1
|
Laky B, Huemer D, Eigenschink M, Sagl B, Thell R, Wagner KH, Anderl W, Heuberer PR. A Dietary Supplement in the Management of Patients with Lumbar Osteochondrosis: A Randomized, Double-Blinded, Placebo-Controlled Study. Nutrients 2024; 16:2695. [PMID: 39203831 PMCID: PMC11357631 DOI: 10.3390/nu16162695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Various nutritional supplements are available over the counter, yet few have been investigated in randomized controlled trials. The rationale for using the specific mix of nutritional substances including collagen type II, hyaluronic acid, n-acetyl-glucosamine, bamboo extract, L-lysine, and vitamin C is the assumption that combining naturally occurring ingredients of the intervertebral disc would maintain spine function. This double-blinded, placebo-controlled randomized trial aimed to evaluate the efficacy of a nutraceutical supplement mix in the management of lumbar osteochondrosis. Fifty patients were randomly assigned to either the supplement or placebo group in a 1:1 ratio. Patient-Reported Outcome Measures (PROMs) included the Oswestry Disability Index (ODI), the visual analogue scale for pain (pVAS), short form-12 (SF-12) physical and mental component summary subscale scores (PCS and MCS, respectively), and global physical activity questionnaire (GPAQ). Magnetic resonance imaging (MRI) was used to evaluate degenerative changes of intervertebral discs (IVD) including Pfirrmann grades as well as three-dimensional (3D) volume measurements. Data were collected at baseline and after the 3-month intervention. None of the PROMs were significantly different between the supplement and placebo groups. Disc degeneration according to Pfirrmann classifications remained stable during the 3-month intervention in both groups. Despite no significance regarding the distribution of Pfirrmann grade changes (improvement, no change, worsening; p = 0.259), in the supplement group, one patient achieved a three-grade improvement, and worsening of Pfirrmann grades were only detected in the placebo group (9.1%). Furthermore, in-depth evaluations of MRIs showed significantly higher 3D-measured volume changes (increase) in the supplement (+740.3 ± 796.1 mm3) compared to lower 3D-measured volume changes (decrease) in the placebo group (-417.2 ± 875.0 mm3; p < 0.001). In conclusion, this multi-nutrient supplement might not only stabilize the progression of lumbar osteochondrosis, but it might also potentially even increase IVD volumes as detected on MRIs.
Collapse
Affiliation(s)
- Brenda Laky
- Austrian Research Group for Regenerative and Orthopedic Medicine (AURROM), 1050 Vienna, Austria; (D.H.); (M.E.); (W.A.); (P.R.H.)
- Austrian Society of Regenerative Medicine (RegMed), 1010 Vienna, Austria
- Faculty of Medicine, Sigmund Freud Private University Medicine, 1020 Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Daniel Huemer
- Austrian Research Group for Regenerative and Orthopedic Medicine (AURROM), 1050 Vienna, Austria; (D.H.); (M.E.); (W.A.); (P.R.H.)
- Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Eigenschink
- Austrian Research Group for Regenerative and Orthopedic Medicine (AURROM), 1050 Vienna, Austria; (D.H.); (M.E.); (W.A.); (P.R.H.)
- Department for Trauma and Orthopedic Surgery, AUVA Trauma Center Vienna-Meidling, 1100 Vienna, Austria
| | - Benedikt Sagl
- Competence Center Artificial Intelligence, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Rainer Thell
- Medical University of Vienna, 1090 Vienna, Austria;
- Emergency Department, Klinik Donaustadt, 1220 Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Werner Anderl
- Austrian Research Group for Regenerative and Orthopedic Medicine (AURROM), 1050 Vienna, Austria; (D.H.); (M.E.); (W.A.); (P.R.H.)
- Momentum Praxis Mödling, 2340 Mödling, Austria
| | - Philipp R. Heuberer
- Austrian Research Group for Regenerative and Orthopedic Medicine (AURROM), 1050 Vienna, Austria; (D.H.); (M.E.); (W.A.); (P.R.H.)
- OrthoCare, 1100 Vienna, Austria
- HealthPi Medical Center, 1010 Vienna, Austria
| |
Collapse
|
2
|
Dogaru DE, Rosu S, Barattini DF, Guadagna S, Barattini L, Andor B. Assessment of the Feasibility of Objective Parameters as Primary End Points for Patients Affected by Knee Osteoarthritis: Protocol for a Pilot, Open Noncontrolled Trial (:SMILE:). JMIR Res Protoc 2024; 13:e13642. [PMID: 38941599 PMCID: PMC11245663 DOI: 10.2196/13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a disabling condition that affects more than one-third of people older than 65 years. Currently, 80% of these patients report movement limitations, 20% are unable to perform major activities of daily living, and approximately 11% require personal care. In 2014, the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) recommended, as the first step in the pharmacological treatment of knee osteoarthritis, a background therapy with chronic symptomatic slow-acting osteoarthritic drugs such as glucosamine sulfate, chondroitin sulfate, and hyaluronic acid. The latter has been extensively evaluated in clinical trials as intra-articular and oral administration. Recent reviews have shown that studies on oral hyaluronic acid generally measure symptoms using only subjective parameters, such as visual analog scales or quality of life questionnaires. As a result, objective measures are lacking, and data validity is generally impaired. OBJECTIVE The main goal of this pilot study with oral hyaluronic acid is to evaluate the feasibility of using objective tools as outcomes to evaluate improvements in knee mobility. We propose ultrasound and range of motion measurements with a goniometer that could objectively correlate changes in joint mobility with pain reduction, as assessed by the visual analog scale. The secondary objective is to collect data to estimate the time and budget for the main double-blind study randomized trial. These data may be quantitative (such as enrollment rate per month, number of screening failures, and new potential outcomes) and qualitative (such as site logistical issues, patient reluctance to enroll, and interpersonal difficulties for investigators). METHODS This open-label pilot and feasibility study is conducted in an orthopedic clinic (Timisoara, Romania). The study includes male and female participants, aged 50-70 years, who have been diagnosed with symptomatic knee OA and have experienced mild joint discomfort for at least 6 months. Eight patients must be enrolled and treated with Syalox 300 Plus (River Pharma) for 8 weeks. It is a dietary supplement containing high-molecular-weight hyaluronic acid, which has already been marketed in several European countries. Assessments are made at the baseline and final visits. RESULTS Recruitment and treatment of the 8 patients began on February 15, 2018, and was completed on May 25, 2018. Data analysis was planned to be completed by the end of 2018. The study was funded in February 2019. We expect the results to be published in a peer-reviewed clinical journal in the last quarter of 2024. CONCLUSIONS The data from this pilot study will be used to assess the feasibility of a future randomized clinical trial in OA. In particular, the planned outcomes (eg, ultrasound and range of motion), safety, and quantitative and qualitative data must be evaluated to estimate in advance the time and budget required for the future main study. Finally, the pilot study should provide preliminary information on the efficacy of the investigational product. TRIAL REGISTRATION ClinicalTrials.gov NCT03421054; https://clinicaltrials.gov/study/NCT03421054. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR1-10.2196/13642.
Collapse
Affiliation(s)
- Dumitru Emanuel Dogaru
- Department of Orthopaedics - Traumatology, Victor Babeş University of Medicine and Pharmacy, Timisoara, Romania
| | - Serban Rosu
- Clinical Research, Oral and Maxillofacial Surgery, Victor Babeş University of Medicine and Pharmacy, Timisoara, Romania
| | | | | | | | - Bogdan Andor
- Department of Orthopaedics - Traumatology, Victor Babeş University of Medicine and Pharmacy, Timisoara, Romania
- Profesor Universitar Doctor Teodor Șora Research Centre, Victor Babeş University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
3
|
Stojnić B, Galmés S, Serrano A, Sulli M, Sušak L, Seye N, Palou A, Diretto G, Bonet ML, Ribot J. Glycosaminoglycan dermatan sulfate supplementation decreases diet-induced obesity and metabolic dysfunction in mice. Biofactors 2024; 50:493-508. [PMID: 38063391 DOI: 10.1002/biof.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 06/15/2024]
Abstract
Glycosaminoglycans are complex carbohydrates used as nutraceuticals for diverse applications. We studied the potential of the glycosaminoglycan dermatan sulfate (DS) to counteract the development of diet-induced obesity (DIO) using obesity-prone mice fed a high-fat diet (HFD) as a model. Oral DS supplementation protected the animals against HFD-induced increases in whole-body adiposity, visceral fat mass, adipocyte size, blood glucose levels, insulin resistance, and pro-inflammatory lipids levels in brown adipose tissue (BAT) and the liver, where it largely counteracted the HFD-induced changes in the nonpolar metabolome. Protection against DIO in the DS-supplemented mice occurred despite higher energy intake and appeared to be associated with increased energy expenditure, higher uncoupling protein 1 expression in BAT, decreased BAT "whitening," and an enhanced channeling of fuel substrates toward skeletal muscle. This work is the first preclinical study to examine the anti-obesity activity of DS tested individually in vivo. The results support possible uses of DS as an active component in functional foods/supplements to manage obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Bojan Stojnić
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Laboratory Biotechnology, Roma, Italy
| | - Sebastiá Galmés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| | - Alba Serrano
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Laboratory Biotechnology, Roma, Italy
| | - Lana Sušak
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Ndioba Seye
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Laboratory Biotechnology, Roma, Italy
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma, Spain
| |
Collapse
|
4
|
Mannino F, Irrera N, Pallio G, Bitto A. Steady state plasma and tissue distribution of low molecular weight hyaluronic acid after oral administration in mice. Nat Prod Res 2024; 38:773-780. [PMID: 37081790 DOI: 10.1080/14786419.2023.2197598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
The oral administration is probably the most used and largely applicable method, even if absorption across the intestinal epithelium is a limiting factor that can invalidate the achievement of a therapy. The aim of this study was to assess the steady state bioavailability of very low molecular weight hyaluronic acid (vLMW-HA) and its distribution in different districts of mice. Adult female C57BL6/J mice (n = 26) were divided in three groups and orally treated for 7 days with: saline solution (SHAM-HA), high dose of vLMW-HA (5 kDa; 500 mg/kg/day; HD-vLMW-HA), and low dose of vLMW-HA (5 kDa; 100 mg/kg/day; LD-vLMW-HA). HA content was quantified in plasma, skin, bladder, gut, rectum, vagina, and eyes with ELISA assay at the end of treatment. HA level significantly increased after treatment with HD-vLMW-HA in all analyzed tissues and plasma. Therefore, vLMW-HA easy absorption and distribution after the oral intake opens new possibilities for future biomedical applications.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- SunNutraPharm s.r.l., Spin-Off Company of University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- SunNutraPharm s.r.l., Spin-Off Company of University of Messina, Messina, Italy
| |
Collapse
|
5
|
Porcaro G, Laganà AS, Neri I, Aragona C. The Association of High-Molecular-Weight Hyaluronic Acid (HMWHA), Alpha Lipoic Acid (ALA), Magnesium, Vitamin B6, and Vitamin D Improves Subchorionic Hematoma Resorption in Women with Threatened Miscarriage: A Pilot Clinical Study. J Clin Med 2024; 13:706. [PMID: 38337402 PMCID: PMC10856308 DOI: 10.3390/jcm13030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Background-We evaluated whether the oral intake of high-molecular-weight hyaluronic acid (HMWHA) in association with alpha lipoic acid (ALA), magnesium, vitamin B6, and vitamin D can improve the resorption of subchorionic hematoma in cases of threatened miscarriage. Methods-In this study, we enrolled 56 pregnant women with threatened miscarriage (i.e., subchorionic hematomas, pelvic pain/uterine contractions, and/or vaginal bleeding) between the 6th and the 13th week of gestation. They were treated with vaginal progesterone (200 mg/twice a day) (control group; n = 25) or vaginal progesterone plus oral 200 mg HMWHA, 100 mg ALA, 450 mg magnesium, 2.6 mg vitamin B6, and 50 mcg vitamin D (treatment group; n = 31; DAV®-HA, LoLi Pharma srl, Rome, Italy). An ultrasound scan was performed at the first visit (T0) and after 7 days (T1) and 14 days (T2) until hematoma resorption. Results-At the ultrasound scan, the treatment group showed faster resorption of the subchorionic hematoma compared with the control group, both at T1 (control group 140 (112-180), treated group 84 (40-112), p < 0.0031), and T2 (control group: 72 (48-112), treated group: 0 (0-0), p < 0.0001). Moreover, subjective symptoms, such as vaginal bleeding, abdominal pain, and uterine contractions, showed a faster decrease in the treatment group than in the control group. Conclusions-The association may more rapidly improve the resolution of threatened miscarriage and related symptoms compared to the standard local protocol.
Collapse
Affiliation(s)
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Isabella Neri
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | |
Collapse
|
6
|
Wu X, Luan M, Yan X, Zhang J, Wu X, Zhang Q. The impact of different concentrations of hyaluronic acid on the pasting and microstructural properties of corn starch. Int J Biol Macromol 2024; 254:127555. [PMID: 37865372 DOI: 10.1016/j.ijbiomac.2023.127555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Starch aging in starchy foods is a major problem affecting their quality. In order to improve the viscosity and textural properties of native starch gelatinization and retrogradation, this study investigated the effect of hyaluronic acid (HA) at different concentrations (2 %, 4 %, 6 % w/w) on the pasting and microstructure of corn starch (CS). The findings revealed that the addition of HA significantly enhanced the peak viscosity, solubility, and water-holding capacity of the CS-HA mixtures. Moreover, it reduced the pasting temperature, swelling force, and leaching of amylose. All the mixtures exhibited shear thinning and thixotropic properties. The CS-HA mixtures created a thicker pseudoplastic system with significantly enhanced shear stability. The structures of the mixtures were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. It was observed that HA effectively inhibited short-term retrogradation of starch, enhanced the interaction between CS and HA, and formed a dense honeycomb three-dimensional mesh structure. In conclusion, as a novel anionic hydrocolloid, HA holds great potential to improve the retrogradation properties of starch-based products.
Collapse
Affiliation(s)
- Xiuli Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China.
| | - Mingran Luan
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China.
| | - Xiangxuan Yan
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China.
| | - Jianwen Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China.
| | - Xuexu Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China.
| | - Qing Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Road, Changchun 130022, Jilin, China
| |
Collapse
|
7
|
Gao Y, Wang R, Zhang L, Fan Y, Luan J, Liu Z, Yuan C. Oral administration of hyaluronic acid to improve skin conditions via a randomized double-blind clinical test. Skin Res Technol 2023; 29:e13531. [PMID: 38009035 PMCID: PMC10661223 DOI: 10.1111/srt.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE To evaluate the impact of oral intake of Hyaluronic Acid (HA) on skin health. BACKGROUND HA, an endogenous substance in the human body, plays a key role in skin health. However, its concentration in the skin decreases significantly with age. Previous studies suggested that oral intake of HA can supplement the body's HA level, but did not reveal the effects on different age groups and skin types. METHODS A double-blind, randomized clinical trial with 129 female participants, covering young and elderly groups and differnet skin types, was conducted to assess the efficacy of orally administered HA on skin health. RESULTS Oral administration of HA significantly promoted skin hydration after 2-8 weeks among both young and elderly groups. Skin tone improvement was observed after 4-8 weeks, while an increase in epidermal thickness was noted after 12 weeks. CONCLUSION This study provides direct evidence supporting the clinical efficacy of oral intake of HA in promoting skin health.
Collapse
Affiliation(s)
- Yan‐Rui Gao
- Department of Skin & Cosmetic ResearchShanghai Skin Disease HospitalSkin Disease Hospital of Tongji UniversityShanghaiChina
| | - Rui‐Ping Wang
- Clinical Research CenterShanghai Skin Disease HospitalSkin Disease Hospital of Tongji UniversityShanghaiChina
| | - Lu Zhang
- Bloomage Biotech Co., LtdJinanShandongChina
| | - Yuan Fan
- Bloomage Biotech Co., LtdJinanShandongChina
| | - Jin Luan
- Bloomage Biotech Co., LtdJinanShandongChina
| | - Zhe Liu
- Bloomage Biotech Co., LtdJinanShandongChina
| | - Chao Yuan
- Department of Skin & Cosmetic ResearchShanghai Skin Disease HospitalSkin Disease Hospital of Tongji UniversityShanghaiChina
| |
Collapse
|
8
|
Cronin SJF, Andrews NA, Latremoliere A. Peripheralized sepiapterin reductase inhibition as a safe analgesic therapy. Front Pharmacol 2023; 14:1173599. [PMID: 37251335 PMCID: PMC10213231 DOI: 10.3389/fphar.2023.1173599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The development of novel analgesics for chronic pain in the last 2 decades has proven virtually intractable, typically failing due to lack of efficacy and dose-limiting side effects. Identified through unbiased gene expression profiling experiments in rats and confirmed by human genome-wide association studies, the role of excessive tetrahydrobiopterin (BH4) in chronic pain has been validated by numerous clinical and preclinical studies. BH4 is an essential cofactor for aromatic amino acid hydroxylases, nitric oxide synthases, and alkylglycerol monooxygenase so a lack of BH4 leads to a range of symptoms in the periphery and central nervous system (CNS). An ideal therapeutic goal therefore would be to block excessive BH4 production, while preventing potential BH4 rundown. In this review, we make the case that sepiapterin reductase (SPR) inhibition restricted to the periphery (i.e., excluded from the spinal cord and brain), is an efficacious and safe target to alleviate chronic pain. First, we describe how different cell types that engage in BH4 overproduction and contribute to pain hypersensitivity, are themselves restricted to peripheral tissues and show their blockade is sufficient to alleviate pain. We discuss the likely safety profile of peripherally restricted SPR inhibition based on human genetic data, the biochemical alternate routes of BH4 production in various tissues and species, and the potential pitfalls to predictive translation when using rodents. Finally, we propose and discuss possible formulation and molecular strategies to achieve peripherally restricted, potent SPR inhibition to treat not only chronic pain but other conditions where excessive BH4 has been demonstrated to be pathological.
Collapse
Affiliation(s)
| | - Nick A. Andrews
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins School of Medicine, Neurosurgery Pain Research Institute, Baltimore, MD, United States
| |
Collapse
|
9
|
Deng R, Wang F, Wang L, Xiong L, Shen X, Song H. Advances in Plant Polysaccharides as Antiaging Agents: Effects and Signaling Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7175-7191. [PMID: 37155561 DOI: 10.1021/acs.jafc.3c00493] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aging refers to the gradual physiological changes that occur in an organism after reaching adulthood, resulting in senescence and a decline in biological functions, ultimately leading to death. Epidemiological evidence shows that aging is a driving factor in the developing of various diseases, including cardiovascular diseases, neurodegenerative diseases, immune system disorders, cancer, and chronic low-grade inflammation. Natural plant polysaccharides have emerged as crucial food components in delaying the aging process. Therefore, it is essential to continuously investigate plant polysaccharides as potential sources of new pharmaceuticals for aging. Modern pharmacological research indicates that plant polysaccharides can exert antiaging effects by scavenging free radicals, increasing telomerase activity, regulating apoptosis, enhancing immunity, inhibiting glycosylation, improving mitochondrial dysfunction regulating gene expression, activating autophagy, and modulating gut microbiota. Moreover, the antiaging activity of plant polysaccharides is mediated by one or more signaling pathways, including IIS, mTOR, Nrf2, NF-κB, Sirtuin, p53, MAPK, and UPR signaling pathways. This review summarizes the antiaging properties of plant polysaccharides and signaling pathways participating in the polysaccharide-regulating aging process. Finally, we discuss the structure-activity relationships of antiaging polysaccharides.
Collapse
Affiliation(s)
- Rou Deng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
10
|
Šimek M, Turková K, Schwarzer M, Nešporová K, Kubala L, Hermannová M, Foglová T, Šafránková B, Šindelář M, Šrůtková D, Chatzigeorgiou S, Novotná T, Hudcovic T, Velebný V. Molecular weight and gut microbiota determine the bioavailability of orally administered hyaluronic acid. Carbohydr Polym 2023; 313:120880. [PMID: 37182970 DOI: 10.1016/j.carbpol.2023.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The ability of hyaluronan as a dietary supplement to increase skin moisture and relieve knee pain has been demonstrated in several clinical studies. To understand the mechanism of action, determining hyaluronan's bioavailability and in vivo fate is crucial. Here, we used 13C-hyaluronan combined with LC-MS analysis to compare the absorption and metabolism of oral hyaluronan in germ-free and conventional wild-type mice. The presence of Bacteroides spp. in the gut was crucial for hyaluronan absorption. Specific microorganisms cleave hyaluronan into unsaturated oligosaccharides (<3 kDa) which are partially absorbed through the intestinal wall. The remaining hyaluronan fragments are metabolized into short-chain fatty acids, which are only metabolites available to the host. The poor bioavailability (~0.2 %) of oral hyaluronan indicates that the mechanism of action is the result of the systematic regulatory function of hyaluronan or its metabolites rather than the direct effects of hyaluronan at distal sites of action (skin, joints).
Collapse
|
11
|
Richard MJ, Driban JB, McAlindon TE. Pharmaceutical treatment of osteoarthritis. Osteoarthritis Cartilage 2023; 31:458-466. [PMID: 36414224 DOI: 10.1016/j.joca.2022.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To review the current state of pharmaceutical treatment recommendations for the management of osteoarthritis. METHOD A narrative review was drafted to describe treatment guidelines, mechanism of action, pharmacokinetics, and toxicity for nine classes of pharmaceuticals: 1) oral nonsteroidal anti-inflammatory drugs (NSAIDs), 2) topical NSAIDs, 3) COX-2 inhibitors, 4) duloxetine, 5) intra-articular corticosteroids, 6) intra-articular hyaluronic acid, 7) acetaminophen (paracetamol), 8) tramadol, and 9) capsaicin. RESULTS In general, oral and topical NSAIDs, including COX-2 inhibitors, are strongly recommended first-line treatments for osteoarthritis due to their ability to improve pain and function but are associated with increased risks in patients with certain comorbidities (e.g., heightened cardiovascular risks). Intra-articular corticosteroid injections are generally recommended for osteoarthritis management and have relatively minor adverse effects. Other treatments, such as capsaicin, tramadol, and acetaminophen, are more controversial, and many updated guidelines offer differing recommendations. CONCLUSION The pharmaceutical management of osteoarthritis is a constantly evolving field. Promising treatments are emerging, and medicines that were once considered conventional (e.g., acetaminophen) are gradually becoming less acceptable based on concerns with efficacy and safety. Clinicians need to consider the latest evidence and recommendations to make an informed decision with their patients about how to optimize treatment plans for patients with knee, hip, polyarticular, or hand osteoarthritis.
Collapse
Affiliation(s)
- M J Richard
- Division of Rheumatology, Immunology, and Allergy, Tufts Medical Center, Boston, MA, USA.
| | - J B Driban
- Division of Rheumatology, Immunology, and Allergy, Tufts Medical Center, Boston, MA, USA.
| | - T E McAlindon
- Division of Rheumatology, Immunology, and Allergy, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
12
|
Lin Q, Song B, Zhong Y, Yin H, Li Z, Wang Z, Cheong KL, Huang R, Zhong S. Effect of Sodium Hyaluronate on Antioxidant and Anti-Ageing Activities in Caenorhabditis elegans. Foods 2023; 12:foods12071400. [PMID: 37048222 PMCID: PMC10093893 DOI: 10.3390/foods12071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
As an acidic polysaccharide, the formation of Hyaluronic acid (HA) is typically Sodium Hyaluronate (SH) for knee repair, oral treatment, skincare and as a food additive. Nevertheless, little information is available on the anti-ageing activity of SH as a food additive. Therefore, we treated C. elegans with SH, then inferred the anti-aging activity of SH by examining the lifespan physiological indicators and senescence-associated gene expression. Compared with the control group, SH (800 μg/mL) prolonged the C. elegans’ lifespans in regular, 35 °C and H2O2 environment by 0.27-fold, 0.25-fold and 1.17-fold. Simultaneously, glutathione peroxidase (GSH-Px), antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) were increased by 8.6%, 0.36% and 167%. However, lipofuscin accumulation, reactive oxygen species (ROS) and malondialdehyde (MDA) were decreased by 36%, 47.8–65.7% and 9.5–13.1%. After SH treatment, athletic ability was improved and no impairment of reproductive capacity was seen. In addition, SH inhibited the blocking effect of age-1 and up-regulated gene levels involving daf-16, sod-3, gst-4 and skn-1. In conclusion, SH provides potential applications in anti-ageing and anti-oxidation and regulates physiological function.
Collapse
|
13
|
Lu KH, Lu PWA, Lin CW, Lu EWH, Yang SF. Different molecular weights of hyaluronan research in knee osteoarthritis: A state-of-the-art review. Matrix Biol 2023; 117:46-71. [PMID: 36849081 DOI: 10.1016/j.matbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Osteoarthritis (OA), the most common form of arthritis, is characterized by progressive cartilage destruction, concomitant adaptive osteogenesis, and loss of joint function. The progression of OA with aging is associated with a decrease in native hyaluronan (HA, hyaluronate or hyaluronic acid) with a high molecular weight (HMW) in synovial fluid and a subsequent increase in lower MW HA and fragments. As HMW HA possesses numerous biochemical and biological properties, we review new molecular insights into the potential of HA to modify OA processes. Different MWs in the formulation of products appear to have varying effects on knee OA (KOA) pain relief, improved function, and postponing surgery. In addition to the safety profile, more evidence indicates that intraarticular (IA) HA administration may be an effective option to treat KOA, with a particular emphasis on the use of HA with fewer injections of higher MW, including potential applications of HA of very HMW. We also analyzed published systemic reviews and meta-analyses of IA HA in treating KOA in order to discuss their conclusions and consensus statements. According to its MW, HA may offer a simple way to refine therapeutic information in selective KOA.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Eric Wun-Hao Lu
- Department of Mechanical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Galvez-Martin P, Soto-Fernandez C, Romero-Rueda J, Cabañas J, Torrent A, Castells G, Martinez-Puig D. A Novel Hyaluronic Acid Matrix Ingredient with Regenerative, Anti-Aging and Antioxidant Capacity. Int J Mol Sci 2023; 24:ijms24054774. [PMID: 36902203 PMCID: PMC10002543 DOI: 10.3390/ijms24054774] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Hyaluronic acid (HA) and proteoglycans (such as dermatan sulphate (DS) and chondroitin sulphate (CS)) are the main components of the extracellular matrix of the skin, along with collagen and elastin. These components decrease with age, which implies a loss of skin moisture causing wrinkles, sagging and aging. Currently, the external and internal administration of effective ingredients that can reach the epidermis and dermis is the main alternative for combating skin aging. The objective of this work was to extract, characterise and evaluate the potential of an HA matrix ingredient to support anti-aging. The HA matrix was isolated and purified from rooster comb and characterised physicochemically and molecularly. In addition, its regenerative, anti-aging and antioxidant potential and intestinal absorption were evaluated. The results show that the HA matrix is composed of 67% HA, with an average molecular weight of 1.3 MDa; 12% sulphated glycosaminoglycans, including DS and CS; 17% protein, including collagen (10.4%); and water. The in vitro evaluation of the HA matrix's biological activity showed regenerative properties in both fibroblasts and keratinocytes, as well as moisturising, anti-aging and antioxidant effects. Furthermore, the results suggest that the HA matrix could be absorbed in the intestine, implying a potential oral as well as topical use for skin care, either as an ingredient in a nutraceutical or a cosmetic product.
Collapse
Affiliation(s)
- Patricia Galvez-Martin
- R&D Animal and Human Health, Bioibérica S.A.U., E-08029 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-904-908
| | | | - Jessica Romero-Rueda
- Health & Biomedicine Department, Leitat Technological Centre, E-08028 Barcelona, Spain
| | - Jesus Cabañas
- R&D Animal and Human Health, Bioibérica S.A.U., E-08029 Barcelona, Spain
| | - Anna Torrent
- R&D Animal and Human Health, Bioibérica S.A.U., E-08029 Barcelona, Spain
| | - Gloria Castells
- Pharmacy Analysis Service, Department of Pharmacology, Therapeutics and Toxicology, Faculty of Veterinary, E-08193 Bellaterra, Spain
| | | |
Collapse
|
15
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Akazawa H, Fukuda I, Kaneda H, Yoda S, Kimura M, Nomoto R, Ueda S, Shirai Y, Osawa R. Isolation and identification of hyaluronan-degrading bacteria from Japanese fecal microbiota. PLoS One 2023; 18:e0284517. [PMID: 37196002 DOI: 10.1371/journal.pone.0284517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/02/2023] [Indexed: 05/19/2023] Open
Abstract
Hyaluronan (HA) is a high-molecular-weight glycosaminoglycan and widely distributed in all connective tissues and organs with diverse biological functions. HA has been increasingly used as dietary supplements targeted to joint and skin health for humans. We here first report isolation of bacteria from human feces that are capable of degrading HA to lower molecular weight HA oligosaccharides (oligo-HAs). The bacteria were successfully isolated via a selective enrichment method, in which the serially diluted feces of healthy Japanese donors were individually incubated in an enrichment medium containing HA, followed by the isolation of candidate strains from streaked HA-containing agar plates and selection of HA-degrading strains by measuring HA using an ELISA. Subsequent genomic and biochemical assays identified the strains as Bacteroides finegoldii, B. caccae, B. thetaiotaomicron, and Fusobacterium mortiferum. Furthermore, our HPLC analysis revealed that the strains degraded HA to oligo-HAs of various lengths. Subsequent quantitative PCR assay targeting the HA degrading bacteria showed that their distribution in the Japanese donors varied. The evidence suggests that dietary HA is degraded by the human gut microbiota with individual variation to oligo-HAs components, which are more absorbable than HA, thereby exerting its beneficial effects.
Collapse
Affiliation(s)
- Hazuki Akazawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Itsuko Fukuda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
- Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Haruna Kaneda
- R&D Division, Kewpie Corporation, Sengawa Kewport, Chofu-shi, Tokyo, Japan
| | - Shoichi Yoda
- R&D Division, Kewpie Corporation, Sengawa Kewport, Chofu-shi, Tokyo, Japan
| | - Mamoru Kimura
- R&D Division, Kewpie Corporation, Sengawa Kewport, Chofu-shi, Tokyo, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Hyogo, Japan
| | - Shuji Ueda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhito Shirai
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| |
Collapse
|
17
|
Computer-Aided Screening of Phytoconstituents from Ocimum tenuiflorum against Diabetes Mellitus Targeting DPP4 Inhibition: A Combination of Molecular Docking, Molecular Dynamics, and Pharmacokinetics Approaches. Molecules 2022; 27:molecules27165133. [PMID: 36014373 PMCID: PMC9415412 DOI: 10.3390/molecules27165133] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/20/2023] Open
Abstract
Diabetes mellitus is a major global health concern in the current scenario which is chiefly characterized by the rise in blood sugar levels or hyperglycemia. In the context, DPP4 enzyme plays a critical role in glucose homeostasis. DPP4 targets and inactivates incretin hormones such as glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) as physiological substrates, which are essential to regulate the amount of insulin that is secreted after eating. Since the inactivation of incretins occurs, the hyperglycemic conditions continue to rise, and result in adverse physiological conditions linked with diabetes mellitus. Hence, inhibition of DPP4 has been the center of focus in the present antidiabetic studies. Although few DPP4 inhibitor drugs, such as alogliptin, saxagliptin, linagliptin, and sitagliptin, are available, their adverse effects on human metabolism are undeniable. Therefore, it becomes essential for the phytochemical intervention of the disease using computational methods prior to performing in vitro and in vivo studies. In this regard, we used an in-silico approach involving molecular docking, molecular dynamics simulations, and binding free energy calculations to investigate the inhibitory potential of Ocimum tenuiflorum phytocompounds against DPP4. In this regard, three phytocompounds (1S-α-pinene, β-pinene, and dehydro-p-cymene) from O. tenuiflorum have been discovered as the potential inhibitors of the DPP4 protein. To summarize, from our in-silico experiment outcomes, we propose dehydro-p-cymene as the potential lead inhibitor of DPP4 protein, thereby discovering new a phytocompound for the effective management of hyperglycemia and diabetes mellitus. The reported compound can be taken for in vitro and in vivo analyses in near future.
Collapse
|
18
|
Tissue distribution of Lycium barbarum polysaccharides in rat tissue by fluorescein isothiocyanate labeling. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Russell J, Francis L, Russell NJ, Osborn S, Dennison S. DEVELOPMENT OF A MOBILITY ASSESSMENT SCORE FOR EVALUATION OF THE EFFECTS OF ORAL HYALURONIC ACID ON CLINICAL LAMENESS IN ASIAN SMALL-CLAWED OTTERS ( AONYX CINEREA) AND AFRICAN SPOT-NECKED OTTERS ( HYDRICTIS MACULICOLIS) UNDER HUMAN CARE. J Zoo Wildl Med 2022; 53:275-283. [PMID: 35758569 DOI: 10.1638/2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 12/29/2022] Open
Abstract
Oral hyaluronic acid has been shown to reduce inflammation and pain in humans with osteoarthritis. Eight Asian small-clawed otters (Aonyx cinerea) and two African spot-necked otters (Hydrictis maculicolis) with varying degrees of osteoarthritic changes identified on radiographs were selected for a randomized, double-blinded, placebo-controlled clinical trial. Animal husbandry staff completed otter mobility assessment (OMA) questionnaires for each animal prior to study commencement and following either oral hyaluronic acid at a loading dose of 4 mg/kg PO SID for 10 d followed by a maintenance dose of 2 mg/kg PO SID for 20 d, or placebo for 30 d. Four veterinarians with experience assessing otters watched randomized videos of otter gaits and assigned a clinical lameness score. Two additional evaluators watched the videos: an experienced veterinarian in small animal practice and a final-year veterinary student. All evaluators for OMA and clinical lameness score were blinded to treatment group. Radiographs performed prior to, and following, the study were assessed by a board-certified radiologist (Dennison). The OMA questionnaire had high reliability coefficients and correlated strongly with clinical gait scores and radiographic assessment. Although hyaluronic acid appears to be safe for use in otters at the dose described, there was no observed significant effect of hyaluronic acid on clinical lameness scores, OMA scores, or radiographic assessment of the limbs. The development of the OMA questionnaire is a promising tool for evaluating lameness in managed-care otters and may be further validated in future studies investigating therapeutics or incorporated as a component of animal welfare assessment.
Collapse
Affiliation(s)
- Jennifer Russell
- SeaWorld San Antonio Zoological Department, San Antonio, TX 78251, USA,
| | - Lindsay Francis
- Colorado State University, College of Veterinary Medicine, Fort Collins, CO 80523, USA
| | | | - Steven Osborn
- SeaWorld San Antonio Zoological Department, San Antonio, TX 78251, USA
| | | |
Collapse
|
20
|
Improved Joint Health Following Oral Administration of Glycosaminoglycans with Native Type II Collagen in a Rabbit Model of Osteoarthritis. Animals (Basel) 2022; 12:ani12111401. [PMID: 35681865 PMCID: PMC9179918 DOI: 10.3390/ani12111401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Osteoarthritis is an incurable chronic disease. For this reason, new therapies are constantly emerging to improve clinical signs and the quality of life of our pets. Chondroitin sulfate, glucosamine and hyaluronic acid have been proven effective and are the most widely used in many formulations. In the present study, adding native type II collagen to the combination of chondroitin sulfate, glucosamine and hyaluronic acid showed improvements on osteoarthritis progression in an experimental model of osteoarthritis induced by transection of the cranial cruciate ligament of the knee in New Zealand white rabbits. Disease progression was monitored at different time points using magnetic resonance imaging biomarkers, measurement of hyaluronic acid in synovial fluid, and macroscopic and microscopic evaluations of cartilage, synovial membrane and subchondral bone. Overall, our results showed that adding native type II collagen to a combination of glycosaminoglycans allows a significantly slower osteoarthritis progression, compared to glycosaminoglycans alone. Abstract A prospective, experimental, randomized, double blinded study was designed to evaluate the effects of glycosaminoglycans, with or without native type II collagen (NC), in an osteoarthritis model induced by cranial cruciate ligament transection. The following compounds were tested: chondroitin sulfate (CS), glucosamine hydrochloride (GlHCl), hyaluronic acid (HA) and NC. Fifty-four female 12-week-old New Zealand rabbits were classified into three groups: CTR (control–no treatment), CGH (CS + GlHCl + HA) and CGH-NC (CS + GlHCl + HA + NC). Each group was subdivided into three subgroups according to survival times of 24, 56 and 84 days. Over time, all rabbits developed degenerative changes associated with osteoarthritis. CGH-NC showed significantly improved values on macroscopic evaluation, compared to CTR and CGH. Microscopically, significantly better results were seen with CGH and CGH-NC, compared to CTR, and synovial membrane values were significantly better with CGH-NC compared to CGH. A significant improvement in magnetic resonance imaging biomarkers was also observed with CGH-NC in cartilage transversal relaxation time (T2) and subchondral bone D2D fractal dimension in the lateral condyle. In conclusion, our results show beneficial effects on joint health of CGH and CGH-NC and also supports that adding NC to CGH results in even greater efficacy.
Collapse
|
21
|
Advances in oral absorption of polysaccharides: Mechanism, affecting factors, and improvement strategies. Carbohydr Polym 2022; 282:119110. [DOI: 10.1016/j.carbpol.2022.119110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
22
|
Managing Skin Ageing as a Modifiable Disorder—The Clinical Application of Nourella® Dual Approach Comprising a Nano-Encapsulated Retinoid, Retilex-A® and a Skin Proteoglycan Replacement Therapy, Vercilex®. COSMETICS 2022. [DOI: 10.3390/cosmetics9020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skin ageing is a progressive, but modifiable, multi-factorial disorder that involves all the skin’s tissues. Due to its wide range of physiological and psychosocial complications, skin ageing requires rigorous clinical attention. In this review, we aim to encourage clinicians to consider skin ageing as a disorder and suggest a novel, dual approach to its clinical treatment. Topical retinoids and per-oral proteoglycans are promising, non-invasive, therapeutic modalities. To overcome the low bioavailability of conventional free retinoids, Nourella® cream with Retilex-A® (Pharma Medico, Aarhus, Denmark) was developed using a proprietary nano-encapsulation technology. The nano-encapsulation is a sophisticated ‘permeation/penetration enhancer’ that optimises topical drug delivery by increasing the surface availability and net absorption ratio. Treatment adherence is also improved by minimising skin irritation. Interventional evidence suggests the greater efficacy of Retilex-A® in improving skin thickness and elasticity compared with conventional free forms. It is also reported that the rejuvenating efficacy of Retilex-A® and tretinoin are comparable. Another skin anti-ageing approach is proteoglycan replacement therapy (PRT) with Vercilex®. Vercilex® in Nourella® tablet form has the potential to ameliorate proteoglycan dysmetabolism in aged skin by activating skin cells and improving collagen/elastin turnover. Replicated clinical trials evidenced that PRT can significantly enhance the density, elasticity and thickness of both intrinsically aged and photoaged skin. Evidently, Vercilex® and Retilex-A® share a range of bioactivities that underlie their synergistic activity, as observed in a clinical trial. Dual therapy with Nourella® tablets and cream produced greater effects on skin characteristics than monotherapy with each of the two treatments. In conclusion, Nourella® cream and tablets are safe and effective treatments for skin ageing; however, combining the two in a ‘dual skin rejuvenation system’ significantly improves treatment outcomes.
Collapse
|
23
|
Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. Polysaccharide-based formulations as potential carriers for pulmonary delivery - A review of their properties and fates. Carbohydr Polym 2022; 277:118784. [PMID: 34893219 DOI: 10.1016/j.carbpol.2021.118784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022]
Abstract
Polysaccharides can be elite carriers for therapeutic molecules due to their versatility and low probability to trigger toxicity and immunogenic responses. Local and systemic therapies can be achieved through particle pulmonary delivery, a promising non-invasive alternative. Successful pulmonary delivery requires particles with appropriate flowability to reach alveoli and avoid premature clearance mechanisms. Polysaccharides can form micro-, nano-in-micro-, and large porous particles, aerogels, and hydrogels. Herein, the characteristics of polysaccharides used in drug formulations for pulmonary delivery are reviewed, providing insights into structure-function relationships. Charged polysaccharides can confer mucoadhesion, whereas the ability for specific sugar recognition may confer targeting capacity for alveolar macrophages. The method of particle preparation must be chosen considering the properties of the components and the delivery device to be utilized. The fate of polysaccharide-based carriers is dependent on enzyme-triggered hydrolytic and/or oxidative mechanisms, allowing their complete degradation and elimination through urine or reutilization of released monosaccharides.
Collapse
Affiliation(s)
- Sara A Valente
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lisete M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Sarmento
- INEB - Institute of Biomedical Engineering Instituto, University of Porto, 4150-180 Porto, Portugal; i3S - Institute for Research & Innovation in Health, University of Porto, 4150-180 Porto, Portugal; CESPU - Institute for Research and Advanced Training in Health Sciences and Technologies, 4585-116 Gandra, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
24
|
Bosi A, Banfi D, Bistoletti M, Moretto P, Moro E, Crema F, Maggi F, Karousou E, Viola M, Passi A, Vigetti D, Giaroni C, Baj A. Hyaluronan: A Neuroimmune Modulator in the Microbiota-Gut Axis. Cells 2021; 11:cells11010126. [PMID: 35011688 PMCID: PMC8750446 DOI: 10.3390/cells11010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
The commensal microbiota plays a fundamental role in maintaining host gut homeostasis by controlling several metabolic, neuronal and immune functions. Conversely, changes in the gut microenvironment may alter the saprophytic microbial community and function, hampering the positive relationship with the host. In this bidirectional interplay between the gut microbiota and the host, hyaluronan (HA), an unbranched glycosaminoglycan component of the extracellular matrix, has a multifaceted role. HA is fundamental for bacterial metabolism and influences bacterial adhesiveness to the mucosal layer and diffusion across the epithelial barrier. In the host, HA may be produced and distributed in different cellular components within the gut microenvironment, playing a role in the modulation of immune and neuronal responses. This review covers the more recent studies highlighting the relevance of HA as a putative modulator of the communication between luminal bacteria and the host gut neuro-immune axis both in health and disease conditions, such as inflammatory bowel disease and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332-217412; Fax: +39-0332-217111
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| |
Collapse
|
25
|
Nutraceutical Approach to Chronic Osteoarthritis: From Molecular Research to Clinical Evidence. Int J Mol Sci 2021; 22:ijms222312920. [PMID: 34884724 PMCID: PMC8658017 DOI: 10.3390/ijms222312920] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative inflammatory condition of the joint cartilage that currently affects approximately 58 million adults in the world. It is characterized by pain, stiffness, and a reduced range of motion with regard to the arthritic joints. These symptoms can cause in the long term a greater risk of overweight/obesity, diabetes mellitus, and falls and fractures. Although the current guidelines for the treatment of OA suggest, as the gold standard for this condition, pharmacological treatment characterized by non-steroidal anti-inflammatory drugs (NSAID), opioids, and cyclooxygenase (COX)-2-specific drugs, a great interest has been applied to nutraceutical supplements, which include a heterogeneous class of molecules with great potential to reduce inflammation, oxidative stress, pain, and joint stiffness and improve cartilage formation. The purpose of this review is to describe the potential application of nutraceuticals in OA, highlighting its molecular mechanisms of actions and data of efficacy and safety (when available).
Collapse
|
26
|
Šínová R, Pavlík V, Ondrej M, Velebný V, Nešporová K. Hyaluronan: A key player or just a bystander in skin photoaging? Exp Dermatol 2021; 31:442-458. [PMID: 34726319 DOI: 10.1111/exd.14491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Photoaged skin exhibits signs of inflammation, DNA damage and changes in morphology that are visible at the macroscopic and microscopic levels. Photoaging also affects the extracellular matrix (ECM) including hyaluronan (HA), the main polysaccharide component thereof. HA is a structurally simple but biologically complex molecule that serves as a water-retaining component and provides both a scaffold for a number of the proteins of the ECM and the ligand for cellular receptors. The study provides an overview of the literature concerning the changes in HA amount, size and metabolism, and the potential role of HA in photoaging. We also suggest novel HA contributions to photoaging based on our knowledge of the role of HA in other pathological processes, including the senescence and inflammation-triggered ECM reorganization. Moreover, we discuss potential direct or indirect intervention to mitigate photoaging that targets the hyaluronan metabolism, as well as supplementation.
Collapse
Affiliation(s)
- Romana Šínová
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vojtěch Pavlík
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Ondrej
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Department of Radiobiology, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
27
|
Ewald CY. Drug Screening Implicates Chondroitin Sulfate as a Potential Longevity Pill. FRONTIERS IN AGING 2021; 2:741843. [PMID: 35821992 PMCID: PMC9261418 DOI: 10.3389/fragi.2021.741843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022]
Abstract
Discovering compounds that promote health during aging ("geroprotectors") is key to the retardation of age-related pathologies and the prevention of chronic age-related diseases. In in-silico and model organisms' lifespan screens, chondroitin sulfate has emerged as a geroprotective compound. Chondroitin sulfate is a glycosaminoglycan attached to extracellular matrix proteins and is naturally produced by our body. Oral supplementation of chondroitin sulfate shows a high tolerance in humans, preferable pharmacokinetics, a positive correlation with healthy human longevity, and efficacy in deceleration of age-related diseases in randomized clinical trials. We have recently shown that chondroitin sulfate supplementation increases the lifespan of C. elegans. Thus, chondroitin sulfate holds the potential to become a geroprotective strategy to promote health during human aging. This review discusses the two major potential mechanisms of action, extracellular matrix homeostasis and inhibition of inflammation, that counteract age-related pathologies upon chondroitin sulfate supplementation.
Collapse
|
28
|
Jhundoo HD, Siefen T, Liang A, Schmidt C, Lokhnauth J, Moulari B, Béduneau A, Pellequer Y, Larsen CC, Lamprecht A. Hyaluronic Acid Increases Anti-Inflammatory Efficacy of Rectal 5-Amino Salicylic Acid Administration in a Murine Colitis Model. Biomol Ther (Seoul) 2021; 29:536-544. [PMID: 34059563 PMCID: PMC8411025 DOI: 10.4062/biomolther.2020.227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 11/05/2022] Open
Abstract
5-amino salicylic acid (5-ASA) is a standard therapy for the treatment of mild to moderate forms of inflammatory bowel diseases (IBD) whereas more severe forms involve the use of steroids and immunosuppressive drugs. Hyaluronic acid (HA) is a naturally occurring non-sulfated glycosaminoglycan that has shown epithelium protective effects in experimental colitis recently. In this study, both 5-ASA (30 mg/kg) and HA (15 mg/kg or 30 mg/kg) were administered rectally and investigated for their potential complementary therapeutic effects in moderate or severe murine colitis models. Intrarectal treatment of moderate and severe colitis with 5-ASA alone or HA alone at a dose of 30 mg/kg led to a significant decrease in clinical activity and histology scores, myeloperoxidase activity (MPO), TNF-α, IL-6 and IL-1β in colitis mice compared to untreated animals. The combination of HA (30 mg/kg) and 5-ASA in severe colitis led to a significant improvement of colitis compared to 5-ASA alone. Combined rectal therapy with HA and 5-ASA could be a treatment alternative for severe cases of IBD as it was the only treatment tested that was not significantly different from the healthy control group. This study further underlines the benefit of searching for yet unexplored drug combinations that show therapeutic potential in IBD without the need of designing completely new drug entities.
Collapse
Affiliation(s)
- Henusha D Jhundoo
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn 53121, Germany
| | - Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn 53121, Germany
| | | | | | | | - Brice Moulari
- PEPITE (EA4267) University of Burgundy / Franche-Comté, Besançon 25000, France
| | - Arnaud Béduneau
- PEPITE (EA4267) University of Burgundy / Franche-Comté, Besançon 25000, France
| | - Yann Pellequer
- PEPITE (EA4267) University of Burgundy / Franche-Comté, Besançon 25000, France
| | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn 53121, Germany.,PEPITE (EA4267) University of Burgundy / Franche-Comté, Besançon 25000, France
| |
Collapse
|
29
|
Zheng Z, Pan X, Wang H, Wu Z, Sullivan MA, Liu Y, Liu J, Wang K, Zhang Y. Mechanism of Lentinan Intestinal Absorption: Clathrin-Mediated Endocytosis and Macropinocytosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7344-7352. [PMID: 34132531 DOI: 10.1021/acs.jafc.1c00349] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lentinan (LNT), a typical triple helix β-glucan extracted from Lentinus edodes, has been widely used as a functional food and an orally administered drug. However, its oral pharmacokinetics has been rarely reported. The aim of this work is to systematically study the pharmacokinetics and intestinal absorption mechanism of LNT after oral administration. Radioactive 99m-technetium (99mTc) was introduced to label LNT to determine the plasma concentration, tissue distribution, and excretion of the β-glucan in rats after oral administration. The results confirmed the absorption of LNT, with the maximal plasma concentration reached at 1 h. 5-([4,6-Dichlorotriazin-2-yl]amino)fluorescein (DTAF) was used to label LNT to explore the absorption mechanism of LNT, utilizing both a Ussing chamber and a monolayer of Caco-2 cells. These transport assays showed that LNT could penetrate through the intestine and epithelial monolayer, which was mediated by macropinocytosis and clathrin-mediated endocytosis. These findings provide a pharmacokinetic reference for LNT and help provide a greater understanding of the absorption of β-glucans in general.
Collapse
Affiliation(s)
- Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Xianglin Pan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Haoyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland 4072, Australia
| | - Yuxuan Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| |
Collapse
|
30
|
Kotla NG, Bonam SR, Rasala S, Wankar J, Bohara RA, Bayry J, Rochev Y, Pandit A. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J Control Release 2021; 336:598-620. [PMID: 34237401 DOI: 10.1016/j.jconrel.2021.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG), cell-surface-associated biopolymer and is the key component of tissue extracellular matrix (ECM). Along with remarkable physicochemical properties, HA also has multifaceted biological effects that include but not limited to ECM organization, immunomodulation, and various cellular processes. Environmental cues such as tissue injury, infection or cancer change downstream signaling functionalities of HA. Unlike native HA, the fragments of HA have diversified effects on inflammation, cancer, fibrosis, angiogenesis and autoimmune response. In this review, we aim to discuss HA as a therapeutic delivery system development process, source, biophysical-chemical properties, and associated biological pathways (especially via cell surface receptors) of native and fragmented HA. We also tried to address an overview of the potential role of HA (native HA vs fragments) in the modulation of inflammation, immune response and various cancer targeting delivery applications. This review will also highlight the HA based therapeutic systems, medical devices and future perspectives of various biomedical applications were discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Swetha Rasala
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jitendra Wankar
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France; Indian Institute of Technology Palakkad, Palakkad 678 623, Kerala, India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland.
| |
Collapse
|
31
|
Šimek M, Nešporová K, Kocurková A, Foglová T, Ambrožová G, Velebný V, Kubala L, Hermannová M. How the molecular weight affects the in vivo fate of exogenous hyaluronan delivered intravenously: A stable-isotope labelling strategy. Carbohydr Polym 2021; 263:117927. [PMID: 33858586 DOI: 10.1016/j.carbpol.2021.117927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/15/2022]
Abstract
There is inconsistent information regarding the size effects of exogenously given hyaluronan on its in vivo fate. The data are often biased by the poor quality of hyaluronan and non-ideal labelling strategies used for resolving exogenous/endogenous hyaluronan, which only monitor the label and not hyaluronan itself. To overcome these drawbacks and establish the pharmacokinetics of intravenous hyaluronan in relation to its Mw, 13C-labelled HA of five Mws from 13.6-1562 kDa was prepared and administered to mice at doses 25-50 mg kg-1. The elimination efficiency increased with decreasing Mw. Low Mw hyaluronan was rapidly eliminated as small hyaluronan fragments in urine, while high Mw hyaluronan exhibited saturable kinetics and complete metabolization within 48 h. All tested Mws exhibited a similar uptake by liver cells and metabolization into activated sugars. 13C-labelling combined with LC-MS provides an excellent approach to elucidating in vivo fate and biological activities of hyaluronan.
Collapse
Affiliation(s)
- Matěj Šimek
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | - Anna Kocurková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tereza Foglová
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Gabriela Ambrožová
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Lukáš Kubala
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
32
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
33
|
Pan L, Ai X, Fu T, Ren L, Shang Q, Li G, Yu G. In vitro fermentation of hyaluronan by human gut microbiota: Changes in microbiota community and potential degradation mechanism. Carbohydr Polym 2021; 269:118313. [PMID: 34294327 DOI: 10.1016/j.carbpol.2021.118313] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 01/19/2023]
Abstract
Hyaluronan (HA) has been widely used as a dietary supplement which can be degraded by gut microbiota. However, the interactions between HA and gut microbiota have not been fully characterized. Here, using an in vitro system, we found that HA is readily fermented by human gut microbiota but with differing fermentative activities among individuals. HA-fermentation boosted Bacteroides spp., Bifidobacterium spp., Dialister spp., Faecalibacterium spp. and produced a significant amount of acetate, propionate and butyrate. Fermentation products profiling indicated that HA could be degraded into unsaturated even-numbered and saturated odd-numbered oligosaccharides. Further, polysaccharide lyases (PLs) and glycoside hydrolases (GHs) including GH88, PL8, PL29, PL35 and PL33 were identified from B. ovatus E3, which can help to explain the structure of the fermentation products. Collectively, our study sheds new light into the metabolism of HA and forms the basis for understanding the bioavailability of HA from a gut microbiota perspective.
Collapse
Affiliation(s)
- Lin Pan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xuze Ai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianyu Fu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Li Ren
- CP Pharmaceutical Qingdao Co., Ltd., Economic and Techchnological Development Zone, Qingdao 266432, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
34
|
Evaluation of the bioaccessibility of tetrahydrocurcumin-hyaluronic acid conjugate using in vitro and ex vivo models. Int J Biol Macromol 2021; 182:1322-1330. [PMID: 34004198 DOI: 10.1016/j.ijbiomac.2021.05.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Tetrahydrocurcumin-hyaluronic acid (THC-HA) conjugate was synthesized in order to improve the bioaccessibility of tetrahydrocurcumin (THC). The successful conjugation was confirmed by the results from 1H-nuclear magnetic resonance (1H NMR), Differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Bioaccessibility enhancement from the THC-HA conjugate compared to the free crystalline THC suspension was demonstrated by the results from ex vivo Franz diffusion cell using small intestine from porcine and in vitro TNO dynamic gastrointestinal model-1 (TIM-1). Additionally, in vitro release was studied, and the integrity of the conjugate in both simulated gastric and intestinal conditions was found to maintain for up to 4 h. Mucoadhesive assay and rheological results indicated that the mucoadhesive property of THC-HA, in combination with the aqueous solubility enhancement, might contribute to the increased bioaccessibility. This study provides a promising approach to enhance the bioaccessibility of tetrahydrocurcumin through the innovative conjugation with hyaluronic acid.
Collapse
|
35
|
Serra Aguado CI, Ramos-Plá JJ, Soler C, Segarra S, Moratalla V, Redondo JI. Effects of Oral Hyaluronic Acid Administration in Dogs Following Tibial Tuberosity Advancement Surgery for Cranial Cruciate Ligament Injury. Animals (Basel) 2021; 11:1264. [PMID: 33925642 PMCID: PMC8146498 DOI: 10.3390/ani11051264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
Hyaluronic acid (HA) intraarticular injection is used in the management of osteoarthritis in veterinary medicine. However, HA oral administration is less common given the scarce currently available scientific evidence. This study was aimed at evaluating the effects of oral HA administration on synovial fluid concentrations of several selected biomarkers in dogs with cranial cruciate ligament (CCL) injury operated on using the tibial tuberosity advancement (TTA) technique. Fifty-five dogs were included in this prospective, randomized, double-blind, clinical study; they were randomly assigned to receive either a placebo (group A; n = 25) or HA (group B; n = 30) orally for 10 weeks. Synovial fluid samples were obtained before surgery, and at 10 weeks postoperatively to measure concentrations of HA, haptoglobin, nitric oxide, and paraoxonase-1. After 10 weeks, group HA showed a significant increase in HA concentration (p = 0.0016) and a significant decrease in PON-1 concentration (p = 0.011) compared to baseline. In conclusion, post-op oral HA administration in canine patients with CCL injury leads to improvements in osteoarthritis biomarkers, namely higher synovial fluid HA concentrations and reduced synovial fluid paraoxonase-1 concentrations. These findings support the bioavailability of orally-administered HA and its usefulness in improving biomarkers of osteoarthritis.
Collapse
Affiliation(s)
- Claudio Iván Serra Aguado
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, 46018 Valencia, Spain;
| | - Juan José Ramos-Plá
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain;
| | - Carme Soler
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, 46018 Valencia, Spain;
| | - Sergi Segarra
- R&D Bioiberica S.A.U., 08950 Esplugues de Llobregat, Spain;
| | | | - José Ignacio Redondo
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain;
| |
Collapse
|
36
|
Liu S, Zhang T, Sun H, Lin L, Gao N, Wang W, Li S, Zhao J. Pharmacokinetics and Pharmacodynamics of a Depolymerized Glycosaminoglycan from Holothuria fuscopunctata, a Novel Anticoagulant Candidate, in Rats by Bioanalytical Methods. Mar Drugs 2021; 19:212. [PMID: 33920475 PMCID: PMC8069088 DOI: 10.3390/md19040212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
dHG-5 (Mw 5.3 kD) is a depolymerized glycosaminoglycan from sea cucumber Holothuria fuscopunctata. As a selective inhibitor of intrinsic Xase (iXase), preclinical study showed it was a promising anticoagulant candidate without obvious bleeding risk. In this work, two bioanalytical methods based on the anti-iXase and activated partial thromboplastin time (APTT) prolongation activities were established and validated to determine dHG-5 concentrations in plasma and urine samples. After single subcutaneous administration of dHG-5 at 5, 9, and 16.2 mg/kg to rats, the time to peak concentration (Tmax) was at about 1 h, and the peak concentration (Cmax) was 2.70, 6.50, and 10.11 μg/mL, respectively. The plasma elimination half-life(T1/2β) was also about 1 h and dHG-5 could be almost completely absorbed after s.c. administration. Additionally, the pharmacodynamics of dHG-5 was positively correlated with its pharmacokinetics, as determined by rat plasma APTT and anti-iXase method, respectively. dHG-5 was mainly excreted by urine as the unchanged parent drug and about 60% was excreted within 48 h. The results suggested that dHG-5 could be almost completely absorbed after subcutaneous injection and the pharmacokinetics of dHG-5 are predictable. Studying pharmacokinetics of dHG-5 could provide valuable information for future clinical studies.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.L.); (T.Z.); (H.S.); (L.L.); (W.W.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taocui Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.L.); (T.Z.); (H.S.); (L.L.); (W.W.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.L.); (T.Z.); (H.S.); (L.L.); (W.W.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.L.); (T.Z.); (H.S.); (L.L.); (W.W.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.L.); (T.Z.); (H.S.); (L.L.); (W.W.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.L.); (T.Z.); (H.S.); (L.L.); (W.W.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| |
Collapse
|
37
|
Köktürk M, Altindağ F, Ozhan G, Çalimli MH, Nas MS. Textile dyes Maxilon blue 5G and Reactive blue 203 induce acute toxicity and DNA damage during embryonic development of Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108947. [PMID: 33285322 DOI: 10.1016/j.cbpc.2020.108947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Common textile dyes used in various industrial sectors are organic compounds and considered for the aquatic environment as pollutants. The textile dye industry is one of the main sectors that have serious impacts on the environment due to a large amount of wastewater released into the ecosystem. Maxilon blue 5G (MB-5G) and Reactive Blue 203 (RB-203) are widely used textile dyes. However, their potential toxicity on living organisms remains to be elucidated. Here, we investigate the acute toxicity and genotoxicity of MB-5G and RB-203 dyes using the zebrafish embryos/larvae. Embryos treated with each dye for 96 h revealed LC50 values of acute toxicity as 166.04 mg L-1 and 278.32 mg L-1 for MB-5G and RB 203, respectively. When exposed to MB-5G and RB-203 at different concentrations (1, 10, and 100 mg L-1) for 96 h, the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, significantly increased in brain tissues as compared to control. MB-5G and RB-203 resulted in common developmental abnormalities including tail malformation, microphthalmia, pericardial edema, curved body axis, and yolk sac/pericardial edemas. Moreover, at its highest dose (100 mg L-1), RB-203 caused premature hatching after 48 h, while MG-5G did not. Our results collectively reveal that the textile dyes MB-5G and RB-203 cause genotoxicity and teratogenicity during embryonic and larval development of zebrafish. Thus, it is necessary to eliminate these compounds from wastewater or reduce their concentrations to safe levels before discharging the textile industry wastewater into the environment.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Farming, College of Applied Sciences, Igdir University, Igdir, Turkey
| | - Fikret Altindağ
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Harbi Çalimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, Igdır University, Igdir, Turkey.
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, Igdır University, Igdir, Turkey
| |
Collapse
|
38
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
39
|
Zheng Z, Pan X, Xu J, Wu Z, Zhang Y, Wang K. Advances in tracking of polysaccharides in vivo: Labeling strategies, potential factors and applications based on pharmacokinetic characteristics. Int J Biol Macromol 2020; 163:1403-1420. [DOI: 10.1016/j.ijbiomac.2020.07.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
|
40
|
Rao N, Rho JG, Um W, EK PK, Nguyen VQ, Oh BH, Kim W, Park JH. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics 2020; 12:E931. [PMID: 33003609 PMCID: PMC7600604 DOI: 10.3390/pharmaceutics12100931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to their unique biological functions, hyaluronic acid (HA) and its derivatives have been explored extensively for biomedical applications such as tissue engineering, drug delivery, and molecular imaging. In particular, self-assembled HA nanoparticles (HA-NPs) have been used widely as target-specific and long-acting nanocarriers for the delivery of a wide range of therapeutic or diagnostic agents. Recently, it has been demonstrated that empty HA-NPs without bearing any therapeutic agent can be used therapeutically for the treatment of inflammatory diseases via modulating inflammatory responses. In this review, we aim to provide an overview of the significant achievements in this field and highlight the potential of HA-NPs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- N.Vijayakameswara Rao
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Jun Gi Rho
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea;
| | - Wooram Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Pramod Kumar EK
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Van Quy Nguyen
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Byeong Hoon Oh
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea;
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
- Department Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
41
|
Integral Roles of Specific Proteoglycans in Hair Growth and Hair Loss: Mechanisms behind the Bioactivity of Proteoglycan Replacement Therapy with Nourkrin® with Marilex® in Pattern Hair Loss and Telogen Effluvium. Dermatol Res Pract 2020; 2020:8125081. [PMID: 32425997 PMCID: PMC7222612 DOI: 10.1155/2020/8125081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/01/2020] [Indexed: 11/30/2022] Open
Abstract
Follicular proteoglycans are key players with structural, functional, and regulatory roles in the growth and cycling behaviour of the hair follicles. The expression pattern of specific proteoglycans is strongly correlated with follicular phase transitions, which further affirms their functional involvement. Research shows that bioactive proteoglycans, e.g., versican and decorin, can actively trigger follicular phase shift by their anagen-inducing, anagen-maintaining, and immunoregulatory properties. This emerging insight has led to the recognition of “dysregulated proteoglycan metabolism” as a plausible causal or mediating pathology in hair growth disorders in both men and women. In support of this, declined expression of proteoglycans has been reported in cases of anagen shortening and follicular miniaturisation. To facilitate scientific communication, we propose designating this pathology “follicular hypoglycania (FHG),” which results from an impaired ability of follicular cells to replenish and maintain a minimum relative concentration of key proteoglycans during anagen. Lasting FHG may advance to structural decay, called proteoglycan follicular atrophy (PFA). This process is suggested to be an integral pathogenetic factor in pattern hair loss (PHL) and telogen effluvium (TE). To address FHG and PFA, a proteoglycan replacement therapy (PRT) program using oral administration of a marine-derived extract (Nourkrin® with Marilex®, produced by Pharma Medico Aps, Aarhus, Denmark) containing specific proteoglycans has been developed. In clinical studies, this treatment significantly reduced hair fall, promoted hair growth, and improved quality of life in patients with male- and female-pattern hair loss. Accordingly, PRT (using Nourkrin® with Marilex®) can be recommended as an add-on treatment or monotherapy in patients with PHL and TE.
Collapse
|
42
|
Marsella R, Segarra S, Ahrens K, Alonso C, Ferrer L. Topical treatment with SPHINGOLIPIDS and GLYCOSAMINOGLYCANS for canine atopic dermatitis. BMC Vet Res 2020; 16:92. [PMID: 32197613 PMCID: PMC7082980 DOI: 10.1186/s12917-020-02306-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Skin barrier dysfunction plays a key role in atopic dermatitis (AD). This impairment is related to altered composition and metabolism of epidermal sphingolipids and a deficiency of ceramides. Glycosaminoglycans (GAGs), and especially hyaluronic acid, could be useful in the management of AD. This study aimed to evaluate the effects of a novel topical treatment consisting of sphingolipids and GAGs extracts in dogs with AD. This formulation is different from previously tested products because the sphingolipid extract contained high amounts of sphingomyelin, a precursor of ceramides, and this has been shown to enhance endogenous synthesis of ceramides and to increase lamellar-related structures in vitro. Thus, it was hypothesized that this formulation could improve clinical disease and skin barrier function in patients with AD. Results Twelve house dust mite (HDM) allergic atopic beagle dogs were randomized into two groups: control (n = 6; no treatment) or treatment (n = 6; topical sphingolipids and GAGs twice weekly for 8 weeks). Dogs were challenged with allergen twice weekly and the severity of dermatitis was scored using the canine atopic dermatitis and extent severity index (CADESI-03) once weekly. Skin barrier function (measurement of transepidermal water loss) and severity of pruritus (both pruritus visual analog scale [PVAS] and pruritus timed episodes) were assessed at 0, 4 and 8 weeks of treatment. Assessments were done by personnel unaware of group allocation. Complete blood count, serum biochemistry and stratum corneum (SC) lipidomics analyses were done at baseline and at week 8. Compared to baseline, significant increases in CADESI (P = 0.0003) and PVAS (P = 0.041) were observed only in the control group, and SC polyunsaturated fatty acids increased significantly only with treatment (P = 0.039). Compared to control, treatment group had a significantly lower CADESI after 1 week (P = 0.0078) and a significantly lower PVAS after 8 weeks (P = 0.0448). Treatment was well tolerated. Conclusions In this study in dogs with AD, a new topical formulation containing sphingomyelin-rich sphingolipids plus GAGs extracts attenuated the clinical worsening induced by HDM, supporting its use in atopic patients, either as an adjunctive treatment or used as monotherapy in certain cases.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Small Animal Clinical Sciences, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA.
| | - Sergi Segarra
- R&D Bioiberica S.A.U, pl. Francesc Macià 7, 08029, Barcelona, Spain
| | - Kim Ahrens
- Department of Small Animal Clinical Sciences, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA
| | - Cristina Alonso
- OWL Metabolomics, Edificio 502, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Lluís Ferrer
- Department of Medicine and Surgery, Veterinary School, Universitat Autònoma de Barcelona, Edifici V Campus UAB, 08290, Cerdanyola del Vallès, Spain
| |
Collapse
|
43
|
Oral Hyaluronic Acid Supplementation for the Treatment of Dry Eye Disease: A Pilot Study. J Ophthalmol 2019; 2019:5491626. [PMID: 31662894 PMCID: PMC6778932 DOI: 10.1155/2019/5491626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/19/2019] [Indexed: 01/31/2023] Open
Abstract
Purpose To evaluate the clinical efficacy of oral hyaluronic acid (HA) in patients with dry eye disease (DED). Study Design Prospective randomized controlled trial. Methods This trial enrolled 54 subjects and they were randomized into the study or control group. The inclusion criteria were as follows: (1) >18 years of age; (2) distance best-corrected visual acuity ≥ 20/40 Snellen equivalent in each eye; (3) IOP ≤ 21 mmHg in both eyes; (4) ocular surface disease index (OSDI) score of ≥18 and <65; (5) <10 seconds of tear break up time (TBUT); (6) >5 corneal spots of corneal fluorescein staining (CFS); and (7) ≤ 10 mm/5 min of the Schirmer test. All subjects were treated with a topical HA, and the study group was supplemented with oral HA. OSDI, TBUT, CFS, and the Schirmer test were evaluated for ocular surface parameters. Results 24 patients were assigned in the study group. Significant improvement of OSDI, TBUT, and CFS was observed at 1 month and 3 months after oral HA administration in the study group. At baseline and follow-up at 1 and 3 months, OSDI scores were 61.8 ± 16.2, 47.3 ± 11.6, and 42.3 ± 9.1, respectively (P < 0.001). TBUT was improved after treatment for 1 month and 3 months (4.2 ± 1.1; P=0.005 and 4.7 ± 1.1; P < 0.012). There were also statistically significant improvements in the CSF (1.8 ± 1.0, 0.8 ± 0.7; P < 0.001) at baseline compared with those at 1 month. Conclusions A combined supplement of both oral and topical HA more efficiently improves corneal epithelial wound healing and related symptoms than topical HA alone, in DED.
Collapse
|
44
|
de Souza AB, Chaud MV, Santana MHA. Hyaluronic acid behavior in oral administration and perspectives for nanotechnology-based formulations: A review. Carbohydr Polym 2019; 222:115001. [DOI: 10.1016/j.carbpol.2019.115001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
|
45
|
Muller C, Enomoto M, Buono A, Steiner JM, Lascelles BDX. Placebo-controlled pilot study of the effects of an eggshell membrane-based supplement on mobility and serum biomarkers in dogs with osteoarthritis. Vet J 2019; 253:105379. [PMID: 31685140 DOI: 10.1016/j.tvjl.2019.105379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is a debilitating disease in dogs. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat OA; however, many dogs do not obtain adequate pain relief with an NSAID alone. This pilot study evaluated the systemic anti-inflammatory and mobility enhancing effects of an eggshell membrane-based nutritional supplement in dogs with OA-associated pain and mobility impairment. Twenty-seven dogs with OA-associated pain were enrolled into a randomized, double-masked, placebo-controlled, proof of principle pilot study and received either placebo or an eggshell membrane-based nutritional supplement over a 12-week period. Inflammatory biomarkers (IL-2, IL-6, IL-8, tumor necrosis factor-α, C-reactive protein, S100A12, and N-methylhistamine) were measured at Day 0 and Day 84. Owner questionnaires (CBPI and LOAD) were completed at Day 0, Day 42, and Day 84. Differences between groups over time were calculated. Twenty-two dogs completed the pilot study. Inflammatory biomarker IL-2 decreased in the supplement group, compared to the placebo group. Although small, the difference was statistically significant at an alpha of 0.1 (P=0.069). LOAD scores were numerically lower in the supplement group, but not significantly different from the placebo group at Day 0. Day 84 LOAD scores were significantly lower in the supplement group compared to the placebo group (P=0.034). CBPI results did not show the same pattern. The changes in biomarkers and LOAD scores were small, and do not provide definitive evidence of positive effects. However, these pilot results provide a rationale for performing a larger placebo-controlled study of the potential effects of the eggshell membrane-based nutritional supplement.
Collapse
Affiliation(s)
- C Muller
- Translational Research in Pain (TRiP) Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, USA; Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, USA
| | - M Enomoto
- Translational Research in Pain (TRiP) Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, USA
| | - A Buono
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4475 TAMU, College Station, TX, USA
| | - J M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4475 TAMU, College Station, TX, USA
| | - B D X Lascelles
- Translational Research in Pain (TRiP) Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, USA; Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, USA; Thurston Arthritis Center, UNC School of Medicine, 3300 Thurston Building, Chapel Hill, NC, USA; Center for Translational Pain Research, Department of Anesthesiology, Duke University, 132 Research Dr, Durham, NC, USA.
| |
Collapse
|
46
|
Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front Vet Sci 2019; 6:192. [PMID: 31294035 PMCID: PMC6603175 DOI: 10.3389/fvets.2019.00192] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/30/2019] [Indexed: 01/06/2023] Open
Abstract
Hyaluronic acid (also known as hyaluronan or hyaluronate) is naturally found in many tissues and fluids, but more abundantly in articular cartilage and synovial fluid (SF). Hyaluronic acid (HA) content varies widely in different joints and species. HA is a non-sulfated, naturally occurring non-protein glycosaminoglycan (GAG), with distinct physico-chemical properties, produced by synoviocytes, fibroblasts, and chondrocytes. HA has an important role in the biomechanics of normal SF, where it is partially responsible for lubrication and viscoelasticity of the SF. The concentration of HA and its molecular weight (MW) decline as osteoarthritis (OA) progresses with aging. For that reason, HA has been used for more than four decades in the treatment of OA in dogs, horses and humans. HA produces anti-arthritic effects via multiple mechanisms involving receptors, enzymes and other metabolic pathways. HA is also used in the treatment of ophthalmic, dermal, burns, wound repair, and other health conditions. The MW of HA appears to play a critical role in the formulation of the products used in the treatment of diseases. This review provides a mechanism-based rationale for the use of HA in some disease conditions with special reference to OA.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, United States
| | - Rajiv Lall
- Vets Plus, Inc., Menomonie, WI, United States
| | | | - Anita Sinha
- Vets Plus, Inc., Menomonie, WI, United States
| |
Collapse
|
47
|
Matsuoka R, Kurihara H, Yukawa H, Sasahara R. Eggshell membrane protein can be absorbed and utilised in the bodies of rats. BMC Res Notes 2019; 12:258. [PMID: 31072387 PMCID: PMC6509818 DOI: 10.1186/s13104-019-4306-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/04/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Eggshell membranes, the thin film lining the insides of eggshells, are constituted mostly from protein (eggshell membrane protein, ESM-P). The digestibility and dietary net protein utility of ESM-P are not known. ESM-P functions as a barrier to prevent foreign matter from reaching the egg white and yolk, so it would be expected not to decompose easily by digestion when ingested. We therefore prepared a hydrolysate of the membrane (ESM-H). In this study, we assessed the digestibility and net protein utility of ESM-P and ESM-H in rats. Results The digestibility of ESM-P and ESM-H were 87.0% and 94.8%, respectively, significantly lower than that of casein (98.5%). The net protein utility values were 84.7% and 84.6%, respectively, significantly higher than that of casein (75.1%). Digestibility was significantly higher for ESM-H than for ESM-P, but there was no significant difference in net protein utility between ESM-P and ESM-H. These results demonstrated that more than 80% of ESM-P or ESM-H is absorbed and utilised in the bodies of rats.
Collapse
Affiliation(s)
- Ryosuke Matsuoka
- R&D Division, Kewpie Corporation, Sengawa Kewport, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo, 182-0002, Japan.
| | - Hitoshi Kurihara
- R&D Division, Kewpie Corporation, Sengawa Kewport, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo, 182-0002, Japan
| | - Hiroko Yukawa
- R&D Division, Kewpie Corporation, Sengawa Kewport, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo, 182-0002, Japan
| | - Ryou Sasahara
- R&D Division, Kewpie Corporation, Sengawa Kewport, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo, 182-0002, Japan
| |
Collapse
|
48
|
Šimek M, Hermannová M, Šmejkalová D, Foglová T, Souček K, Binó L, Velebný V. LC–MS/MS study of in vivo fate of hyaluronan polymeric micelles carrying doxorubicin. Carbohydr Polym 2019; 209:181-189. [DOI: 10.1016/j.carbpol.2018.12.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 11/28/2022]
|
49
|
Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Deliv Rev 2019; 143:97-114. [PMID: 31255595 DOI: 10.1016/j.addr.2019.06.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Nanocarriers (NCs) are a type of drug delivery system commonly used to regulate the pharmacokinetic and pharmacodynamic properties of drugs. Although a wide variety of NCs has been developed, relatively few have been registered for clinical trials and even fewer are clinically approved. Overt or potential toxicity, indistinct mechanisms of drug release and unsatisfactory pharmacokinetic behavior all contribute to their high failure rate during preclinical and clinical testing. These negative characteristics are not only due to the NCs themselves but also to the materials of the drug nanocarrier system (MDNS) that are released in vivo. In this article, we review the main analytical techniques used for bioassay of NCs and MDNS and their pharmacokinetics after administration by various routes. We anticipate our review will serve to improve the understanding of MDNS pharmacokinetics and facilitate the development of NC drug delivery systems.
Collapse
|
50
|
Penna I, Albanesi E, Bertorelli R, Bandiera T, Russo D. Cytoprotective, anti-inflammatory, and antioxidant properties of high-molecular-weight hyaluronan enriched with red orange extract in human fibroblasts exposed to ultra violet light B irradiation. Biotechnol Appl Biochem 2019; 66:273-280. [PMID: 30588719 DOI: 10.1002/bab.1722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/22/2018] [Indexed: 11/09/2022]
Abstract
Ultraviolet (UV) light exposure is the primary factor responsible for skin photoaging, affecting all the skin layers, mainly through the production of reactive oxygen species (ROS), activation of inflammatory responses, and apoptosis. In keeping with this evidence, exogenous supplementation with dietary antioxidants has been shown to provide photoprotective benefits. Moreover, oral administration of hyaluronic acid (HA) has been proved to reduce the signs of aged skin, such as wrinkles, and increase hydration and elasticity. The combination of different biologically active substances in order to slow down the onset of skin aging could represent a promising preventive strategy against photoaging. In the present study, we investigated the effects of a dietary supplement (IALUTEC® RED), consisting of high-molecular-weight HA (HMW-HA) combined with red orange extract (ROC-Red Orange Complex® ), in human fibroblasts exposed to ultra violet light B-induced oxidative stress. Our study suggests that, in fibroblasts exposed to UVB light, IALUTEC® RED is active in decreasing both the inflammatory response and the generation of ROS, two events that are involved in skin photoaging.
Collapse
Affiliation(s)
- Ilaria Penna
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ennio Albanesi
- Neurofacility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Rosalia Bertorelli
- In Vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tiziano Bandiera
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Genova, Italy
| | - Debora Russo
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|