1
|
Ning J, Tian Z, Wang J, Yan F, Shi C, Zhang S, Feng L, Shu X, Cui J, James TD, Ma X. Rational Molecular Design of a Fluorescent Probe for Selectively Sensing Human Cytochrome P450 2D6. Angew Chem Int Ed Engl 2024; 63:e202409217. [PMID: 38989537 DOI: 10.1002/anie.202409217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) is a key enzyme that mediates the metabolism of various drugs and endogenous substances in humans. However, its biological role in drug-drug interactions especially mechanism-based inactivation (MBI), and various diseases remains poorly understood, owing to the lack of molecular tools suitable for selectively monitoring CYP2D6 in complex biological systems. Herein, using a tailored molecular strategy, we developed a fluorescent probe BDPM for CYP2D6. BDPM exhibits excellent specificity and imaging capability for CYP2D6, making it suitable for the real-time monitoring of endogenous CYP2D6 activity in living bio-samples. Therefore, our tailored strategy proved useful for constructing the highly selective and enzyme-activated fluorescent probes. BDPM as a molecular tool to explore the critical roles of CYP2D6 in the pathogenesis of diseases, high-throughput screening of inhibitors and intensive investigation of CYP2D6-induced MBI in natural systems.
Collapse
Affiliation(s)
- Jing Ning
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiayue Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- Beijing DP Technology Co., Ltd., Beijing, 100080, China
| | - Fei Yan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Chao Shi
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Shujing Zhang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Lei Feng
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Xiaohong Shu
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Xiaochi Ma
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
2
|
Helm-Kwasny BK, Bullert A, Wang H, Chimenti MS, Adamcakova-Dodd A, Jing X, Li X, Meyerholz DK, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Upregulation of fatty acid synthesis genes in the livers of adolescent female rats caused by inhalation exposure to PCB52 (2,2',5,5'-Tetrachlorobiphenyl). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104520. [PMID: 39067718 PMCID: PMC11377153 DOI: 10.1016/j.etap.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Elevated airborne PCB levels in older schools are concerning due to their health impacts, including cancer, metabolic dysfunction-associated steatotic liver disease (MASLD), cardiovascular issues, neurodevelopmental diseases, and diabetes. During a four-week inhalation exposure to PCB52, an air pollutant commonly found in school environments, adolescent rats exhibited notable presence of PCB52 and its hydroxylated forms in their livers, alongside changes in gene expression. Female rats exhibited more pronounced changes in gene expression compared to males, particularly in fatty acid synthesis genes regulated by the transcription factor SREBP1. In vitro studies with human liver cells showed that the hydroxylated metabolite of PCB52, 4-OH-PCB52, but not the parent compound, upregulated genes involved in fatty acid biosynthesis similar to in vivo exposure. These findings highlight the sex-specific effects of PCB52 exposure on livers, particularly in females, suggesting a potential pathway for increased MASLD susceptibility.
Collapse
Affiliation(s)
| | - Amanda Bullert
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, The University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
He R, Dai Z, Finel M, Zhang F, Tu D, Yang L, Ge G. Fluorescence-Based High-Throughput Assays for Investigating Cytochrome P450 Enzyme-Mediated Drug-Drug Interactions. Drug Metab Dispos 2023; 51:1254-1272. [PMID: 37349113 DOI: 10.1124/dmd.122.001068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
The cytochrome P450 enzymes (CYPs), a group of heme-containing enzymes, catalyze oxidative metabolism of a wide range of drugs and xenobiotics, as well as different endogenous molecules. Strong inhibition of human CYPs is the most common cause of clinically associated pharmacokinetic drug-drug/herb-drug interactions (DDIs/HDIs), which may result in serious adverse drug reactions, even toxicity. Accurate and rapid assessing of the inhibition potentials on CYP activities for therapeutic agents is crucial for the prediction of clinically relevant DDIs/HDIs. Over the past few decades, significant efforts have been invested into developing optical substrates for the human CYPs, generating a variety of powerful tools for high-throughput assays to detect CYP activities in biologic specimens and for screening of CYP inhibitors. This minireview focuses on recent advances in optical substrates developments for human CYPs, as well as their applications in screening CYP inhibitors and DDIs/HDIs studies. The examples for rational design and optimization of highly specific optical substrates for the target CYP enzyme, as well as applications in investigating CYP-mediated DDIs, are illustrated. Finally, the challenges and future perspectives in this field are proposed. Collectively, this review summarizes the reported optical-based biochemical assays for highly efficient CYP activities detection, which strongly facilitated the discovery of CYP inhibitors and the investigations on CYP-mediated DDIs. SIGNIFICANCE STATEMENT: Optical substrates for cytochrome P450 enzymes (CYPs) have emerged as powerful tools for the construction of high-throughput assays for screening of CYP inhibitors. This mini-review covers the advances and challenges in the development of highly specific optical substrates for sensing human CYP isoenzymes, as well as their applications in constructing fluorescence-based high-throughput assays for investigating CYP-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Rongjing He
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Ziru Dai
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Moshe Finel
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Feng Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Dongzhu Tu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Ling Yang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Guangbo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China (R.H., F.Z., D.T., L.Y., G.G.); Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (Z.D.); and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| |
Collapse
|
4
|
Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 2023; 13:13398. [PMID: 37592012 PMCID: PMC10435576 DOI: 10.1038/s41598-023-40160-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
Molecular docking is a computational technique that predicts the binding affinity of ligands to receptor proteins. Although it has potential uses in nutraceutical research, it has developed into a formidable tool for drug development. Bioactive substances called nutraceuticals are present in food sources and can be used in the management of diseases. Finding their molecular targets can help in the creation of disease-specific new therapies. The purpose of this review was to explore molecular docking's application to the study of dietary supplements and disease management. First, an overview of the fundamentals of molecular docking and the various software tools available for docking was presented. The limitations and difficulties of using molecular docking in nutraceutical research are also covered, including the reliability of scoring functions and the requirement for experimental validation. Additionally, there was a focus on the identification of molecular targets for nutraceuticals in numerous disease models, including those for sickle cell disease, cancer, cardiovascular, gut, reproductive, and neurodegenerative disorders. We further highlighted biochemistry pathways and models from recent studies that have revealed molecular mechanisms to pinpoint new nutraceuticals' effects on disease pathogenesis. It is convincingly true that molecular docking is a useful tool for identifying the molecular targets of nutraceuticals in the management of diseases. It may offer information about how nutraceuticals work and support the creation of new therapeutics. Therefore, molecular docking has a bright future in nutraceutical research and has a lot of potentials to lead to the creation of brand-new medicines for the treatment of disease.
Collapse
Affiliation(s)
- P C Agu
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria.
- Department of Science Laboratory Technology (Biochemistry Option), Our Savior Institute of Science, Agriculture, and Technology, Enugu, Nigeria.
| | - C A Afiukwa
- Department of Biotechnology, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - O U Orji
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - E M Ezeh
- Department of Chemical Engineering, Faculty of Engineering, Caritas University, Amorji-Nike, Enugu, Nigeria
| | - I H Ofoke
- Department of Biochemistry, Faculty of Sciences, Madonna University, Elele, Rivers State, Nigeria
| | - C O Ogbu
- Department of Biochemistry, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - E I Ugwuja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - P M Aja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria.
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Ishaka, Uganda.
| |
Collapse
|
5
|
Abstract
Major histocompatibility complex (MHC) proteins are the most polymorphic and polygenic proteins in humans. They bind peptides, derived from cleavage of different pathogenic antigens, and are responsible for presenting them to T cells. The peptides recognized by the T cell receptors are denoted as epitopes and they trigger an immune response.In this chapter, we describe a docking protocol for predicting the peptide binding to a given MHC protein using the software tool GOLD. The protocol starts with the construction of a combinatorial peptide library used in the docking and ends with the derivation of a quantitative matrix (QM) accounting for the contribution of each amino acid at each peptide position.
Collapse
|
6
|
Breuil L, Ziani N, Leterrier S, Hugon G, Caillé F, Bouilleret V, Truillet C, Goislard M, El Biali M, Bauer M, Langer O, Goutal S, Tournier N. Impact of Cytochrome Induction or Inhibition on the Plasma and Brain Kinetics of [ 11C]metoclopramide, a PET Probe for P-Glycoprotein Function at the Blood-Brain Barrier. Pharmaceutics 2022; 14:2650. [PMID: 36559144 PMCID: PMC9785688 DOI: 10.3390/pharmaceutics14122650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
[11C]metoclopramide PET imaging provides a sensitive and translational tool to explore P-glycoprotein (P-gp) function at the blood-brain barrier (BBB). Patients with neurological diseases are often treated with cytochrome (CYP) modulators which may impact the plasma and brain kinetics of [11C]metoclopramide. The impact of the CYP inducer carbamazepine or the CYP inhibitor ritonavir on the brain and plasma kinetics of [11C]metoclopramide was investigated in rats. Data obtained in a control group were compared with groups that were either orally pretreated with carbamazepine (45 mg/kg twice a day for 7 days before PET) or ritonavir (20 mg/kg, 3 h before PET) (n = 4 per condition). Kinetic modelling was performed to estimate the brain penetration (VT) of [11C]metoclopramide. CYP induction or inhibition had negligible impact on the plasma kinetics and metabolism of [11C]metoclopramide. Moreover, carbamazepine neither impacted the brain kinetics nor VT of [11C]metoclopramide (p > 0.05). However, ritonavir significantly increased VT (p < 0.001), apparently behaving as an inhibitor of P-gp at the BBB. Our data suggest that treatment with potent CYP inducers such as carbamazepine does not bias the estimation of P-gp function at the BBB with [11C]metoclopramide PET. This supports further use of [11C]metoclopramide for studies in animals and patients treated with CYP inducers.
Collapse
Affiliation(s)
- Louise Breuil
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Nora Ziani
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Sarah Leterrier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Gaëlle Hugon
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Fabien Caillé
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Viviane Bouilleret
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
- Neurophysiology and Epileptology Department, Bicêtre Hospital, AP-HP, University Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Charles Truillet
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Maud Goislard
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Myriam El Biali
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Sébastien Goutal
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| |
Collapse
|
7
|
Hazra S, Ray AS, Rahaman CH. Natural Phytocompounds from Common Indian Spices for Identification of Three Potential Inhibitors of Breast Cancer: A Molecular Modelling Approach. Molecules 2022; 27:molecules27196590. [PMID: 36235128 PMCID: PMC9573590 DOI: 10.3390/molecules27196590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the second most common cancer-related cause of death for women throughout the globe. In spite of some effective measures, the main concerns with traditional anti-cancer chemotherapy are its low bioavailability, physical side effects, acquired resistance of cancer cells and non-specific targeting. Now researchers have taken the initiative to establish natural product-based therapy methods and to identify viable hits for future lead optimization in the development of breast cancer medication. Our study aims to identify the potent phytocompounds from five very popular Indian spices (Zingiber officinale Roscoe, Cuminum cyminum L., Piper nigrum L., Curcuma longa L., and Allium sativum L.). From these spices, a total of 200 phytocompounds were identified and screened against three target genes, namely, cyclin-dependent kinase 8 (CDK 8), progesterone receptor (PR) and epidermal growth factor receptor (EGFR), through structure-based virtual screening using iGEMDOCK 2.1 software. Based on the binding affinity score, the top three phytocompounds against each target protein (cynaroside (-149.66 Kcal/mol), apigetrin (-139.527 Kcal/mol) and curcumin (-138.149 Kcal/mol) against CDK8; apigetrin (-123.298 Kcal/mol), cynaroside (-118.635 Kcal/mol) and xyloglucan (-113.788 Kcal/mol) against PR; cynaroside (-119.18 Kcal/mol), apigetrin (-105.185 Kcal/mol) and xyloglucan (-105.106 Kcal/mol) against EGFR) were selected. Apigetrin, cynaroside, curcumin, and xyloglucan were finally identified for further docking analysis with the respective three target proteins. Autodock 4.2 was applied to screen the optimal binding position and to assess the relative intensity of binding interactions. In addition, the ADME/T property checks and bioactivity scores analysis of were performed to understand the suitability of these four phytocompounds to be potential candidates for developing effective and non-toxic anticancer agents. Based on this in silico analysis, we believe this study could contribute to current efforts to develop new drugs for treating breast cancer.
Collapse
Affiliation(s)
- Samik Hazra
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Anindya Sundar Ray
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
- Department of Animal Science, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Correspondence: (A.S.R.); (C.H.R.)
| | - Chowdhury Habibur Rahaman
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
- Correspondence: (A.S.R.); (C.H.R.)
| |
Collapse
|
8
|
Evaluation of Zuo-Gui Yin Decoction Effects on Six CYP450 Enzymes in Rats Using a Cocktail Method by UPLC-MS/MS. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4293062. [PMID: 36060135 PMCID: PMC9439930 DOI: 10.1155/2022/4293062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Background. Zuo-Gui Yin Decoction (ZGYD), a traditional Chinese prescription, is mainly used in various kinds of andrology and gynecology diseases. However, the study on the interaction of ZGYD and drugs has not been reported. Therefore, evaluating the interaction between ZGYD and metabolic enzymes is helpful to guide rational drug use. Objective. This study was conducted to explore the effects of ZGYD on the activity and mRNA expressions of six Cytochrome P450 (CYP450) enzymes in rats and to provide a basis for its rational clinical use. Methods. Sprague-Dawley rats were randomly divided into control, ZGYD high, medium, and low-dose group (
). The concentrations of six probe substrates in plasma of rats in each group were determined by UPLC-MS/MS. In addition, RT-PCR and Western blot were used to determine the effects of ZGYD on the expression of CYP450 isoforms in the liver. Results. Compared with the control group, the main pharmacokinetic parameters AUC(0-t), AUC (0~∞), of omeprazole, dextromethorphan, and midazolam in the high-dose group were significantly decreased, while the CL of these were significantly increased. The gene expressions of CYP2C11 and CYP3A1 were upregulated in the ZGYD medium, high-dose group. The protein expression of CYP2C11 was upregulated in the high-dose group, and the protein expression of CYP3A1 was upregulated in the medium, high-dose group. Conclusion. The results showed that ZGYD exhibited the induction effects on CYP2C11 and CYP3A1 (CYP2C19 and CYP3A4 in humans) in rats. However, no significant change in CYP1A2, CYP2B1, CYP2C7, and CYP2D2 activities was observed. It would be useful for the safe and effective usage of ZGYD in clinic.
Collapse
|
9
|
van Vugt-Lussenburg BMA, Capinha L, Reinen J, Rooseboom M, Kranendonk M, Onderwater RCA, Jennings P. " Commandeuring" Xenobiotic Metabolism: Advances in Understanding Xenobiotic Metabolism. Chem Res Toxicol 2022; 35:1184-1201. [PMID: 35768066 PMCID: PMC9297329 DOI: 10.1021/acs.chemrestox.2c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The understanding
of how exogenous chemicals (xenobiotics) are
metabolized, distributed, and eliminated is critical to determine
the impact of the chemical and its metabolites to the (human) organism.
This is part of the research and educational discipline ADMET (absorption,
distribution, metabolism, elimination, and toxicity). Here, we review
the work of Jan Commandeur and colleagues who have not only made a
significant impact in understanding of phase I and phase II metabolism
of several important compounds but also contributed greatly to the
development of experimental techniques for the study of xenobiotic
metabolism. Jan Commandeur’s work has covered a broad area
of research, such as the development of online screening methodologies,
the use of a combination of enzyme mutagenesis and molecular modeling
for structure–activity relationship (SAR) studies, and the
development of novel probe substrates. This work is the bedrock of
current activities and brings the field closer to personalized (cohort-based)
pharmacology, toxicology, and hazard/risk assessment.
Collapse
Affiliation(s)
| | - Liliana Capinha
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jelle Reinen
- Charles River Den Bosch, Hambakenwetering 7, 5203 DL Hertogenbosch, The Netherlands
| | - Martijn Rooseboom
- Shell Global Solutions International B.V., 1030 BN The Hague, The Netherlands
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | | | - Paul Jennings
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Optical substrates for drug-metabolizing enzymes: Recent advances and future perspectives. Acta Pharm Sin B 2022; 12:1068-1099. [PMID: 35530147 PMCID: PMC9069481 DOI: 10.1016/j.apsb.2022.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.
Collapse
|
11
|
Mortada S, Missioui M, Guerrab W, Demirtaş G, Mague JT, Faouzi MEA, Ramli Y. New styrylquinoxaline: synthesis, structural, biological evaluation, ADMET prediction and molecular docking investigations. J Biomol Struct Dyn 2022; 41:2861-2877. [PMID: 35174770 DOI: 10.1080/07391102.2022.2040592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The organic compound (E)-3-(4-methylstyryl)quinoxalin-2(1H)-one (SQO) with molecular formula C17H14N2O was synthesized and analyzed using single crystal X-ray diffraction, 1H, 13C NMR and FTIR spectroscopic techniques. The geometric parameters of the molecule was optimized by density-functional theory (DFT) choosing B3LYP with 6-31++G(d,p) basis set. For compatibility, the theoretical structure and experimental structure were overlapped with each other. Frontier molecular orbitals of the title compound were made, and energy gap between HOMO and LUMO was calculated. Molecular electrostatic potential map was generated finding electrophilic and nucleophilic attack centers using DFT method. Hirshfeld surface analysis (HSA) confirms active regions at the circumference of N1 atoms and O1 atoms that form intermolecular N1-H1···O1 hydrogen bond. The acute oral toxicity study was carried out according to OECD guideline, which approve that the compound SQO was non-toxic. In addition, this quinoxaline derivative was evaluated for its in vitro antidiabetic activity against α-glucosidase and α-amylase enzymes and for antioxidant activity by utilizing several tests as 1,1-diphenyl-2-picryl hydrazyl, (2,2'-azino-bis(3-ethyl benzthiazoline-6-sulfonicacid), reducing power test (FRAP) and hydrogen peroxide activity H2O2. The molecular docking studies were performed to investigate the antidiabetic activity of SQO and compared with the experimental results. SQO is a potent antidiabetic from both the experimental and molecular docking results. Finally, the physicochemical, pharmacokinetic and toxicological properties of SQO have been evaluated by using in silico absorption, distribution, metabolism, excretion and toxicity analysis prediction.
Collapse
Affiliation(s)
- Salma Mortada
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Güneş Demirtaş
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - My El Abbes Faouzi
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
12
|
Sun MZ, Zheng QC. The regioselectivity of the interaction between dextromethorphan and CYP2D6. Phys Chem Chem Phys 2022; 24:2234-2242. [PMID: 35014636 DOI: 10.1039/d1cp03933d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CYP2D6 is an important enzyme of the cytochrome P450 superfamily, and catalyzes nearly 25% of the drugs sold in the market. For decades, the interactions and metabolism between CYP2D6 and substrates have been a hot topic. However, the key factors of the catalytic regioselectivity for CYP2D6 still remain controversial. Here, we construct four systems to explore the interaction between dextromethorphan (DM) and CYP2D6. A new binding mode of CYP2D6 is defined, and two key residues (residue Asp301 and residue Glu216) are discovered working simultaneously to stabilize the DM at the reactive site by forming water bridge hydrogen bonds when CYP2D6 binds DM. Our results also indicate that the substrate concentration could mediate the binding mode between the substrate and CYP2D6 by decreasing the volume of the catalytic pocket, which is not conducive to the O-demethylation of DM but benefits the N-demethylation of DM. These results could shed light on the process of CYP2D6 binding to the substrate, and help to better understand the regioselectivity of CYP2D6 catalyzing the substrates.
Collapse
Affiliation(s)
- Min-Zhang Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, P. R. China.
| | - Qing-Chuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, P. R. China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
13
|
Malviya R, Verma S, Sundram S. Advancement and Strategies for the Development of Peptide-Drug Conjugates: Pharmacokinetic Modulation, Role and Clinical Evidence Against Cancer Management. Curr Cancer Drug Targets 2021; 22:286-311. [PMID: 34792003 DOI: 10.2174/1568009621666211118111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Currently, many new treatment strategies are being used for the management of cancer. Among them, chemotherapy based on peptides has been of great interest due to the unique features of peptides. This review discusses the role of peptide and peptides analogues in the treatment of cancer, with special emphasis on their pharmacokinetic modulation and research progress. Low molecular weight, targeted drug delivery, enhanced permeability, etc., of the peptide-linked drug conjugates, lead to an increase in the effectiveness of cancer therapy. Various peptides have recently been developed as drugs and vaccines with an altered pharmacokinetic parameter which has subsequently been assessed in different phases of the clinical study. Peptides have made a great impact in the area of cancer therapy and diagnosis. Targeted chemotherapy and drug delivery techniques using peptides are emerging as excellent tools in minimizing problems with conventional chemotherapy. It can be concluded that new advances in using peptides to treat different types of cancer have been shown by different clinical studies indicating that peptides could be used as an ideal therapeutic method in treating cancer due to the novel advantages of peptides. The development of identifying and synthesizing novel peptides could provide a promising choice to patients with cancer.
Collapse
Affiliation(s)
- Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Swati Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| |
Collapse
|
14
|
He Z, Wang Z, Gao B, Liu S, Zhao X, Shi H, Wang M. Stereostructure-activity mechanism of cyproconazole by cytochrome P450 in rat liver microsomes: A combined experimental and computational study. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125764. [PMID: 33827004 DOI: 10.1016/j.jhazmat.2021.125764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Cyproconazole (CPZ), representing the chiral triazole fungicides, is widely used in the pharmaceutical and agricultural fields. To clarify its potential adverse effects on the generalized CYP-mediated processes within mammalian, a comparative experimental and computational approach was employed to investigate the CYP-mediated metabolism processes of CPZ stereoisomers in rat liver microsomes (RLMs). The depletion rate of CPZ stereoisomers in vitro incubation system with RLMs followed the order RR-> SS-> SR-> RS-CPZ. The results of kinetic assays were in line with the depletion rate results. Further inhibition assay confirmed the stereoselective metabolism of CPZ stereoisomers by different CYP isoforms. Molecular dynamics (MD) simulation revealed the stereoselective metabolism mechanism. Several hydrogen bonds and π-stacking restrict the position of CPZ isomers in the active cavity of CYPs so that the 4'-nitrogen on the triazole ring can bind closely to the heme of CYP, which results in the metabolism of CPZ isomers. By combining the computational and experimental approaches, the structure-activity relationship of CPZ and CYP was elucidated, and this method can be further applied to predict the degree of uncertainty in the process of xenobiotic biotransformation of triazole fungicides and serve as a basis for risk assessment.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China; Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Shiling Liu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
15
|
Zhang YJ, Zhou WL, Yu F, Wang Q, Peng C, Kan JY. Evaluation of the effect of Bovis Calculus Artifactus on eight rat liver cytochrome P450 isozymes using LC-MS/MS and cocktail approach. Xenobiotica 2021; 51:1010-1018. [PMID: 34294011 DOI: 10.1080/00498254.2021.1959673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bovis Calculus Artifactus (BCA) is the main substitute for natural Calculus bovis, a traditional drug in China used to treat high fever, convulsion, and sore throat. The effect of BCA on cytochrome P450 (CYP) activities is unknown. This study was to investigate the effect of BCA on eight rat hepatic microsomal CYPisozymes to evaluate the potential drug interactions using the cocktail approach.Metabolites of the eight isoform probe substrates of CYP isozymes were quantified by LC-MS/MS. The method was validated by incubating known CYP inhibitors α-naphthoflavone (CYP1A2), thiotepa (CYP2B1), quercetin (CYP2C7), sulfaphenazole (CYP2C6), ticlopidine (CYP2C11), quinidine (CYP2D1), ketoconazole (CYP3A1),4-methylpyrazole (CYP2E1) with individual probe substrate and rat liver microsomes. The formation rates of the corresponding metabolites of the eight probe substrates were determined to evaluate the activity of each isozyme.The results showed that BCA has different degrees of inhibitory effect on four CYP450 isoforms (CYP2C6, CYP2C11, CYP2D1, CYP3A1) (p < 0.05), but no significant influence on CYP1A2, 2B1, 2C7 or 2E1 (p > 0.05). Attention should be paid to the BCA-drug interactions by careful monitoring and appropriate dosage adjustments in the concurrent use of the drugs which are metabolized by CYP1A2, CYP2C19, and CYP3A4. Abbreviations: BCA, bovis calculus artifactus; CYP, cytochrome P450; DDIs, drug-drug interactions; ESI, electrospray ionization; MRM, multiple reaction monitoring; NBC, Natural Bovis Calculus; QC, quality control; T CM, traditional Chinese medicine.
Collapse
Affiliation(s)
- Yun-Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Wen-Li Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Institutes for Food and Drug Control, Hefei, China
| | - Fei Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Institutes for Food and Drug Control, Hefei, China
| | - Qian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Jia-Yi Kan
- Anhui Institutes for Food and Drug Control, Hefei, China
| |
Collapse
|
16
|
In Silico Structural, Functional, and Phylogenetic Analysis of Cytochrome (CYPD) Protein Family. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5574789. [PMID: 34046497 PMCID: PMC8128545 DOI: 10.1155/2021/5574789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Cytochrome (CYP) enzymes catalyze the metabolic reactions of endogenous and exogenous compounds. The superfamily of enzymes is found across many organisms, regardless of type, except for plants. Information was gathered about CYP2D enzymes through protein sequences of humans and other organisms. The secondary structure was predicted using the SOPMA. The structural and functional study of human CYP2D was conducted using ProtParam, SOPMA, Predotar 1.03, SignalP, TMHMM 2.0, and ExPASy. Most animals shared five central motifs according to motif analysis results. The tertiary structure of human CYP2D, as well as other animal species, was predicted by Phyre2. Human CYP2D proteins are heavily conserved across organisms, according to the findings. This indicates that they are descended from a single ancestor. They calculate the ratio of alpha-helices to extended strands to beta sheets to random coils. Most of the enzymes are alpha-helix, but small amounts of the random coil were also found. The data were obtained to provide us with a better understanding of mammalian proteins' functions and evolutionary relationships.
Collapse
|
17
|
Molecular probes for human cytochrome P450 enzymes: Recent progress and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213600] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Li Y, Li J, Yan D, Wang Q, Jin J, Tan B, Qiu F. Influence of Zuojin Pill on the Metabolism of Venlafaxine in Vitro and in Rats and Associated Herb-Drug Interaction. Drug Metab Dispos 2020; 48:1044-1052. [PMID: 32561594 DOI: 10.1124/dmd.120.000048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023] Open
Abstract
Venlafaxine (VEN), a first-line antidepressant, and Zuojin Pill (ZJP), a common Chinese herbal medicine consisting of Rhizoma Coptidis and Fructus Evodiae, have a high likelihood of combination usage in patients with depression with gastrointestinal complications. ZJP exhibits inhibitory effects on recombinant human cytochrome P450 isoenzymes (rhP450s), especially on CYP2D6, whereas VEN undergoes extensive metabolism by CYP2D6. From this perspective, we investigated the influence of ZJP on the metabolism of VEN in vitro and in rats for the first time. In this study, ZJP significantly inhibited the metabolism of VEN in both rat liver microsomes (RLM) and human liver microsomes (HLM); meanwhile, it inhibited the O-demethylation catalytic activity of RLM, HLM, rhCYP2D6*1/*1, and rhCYP2D6*10/*10, primarily through CYP2D6, with IC50 values of 129.9, 30.5, 15.4, and 2.3 μg/ml, respectively. Furthermore, the inhibitory effects of ZJP on hepatic metabolism and pharmacokinetics of VEN could also be observed in the pharmacokinetic study of rats. The area under drug concentration-time curve0-24 hour of VEN and its major metabolite O-desmethylvenlafaxine (ODV) increased by 39.6% and 22.8%, respectively. The hepatic exposure of ODV decreased by 57.2% 2 hours after administration (P = 0.014). In conclusion, ZJP displayed inhibitory effects on hepatic metabolism and pharmacokinetics of VEN in vitro and in rats mainly through inhibition of CYP2D6 activity. The human pharmacokinetic interaction between ZJP and VEN and its associated clinical significance needed to be seriously considered. SIGNIFICANCE STATEMENT: Zuojin Pill, a commonly used Chinese herbal medicine, demonstrates significant inhibitory effects on hepatic metabolism and pharmacokinetics of venlafaxine in vitro and in rats mainly through suppression of CYP2D6 activity. The human pharmacokinetic interaction between Zuojin Pill and venlafaxine and its associated clinical significance needs to be seriously considered.
Collapse
Affiliation(s)
- Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Juan Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Dongmin Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Qian Wang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| |
Collapse
|
19
|
Zhou H, Yang L, Wang C, Li Z, Ouyang Z, Shan M, Gu J, Wei Y. CYP2D1 Gene Knockout Reduces the Metabolism and Efficacy of Venlafaxine in Rats. Drug Metab Dispos 2019; 47:1425-1432. [PMID: 31658948 DOI: 10.1124/dmd.119.088526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Rat CYP2D1 has been considered as an ortholog of human CYP2D6 To assess the role of CYP2D1 in physiologic processes and drug metabolism, a CYP2D1-null rat model was generated with a CRISPR/Cas9 method. Seven base pairs were deleted from exon 4 of CYP2D1 of Sprague-Dawley wild-type (WT) rats. The CYP2D1-null rats were viable and showed no abnormalities in general appearance and behavior. The metabolism of venlafaxine (VLF) was further studied in CYP2D1-null rats. The V max and intrinsic clearance of the liver microsomes in vitro from CYP2D1-null rats were decreased (by ∼46% and ∼57% in males and ∼47% and ∼58% in females, respectively), while the Michaelis constant was increased (by ∼24% in males and ∼25% in females) compared with WT rats. In the pharmacokinetic studies, compared with WT rats, VLF in CYP2D1-null rats had significantly lower apparent total clearance and apparent volume of distribution (decreased by ∼36% and ∼48% in males and ∼23% and ∼25% in females, respectively), significantly increased area under the curve (AUC) from the time of administration to the last time point, AUC from the start of administration to the theoretical extrapolation, and C max (increased by ∼64%, ∼59%, and ∼26% in males and ∼43%, ∼35%, and ∼15% in females, respectively). In addition, O-desmethyl venlafaxine formation was reduced as well in CYP2D1-null rats compared with that in WT rats. Rat depression models were developed with CYP2D1-null and WT rats by feeding them separately and exposing them to chronic mild stimulation. VLF showed better efficacy in the WT depression rats compared with that in the CYP2D1-null rats. In conclusion, a CYP2D1-null rat model was successfully generated, and CYP2D1 was found to play a certain role in the metabolism and efficacy of venlafaxine. SIGNIFICANCE STATEMENT: A novel CYP2D1-null rat model was generated using CRISPR/Cas9 technology, and it was found to be a valuable tool in the study of the in vivo function of human CYP2D6. Moreover, our data suggest that the reduced O-desmethyl venlafaxine formation was associated with a lower VLF efficacy in rats.
Collapse
Affiliation(s)
- Hongqiu Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Li Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Changsuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Zhiqiang Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Mangting Shan
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Jun Gu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| |
Collapse
|
20
|
Murray M, Gillani TB, Rawling T, Nair PC. Inhibition of Hepatic CYP2D6 by the Active N-Oxide Metabolite of Sorafenib. AAPS JOURNAL 2019; 21:107. [PMID: 31637538 DOI: 10.1208/s12248-019-0374-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 11/30/2022]
Abstract
The multikinase inhibitor sorafenib (SOR) is used to treat patients with hepatocellular and renal carcinomas. SOR undergoes CYP-mediated biotransformation to a pharmacologically active N-oxide metabolite (SNO) that has been shown to accumulate to varying extents in individuals. Kinase inhibitors like SOR are frequently coadministered with a range of other drugs to improve the efficacy of anticancer drug therapy and to treat comorbidities. Recent evidence has suggested that SNO is more effective than SOR as an inhibitor of CYP3A4-mediated midazolam 1'-hydroxylation. CYP2D6 is also reportedly inhibited by SOR. The present study assessed the possibility that SNO might contribute to CYP2D6 inhibition. The inhibition kinetics of CYP2D6-mediated dextromethorphan O-demethylation were analyzed in human hepatic microsomes, with SNO found to be ~ 19-fold more active than SOR (Kis 1.8 ± 0.3 μM and 34 ± 11 μM, respectively). Molecular docking studies of SOR and SNO were undertaken using multiple crystal structures of CYP2D6. Both molecules mediated interactions with key amino acid residues in putative substrate recognition sites of CYP2D6. However, a larger number of H-bonding interactions was noted between the N-oxide moiety of SNO and active site residues that account for its greater inhibition potency. These findings suggest that SNO has the potential to contribute to pharmacokinetic interactions involving SOR, perhaps in those individuals in whom SNO accumulates.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Tina B Gillani
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
21
|
Li Q, Sun M, Li G, Qiu L, Huang Z, Gong J, Huang J, Li G, Si L. The sub-chronic impact of mPEG2k-PCLx polymeric nanocarriers on cytochrome P450 enzymes after intravenous administration in rats. Eur J Pharm Biopharm 2019; 142:101-113. [DOI: 10.1016/j.ejpb.2019.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 01/21/2023]
|
22
|
Coumarins and P450s, Studies Reported to-Date. Molecules 2019; 24:molecules24081620. [PMID: 31022888 PMCID: PMC6515222 DOI: 10.3390/molecules24081620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450 enzymes (CYPs) are important phase I enzymes involved in the metabolism of endogenous and xenobiotic compounds mainly through mono-oxygenation reactions into more polar and easier to excrete species. In addition to their role in detoxification, they play important roles in the biosynthesis of endogenous compounds and the bioactivation of xenobiotics. Coumarins, phytochemicals abundant in food and commonly used in fragrances and cosmetics, have been shown to interact with P450 enzymes as substrates and/or inhibitors. In this review, these interactions and their significance in pharmacology and toxicology are discussed in detail.
Collapse
|
23
|
Yuan X, Xu Y. Recent Trends and Applications of Molecular Modeling in GPCR⁻Ligand Recognition and Structure-Based Drug Design. Int J Mol Sci 2018; 19:ijms19072105. [PMID: 30036949 PMCID: PMC6073596 DOI: 10.3390/ijms19072105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors represent the largest family of human membrane proteins and are modulated by a variety of drugs and endogenous ligands. Molecular modeling techniques, especially enhanced sampling methods, have provided significant insight into the mechanism of GPCR–ligand recognition. Notably, the crucial role of the membrane in the ligand-receptor association process has earned much attention. Additionally, docking, together with more accurate free energy calculation methods, is playing an important role in the design of novel compounds targeting GPCRs. Here, we summarize the recent progress in the computational studies focusing on the above issues. In the future, with continuous improvement in both computational hardware and algorithms, molecular modeling would serve as an indispensable tool in a wider scope of the research concerning GPCR–ligand recognition as well as drug design targeting GPCRs.
Collapse
Affiliation(s)
- Xiaojing Yuan
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Asai Y, Tanaka H, Nadai M, Katoh M. Status Epilepticus Decreases Brain Cytochrome P450 2D4 Expression in Rats. J Pharm Sci 2017; 107:975-978. [PMID: 29175413 DOI: 10.1016/j.xphs.2017.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Status epilepticus (SE) is a life-threatening neurological emergency characterized by frequent seizures. The present study aims at elucidating the effect of SE on CYP2D4 expression in the rat brain. To create a rat model of SE, Sprague-Dawley rats were intraperitoneally administered 10 mg/kg kainic acid. The CYP2D4 mRNA levels in the cortex and hippocampus of the SE rats were decreased by 0.38- and 0.39-fold, respectively. The protein level of octamer transcription factor 1 (Oct-1), which is involved in the transcriptional activation of CYP2D4 by binding to the CYP2D4 regulatory element, was also attenuated by 0.64- and 0.51-fold in these regions of the SE rat, suggesting that a reduction in Oct-1 may be involved in the CYP2D4 suppression. Yin yang 1 can function as a cofactor of histone deacetylase 1 and inhibit the binding of Oct-1 to the CYP2D4 regulatory element. The coimmunoprecipitation assay revealed that the interaction between yin yang 1 and histone deacetylase 1 in the cortex and hippocampus was enhanced during SE, indicating that this interaction is also responsible for the CYP2D4 suppression. This study clarified that SE led to a decrease in the expression of CYP2D4, thus altering the pharmacokinetics and efficacy of the drugs in the brain.
Collapse
Affiliation(s)
- Yuki Asai
- Pharmaceutics, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Hatsuna Tanaka
- Pharmaceutics, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Masayuki Nadai
- Pharmaceutics, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Miki Katoh
- Pharmaceutics, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
25
|
Coordination Mechanism and Bio-Evidence: Reactive γ-Ketoenal Intermediated Hepatotoxicity of Psoralen and Isopsoralen Based on Computer Approach and Bioassay. Molecules 2017; 22:molecules22091451. [PMID: 32962321 PMCID: PMC6151710 DOI: 10.3390/molecules22091451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022] Open
Abstract
Psoralen and isopsoralen are secondary plant metabolites found in many fruits, vegetables, and medicinal herbs. Psoralen-containing plants (Psoralea corylifolia L.) have been reported to cause hepatotoxicity. Herein, we found that psoralen and isopsoralen were oxidized by CYP450s to reactive furanoepoxide or γ-ketoenal intermediates, causing a mechanism-based inhibition of CYP3A4. Furthermore, in GSH-depleted mice, the hepatotoxicity of these reactive metabolites has been demonstrated by pre-treatment with a well-known GSH synthesis inhibitor, L-buthionine-S, Rsulfoxinine (BSO). Moreover, a molecular docking simulation of the present study was undertaken to understand the coordination reaction that plays a significant role in the combination of unstable intermediates and CYP3A4. These results suggested that psoralen and isopsoralen are modest hepatotoxic agents, as their reactive metabolites could be deactivated by H2O and GSH in the liver, which partly contributes to the ingestion of psoralen-containing fruits and vegetables being safe.
Collapse
|
26
|
Abrudan MB, Muntean DM, Popa DS, Gheldiu AM, Neag MA, Vlase L. Inhibitory Effect of Citalopram on the Pharmacokinetics of Carvedilol in Rats and in vitro Models. Pharmacology 2017; 100:301-307. [PMID: 28848215 DOI: 10.1159/000480090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/07/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The aim of this study was to investigate the drug-drug interaction between carvedilol and citalopram based on carvedilol metabolism in vitro and his pharmacokinetics (PKs) in vivo after the oral administration of the single drug and both drugs, and reveal citalopram effects on the PKs of carvedilol. METHODS Each rat was cannulated on the femoral vein, prior to being connected to BASi Culex ABC®. Carvedilol was orally administrated in rats (3.57 mg/kg body weight [b.w.]) in the absence of citalopram or after a pre-treatment with multiple oral doses of citalopram (1.42 mg/kg b.w.). Plasma concentrations of carvedilol were determined using high-performance liquid chromatography-MS at the designated time points after drug administration, and the main PK parameters were calculated by noncompartmental analysis. In addition, effects of citalopram on the metabolic rate of carvedilol were investigated using rat-pooled liver microsome incubation systems. RESULTS During co-administration, significant increases of the area under the plasma concentration-time curve as well as of the peak plasma concentration were observed. The rat-pooled liver microsome incubation experiment indicated that citalopram could decrease the metabolic rate of carvedilol. CONCLUSION Citalopram co-administration led to a significant alteration of carvedilol's PK profile in rats; it also demonstrated, in vitro, these effects could be explained by the existence of a drug-drug interaction mediated by CYP2D6 inhibition.
Collapse
Affiliation(s)
- Maria Bianca Abrudan
- Department of Pharmaceutical Technology and Biopharmaceutics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | | | | | | | | | | |
Collapse
|
27
|
Effect of genetic polymorphism on the inhibition of dopamine formation from p -tyramine catalyzed by brain cytochrome P450 2D6. Arch Biochem Biophys 2017; 620:23-27. [DOI: 10.1016/j.abb.2017.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 02/05/2023]
|
28
|
Karthikeyan BS, Suvaithenamudhan S, Akbarsha MA, Parthasarathy S. Analysis of Species-Selectivity of Human, Mouse and Rat Cytochrome P450 1A and 2B Subfamily Enzymes using Molecular Modeling, Docking and Dynamics Simulations. Cell Biochem Biophys 2017; 76:91-110. [PMID: 28353142 DOI: 10.1007/s12013-017-0791-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 (CYP) 1A and 2B subfamily enzymes are important drug metabolizing enzymes, and are highly conserved across species in terms of sequence homology. However, there are major to minor structural and macromolecular differences which provide for species-selectivity and substrate-selectivity. Therefore, species-selectivity of CYP1A and CYP2B subfamily proteins across human, mouse and rat was analyzed using molecular modeling, docking and dynamics simulations when the chiral molecules quinine and quinidine were used as ligands. The three-dimensional structures of 17 proteins belonging to CYP1A and CYP2B subfamilies of mouse and rat were predicted by adopting homology modeling using the available structures of human CYP1A and CYP2B proteins as templates. Molecular docking and dynamics simulations of quinine and quinidine with CYP1A subfamily proteins revealed the existence of species-selectivity across the three species. On the other hand, in the case of CYP2B subfamily proteins, no role for chirality of quinine and quinidine in forming complexes with CYP2B subfamily proteins of the three species was indicated. Our findings reveal the roles of active site amino acid residues of CYP1A and CYP2B subfamily proteins and provide insights into species-selectivity of these enzymes across human, mouse, and rat.
Collapse
Affiliation(s)
- Bagavathy Shanmugam Karthikeyan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.,Mahatma Gandhi-Doerenkamp Center (MGDC) for Alternatives to Use of Animals in Life Science Education, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Suvaiyarasan Suvaithenamudhan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Center (MGDC) for Alternatives to Use of Animals in Life Science Education, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Subbiah Parthasarathy
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
29
|
Noh K, Chen S, Yang QJ, Pang KS. Physiologically based pharmacokinetic modeling revealed minimal codeine intestinal metabolism in first-pass removal in rats. Biopharm Drug Dispos 2017; 38:50-74. [PMID: 27925239 DOI: 10.1002/bdd.2051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Accepted: 12/01/2016] [Indexed: 01/03/2023]
Abstract
The physiologically based model with segregated flow to the intestine (SFM-PBPK; partial, lower flow to enterocyte region vs. greater flow to serosal region) was found to describe the first-pass glucuronidation of morphine (M) to morphine-3β-glucuronide (MG) in rats after intraduodenal (i.d.) and intravenous (i.v.) administration better than the traditional model (TM), for which a single intestinal flow perfused the whole of the intestinal tissue. The segregated flow model (SFM) described a disproportionately greater extent of intestinal morphine glucuronidation for i.d. vs. i.v. administration. The present study applied the same PBPK modeling approaches to examine the contributions of the intestine and liver on the first-pass metabolism of the precursor, codeine (C, 3-methylmorphine) in the rat. Unexpectedly, the profiles of codeine, morphine and morphine-3β-glucuronide in whole blood, bile and urine, assayed by LCMS, were equally well described by both the TM-PBPK and SFM-PBPK. The fitted parameters for the models were similar, and the net formation intrinsic clearance of morphine (from codeine) for the liver was much higher, being 9- to 13-fold that of the intestine. Simulations, based on the absence of intestinal formation of morphine, correlated well with observations. The lack of discrimination of SFM and TM with the codeine data did not invalidate the SFM-PBPK model but rather suggests that the liver is the only major organ for codeine metabolism. Because of little or no contribution by the intestine to the metabolism of codeine, both the TM- and SFM-PBPK models are equally consistent with the data. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Shu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Apotex Inc., 150 Signet Drive, Toronto, Ontario, M9L 1T9, Canada
| | - Qi J Yang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Srivastav VK, Singh V, Tiwari M. Recent Advancements in Docking Methodologies. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nowadays molecular docking has become an important methodology in CADD (Computer-Aided Drug Design)-assisted drug discovery process. It is an important computational tool widely used to predict binding mode, binding affinity and binding free energy of a protein-ligand complex. The important factors responsible for accurate results in docking studies are correct binding site prediction, use of suitable small-molecule databases, consistent docking pose, high dock score with good MD (Molecular Dynamics), clarity whether the compound is an inhibitor or agonist, etc. However, still there are several limitations which make it difficult to obtain accurate results from docking studies. In this chapter, the main focus is on recent advancements in various aspects of molecular docking such as ligand sampling, protein flexibility, scoring functions, fragment docking, post-processing, docking into homology models and protein-protein docking.
Collapse
Affiliation(s)
| | - Vineet Singh
- Shri Govindram Seksaria Institute of Technology and Science, India
| | - Meena Tiwari
- Shri Govindram Seksaria Institute of Technology and Science, India
| |
Collapse
|
31
|
Xu XQ, Geng T, Zhang SB, Kang DY, Li YJ, Ding G, Huang WZ, Wang ZZ, Xiao W. Inhibition of Re Du Ning Injection on Enzyme Activities of Rat Liver Microsomes Using Cocktail Method. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
32
|
DDPH, a novel antihypertensive agent, is a potential dual inhibitor of hepatic CYP2D and CYP3A. Chem Biol Interact 2016; 247:55-63. [PMID: 26827781 DOI: 10.1016/j.cbi.2016.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/21/2022]
Abstract
DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride) is a promising novel antihypertensive agent, with potent antihypertensive, neuroprotective and cardioprotective effects. This study aimed to investigate the effects of DDPH on the expression and activity of hepatic cytochrome P450 (CYP) isoforms and evaluate the metabolic drug-drug interactions of DDPH with propafenone. Our results showed that orally administered DDPH (12.5-50 mg/kg/d) for 7 days significantly inhibited CYP2D1 and CYP3A1 activity and mRNA and protein expression but weakly increased CYP1A2 activity and expression in rats. Enzyme kinetics studies showed that DDPH was a competitive inhibitor of CYP2D1 and mixed inhibitor of CYP3A1 in rat liver microsomes with Ki values of 3.70 ± 0.42 μM and 4.79 ± 1.10 μM respectively. With human liver microsomes, DDPH was a noncompetitive inhibitor of CYP2D6 (Ki = 0.85 ± 0.06 μM) and mixed inhibitor of CYP3A (Ki = 2.15 ± 0.41 μM). Further in vivo study showed that oral administration of DDPH (12.5-50 mg/kg/d) for 7 days in rats significantly increased the area under the plasma concentration-time curve (AUC) of propafenone by 25.4%-63.9%, with a concomitant decrease in the plasma clearance. In conclusion, the results indicated that DDPH inhibited CYP2D and CYP3A activities and down-regulated their protein expression and mRNA transcription. DDPH might cause metabolic drug-drug interactions through modulation of the activity and expression of CYP2D and CYP3A. This information could be important in the prediction of possible drug-drug interactions as well as for the effective therapy and the limitation of toxicity of DDPH in clinical practice.
Collapse
|
33
|
Geng T, Si H, Kang D, Li Y, Huang W, Ding G, Wang Z, Bi Y, Zhang H, Xiao W. Influences of Re Du Ning Injection, a traditional Chinese medicine injection, on the CYP450 activities in rats using a cocktail method. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:426-36. [PMID: 26318744 DOI: 10.1016/j.jep.2015.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Re Du Ning Injection (RDN), a traditional Chinese medicine injection, is made from the extracts of Lonicerae japonicae flos (LJF), Artemisiae annuae herba (AAH) and Gardeniae fructus (GF). Since last decade, RDN has been widely used in China for the treatment of fever, inflammation, allergy and viral infection. AIM OF THE STUDY To elucidate the potential influences of RDN on the activities of four cytochrome P450 (CYP) isozymes in rats (CYP1A2, CYP2C11, CYP2D1 and CYP3A1/2) by "cocktail method". MATERIALS AND METHODS A sensitive and specific LC-MS method capable of simultaneous quantification of four substrates and their metabolites in rat plasma was developed and validated. Relative activity estimation of four isozymes was carried out by comparing plasma pharmacokinetics of substrates and their metabolites (phenacetin/ paracetamol for CYP1A2, tolbutamide/4-hydroxytolbutamide for CYP2C11, dextromethorphan/ dextrorphan for CYP2D1 and dapsone/N-acetyl dapsone for CYP3A1/2) between control and RDN treatment groups. RESULTS Compared with control group, RDN at different levels could increase the total amount of tolbutamide, dextromethorphan and dapsone absorbed into blood, while decrease the total amount of phenacetin absorbed into blood at low and medium dosage and increase it at high dosage. CONCLUSIONS RDN could inhibit the activities of CYP2C11, CYP2D1 and CYP3A1/2, induce the activity of CYP1A2 at low and medium dosage but inhibit it at high dosage. The results indicated that drug co-administrated with RDN may need dose adjustment.
Collapse
Affiliation(s)
- Ting Geng
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang 222001, China
| | - Haihong Si
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang 222001, China
| | - Danyu Kang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing 210017, China; China Pharmaceutical University, Nanjing 210009, China
| | - Yanjing Li
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang 222001, China
| | - Wenzhe Huang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang 222001, China
| | - Gang Ding
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang 222001, China
| | - Zhenzhong Wang
- State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang 222001, China
| | - Yu'an Bi
- State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang 222001, China
| | - Hong Zhang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang 222001, China
| | - Wei Xiao
- State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang 222001, China.
| |
Collapse
|
34
|
Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors. Molecules 2015; 20:11569-603. [PMID: 26111183 PMCID: PMC6272567 DOI: 10.3390/molecules200611569] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/02/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Blocking protein-protein interactions (PPI) using small molecules or peptides modulates biochemical pathways and has therapeutic significance. PPI inhibition for designing drug-like molecules is a new area that has been explored extensively during the last decade. Considering the number of available PPI inhibitor databases and the limited number of 3D structures available for proteins, docking and scoring methods play a major role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the design of PPI inhibitors at several stages of finding a lead compound, including modeling the protein complex, screening for hot spots on the protein-protein interaction interface and screening small molecules or peptides that bind to the PPI interface. There are three major challenges to the use of docking on the relatively flat surfaces of PPI. In this review we will provide some examples of the use of docking in PPI inhibitor design as well as its limitations. The combination of experimental and docking methods with improved scoring function has thus far resulted in few success stories of PPI inhibitors for therapeutic purposes. Docking algorithms used for PPI are in the early stages, however, and as more data are available docking will become a highly promising area in the design of PPI inhibitors or stabilizers.
Collapse
|
35
|
Zhuang Z, Tang M, Zheng Y, Hu L, Lin F. Effect of Dimethoate on the Activity of Hepatic CYP450 Based on Pharmacokinetics of Probe Drugs. Pharmacology 2015; 95:243-50. [PMID: 25967365 DOI: 10.1159/000381920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dimethoate (DM), one of the most widely used systemic organophosphate insecticide, has been reported to exert toxic effects after long-time subchronic exposure. This study aims at investigating the toxic effect of DM on liver after repeated administration of low doses of DM in rats. METHODS Twenty Sprague-Dawley rats were randomly divided into the control group (n = 10) and the DM group (n = 10). After 2 weeks' exposure to DM at low dosage (5 mg/kg), biochemical parameters of hepatic functions were measured, histology and CYP450 expressed in liver was detected. The activities of CYP1A2, CYP2C11, CYP2D1, and CYP3A2 were evaluated by the Cocktail method. RESULTS The level of AChE (acetylcholinesterase) was significantly decreased, hepatic functions were damaged and the mRNA level of CYP2D1 was significantly increased in the DM group (p < 0.05). The pharmacokinetics of probe drug revealed AUC(0-t), AUC(0-∞), t1/2 and Cmax of metoprolol was shorten in the DM group (p < 0.05). However, there were no statistical differences in MRT, t1/2, CL and Tmax for phenacetin, tolbutamide and midazolam. CONCLUSIONS A low dosage of DM could induce the activity of CYP2D1 in liver and increase the metabolism of metoprolol when exposed for 2 weeks.
Collapse
Affiliation(s)
- Zaishou Zhuang
- Department of Intensive Care Unit, Cangnan People's Hospital, Lingxi Town, Cangnan County, Wenzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
36
|
Sun M, Tang Y, Ding T, Liu M, Wang X. Investigation of cytochrome P450 inhibitory properties of maslinic acid, a bioactive compound from Olea europaea L., and its structure-activity relationship. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:56-65. [PMID: 25636872 DOI: 10.1016/j.phymed.2014.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Maslinic acid (MA), the main pentacyclic triterpene of Olea europaea L. fruit, possesses a variety of pharmacological actions, including hypoglycemic, antioxidant, cardioprotective and antitumoral activities. Despite its importance, little is known about its effects on the cytochrome P450 (CYP) activity in both humans and animals. Therefore, the aim of this study was to investigate the effects of MA on the CYP 1A2, 2C9/11, 2D1/6, 2E1 and 3A2/4 activities by human and rat liver microsomes and specific CYP isoforms. In humans, MA only weakly inhibited CYP3A4 activity in human liver microsomes and specific CYP3A4 isoform with IC50 value at 46.1 and 62.3µM, respectively. In rats, MA also exhibited weak inhibition on CYP2C11, CYP2E1 and CYP3A2 activities with IC50 values more than 100µM. Enzyme kinetic studies showed that the MA was not only a competitive inhibitor of CYP3A4 in humans, but also a competitive inhibitor of CYP2C11 and 3A2 in rats, with Ki of 18.4, 98.7 and 66.3µM, respectively. Moreover, the presence of hydroxyl group at C-2 position of triterpenic acid in MA compared with oleanolic acid could magnify its competitive inhibition on human CYP3A4 activity. The relatively high Ki values of MA would have a low potential to cause the possible toxicity and drug interactions involving CYP enzymes, thus suggesting a sufficient safety for its putative use as a nutraceutical taken together with drugs.
Collapse
Affiliation(s)
- Min Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tonggui Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
37
|
Cui D, Mi L, Xu X, Lu J, Qian J, Liu S. Nanocomposites of graphene and cytochrome P450 2D6 isozyme for electrochemical-driven tramadol metabolism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11833-11840. [PMID: 25222611 DOI: 10.1021/la502699m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cytochrome P450 enzymes (cyt P450s) with an active center of iron protoheme are involved in most clinical drugs metabolism process. Herein, an electrochemical platform for the investigation of drug metabolism in vitro was constructed by immobilizing cytochrome P450 2D6 (CYP2D6) with cyt P450 reductase (CPR) on graphene modified glass carbon electrode. Direct and reversible electron transfer of the immobilized CYP2D6 with the direct electron transfer constant of 0.47 s(-1) and midpoint potential of -0.483 V was obtained. In the presence of substrate tramadol, the electrochemical-driven CYP2D6 mediated catalytic behavior toward the conversion of tramadol to o-demethyl-tramadol was confirmed. The Michaelis-Menten constant (Km(app)) and heterogeneous reaction rate constant during the metabolism of tramadol were calculated to be 23.85 μM and 1.96 cm s(-1), respectively. The inhibition effect of quinidine on CYP2D6 catalyze-cycle was also investigated. Furthermore, this system was applied to studying the metabolism of other drugs.
Collapse
Affiliation(s)
- Dongmei Cui
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University , Jiangning District 211189, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Hasegawa T, Eiki JI, Chiba M. Interindividual variations in metabolism and pharmacokinetics of 3-(6-methylpyridine-3-yl-sulfanyl)-6-(4H-[1,2,4]triazole-3-yl-sulfanyl)-N-(1,3-thiazole-2-yl)-2-pyridine carboxamide, a glucokinase activator, in rats caused by the genetic polymorphism of CYP2D1. Drug Metab Dispos 2014; 42:1548-55. [PMID: 24924387 DOI: 10.1124/dmd.114.058081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
3-(6-Methylpyridine-3-yl-sulfanyl)-6-(4H-[1,2,4]triazole-3-yl-sulfanyl)-N-(1,3-thiazole-2-yl)-2-pyridine carboxamide (Cpd-D) is a novel glucokinase activator that is being developed for the treatment of type 2 diabetes. Large interindividual variations were observed in the pharmacokinetics of Cpd-D in male Sprague-Dawley (SD) rats, which were subsequently divided into two phenotypes; >6-fold longer terminal-phase half-life and ∼10-fold larger AUC0-∞ values were observed in slow metabolizers (SM) than in fast metabolizers (FM) after the oral administration of Cpd-D. The thiohydantoic acid analog (M2) was the predominant metabolite detected in the urine, bile, and plasma after the oral administration of [(14)C]Cpd-D to the FM phenotypes of bile-duct cannulated SD rats. The liver microsomes prepared from FM phenotyped rats extensively formed M2 with the highest affinity (Km = 0.09 μM) and largest Vmax/Km value in primary metabolism, whereas those from SM phenotypes had little capacity to form M2. Of the rat cytochrome P450 isoforms tested, the formation of M2 was only catalyzed by recombinant CYP2D1. Sequence substitutions (418A/421C and 418G/421T) were detected in the CYP2D1 gene and were designated F and S alleles, respectively. The genotype-phenotype correlation analysis indicated that two S alleles were homozygous (S/S) in the SM phenotypes, whereas the FM phenotypes were either homozygous for the F-alleles (F/F) or heterozygous (F/S). These results indicated that the CYP2D1 polymorphism caused by nucleotide substitutions (418A/421C versus 418G/421T) was responsible for interindividual variations leading to the polymorphism in the major metabolism and pharmacokinetics of Cpd-D in male SD rats.
Collapse
Affiliation(s)
- Takuro Hasegawa
- Banyu Tsukuba Research Institute, MSD K.K., Tsukuba, Ibaraki, Japan
| | - Jun-ichi Eiki
- Banyu Tsukuba Research Institute, MSD K.K., Tsukuba, Ibaraki, Japan
| | - Masato Chiba
- Banyu Tsukuba Research Institute, MSD K.K., Tsukuba, Ibaraki, Japan
| |
Collapse
|
39
|
Oostenbrink C. Structure‐Based Methods for Predicting the Sites and Products of Metabolism. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/9783527673261.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Uchida S, Tanaka S, Namiki N. Simultaneous and comprehensivein vivoanalysis of cytochrome P450 activity by using a cocktail approach in rats. Biopharm Drug Dispos 2014; 35:228-36. [DOI: 10.1002/bdd.1888] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Shinya Uchida
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka Japan
| | - Shimako Tanaka
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka Japan
| | - Noriyuki Namiki
- Department of Pharmacy Practice and Science, School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka Japan
| |
Collapse
|
41
|
Rouini MR, Lavasani H, Sheikholeslami B, Owen H, Giorgi M. Pharmacokinetics of mirtazapine and its main metabolites after single intravenous and oral administrations in rats at two dose rates. ACTA ACUST UNITED AC 2014; 22:13. [PMID: 24397986 PMCID: PMC3896718 DOI: 10.1186/2008-2231-22-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mirtazapine (MRZ) is a human antidepressant drug metabolized to 8-OH mirtazapine (8-OH) and dimethylmirtazapine (DMR) metabolites. Recently, this drug has been proposed as a potential analgesic for use in a multidrug analgesic regime in the context of veterinary medicine. The aim of this study was to assess the pharmacokinetics of MRZ and its metabolites DMR and 8-OH in rats. FINDINGS Eighteen fasted, healthy male rats were randomly divided into 3 groups (n = 6). Animals in these groups were respectively administered MRZ at 2 and 10 mg/kg orally and 2 mg/kg intravenously. Plasma MRZ and metabolite concentrations were evaluated by HPLC-FL detection method. After intravenous administration, MRZ was detected in all subjects, while DMR was only detected in three. 8-OH was not detected. After oral administration, MRZ was detected in 3 out of 6 rats treated with 2 mg/kg, it was detected in 6 out of 6 animals in the 10 mg/kg group. DMR was only detectable in the latter group, while 8-OH was not detected in either group. The oral bioavailability was about 7% in both groups. CONCLUSIONS The plasma concentration of the MRZ metabolite 8-OH was undetectable, and the oral bioavailability of the parental drug was very low.
Collapse
Affiliation(s)
| | | | | | | | - Mario Giorgi
- Department of Veterinary Sciences, Veterinary Teaching Hospital, University of Pisa, Via Livornese (lato monte), San Piero a Grado, 56122 Pisa, Italy.
| |
Collapse
|
42
|
Niu B, Zhang Y, Ding J, Lu Y, Wang M, Lu W, Yuan X, Yin J. Predicting network of drug-enzyme interaction based on machine learning method. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:214-23. [PMID: 23907006 DOI: 10.1016/j.bbapap.2013.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/11/2022]
Abstract
It is important to correctly and efficiently map drugs and enzymes to their possible interaction network in modern drug research. In this work, a novel approach was introduced to encode drug and enzyme molecules with physicochemical molecular descriptors and pseudo amino acid composition, respectively. Based on this encoding method, Random Forest was adopted to build the drug-enzyme interaction network. After selecting the optimal features that are able to represent the main factors of drug-enzyme interaction in our prediction, a total of 129 features were attained which can be clustered into nine categories: Elemental Analysis, Geometry, Chemistry, Amino Acid Composition, Secondary Structure, Polarity, Molecular Volume, Codon Diversity and Electrostatic Charge. It is further found that Geometry features were the most important of all the features. As a result, our predicting model achieved an MCC of 0.915 and a sensitivity of 87.9% at the specificity level of 99.8% for 10-fold cross-validation test, and achieved an MCC of 0.895 and a sensitivity of 95.7% at the specificity level of 95.4% for independent set test. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.
Collapse
Affiliation(s)
- Bing Niu
- College of Life Science, Shanghai University, 99 Shang-Da Road, Shanghai 200072, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Edmund GHC, Lewis DFV, Howlin BJ. Modelling species selectivity in rat and human cytochrome P450 2D enzymes. PLoS One 2013; 8:e63335. [PMID: 23691026 PMCID: PMC3653926 DOI: 10.1371/journal.pone.0063335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/31/2013] [Indexed: 12/03/2022] Open
Abstract
Updated models of the Rat Cytochrome P450 2D enzymes are produced based on the recent x-ray structures of the Human P450 2D6 enzyme both with and without a ligand bound. The differences in species selectivity between the epimers quinine and quinidine are rationalised using these models and the results are discussed with regard to previous studies. A close approach to the heme is not observed in this study. The x-ray structure of the enzyme with a ligand bound is shown to be a better model for explaining the observed experimental binding of quinine and quinidine. Hence models with larger closed binding sites are recommended for comparative docking studies. This is consistent with molecular recognition in Cytochrome P450 enzymes being the result of a number of non-specific interactions in a large binding site.
Collapse
Affiliation(s)
- Grace H. C. Edmund
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - David F. V. Lewis
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Brendan J. Howlin
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Berka K, Anzenbacherová E, Hendrychová T, Lange R, Mašek V, Anzenbacher P, Otyepka M. Binding of quinidine radically increases the stability and decreases the flexibility of the cytochrome P450 2D6 active site. J Inorg Biochem 2012; 110:46-50. [DOI: 10.1016/j.jinorgbio.2012.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/13/2012] [Accepted: 02/15/2012] [Indexed: 11/25/2022]
|
45
|
Yuki H, Honma T, Hata M, Hoshino T. Prediction of sites of metabolism in a substrate molecule, instanced by carbamazepine oxidation by CYP3A4. Bioorg Med Chem 2011; 20:775-83. [PMID: 22197672 DOI: 10.1016/j.bmc.2011.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/25/2022]
Abstract
In drug discovery process, improvement of ADME/Tox properties of lead compounds including metabolic stability is critically important. Cytochrome P450 (CYP) is one of the major metabolizing enzymes and the prediction of sites of metabolism (SOM) on the given lead compounds is key information to modify the compounds to be more stable against metabolism. There are two factors essentially important in SOM prediction. First is accessibility of each substrate atom to the oxygenated Fe atom of heme in a CYP protein, and the other is the oxidative reactivity of each substrate atom. To predict accessibility of substrate atoms to the heme iron, conventional protein-rigid docking simulations have been applied. However, the docking simulations without consideration of protein flexibility often lead to incorrect answers in the case of very flexible proteins such as CYP3A4. In this study, we demonstrated an approach utilizing molecular dynamics (MD) simulation for SOM prediction in which multiple MD runs were executed using different initial structures. We applied this strategy to CYP3A4 and carbamazepine (CBZ) complex. Through 10 ns MD simulations started from five different CYP3A4-CBZ complex models, our approach correctly predicted SOM observed in experiments. The experimentally known epoxidized sites of CBZ by CYP3A4 were successfully predicted as the most accessible sites to the heme iron that was judged from a numerical analysis of calculated ΔG(binding) and the frequency of appearance. In contrast, the predictions using protein-rigid docking methods hardly provided the correct SOM due to protein flexibility or inaccuracy of the scoring functions. Our strategy using MD simulation with multiple initial structures will be one of the reliable methods for SOM prediction.
Collapse
Affiliation(s)
- Hitomi Yuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | |
Collapse
|
46
|
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011; 7:146-57. [PMID: 21534921 DOI: 10.2174/157340911795677602] [Citation(s) in RCA: 1607] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 09/29/2010] [Indexed: 11/22/2022]
Abstract
Molecular docking has become an increasingly important tool for drug discovery. In this review, we present a brief introduction of the available molecular docking methods, and their development and applications in drug discovery. The relevant basic theories, including sampling algorithms and scoring functions, are summarized. The differences in and performance of available docking software are also discussed. Flexible receptor molecular docking approaches, especially those including backbone flexibility in receptors, are a challenge for available docking methods. A recently developed Local Move Monte Carlo (LMMC) based approach is introduced as a potential solution to flexible receptor docking problems. Three application examples of molecular docking approaches for drug discovery are provided.
Collapse
Affiliation(s)
- Xuan-Yu Meng
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | | | | | | |
Collapse
|
47
|
Kim S, Jiao GS, Moayeri M, Crown D, Cregar-Hernandez L, McKasson L, Margosiak SA, Leppla SH, Johnson AT. Antidotes to anthrax lethal factor intoxication. Part 2: structural modifications leading to improved in vivo efficacy. Bioorg Med Chem Lett 2011; 21:2030-3. [PMID: 21334206 DOI: 10.1016/j.bmcl.2011.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/28/2022]
Abstract
New anthrax lethal factor inhibitors (LFIs) were designed based upon previously identified potent inhibitors 1a and 2. Combining the new core structures with modifications to the C2-side chain yielded analogs with improved efficacy in the rat lethal toxin model.
Collapse
|
48
|
Yongye AB, Pinilla C, Medina-Franco JL, Giulianotti MA, Dooley CT, Appel JR, Nefzi A, Scior T, Houghten RA, Martínez-Mayorga K. Integrating computational and mixture-based screening of combinatorial libraries. J Mol Model 2010; 17:1473-82. [DOI: 10.1007/s00894-010-0850-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/06/2010] [Indexed: 11/29/2022]
|
49
|
Unwalla RJ, Cross JB, Salaniwal S, Shilling AD, Leung L, Kao J, Humblet C. Using a homology model of cytochrome P450 2D6 to predict substrate site of metabolism. J Comput Aided Mol Des 2010; 24:237-56. [PMID: 20361239 DOI: 10.1007/s10822-010-9336-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
CYP2D6 is an important enzyme that is involved in first pass metabolism and is responsible for metabolizing ~25% of currently marketed drugs. A homology model of CYP2D6 was built using X-ray structures of ligand-bound CYP2C5 complexes as templates. This homology model was used in docking studies to rationalize and predict the site of metabolism of known CYP2D6 substrates. While the homology model was generally found to be in good agreement with the recently solved apo (ligand-free) X-ray structure of CYP2D6, significant differences between the structures were observed in the B' and F-G helical region. These structural differences are similar to those observed between ligand-free and ligand-bound structures of other CYPs and suggest that these conformational changes result from induced-fit adaptations upon ligand binding. By docking to the homology model using Glide, it was possible to identify the correct site of metabolism for a set of 16 CYP2D6 substrates 85% of the time when the 5 top scoring poses were examined. On the other hand, docking to the apo CYP2D6 X-ray structure led to a loss in accuracy in predicting the sites of metabolism for many of the CYP2D6 substrates considered in this study. These results demonstrate the importance of describing substrate-induced conformational changes that occur upon binding. The best results were obtained using Glide SP with van der Waals scaling set to 0.8 for both the receptor and ligand atoms. A discussion of putative binding modes that explain the distribution of metabolic sites for substrates, as well as a relationship between the number of metabolic sites and substrate size, are also presented. In addition, analysis of these binding modes enabled us to rationalize the typical hydroxylation and O-demethylation reactions catalyzed by CYP2D6 as well as the less common N-dealkylation.
Collapse
Affiliation(s)
- Rayomand J Unwalla
- Chemical Sciences, Wyeth Research, S-2421, 500 Arcola Road, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab Rev 2010; 41:573-643. [PMID: 19645588 DOI: 10.1080/03602530903118729] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To date, the crystal structures of at least 12 human CYPs (1A2, 2A6, 2A13, 2C8, 2C9, 2D6, 2E1, 2R1, 3A4, 7A1, 8A1, and 46A1) have been determined. CYP2D6 accounts for only a small percentage of all hepatic CYPs (< 2%), but it metabolizes approximately 25% of clinically used drugs with significant polymorphisms. CYP2D6 also metabolizes procarcinogens and neurotoxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, and indolealkylamines. Moreover, the enzyme utilizes hydroxytryptamines and neurosteroids as endogenous substrates. Typical CYP2D6 substrates are usually lipophilic bases with an aromatic ring and a nitrogen atom, which can be protonated at physiological pH. Substrate binding is generally followed by oxidation (5-7 A) from the proposed nitrogen-Asp301 interaction. A number of homology models have been constructed to explore the structural features of CYP2D6, while antibody studies also provide useful structural information. Site-directed mutagenesis studies have demonstrated that Glu216, Asp301, Phe120, Phe481, and Phe483 play important roles in determining the binding of ligands to CYP2D6. The structure of human CYP2D6 has been recently determined and shows the characteristic CYP fold observed for other members of the CYP superfamily. The lengths and orientations of the individual secondary structural elements in the CYP2D6 structure are similar to those seen in other human CYP2 members, such as CYP2C9 and 2C8. The 2D6 structure has a well-defined active-site cavity located above the heme group with a volume of approximately 540 A(3), which is larger than equivalent cavities in CYP2A6 (260 A(3)), 1A2 (375 A(3)), and 2E1 (190 A(3)), but smaller than those in CYP3A4 (1385 A(3)) and 2C8 (1438 A(3)). Further studies are required to delineate the molecular mechanisms involved in CYP2D6 ligand interactions and their implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pediatrics, Guangdong Women and Children's Hospital, Guangzhou, China
| | | | | | | | | | | |
Collapse
|