)). A diverse mixture of PFASs can be found in consumer products for all fields of daily use in varying concentrations. This study proves the importance of screening and monitoring of consumer products for PFAS loads and the necessity for an action to regulate the use of PFASs, especially PFOA, in consumer products.
Collapse
Affiliation(s)
- Matthias Kotthoff
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Fraunhofer IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany.
| | - Josef Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Fraunhofer IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany.
| | - Heinrich Jürling
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Fraunhofer IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany.
| | - Martin Schlummer
- Fraunhofer Institute for Process Engineering and Packaging, Fraunhofer IVV, Giggenhauser Straße 35, 85354, Freising, Germany.
| | - Dominik Fiedler
- Fraunhofer Institute for Process Engineering and Packaging, Fraunhofer IVV, Giggenhauser Straße 35, 85354, Freising, Germany.
| |
Collapse
|
39
|
Yang L, Jin F, Zhang P, Zhang Y, Wang J, Shao H, Jin M, Wang S, Zheng L, Wang J. Simultaneous Determination of Perfluorinated Compounds in Edible Oil by Gel-Permeation Chromatography Combined with Dispersive Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8364-8371. [PMID: 26357966 DOI: 10.1021/acs.jafc.5b03903] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A simple analytical method was developed for the simultaneous analysis of 18 perfluorinated compounds (PFCs) in edible oil. The target compounds were extracted by acetonitrile, purified by gel permeation chromatography (GPC) and dispersive solid-phase extraction (DSPE) using graphitized carbon black (GCB) and octadecyl (C18), and analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ES-MS/MS) in negative ion mode. Recovery studies were performed at three fortification levels. The average recoveries of all target PFCs ranged from 60 to 129%, with an acceptable relative standard deviation (RSD) (1-20%, n = 3). The method detection limits (MDLs) ranged from 0.004 to 0.4 μg/kg, which was significantly improved compared with the existing liquid-liquid extraction and cleanup method. The method was successfully applied for the analysis of all target PFCs in edible oil samples collected from markets in Beijing, China, and the results revealed that C6-C10 perfluorocarboxylic acid (PFCAs) and C7 perfluorosulfonic acid PFSAs were the major PFCs detected in oil samples.
Collapse
Affiliation(s)
- Lili Yang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Peng Zhang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Yanxin Zhang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Jian Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Hua Shao
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Maojun Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Shanshan Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Lufei Zheng
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| |
Collapse
|
40
|
Pérez F, Llorca M, Köck-Schulmeyer M, Škrbić B, Oliveira LS, da Boit Martinello K, Al-Dhabi NA, Antić I, Farré M, Barceló D. Assessment of perfluoroalkyl substances in food items at global scale. ENVIRONMENTAL RESEARCH 2014; 135:181-189. [PMID: 25282275 DOI: 10.1016/j.envres.2014.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 05/28/2023]
Abstract
This study assessed the levels of 21 perfluoroalkyl substances (PFASs) in 283 food items (38 from Brazil, 35 from Saudi Arabia, 174 from Spain and 36 from Serbia) among the most widely consumed foodstuffs in these geographical areas. These countries were chosen as representatives of the diet in South America, Western Asia, Mediterranean countries and South-Eastern Europe. The analysis of foodstuffs was carried out by turbulent flow chromatography (TFC) combined with liquid chromatography with triple quadrupole mass spectrometry (LC-QqQ-MS) using electrospray ionization (ESI) in negative mode. The analytical method was validated for the analysis of different foodstuff classes (cereals, fish, fruit, milk, ready-to-eat foods, oil and meat). The analytical parameters of the method fulfill the requirements specified in the Commission Recommendation 2010/161/EU. Recovery rates were in the range between 70% and 120%. For all the selected matrices, the method limits of detection (MLOD) and the method limits of quantification (MLOQ) were in the range of 5 to 650 pg/g and 17 to 2000 pg/g, respectively. In general trends, the concentrations of PFASs were in the pg/g or pg/mL levels. The more frequently detected compounds were perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA). The prevalence of the eight-carbon chain compounds in biota indicates the high stability and bioaccumulation potential of these compounds. But, at the same time, the high frequency of the shorter chain compounds is also an indication of the use of replacement compounds in the new fluorinated materials. When comparing the compounds profile and their relative abundances in the samples from diverse origin, differences were identified. However, in absolute amounts of total PFASs no large differences were found between the studied countries. Fish and seafood were identified as the major PFASs contributors to the diet in all the countries. The total sum of PFASs in fresh fish and seafood was in the range from the MLOQ to 28ng/g ww. According to the FAO-WHO diets composition, the daily intake (DI) of PFASs was calculated for various age and gender groups in the different diets. The total PFASs food intake was estimated to be between 2300 and 3800 ng /person per day for the different diets. Finally, the risk intake (RI) was calculated for selected relevant compounds. The results have indicated that by far in no case the tolerable daily intake (TDI) (150, 1500, 50,000, 1,000,000, 150, 1500 ng/kg body weight, for perfluorohexanesulfonate (PFHxS), fluorotelomer alcohol (FTOH), perfluorobutanesulfonic acid (PFBS), perfluorobutanoic acid (PFBA), PFOS and PFOA, respectively) was exceeded.
Collapse
Affiliation(s)
- Francisca Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, Catalonia, 08034 Barcelona, Spain
| | - Marta Llorca
- Catalan Institute of Water Research (ICRA), C/Emili Grahit, 101, Catalonia, 17003 Girona, Spain
| | - Marianne Köck-Schulmeyer
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, Catalonia, 08034 Barcelona, Spain
| | - Biljana Škrbić
- University of Novi Sad, Faculty of Technologu, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Luis Silva Oliveira
- Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro 92010-000, Canoas, RS, Brazil
| | - Kátia da Boit Martinello
- Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais, Victor Barreto, 2288 Centro 92010-000, Canoas, RS, Brazil
| | - Naif A Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Igor Antić
- University of Novi Sad, Faculty of Technologu, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, Catalonia, 08034 Barcelona, Spain.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, Catalonia, 08034 Barcelona, Spain; Catalan Institute of Water Research (ICRA), C/Emili Grahit, 101, Catalonia, 17003 Girona, Spain
| |
Collapse
|