1
|
Khakina E, Nikovskiy I, Spiridonov K, Novikov V, Antoshkina E, Dzhalilova D, Diatroptova M, Martyanova A, Rodionov A, Nelyubina YV. Hypoxia-activated dissociation of heteroleptic cobalt(III) complexes with functionalized 2,2'-bipyridines and a model anticancer drug esculetin. Dalton Trans 2025. [PMID: 39846889 DOI: 10.1039/d4dt02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A low oxygen level in solid tumors is behind the modern concept of selective chemotherapy by hypoxia-activated prodrugs, such as heteroleptic complexes of transition metals (cobalt(III), iron(III) or platinum(IV)) with bi- or tetradentate ligands and an anticancer drug molecule as a co-ligand. A series of new cobalt(III) complexes [Co(LR)2(esc)]ClO4 with esculetin (6,7-dihydroxycoumarin) and 2,2'-bipyridines (2,2'-bipy) functionalized by different substituents R were probed in the hypoxia-activated delivery of this model anticancer drug. Their combined study by cyclic voltammetry and in situ NMR spectroscopy allowed identifying linear correlations of the electrochemical reduction potentials and the rate of the hypoxia-activated dissociation of [Co(LR)2(esc)]ClO4 with the Hammett constants of the substituents in 2,2'-bipy ligands. The latter, therefore, should be decorated with the most electron-withdrawing groups (unless they preclude the formation of a heteroleptic complex) to promote the drug release and increase the anticancer activity towards, e.g., human epidermoid carcinoma A431.These correlations can be transferred to other types of bi- or tetradentate ligands, thereby paving the way towards the molecular design of cobalt complexes as prodrugs for hypoxia-activated anticancer drug delivery with high therapeutic efficiency.
Collapse
Affiliation(s)
- Ekaterina Khakina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
- National Research University Higher School of Economics, Faculty of Chemistry, 101000, Vavilova Str., 7, Moscow, Russia
| | - Igor Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Kirill Spiridonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Valentin Novikov
- Department de Quimica Inorganica and IN2UB, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - Evgenia Antoshkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 1174183, TsyurupyStr., Moscow, Russia
| | - Marina Diatroptova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 1174183, TsyurupyStr., Moscow, Russia
| | - Alina Martyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Ostrovityanova Str., 1, Moscow, Russia
| | - Alexey Rodionov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| |
Collapse
|
2
|
Choi S, Yoon KY, Dong G. Modular Synthetic Platform for Interior-Functionalized Dendritic Macromolecules Enabled by the Palladium/Norbornene Catalysis. J Am Chem Soc 2024; 146:18855-18860. [PMID: 38949482 DOI: 10.1021/jacs.4c06090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Synthesis of interior-functionalized dendritic macromolecules is generally tedious and labor-intensive, which has been a key factor hampering their practical applications. Here, we have revisited this long-standing challenge and devised a modular and convergent platform to synthesize multifunctional dendrons with all-carbon backbones up to four generations via an in situ functionalization strategy. Enabled by the palladium/norbornene cooperative catalysis, different functional groups can be introduced to each generation of dendrons during the dendron growth, making it convenient for systematic comparison of their properties. The utility of this versatile platform is further showcased in the internal-functionalization-dependent properties of dendrons as organogels and aggregation-induced emission materials.
Collapse
Affiliation(s)
- Shinyoung Choi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ki-Young Yoon
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Laxio Arenas J, Lesma J, Ha-Duong T, Ranjan Sahoo B, Ramamoorthy A, Tonali N, Soulier JL, Halgand F, Giraud F, Crousse B, Kaffy J, Ongeri S. Composition and Conformation of Hetero- versus Homo-Fluorinated Triazolamers Influence their Activity on Islet Amyloid Polypeptide Aggregation. Chemistry 2024; 30:e202303887. [PMID: 38478740 DOI: 10.1002/chem.202303887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/11/2024]
Abstract
Novel fluorinated foldamers based on aminomethyl-1,4-triazolyl-difluoroacetic acid (1,4-Tz-CF2) units were synthesized and their conformational behaviour was studied by NMR and molecular dynamics. Their activity on the aggregation of the human islet amyloid polypeptide (hIAPP) amyloid protein was evaluated by fluorescence spectroscopy and mass spectrometry. The fluorine labelling of these foldamers allowed the analysis of their interaction with the target protein. We demonstrated that the preferred extended conformation of homotriazolamers of 1,4-Tz-CF2 unit increases the aggregation of hIAPP, while the hairpin-like conformation of more flexible heterotriazolamers containing two 1,4-Tz-CF2 units mixed with natural amino acids from the hIAPP sequence reduces it, and more efficiently than the parent natural peptide. The longer heterotriazolamers having three 1,4-Tz-CF2 units adopting more folded hairpin-like and ladder-like structures similar to short multi-stranded β-sheets have no effect. This work demonstrates that a good balance between the structuring and flexibility of these foldamers is necessary to allow efficient interaction with the target protein.
Collapse
Affiliation(s)
- José Laxio Arenas
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Jacopo Lesma
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Tap Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Bikash Ranjan Sahoo
- Biophysics, Department of Chemistry, Biomedical Engineering, Michigan Neuroscience Institute, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Michigan Neuroscience Institute, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nicolo Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Jean-Louis Soulier
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Frédéric Halgand
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - François Giraud
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN, CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190, Gif sur Yvette, France
| | - Benoît Crousse
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Julia Kaffy
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| |
Collapse
|
4
|
Goodman HJ, Szabò LZ, Sugerman SM, Myloserdnyy A, Polt R. Design and synthesis of oxytocin glycosides for the treatment of pain and substance use disorder. Methods Enzymol 2024; 698:343-359. [PMID: 38886038 DOI: 10.1016/bs.mie.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Peptide drugs are a promising alternative to classical small molecule therapeutics with diverse applications, ranging from antibiotic resistant infection to prostate cancer. Oxytocin (OT) is a highly evolutionarily conserved peptide neurohormone and has been of interest for pharmaceutical use since 1909. Despite their increased safety profile relative to most small molecule drugs, peptides are poor candidates based on the pharmacokinetic (PK) properties from their peptide nature. Broad application of OT as a drug has been limited by these same PK issues. Several strategies have been proposed to overcome these limitations, among them glycosylation, which was used in combination with other sequence modifications to produce robust antinociception in mouse models, increased selectivity and potency at the OT receptor, and improved stability in rats.
Collapse
Affiliation(s)
- Hannah J Goodman
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA
| | - Lajos Z Szabò
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA
| | - Samuel M Sugerman
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA
| | - Andriy Myloserdnyy
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA
| | - Robin Polt
- Department of Chemistry & Biochemistry The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
5
|
Vinayagam V, Sadhukhan SK, Botla DV, Chittem RR, Kasu SR, Hajay Kumar TV. Mild Method for Deprotection of the N-Benzyloxycarbonyl ( N-Cbz) Group by the Combination of AlCl 3 and HFIP. J Org Chem 2024; 89:5665-5674. [PMID: 38574289 DOI: 10.1021/acs.joc.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Herein, we report our findings on the novel ability of aluminum chloride (AlCl3) in fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol [HFIP] to selectively deprotect the N-benzyloxycarbonyl group (N-Cbz). The salient features of this method are good functional group tolerance including other reducible groups, cost-effectiveness, easy-to-handle, safe protocol, amenable to scale-up, high yields, and ambient temperature reactions. The methodology would serve as an excellent alternative to the use of pyrophoric hydrogen gas and metal catalyst reagents that pose severe safety and environmental concerns. The most notable feature of this methodology is the orthogonal deprotection of the N-Cbz group in the presence of O- and N-Bn protecting groups, hence, expanding the scope for designing synthetic routes to target compounds requiring multiple functional group transformations.
Collapse
Affiliation(s)
- Vinothkumar Vinayagam
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Subir Kumar Sadhukhan
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Durga Varaprasad Botla
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Rajashekar Reddy Chittem
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Sreenivasa Reddy Kasu
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| | - Tanguturi Venkatanarayana Hajay Kumar
- Medicinal Chemistry Division, Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Turkapally 500078, Hyderabad, India
| |
Collapse
|
6
|
Elter JK, Liščáková V, Moravec O, Vragović M, Filipová M, Štěpánek P, Šácha P, Hrubý M. Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules 2024; 57:1050-1071. [PMID: 38370914 PMCID: PMC10867888 DOI: 10.1021/acs.macromol.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024]
Abstract
Modern drug formulations often require, besides the active drug molecule, auxiliaries to enhance their pharmacological properties. Tailor-made, biocompatible polymers covalently connected to the drug molecule can fulfill this function by increasing its solubility, reducing its toxicity, and guiding it to a specific target. If targeting membrane-bound proteins, localization of the drug close to the cell membrane and its target is beneficial to increase drug efficiency and residence time. In this study, we present the synthesis of highly defined, branched polymeric structures with membrane-binding properties. One to three hydrophilic poly(ethylene oxide) or poly(2-ethyloxazoline) side chains were connected via a peptoid backbone using a two-step iterative protocol for solid-phase peptoid synthesis. Additional groups, e.g., a hydrophobic anchor for membrane attachment, were introduced. Due to the nature of solid-phase synthesis, the number and order of the side chains and additional units can be precisely defined. The method proved to be versatile for the generation of multifunctional, branched polymeric structures of molecular weights up to approximately 7000 g mol-1. The behavior of all compounds towards biological membranes and cells was investigated using liposomes as cell membrane models, HEK293 and U251-MG cell lines, and red blood cells, thereby demonstrating their potential value as drug auxiliaries with cell membrane affinity.
Collapse
Affiliation(s)
- Johanna K. Elter
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Veronika Liščáková
- Institute
of Organic Chemistry and Biochemistry, CAS Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
- First
Faculty of Medicine, Charles University
Kateřinská, 1660/32, 121 08, Praha 2, Czech Republic
| | - Oliver Moravec
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Martina Vragović
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Marcela Filipová
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Petr Štěpánek
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| | - Pavel Šácha
- Institute
of Organic Chemistry and Biochemistry, CAS Flemingovo nám. 2, 166 10, Praha 6, Czech Republic
| | - Martin Hrubý
- Institute
of Macromolecular Chemistry, CAS Heyrovského
nám. 2, 162 06, Praha 6, Czech Republic
| |
Collapse
|
7
|
Shirai T, Tani S, Nakajima R, Kumamoto T. Chemoselective Hydrogenation of α,β-Unsaturated Anilides Catalyzed by Palladium-Hydrosilane System. Chem Pharm Bull (Tokyo) 2024; 72:772-774. [PMID: 39198182 DOI: 10.1248/cpb.c24-00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
We report chemoselective hydrogenation of α,β-unsaturated anilides catalyzed by the palladium-polymethylhydrosiloxane (hydrosilane) system. Under this condition, C-C double bonds are selectively reduced while other reducible groups such as acetyl groups, nitro groups, nitriles, benzyl ethers, and halogens are largely tolerated. This chemoselective hydrogenation is promising for the development of efficient synthetic routes for multi-functional compounds.
Collapse
Affiliation(s)
- Takahiro Shirai
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Ryo Nakajima
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takuya Kumamoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
8
|
Rühl P, Bracher F. Aza Analogs of the TRPML1 Inhibitor Estradiol Methyl Ether (EDME). Molecules 2023; 28:7428. [PMID: 37959848 PMCID: PMC10647736 DOI: 10.3390/molecules28217428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Estradiol methyl ether (EDME) has recently been described by us as a very potent and subtype-specific inhibitor of the lysosomal cation channel TRPML1. Following the principle of bioisosteres, we worked out efficient synthetic approaches to ring-A aza-analogs of EDME, namely a methoxypyridine and a methoxypyrimidine analog. Both target compounds were obtained in good overall yields in six and eight steps starting from 19-nortestosterone via the oxidative cleavage of ring A followed over several intermediates and with the use of well-selected protective groups by re-cyclization to provide the desired hetero-analogs. The methoxypyridine analog largely retained its TRPML1-inhibitory activity, whereas the methoxypyrimidine analog significantly lost activity.
Collapse
Affiliation(s)
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, 80539 Munich, Germany;
| |
Collapse
|
9
|
Fessler J, Junge K, Beller M. Applying green chemistry principles to iron catalysis: mild and selective domino synthesis of pyrroles from nitroarenes. Chem Sci 2023; 14:11374-11380. [PMID: 37886090 PMCID: PMC10599485 DOI: 10.1039/d3sc02879h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 10/28/2023] Open
Abstract
An efficient and general cascade synthesis of pyrroles from nitroarenes using an acid-tolerant homogeneous iron catalyst is presented. Initial (transfer) hydrogenation using the commercially available iron-Tetraphos catalyst is followed by acid catalysed Paal-Knorr condensation. Both formic acid and molecular hydrogen can be used as green reductants in this process. Particularly, under transfer hydrogenation conditions, the homogeneous catalyst shows remarkable reactivity at low temperatures, high functional group tolerance and excellent chemoselectivity transforming a wide variety of substrates. Compared to classical heterogeneous catalysts, this system presents complementing reactivity, showing none of the typical side reactions such as dehalogenation, debenzylation, arene or olefin hydrogenation. It thereby enhances the chemical toolbox in terms of orthogonal reactivity. The methodology was successfully applied to the late-stage modification of multi-functional drug(-like) molecules as well as to the one-pot synthesis of the bioactive agent BM-635.
Collapse
Affiliation(s)
- Johannes Fessler
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
10
|
Wen Z, Pramanik A, Lewicki SA, Jung YH, Gao ZG, Randle JCR, Cronin C, Chen Z, Giancotti LA, Whitehead GS, Liang BT, Breton S, Salvemini D, Cook DN, Jacobson KA. Alicyclic Ring Size Variation of 4-Phenyl-2-naphthoic Acid Derivatives as P2Y 14 Receptor Antagonists. J Med Chem 2023; 66:9076-9094. [PMID: 37382926 PMCID: PMC10407959 DOI: 10.1021/acs.jmedchem.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
P2Y14 receptor (P2Y14R) is activated by extracellular UDP-glucose, a damage-associated molecular pattern that promotes inflammation in the kidney, lung, fat tissue, and elsewhere. Thus, selective P2Y14R antagonists are potentially useful for inflammatory and metabolic diseases. The piperidine ring size of potent, competitive P2Y14R antagonist (4-phenyl-2-naphthoic acid derivative) PPTN 1 was varied from 4- to 8-membered rings, with bridging/functional substitution. Conformationally and sterically modified isosteres included N-containing spirocyclic (6-9), fused (11-13), and bridged (14, 15) or large (16-20) ring systems, either saturated or containing alkene or hydroxy/methoxy groups. The alicyclic amines displayed structural preference. An α-hydroxyl group increased the affinity of 4-(4-((1R,5S,6r)-6-hydroxy-3-azabicyclo[3.1.1]heptan-6-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-naphthoic acid 15 (MRS4833) compared to 14 by 89-fold. 15 but not its double prodrug 50 reduced airway eosinophilia in a protease-mediated asthma model, and orally administered 15 and prodrugs reversed chronic neuropathic pain (mouse CCI model). Thus, we identified novel drug leads having in vivo efficacy.
Collapse
Affiliation(s)
- Zhiwei Wen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Asmita Pramanik
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sarah A Lewicki
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Young-Hwan Jung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John C R Randle
- Random Walk Ventures, LLC, 108 Lincoln Street Unit 6B, Boston, Massachusetts 02111, United States
| | - Chunxia Cronin
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Zhoumou Chen
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Gregory S Whitehead
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Sylvie Breton
- Centre de Recherche du CHU de Québec, Département d'Obstétrique, de Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Laval, Québec G1V 4G2, Canada
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
11
|
Bolivar Ávila S, Ledesma GN, Kaufman TS, Testero SA, Larghi EL. Step-Economic Total Synthesis of Melosatin A from Eugenol. ACS OMEGA 2023; 8:23174-23181. [PMID: 37396254 PMCID: PMC10308592 DOI: 10.1021/acsomega.3c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
An efficient and straightforward route toward the isatin-type natural product melosatin A is reported, employing a trisubstituted aniline as a key intermediate. The latter was synthesized in 4 steps and 60% overall yield from eugenol, through its regioselective nitration, sequentially followed by a Williamson methylation, an olefin cross-metathesis with 4-phenyl-1-butene and the simultaneous reduction of olefin and nitro groups. The final step, a Martinet cyclocondensation of the key aniline with diethyl 2-ketomalonate, provided the natural product with 68% yield.
Collapse
|
12
|
Jouffroy M, La Torre M, Maton W, Cleator E. Pd/C Catalyzed Dehalogenation of (Hetero)aryls Using Triethylsilane as Hydrogen Donor. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1753402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract(Hetero)aryl dehalogenation is a classical transformation usually performed using hydrogen gas and a metal supported on carbon, notably palladium (Pd/C). Though efficient, the need for a milder and operationally simple dehalogenation can arise. We found that the combination of Pd/C as catalyst and triethylsilane (TES) as hydrogen donor in THF resulted in a broadly applicable, easy to set up, and scalable debromination and deiodination. Optimization of the reaction showed that 1 mol% of Pd/C and 4 equiv of TES at room temperature were sufficient to obtain full conversion of most synthons of pharmaceutical interest in 4–24 h. The newly found conditions were applied to a large range of aromatic and heteroaromatic substrates, affording the desired targets in good to excellent yields with an exceptional functional group tolerance.
Collapse
Affiliation(s)
- Matthieu Jouffroy
- Chemical Process R&D, Discovery Process Research, Janssen Pharmaceutica N.V
| | - Mathéo La Torre
- Chemical Process R&D, Discovery Process Research, Janssen Pharmaceutica N.V
| | - William Maton
- Chemical Process R&D, External R&D Capabilities, Janssen Pharmaceutica N.V
| | - Ed Cleator
- Chemical Process R&D, External R&D Capabilities, Janssen Pharmaceutica N.V
| |
Collapse
|
13
|
Huang G, Guillot R, Kouklovsky C, Maryasin B, de la Torre A. Diastereo- and Enantioselective Inverse-Electron-Demand Diels-Alder Cycloaddition between 2-Pyrones and Acyclic Enol Ethers. Angew Chem Int Ed Engl 2022; 61:e202208185. [PMID: 36040131 PMCID: PMC9826153 DOI: 10.1002/anie.202208185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/11/2023]
Abstract
A broadly applicable diastereo- and enantioselective inverse-electron-demand Diels-Alder reaction of 2-pyrones and acyclic enol ethers is reported herein. Using a copper(II)-BOX catalytic system, bridged bicyclic lactones are obtained in very high yields (up to 99 % yield) and enantioselectivities (up to 99 % ee) from diversely substituted 2-pyrones and acyclic enol ethers. Mechanistic experiments as well as DFT calculations indicate the occurrence of a stepwise mechanism. The synthetic potential of the bridged bicyclic lactones is showcased by the enantioselective synthesis of polyfunctional cyclohexenes and cyclohexadienes, as well as a carbasugar unit.
Collapse
Affiliation(s)
- Guanghao Huang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)Université Paris-Saclay, CNRS15, rue Georges Clémenceau91405Orsay CedexFrance
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)Université Paris-Saclay, CNRS15, rue Georges Clémenceau91405Orsay CedexFrance
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)Université Paris-Saclay, CNRS15, rue Georges Clémenceau91405Orsay CedexFrance
| | - Boris Maryasin
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Institute of Theoretical ChemistryUniversity of ViennaWähringer Straße 171090ViennaAustria
| | - Aurélien de la Torre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)Université Paris-Saclay, CNRS15, rue Georges Clémenceau91405Orsay CedexFrance
| |
Collapse
|
14
|
Chemical and Synthetic Biology Approaches for Cancer Vaccine Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206933. [PMID: 36296526 PMCID: PMC9611187 DOI: 10.3390/molecules27206933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
Cancer vaccines have been considered promising therapeutic strategies and are often constructed from whole cells, attenuated pathogens, carbohydrates, peptides, nucleic acids, etc. However, the use of whole organisms or pathogens can elicit unwanted immune responses arising from unforeseen reactions to the vaccine components. On the other hand, synthetic vaccines, which contain antigens that are conjugated, often with carrier proteins, can overcome these issues. Therefore, in this review we have highlighted the synthetic approaches and discussed several bioconjugation strategies for developing antigen-based cancer vaccines. In addition, the major synthetic biology approaches that were used to develop genetically modified cancer vaccines and their progress in clinical research are summarized here. Furthermore, to boost the immune responses of any vaccines, the addition of suitable adjuvants and a proper delivery system are essential. Hence, this review also mentions the synthesis of adjuvants and utilization of biomaterial scaffolds, which may facilitate the design of future cancer vaccines.
Collapse
|
15
|
Huang G, Guillot R, Kouklovsky C, Maryasin B, de la Torre A. Diastereo‐ and Enantioselective Inverse‐Electron‐Demand Diels‐Alder Cycloaddition between 2‐Pyrones and Acyclic Enol Ethers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guanghao Huang
- ICMMO: Institut de Chimie Moleculaire et des Materiaux d'Orsay MSMT FRANCE
| | - Régis Guillot
- ICMMO: Institut de Chimie Moleculaire et des Materiaux d'Orsay SC FRANCE
| | - Cyrille Kouklovsky
- ICMMO: Institut de Chimie Moleculaire et des Materiaux d'Orsay MSMT FRANCE
| | - Boris Maryasin
- Universität Wien: Universitat Wien Organic Chemistry and Computational Chemistry FRANCE
| | - Aurélien de la Torre
- Institut de Chimie Moleculaire et des Materiaux d'Orsay MSMT 420 rue du Doyen Georges Poitou 91405 Orsay FRANCE
| |
Collapse
|
16
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
17
|
Kim D, Lee JM, Song J, Lee SW, Lee HG, Kim KT. Synthesis of Enantiomeric ω-Substituted Hydroxy Acids from Terminal Epoxides and Alkenes: Functional Building Blocks for Discrete and Sequence-Defined Polyesters. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dogyun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jeong Min Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jeongeun Song
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seul Woo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
18
|
Liu GX, Liang HC, Fu X, Tang J, Hu WH, Qiu H. Photoredox-Catalyzed Carbonyl Alkylative Amination with Diazo Compounds: A Three-Component Reaction for the Construction of γ-Amino Acid Derivatives. Org Lett 2022; 24:4908-4913. [PMID: 35793070 DOI: 10.1021/acs.orglett.2c01751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A photoredox-catalyzed reaction of secondary amines, aldehydes, diazo compounds, and Hantzsch ester is reported, affording biologically active γ-amino acid derivatives in high yields. This one-pot process tolerates a broad range of functional groups and various drug molecules and biologically active compounds. Remarkably, a gram-scale reaction and diverse transformations of γ-amino acid derivatives were successfully performed, and the utility of the products is demonstrated in the synthesis of therapeutic agent pregabalin.
Collapse
Affiliation(s)
- Geng-Xin Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao-Cheng Liang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Hao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
19
|
Hit-to-lead optimization of novel phenyl imidazole carboxamides that are active against Leishmania donovani. Eur J Med Chem 2022; 240:114577. [DOI: 10.1016/j.ejmech.2022.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022]
|
20
|
Bhuyan S, Mandal S, Jana S, Chhetri K, Roy BG. Efficient greener visible light catalyzed debenzylation of benzyl ethers and esters: A gateway to wider exploitation of stable benzyl protecting group. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Saibal Jana
- University of Liverpool Chemistry Liverpool UNITED KINGDOM
| | | | - Biswajit Gopal Roy
- Sikkim University Chemistry 6th Mile, TadongGangtokSikkim 737102 Gangtok INDIA
| |
Collapse
|
21
|
Singh AK, Venkatesh R, Kanaujiya VK, Tiwari V, Kandasamy J. Palladium‐Catalyzed Reaction of Aryl Iodides and Glycal Enones: Application in the Preparation of Dapagliflozin Analogues. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Varsha Tiwari
- Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
22
|
Wang Y, Tian H, Li H, Deng X, Zhang Q, Ai Y, Sun Z, Wang Y, Liu L, Hu ZN, Zhang X, Guo R, Xu W, Liang Q, Sun HB. Encapsulating Electron-Rich Pd NPs with Lewis Acidic MOF: Reconciling the Electron-Preference Conflict of the Catalyst for Cascade Condensation via Nitro Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7949-7961. [PMID: 35130694 DOI: 10.1021/acsami.1c22256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cascade reactions take advantage of step-saving and facile operation for obtaining chemicals. Herein, catalytic hydrogenation of nitroarene coupled condensation with β-diketone to afford β-ketoenamines is achieved by an integrated nanocatalyst, Pd-e@UiO-66. The catalyst has the structure of an acid-rich metal-organic framework (MOF), UiO-66-encapsulated electron-rich Pd nanoparticles, and it reconciles the electron-effect contradiction of cascade catalytic reactions: catalytic hydrogenation requires an electron-rich catalyst, while condensation requires electron-deficient Lewis acid sites. The catalyst showed good activity, high chemoselectivity, and universal applicability for the synthesis of β-ketoenamines using nitroarenes. More than 30 β-ketoenamines have been successfully prepared with up to 99% yield via the methodology of relay catalysis. The catalyst exhibited excellent stability to maintain its catalytic performance for more than five cycles. Furthermore, we conducted an in-depth exploration of the reaction mechanism with theoretical calculations.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Haimeng Tian
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hong Li
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xinchen Deng
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Qiao Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yongjian Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, People's Republic of China
| | - Zejun Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lei Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ze-Nan Hu
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Rongxiu Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Wenjuan Xu
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
23
|
Chakraborty S, Sasson Y. Selective reduction of aromatic halonitroarene to corresponding amine with Ru-gC3N4 as a catalyst in presence of sodium hypophosphite as a hydrogen source. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Lesma J, Bizet F, Berardet C, Tonali N, Pellegrino S, Taverna M, Khemtemourian L, Soulier JL, van Heijenoort C, Halgand F, Ha-Duong T, Kaffy J, Ongeri S. β-Hairpin Peptide Mimics Decrease Human Islet Amyloid Polypeptide (hIAPP) Aggregation. Front Cell Dev Biol 2021; 9:729001. [PMID: 34604227 PMCID: PMC8481668 DOI: 10.3389/fcell.2021.729001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Amyloid diseases are degenerative pathologies, highly prevalent today because they are closely related to aging, that have in common the erroneous folding of intrinsically disordered proteins (IDPs) which aggregate and lead to cell death. Type 2 Diabetes involves a peptide called human islet amyloid polypeptide (hIAPP), which undergoes a conformational change, triggering the aggregation process leading to amyloid aggregates and fibers rich in β-sheets mainly found in the pancreas of all diabetic patients. Inhibiting the aggregation of amyloid proteins has emerged as a relevant therapeutic approach and we have recently developed the design of acyclic flexible hairpins based on peptidic recognition sequences of the amyloid β peptide (Aβ1–42) as a successful strategy to inhibit its aggregation involved in Alzheimer’s disease. The present work reports the extension of our strategy to hIAPP aggregation inhibitors. The design, synthesis, conformational analyses, and biophysical evaluations of dynamic β-hairpin like structures built on a piperidine-pyrrolidine β-turn inducer are described. By linking to this β-turn inducer three different arms (i) pentapeptide, (ii) tripeptide, and (iii) α/aza/aza/pseudotripeptide, we demonstrate that the careful selection of the peptide-based arms from the sequence of hIAPP allowed to selectively modulate its aggregation, while the peptide character can be decreased. Biophysical assays combining, Thioflavin-T fluorescence, transmission electronic microscopy, capillary electrophoresis, and mass spectrometry showed that the designed compounds inhibit both the oligomerization and the fibrillization of hIAPP. They are also capable to decrease the aggregation process in the presence of membrane models and to strongly delay the membrane-leakage induced by hIAPP. More generally, this work provides the proof of concept that our rational design is a versatile and relevant strategy for developing efficient and selective inhibitors of aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Jacopo Lesma
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Faustine Bizet
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Corentin Berardet
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France.,Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nicolo Tonali
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sara Pellegrino
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Myriam Taverna
- Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Lucie Khemtemourian
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Polytechnique Bordeaux, CNRS UMR 5248, Université de Bordeaux, Pessac, France
| | | | - Carine van Heijenoort
- ICSN, Equipe Biologie et Chimie Structurales, Département de Chimie et Biologie Structurales et Analytiques, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Equipe Chimie Analytique Physicochimie Réactivité des Ions, CNRS, Université Paris-Saclay, Orsay, France
| | - Tâp Ha-Duong
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Julia Kaffy
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
25
|
Esterase-Sensitive Prodrugs of a Potent Bisubstrate Inhibitor of Nicotinamide N-Methyltransferase (NNMT) Display Cellular Activity. Biomolecules 2021; 11:biom11091357. [PMID: 34572571 PMCID: PMC8466754 DOI: 10.3390/biom11091357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023] Open
Abstract
A recently discovered bisubstrate inhibitor of Nicotinamide N-methyltransferase (NNMT) was found to be highly potent in biochemical assays with a single digit nanomolar IC50 value but lacking in cellular activity. We, here, report a prodrug strategy designed to translate the observed potent biochemical inhibitory activity of this inhibitor into strong cellular activity. This prodrug strategy relies on the temporary protection of the amine and carboxylic acid moieties of the highly polar amino acid side chain present in the bisubstrate inhibitor. The modification of the carboxylic acid into a range of esters in the absence or presence of a trimethyl-lock (TML) amine protecting group yielded a range of candidate prodrugs. Based on the stability in an aqueous buffer, and the confirmed esterase-dependent conversion to the parent compound, the isopropyl ester was selected as the preferred acid prodrug. The isopropyl ester and isopropyl ester-TML prodrugs exhibit improved cell permeability, which also translates to significantly enhanced cellular activity as established using assays designed to measure the enzymatic activity of NNMT in live cells.
Collapse
|
26
|
Photochemical Reactivity of Naphthol-Naphthalimide Conjugates and Their Biological Activity. Molecules 2021; 26:molecules26113355. [PMID: 34199541 PMCID: PMC8199699 DOI: 10.3390/molecules26113355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Quinone methide precursors 1a–e, with different alkyl linkers between the naphthol and the naphthalimide chromophore, were synthesized. Their photophysical properties and photochemical reactivity were investigated and connected with biological activity. Upon excitation of the naphthol, Förster resonance energy transfer (FRET) to the naphthalimide takes place and the quantum yields of fluorescence are low (ΦF ≈ 10−2). Due to FRET, photodehydration of naphthols to QMs takes place inefficiently (ΦR ≈ 10−5). However, the formation of QMs can also be initiated upon excitation of naphthalimide, the lower energy chromophore, in a process that involves photoinduced electron transfer (PET) from the naphthol to the naphthalimide. Fluorescence titrations revealed that 1a and 1e form complexes with ct-DNA with moderate association constants Ka ≈ 105–106 M−1, as well as with bovine serum albumin (BSA) Ka ≈ 105 M−1 (1:1 complex). The irradiation of the complex 1e@BSA resulted in the alkylation of the protein, probably via QM. The antiproliferative activity of 1a–e against two human cancer cell lines (H460 and MCF 7) was investigated with the cells kept in the dark or irradiated at 350 nm, whereupon cytotoxicity increased, particularly for 1e (>100 times). Although the enhancement of this activity upon UV irradiation has no imminent therapeutic application, the results presented have importance in the rational design of new generations of anticancer phototherapeutics that absorb visible light.
Collapse
|
27
|
Singh P, Mishra S, Sahoo A, Patra S. A magnetically retrievable mixed-valent Fe 3O 4@SiO 2/Pd 0/Pd II nanocomposite exhibiting facile tandem Suzuki coupling/transfer hydrogenation reaction. Sci Rep 2021; 11:9305. [PMID: 33927246 PMCID: PMC8085233 DOI: 10.1038/s41598-021-88528-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/28/2021] [Indexed: 02/02/2023] Open
Abstract
Herein, we report a magnetically retrievable mixed-valent Fe3O4@SiO2/Pd0/PdIINP (5) nanocomposite system for tandem Suzuki coupling/transfer hydrogenation reaction. The nanocomposite 5 was prepared first by making a layer of [Formula: see text] on [Formula: see text] followed by deposition of [Formula: see text] and sorption of [Formula: see text] ions successively onto the surface of Fe3O4@SiO2NP. The nanocomposite was characterized by powder XRD, electron microscopy (SEM-EDS and TEM-EDS) and XPS spectroscopy techniques. The mixed-valent [Formula: see text] present onto the surface of nanocomposite 5 was confirmed by XPS technique. Interestingly, the mixed-valent nanocomposite Fe3O4@SiO2/Pd0/PdIINP (5) exhibited tandem Suzuki coupling/transfer hydrogenation reaction during the reaction of aryl bromide with aryl boronic acid (90% of C). The nanocomposite 5 displayed much better reactivity as compared to the monovalent Fe3O4@SiO2/Pd0NP (3) (25% of C) and Fe3O4@SiO2/PdIINP (4) (15% of C) nanocomposites. Further, because of the presence of magnetic [Formula: see text], the nanocomposite displayed its facile separation from the reaction mixture and reused at least for five catalytic cycles.
Collapse
Affiliation(s)
- Parminder Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha, 752050, India
| | - Saumyaranjan Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha, 752050, India
| | - Anupam Sahoo
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha, 752050, India
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha, 752050, India.
| |
Collapse
|
28
|
Izquierdo E, Casasampere M, Fabriàs G, Abad JL, Casas J, Delgado A. Synthesis and characterization of bichromophoric 1-deoxyceramides as FRET probes. Org Biomol Chem 2021; 19:2456-2467. [PMID: 33650618 DOI: 10.1039/d1ob00113b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The suitability as FRET probes of two bichromophoric 1-deoxydihydroceramides containing a labelled spisulosine derivative as a sphingoid base and two differently ω-labelled fluorescent palmitic acids has been evaluated. The ceramide synthase (CerS) catalyzed metabolic incorporation of ω-azido palmitic acid into the above labeled spisulosine to render the corresponding ω-azido 1-deoxyceramide has been studied in several cell lines. In addition, the strain-promoted click reaction between this ω-azido 1-deoxyceramide and suitable fluorophores has been optimized to render the target bichromophoric 1-deoxydihydroceramides. These results pave the way for the development of FRET-based assays as a new tool to study sphingolipid metabolism.
Collapse
Affiliation(s)
- Eduardo Izquierdo
- Department of Pharmacology, Toxicology and Medicinal Chemistry, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC). Faculty of Pharmacy and Food Sciences. University of Barcelona (UB), Joan XXIII 27-31, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Activated charcoal supported copper nanoparticles: A readily available and inexpensive heterogeneous catalyst for the N-arylation of primary amides and lactams with aryl iodides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Romero AH. Reduction of Nitroarenes via Catalytic Transfer Hydrogenation Using Formic Acid as Hydrogen Source: A Comprehensive Review. ChemistrySelect 2020. [DOI: 10.1002/slct.202002838] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angel H. Romero
- Laboratorio de Química Orgánica y Química Medicinal Departamento de Química Orgánica Facultad de Ciencias Universidad de la Republica Igual 4225 11400 Montevideo
| |
Collapse
|
31
|
Tse EG, Houston SD, Williams CM, Savage GP, Rendina LM, Hallyburton I, Anderson M, Sharma R, Walker GS, Obach RS, Todd MH. Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. J Med Chem 2020; 63:11585-11601. [PMID: 32678591 DOI: 10.1021/acs.jmedchem.0c00746] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The replacement of one chemical motif with another that is broadly similar is a common method in medicinal chemistry to modulate the physical and biological properties of a molecule (i.e., bioisosterism). In recent years, bioisosteres such as cubane and bicyclo[1.1.1]pentane (BCP) have been used as highly effective phenyl mimics. Herein, we show the successful incorporation of a range of phenyl bioisosteres during the open-source optimization of an antimalarial series. Cubane (19) and closo-carborane (23) analogues exhibited improved in vitro potency against Plasmodium falciparum compared to the parent phenyl compound; however, these changes resulted in a reduction in metabolic stability; unusually, enzyme-mediated oxidation was found to take place on the cubane core. A BCP analogue (22) was found to be equipotent to its parent phenyl compound and showed significantly improved metabolic properties. While these results demonstrate the utility of these atypical bioisosteres when used in a medicinal chemistry program, the search to find a suitable bioisostere may well require the preparation of many candidates, in our case, 32 compounds.
Collapse
Affiliation(s)
- Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - G Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, Victoria 3168, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Mark Anderson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Raman Sharma
- Pfizer Inc., Groton, Connecticut 06340, United States
| | | | - R Scott Obach
- Pfizer Inc., Groton, Connecticut 06340, United States
| | - Matthew H Todd
- School of Pharmacy, University College London, London WC1N 1AX, U.K
| |
Collapse
|
32
|
Hunsaker EW, McAuliffe KJ, Franz KJ. Fluconazole analogues with metal-binding motifs impact metal-dependent processes and demonstrate antifungal activity in Candida albicans. J Biol Inorg Chem 2020; 25:729-745. [PMID: 32542530 PMCID: PMC7415656 DOI: 10.1007/s00775-020-01796-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
Azole antifungals are an important class of antifungal drugs due to their low cost, ability to be administered orally, and broad-spectrum activity. However, their widespread and long-term use have given rise to adaptation mechanisms that render these compounds less effective against common fungal pathogens, including Candida albicans. New antifungals are desperately needed as drug-resistant strains become more prevalent. We recently showed that copper supplementation potentiates the activity of the azole antifungal fluconazole against the opportunistic fungal pathogen C. albicans. Here, we report eight new azole analogues derived from fluconazole in which one triazole group has been replaced with a metal-binding group, a strategy designed to enhance potentiation of azole antifungal activity by copper. The bioactivity of all eight compounds was tested and compared to that of fluconazole. Three of the analogues showed activity against C. albicans and two had lower levels of trailing growth. One compound, Flu-TSCZ, was found to impact the levels, speciation, and bioavailability of cellular metals.
Collapse
Affiliation(s)
- Elizabeth W Hunsaker
- Department of Chemistry, French Family Science Center, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Katherine J McAuliffe
- Department of Chemistry, French Family Science Center, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Katherine J Franz
- Department of Chemistry, French Family Science Center, Duke University, 124 Science Drive, Durham, NC, 27708, USA.
| |
Collapse
|
33
|
Koo MB, Lee SW, Lee JM, Kim KT. Iterative Convergent Synthesis of Large Cyclic Polymers and Block Copolymers with Discrete Molecular Weights. J Am Chem Soc 2020; 142:14028-14032. [DOI: 10.1021/jacs.0c04202] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mo Beom Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seul Woo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jung Min Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
34
|
Mäder P, Bartholomäus R, Nicolussi S, Baumann A, Weis M, Chicca A, Rau M, Simão AC, Gertsch J, Altmann KH. Synthesis and Biological Evaluation of Endocannabinoid Uptake Inhibitors Derived from WOBE437. ChemMedChem 2020; 16:145-154. [PMID: 32369259 DOI: 10.1002/cmdc.202000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Indexed: 01/18/2023]
Abstract
WOBE437 ((2E,4E)-N-(3,4-dimethoxyphenethyl)dodeca-2,4-dienamide, 1) is a natural product-derived, highly potent inhibitor of endocannabinoid reuptake. In this study, we synthesized almost 80 analogues of 1 with different types of modifications in the dodecadienoyl domain as well as the dimethoxyphenylethyl head group, and we investigated their effects on anandamide uptake into U937 cells. Intriguingly, none of these analogues was a more potent inhibitor of anandamide uptake than WOBE437 (1). At the same time, a number of WOBE437 variants exhibited potencies in the sub-100 nM range, with high selectivity over inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase; two compounds were virtually equipotent with 1. Interestingly, profound activity differences were observed between analogues in which either of the two methoxy substituents in the head group had been replaced by the same bulkier alkoxy group. Some of the compounds described here could be interesting departure points for the development of potent endocannabinoid uptake inhibitors with more drug-like properties.
Collapse
Affiliation(s)
- Patrick Mäder
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Ruben Bartholomäus
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Simon Nicolussi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland, Bühlstrasse 28 3012, Bern, Switzerland
| | - Alice Baumann
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Melanie Weis
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland, Bühlstrasse 28 3012, Bern, Switzerland
| | - Mark Rau
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland, Bühlstrasse 28 3012, Bern, Switzerland
| | - Ana Catarina Simão
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland, Bühlstrasse 28 3012, Bern, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
35
|
Holmberg-Douglas N, Onuska NPR, Nicewicz DA. Regioselective Arene C-H Alkylation Enabled by Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2020; 59:7425-7429. [PMID: 32068943 PMCID: PMC7213045 DOI: 10.1002/anie.202000684] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/13/2023]
Abstract
Expanding the toolbox of C-H functionalization reactions applicable to the late-stage modification of complex molecules is of interest in medicinal chemistry, wherein the preparation of structural variants of known pharmacophores is a key strategy for drug development. One manifold for the functionalization of aromatic molecules utilizes diazo compounds and a transition-metal catalyst to generate a metallocarbene species, which is capable of direct insertion into an aromatic C-H bond. However, these high-energy intermediates can often require directing groups or a large excess of substrate to achieve efficient and selective reactivity. Herein, we report that arene cation radicals generated by organic photoredox catalysis engage in formal C-H functionalization reactions with diazoacetate derivatives, furnishing sp2 -sp3 coupled products with moderate-to-good regioselectivity. In contrast to previous methods utilizing metallocarbene intermediates, this transformation does not proceed via a carbene intermediate, nor does it require the presence of a transition-metal catalyst.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Nicholas P R Onuska
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| |
Collapse
|
36
|
Schütz R, Schmidt S, Bracher F. A versatile approach to 1-oxo-, 1-oxo-3,4-dihydro- and 1,3,4-trioxo isoquinoline alkaloids and first total synthesis of the dimeric 1-oxoisoquinoline alkaloids berbanine and berbidine. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Xie Y, Tummala P, Oakley AJ, Deora GS, Nakano Y, Rooke M, Cuellar ME, Strasser JM, Dahlin JL, Walters MA, Casarotto MG, Board PG, Baell JB. Development of Benzenesulfonamide Derivatives as Potent Glutathione Transferase Omega-1 Inhibitors. J Med Chem 2020; 63:2894-2914. [PMID: 32105470 DOI: 10.1021/acs.jmedchem.9b01391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase omega-1 (GSTO1-1) is an enzyme whose function supports the activation of interleukin (IL)-1β and IL-18 that are implicated in a variety of inflammatory disease states for which small-molecule inhibitors are sought. The potent reactivity of the active-site cysteine has resulted in reported inhibitors that act by covalent labeling. In this study, structure-activity relationship (SAR) elaboration of the reported GSTO1-1 inhibitor C1-27 was undertaken. Compounds were evaluated for inhibitory activity toward purified recombinant GSTO1-1 and for indicators of target engagement in cell-based assays. As covalent inhibitors, the kinact/KI values of selected compounds were determined, as well as in vivo pharmacokinetics analysis. Cocrystal structures of key novel compounds in complex with GSTO1-1 were also solved. This study represents the first application of a biochemical assay for GSTO1-1 to determine kinact/KI values for tested inhibitors and the most extensive set of cell-based data for a GSTO1-1 inhibitor SAR series reported to date. Our research culminated in the discovery of 25, which we propose as the preferred biochemical tool to interrogate cellular responses to GSTO1-1 inhibition.
Collapse
Affiliation(s)
- Yiyue Xie
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Padmaja Tummala
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Yuji Nakano
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Melissa Rooke
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Matthew E Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jayme L Dahlin
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
38
|
Kumar K, Wang P, Wilson J, Zlatanic V, Berrouet C, Khamrui S, Secor C, Swartz EA, Lazarus MB, Sanchez R, Stewart AF, Garcia-Ocana A, DeVita RJ. Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. J Med Chem 2020; 63:2986-3003. [PMID: 32003560 PMCID: PMC7388697 DOI: 10.1021/acs.jmedchem.9b01379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our group identified that harmine is able to induce β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from a lack of selectivity, both against other kinases and CNS off-targets, we therefore sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity for off-targets while retaining human β-cell proliferation activity. We carried out optimization of the 9-N-position of harmine to synthesize 29 harmine-based analogs. Several novel inhibitors showed excellent DYRK1A inhibition and human β-cell proliferation capability. An optimized DYRK1A inhibitor, 2-2c, was identified as a novel, efficacious in vivo lead candidate. 2-2c also demonstrates improved selectivity for kinases and CNS off-targets, as well as in vivo efficacy for β-cell proliferation and regeneration at lower doses than harmine. Collectively, these findings demonstrate that 2-2c is a much improved in vivo lead candidate as compared to harmine for the treatment of diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Berrouet
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan A. Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
39
|
Holmberg‐Douglas N, Onuska NPR, Nicewicz DA. Regioselective Arene C−H Alkylation Enabled by Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Natalie Holmberg‐Douglas
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Nicholas P. R. Onuska
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - David A. Nicewicz
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| |
Collapse
|
40
|
Romero AH, Cerecetto H. A Common, Facile and Eco-Friendly Method for the Reduction of Nitroarenes, Selective Reduction of Poly-Nitroarenes and Deoxygenation of N
-Oxide Containing Heteroarenes Using Elemental Sulfur. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Angel H. Romero
- Laboratorio de Química Orgánica Medicinal; Instituto de Química Biológica; Facultad de Ciencias; Universidad de la Republica; Igual 4225 11400 Montevideo Uruguay
| | - Hugo Cerecetto
- Laboratorio de Química Orgánica Medicinal; Instituto de Química Biológica; Facultad de Ciencias; Universidad de la Republica; Igual 4225 11400 Montevideo Uruguay
| |
Collapse
|
41
|
Yoshinaga T, Iwata T, Shindo M. Mild Environment-friendly Oxidative Debenzylation of N-Benzylanilines Using DMSO as an Oxidant. CHEM LETT 2020. [DOI: 10.1246/cl.190854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuro Yoshinaga
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
42
|
Das J, Borah BJ, Das SK. Base-mediated intramolecular one-pot double-cyclization of epoxide-tethered 2-fluorobenzenesulfonamides: an avenue to 1,4-benzoxazine-fused benzothiaoxazepine-1,1-dioxides. Org Biomol Chem 2020; 18:220-224. [PMID: 31829386 DOI: 10.1039/c9ob02377a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we describe the synthesis of hitherto unknown 1,4-benzoxazine-fused benzothiaoxazepine-1,1-dioxides by a NaH-promoted intramolecular one-pot double-cyclization of epoxide-tethered 2-fluorobenzene sulfonamides. Mechanistically, the reactions proceed via an intramolecular epoxide ring-opening followed by an intramolecular nucleophilic aromatic substitution. The high yields, mild conditions, complete regio- and diastereoselectivity, and a wide substrate scope render this protocol well suited for drug discovery efforts.
Collapse
Affiliation(s)
- Jonali Das
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, India-784028.
| | | | | |
Collapse
|
43
|
Bakuru VR, Samanta D, Maji TK, Kalidindi SB. Transfer hydrogenation of alkynes into alkenes by ammonia borane over Pd-MOF catalysts. Dalton Trans 2020; 49:5024-5028. [DOI: 10.1039/d0dt00472c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia borane with both hydridic and protic hydrogens in its structure acted as an efficient transfer hydrogenation agent for selective transformation of alkynes into alkenes in non-protic solvents.
Collapse
Affiliation(s)
- Vasudeva Rao Bakuru
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bangalore Rural-562164
- India
- Manipal Academy of Higher Education
| | - Debabrata Samanta
- Chemistry and Physics of Materials Unit
- School of Advanced Materials (SAMat)
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore-560064
- India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit
- School of Advanced Materials (SAMat)
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore-560064
- India
| | - Suresh Babu Kalidindi
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bangalore Rural-562164
- India
| |
Collapse
|
44
|
Cai C, Zhu C, Wang H, Xin H, Xiu Z, Wang C, Zhang Q, Liu Q, Ma L. Catalytic Hydrogenolysis of Biomass-derived Polyhydric Compounds to C2–C3 Small- Molecule Polyols: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190913185618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biomass energy has attracted much attention because of its clean and renewable
characteristics. At present, C2–C3 polyols such as glycerol, 1,2-propanediol, and ethylene
glycol, widely used as platforms for downstream chemicals or directly used as chemicals
in diversified industries, mainly depend on the petrochemical industry. In terms of the
feedstock for C2–C3 polyol production, the C3-derived glycerol is a side product during
biodiesel synthesis, whereas the C5-derived xylitol and C6-derived sorbitol can be mainly
obtained by hydrolysis–hydrogenation of hemicellulose and cellulose from lignocellulosic
biomass, respectively. In this review, we summarize the catalysts and catalysis for selective
hydrogenolysis of these polyhydric compounds to C2–C3 polyols and introduce the
reaction pathways for the target polyol formation based on the C3, C5, and C6 polyhydric
alcohol hydrogenolysis. Finally, state-of-the-art technologies are described and the remaining challenges and
further prospects are presented in view of the technical aspects.
Collapse
Affiliation(s)
- Chiliu Cai
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Changhui Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Haosheng Xin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Zhongxun Xiu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Qi Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| |
Collapse
|
45
|
Synthetic directions towards capsular polysaccharide of Streptococcus pneumoniae serotype 18C. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Zhou Y, Wei W, Su H, Wang W. Sensitively fluorescent detection of H2 with resazurin hydrogenation reactions catalyzed by Pd/C nanocomposites. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Fonte M, Fagundes N, Gomes A, Ferraz R, Prudêncio C, Araújo MJ, Gomes P, Teixeira C. Development of a synthetic route towards N4,N9-disubstituted 4,9-diaminoacridines: On the way to multi-stage antimalarials. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Kumar H, Mandal PK. Synthetic routes toward pentasaccharide repeating unit corresponding to the O-antigen of Escherichia coli O181. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Cheng W, Anankanbil S, Pérez B, Pedersen JN, Liu G, Guo Z. Aspartic-Acid-Based Ampholytic Amphiphiles: Synthesis, Characterization, and pH-Dependent Properties at Air/Water and Oil/Water Interfaces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2321-2330. [PMID: 30721050 DOI: 10.1021/acs.jafc.8b05122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A facile and two-step strategy was employed to synthesize a series of novel aspartic-acid-based ampholytic amphiphiles from sustainable and commercially viable substances as starting materials. The molecular structures of the synthetic compounds were well-identified by mass spectrometry and 1H/13C nuclear magnetic resonance analysis, and the physicochemical, pH-dependent foaming, and emulsifying properties were evaluated by the use of multiple techniques, such as Fourier transform infrared spectroscopy, differential scanning calorimetry, Langmuir-Blodgett study, and fluorescence microscopy imaging. As a result of the co-existence of amino and carboxyl groups in the synthetic compounds, the compounds presented varying charges (cationic, ampholytic, and anionic) depending upon the pH of the medium compared to the dissociation constants (p Ka). Compounds with cationic (pH 1.0) and anionic (pH 9.0) forms had significantly higher γ0.1 and critical micelle concentration values than those with ampholytic forms (pH 7.0). sn-1-Lauroyl- sn-3-aspartic acid (compound 3) at neutral and alkaline conditions displayed comparable foaming properties, including foaming, calcium-tolerant, and temperature-resistant abilities, with commercial sulfonate sodium dodecyl sulfate (SDS), and thus might be a promising alternative to SDS, applied in personal care products and detergent formula. sn-1-Palmtoyl- sn-3-aspartic acid (compound 5a) with an ampholytic structure was proven as the most excellent stabilizer for the preparation of oil-in-water emulsions compared to palmityl aspartic acid (compound 5b), commercial food ingredient diacetyltartaric acid esters of mono- and diglycerides, and glyceride monopalmitate at aqueous phase pH 7.0. Thus, it has promising use as a pH-dependent emulsifying agent in various fields.
Collapse
Affiliation(s)
- Weiwei Cheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
- Department of Engineering, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus C, Denmark
| | - Sampson Anankanbil
- Department of Engineering, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus C, Denmark
| | - Bianca Pérez
- Department of Engineering, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus C, Denmark
| | - Jacob Nedergaard Pedersen
- Department of Engineering, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus C, Denmark
| | - Guoqin Liu
- School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Zheng Guo
- Department of Engineering, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus C, Denmark
| |
Collapse
|
50
|
Feng J, Lepetre-Mouelhi S, Gautier A, Mura S, Cailleau C, Coudore F, Hamon M, Couvreur P. A new painkiller nanomedicine to bypass the blood-brain barrier and the use of morphine. SCIENCE ADVANCES 2019; 5:eaau5148. [PMID: 30788432 PMCID: PMC6374102 DOI: 10.1126/sciadv.aau5148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/28/2018] [Indexed: 05/21/2023]
Abstract
The clinical use of endogenous neuropeptides has historically been limited due to pharmacokinetic issues, including plasma stability and blood-brain barrier permeability. In this study, we show that the rapidly metabolized Leu-enkephalin (LENK) neuropeptide may become pharmacologically efficient owing to a simple conjugation with the lipid squalene (SQ). The corresponding LENK-SQ bioconjugates were synthesized using different chemical linkers in order to modulate the LENK release after their formulation into nanoparticles. This new SQ-based nanoformulation prevented rapid plasma degradation of LENK and conferred on the released neuropeptide a notable antihyperalgesic effect that lasted longer than after treatment with morphine in a rat model of inflammation (Hargreaves test). The biodistribution study as well as the use of brain-permeant and -impermeant opioid receptor antagonists indicated that LENK-SQ NPs act through peripherally located opioid receptors. This study represents a novel nanomedicine approach, allowing the specific delivery of LENK neuropeptide into inflamed tissues for pain control.
Collapse
Affiliation(s)
- Jiao Feng
- Institut Galien Paris-Sud, UMR8612, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - Sinda Lepetre-Mouelhi
- Institut Galien Paris-Sud, UMR8612, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - Anne Gautier
- Institut Galien Paris-Sud, UMR8612, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92290, France
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, 75014 Paris, France
| | - Simona Mura
- Institut Galien Paris-Sud, UMR8612, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - Catherine Cailleau
- Institut Galien Paris-Sud, UMR8612, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - François Coudore
- Laboratoire de Neuropharmacologie, INSERM UMRS 1178, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - Michel Hamon
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, 75014 Paris, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR8612, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92290, France
- Corresponding author.
| |
Collapse
|