1
|
Dodson EJ, Ma J, Suissa Szlejf M, Maroudas-Sklare N, Paltiel Y, Adir N, Sun S, Sui SF, Keren N. The structural basis for light acclimation in phycobilisome light harvesting systems systems in Porphyridium purpureum. Commun Biol 2023; 6:1210. [PMID: 38012412 PMCID: PMC10682464 DOI: 10.1038/s42003-023-05586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Photosynthetic organisms adapt to changing light conditions by manipulating their light harvesting complexes. Biophysical, biochemical, physiological and genetic aspects of these processes are studied extensively. The structural basis for these studies is lacking. In this study we address this gap in knowledge by focusing on phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. In this study we focus on the phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. Specifically, we examine red algae (Porphyridium purpureum) grown under a low light intensity (LL) and a medium light intensity (ML). Using cryo-electron microscopy, we resolve the structure of ML-PBS and compare it to the LL-PBS structure. The ML-PBS is 13.6 MDa, while the LL-PBS is larger (14.7 MDa). The LL-PBS structure have a higher number of closely coupled chromophore pairs, potentially the source of the red shifted fluorescence emission from LL-PBS. Interestingly, these differences do not significantly affect fluorescence kinetics parameters. This indicates that PBS systems can maintain similar fluorescence quantum yields despite an increase in LL-PBS chromophore numbers. These findings provide a structural basis to the processes by which photosynthetic organisms adapt to changing light conditions.
Collapse
Affiliation(s)
- Emma Joy Dodson
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maayan Suissa Szlejf
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Naama Maroudas-Sklare
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Yossi Paltiel
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Nir Keren
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Arcidiacono A, Accomasso D, Cupellini L, Mennucci B. How orange carotenoid protein controls the excited state dynamics of canthaxanthin. Chem Sci 2023; 14:11158-11169. [PMID: 37860660 PMCID: PMC10583711 DOI: 10.1039/d3sc02662k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Orange Carotenoid Protein (OCP) is a ketocarotenoid-binding protein essential for photoprotection in cyanobacteria. The main steps of the photoactivated conversion which converts OCP from its resting state to the active one have been extensively investigated. However, the initial photochemical event in the ketocarotenoid which triggers the large structural changes finally leading to the active state is still not understood. Here we employ QM/MM surface hopping nonadiabatic dynamics to investigate the excited-state decay of canthaxanthin in OCP, both in the ultrafast S2 to S1 internal conversion and the slower decay leading back to the ground state. For the former step we show the involvement of an additional excited state, which in the literature has been often named the SX state, and we characterize its nature. For the latter step, we reveal an excited state decay characterized by multiple timescales, which are related to the ground-state conformational heterogeneity of the ketocarotenoid. We assigned the slowly decaying population to the so-called S* state. Finally, we identify a minor decay pathway involving double-bond photoisomerization, which could be the initial trigger to photoactivation of OCP.
Collapse
Affiliation(s)
- Amanda Arcidiacono
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Davide Accomasso
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
3
|
Wilson A, Andreeva EA, Niziński S, Talbot L, Hartmann E, Schlichting I, Burdzinski G, Sliwa M, Kirilovsky D, Colletier JP. Structure-function-dynamics relationships in the peculiar Planktothrix PCC7805 OCP1: Impact of his-tagging and carotenoid type. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148584. [PMID: 35752265 DOI: 10.1016/j.bbabio.2022.148584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCP studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and identify the time scales on which these modifications affect photoactivation. The presence of a his-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.
Collapse
Affiliation(s)
- Adjélé Wilson
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Elena A Andreeva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France; Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Stanisław Niziński
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France; Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | - Léa Talbot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Elisabeth Hartmann
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gotard Burdzinski
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France.
| | - Diana Kirilovsky
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
4
|
Niziński S, Wilson A, Uriarte LM, Ruckebusch C, Andreeva EA, Schlichting I, Colletier JP, Kirilovsky D, Burdzinski G, Sliwa M. Unifying Perspective of the Ultrafast Photodynamics of Orange Carotenoid Proteins from Synechocystis: Peril of High-Power Excitation, Existence of Different S* States, and Influence of Tagging. JACS AU 2022; 2:1084-1095. [PMID: 35647603 PMCID: PMC9131370 DOI: 10.1021/jacsau.1c00472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/15/2023]
Abstract
A substantial number of Orange Carotenoid Protein (OCP) studies have aimed to describe the evolution of singlet excited states leading to the formation of a photoactivated form, OCPR. The most recent one suggests that 3 ps-lived excited states are formed after the sub-100 fs decay of the initial S2 state. The S* state, which has the longest reported lifetime of a few to tens of picoseconds, is considered to be the precursor of the first red photoproduct P1. Here, we report the ultrafast photodynamics of the OCP from Synechocystis PCC 6803 carried out using visible-near infrared femtosecond time-resolved absorption spectroscopy as a function of the excitation pulse power and wavelength. We found that a carotenoid radical cation can form even at relatively low excitation power, obscuring the determination of photoactivation yields for P1. Moreover, the comparison of green (540 nm) and blue (470 nm) excitations revealed the existence of an hitherto uncharacterized excited state, denoted as S∼, living a few tens of picoseconds and formed only upon 470 nm excitation. Because neither the P1 quantum yield nor the photoactivation speed over hundreds of seconds vary under green and blue continuous irradiation, this S∼ species is unlikely to be involved in the photoactivation mechanism leading to OCPR. We also addressed the effect of His-tagging at the N- or C-termini on the excited-state photophysical properties. Differences in spectral signatures and lifetimes of the different excited states were observed at a variance with the usual assumption that His-tagging hardly influences protein dynamics and function. Altogether our results advocate for the careful consideration of the excitation power and His-tag position when comparing the photoactivation of different OCP variants and beg to revisit the notion that S* is the precursor of photoactivated OCPR.
Collapse
Affiliation(s)
- Stanisław Niziński
- Quantum
Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
- Univ.
Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les
Interactions, la Réactivité et l’Environnement, Lille 59000, France
| | - Adjéle Wilson
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Lucas M. Uriarte
- Univ.
Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les
Interactions, la Réactivité et l’Environnement, Lille 59000, France
| | - Cyril Ruckebusch
- Univ.
Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les
Interactions, la Réactivité et l’Environnement, Lille 59000, France
| | - Elena A. Andreeva
- Univ.
Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Grenoble 38000, France
- Max-Planck-Institut
für Medizinische Forschung, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Ilme Schlichting
- Max-Planck-Institut
für Medizinische Forschung, Jahnstrasse 29, Heidelberg 69120, Germany
| | | | - Diana Kirilovsky
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Gotard Burdzinski
- Quantum
Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | - Michel Sliwa
- Univ.
Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les
Interactions, la Réactivité et l’Environnement, Lille 59000, France
| |
Collapse
|
5
|
Navotnaya P, Sohoni S, Lloyd LT, Abdulhadi SM, Ting PC, Higgins JS, Engel GS. Annihilation of Excess Excitations along Phycocyanin Rods Precedes Downhill Flow to Allophycocyanin Cores in the Phycobilisome of Synechococcus elongatus PCC 7942. J Phys Chem B 2022; 126:23-29. [PMID: 34982932 PMCID: PMC8762654 DOI: 10.1021/acs.jpcb.1c06509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cyanobacterial phycobilisome
complexes absorb visible sunlight
and funnel photogenerated excitons to the photosystems where charge
separation occurs. In the phycobilisome complex of Synechococcus
elongatus PCC 7942, phycocyanin protein rods that absorb
bluer wavelengths are assembled on allophycocyanin cores that absorb
redder wavelengths. This arrangement creates a natural energy gradient
toward the reaction centers of the photosystems. Here, we employ broadband
pump–probe spectroscopy to observe the fate of excess excitations
in the phycobilisome complex of this organism. We show that excess
excitons are quenched through exciton–exciton annihilation
along the phycocyanin rods prior to transfer to the allophycocyanin
cores. Our observations are especially relevant in comparison to other
antenna proteins, where exciton annihilation primarily occurs in the
lowest-energy chlorophylls. The observed effect could play a limited
photoprotective role in physiological light fluences. The exciton
decay dynamics is faster in the intact phycobilisome than in isolated
C-phycocyanin trimers studied in earlier work, confirming that this
effect is an emergent property of the complex assembly. Using the
obtained annihilation data, we calculate exciton hopping times of
2.2–6.4 ps in the phycocyanin rods. This value agrees with
earlier FRET calculations of exciton hopping times along phycocyanin
hexamers by Sauer and Scheer.
Collapse
Affiliation(s)
- Polina Navotnaya
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Siddhartha Sohoni
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lawson T Lloyd
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sami M Abdulhadi
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Po-Chieh Ting
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jacob S Higgins
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory S Engel
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
UV Excitation of Carotenoid Binding Proteins OCP and HCP: Excited‐State Dynamics and Product Formation. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Yaroshevich IA, Maksimov EG, Sluchanko NN, Zlenko DV, Stepanov AV, Slutskaya EA, Slonimskiy YB, Botnarevskii VS, Remeeva A, Gushchin I, Kovalev K, Gordeliy VI, Shelaev IV, Gostev FE, Khakhulin D, Poddubnyy VV, Gostev TS, Cherepanov DA, Polívka T, Kloz M, Friedrich T, Paschenko VZ, Nadtochenko VA, Rubin AB, Kirpichnikov MP. Role of hydrogen bond alternation and charge transfer states in photoactivation of the Orange Carotenoid Protein. Commun Biol 2021; 4:539. [PMID: 33972665 PMCID: PMC8110590 DOI: 10.1038/s42003-021-02022-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we propose a possible photoactivation mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP), suggesting that the reaction involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. Taking advantage of engineering an OCP variant carrying the Y201W mutation, which shows superior spectroscopic and structural properties, it is shown that the presence of Trp201 augments the impact of one critical H-bond between the ketocarotenoid and the protein. This confers an unprecedented homogeneity of the dark-adapted OCP state and substantially increases the yield of the excited photoproduct S*, which is important for the productive photocycle to proceed. A 1.37 Å crystal structure of OCP Y201W combined with femtosecond time-resolved absorption spectroscopy, kinetic analysis, and deconvolution of the spectral intermediates, as well as extensive quantum chemical calculations incorporating the effect of the local electric field, highlighted the role of charge-transfer states during OCP photoconversion. Yaroshevich et al. present a chemical reaction mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP). They find that photoactivation critically involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. This study suggests the role of charge-transfer states during OCP photoconversion.
Collapse
Affiliation(s)
- Igor A Yaroshevich
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia. .,A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey V Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Slutskaya
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury B Slonimskiy
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Viacheslav S Botnarevskii
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.,Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Timofey S Gostev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Kloz
- ELI-Beamlines, Institute of Physics, Praha, Czech Republic
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC14, Berlin, Germany
| | | | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Andrew B Rubin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Pivato M, Perozeni F, Licausi F, Cazzaniga S, Ballottari M. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. ALGAL RES 2021; 55:102255. [PMID: 33777686 PMCID: PMC7610433 DOI: 10.1016/j.algal.2021.102255] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photosynthetic organisms evolved different mechanisms to protect themselves from high irradiances and photodamage. In cyanobacteria, the photoactive Orange Carotenoid-binding Protein (OCP) acts both as a light sensor and quencher of excitation energy. It binds keto-carotenoids and, when photoactivated, interacts with phyco-bilisomes, thermally dissipating the excitation energy absorbed by the latter, and acting as efficient singlet oxygen quencher. Here, we report the heterologous expression of an OCP2 protein from the thermophilic cyanobacterium Fischerella thermalis (FtOCP2) in the model organism for green algae, Chlamydomonas reinhardtii. Robust expression of FtOCP2 was obtained through a synthetic redesigning strategy for optimized expression of the transgene. FtOCP2 expression was achieved both in UV-mediated mutant 4 strain, previously selected for efficient transgene expression, and in a background strain previously engineered for constitutive expression of an endogenous β-carotene ketolase, normally poorly expressed in this species, resulting into astaxanthin and other ketocarotenoids accumulation. Recombinant FtOCP2 was successfully localized into the chloroplast. Upon purification it was possible to demonstrate the formation of holoproteins with different xanthophylls and keto-carotenoids bound, including astaxanthin. Moreover, isolated ketocarotenoid-binding FtOCP2 holoproteins conserved their photoconversion properties. Carotenoids bound to FtOCP2 were thus maintained in solution even in absence of organic solvent. The synthetic biology approach herein reported could thus be considered as a novel tool for improving the solubility of ketocarotenoids produced in green algae, by binding to water-soluble carotenoids binding proteins.
Collapse
|
9
|
Khan T, Dominguez-Martin MA, Šímová I, Fuciman M, Kerfeld CA, Polívka T. Excited-State Properties of Canthaxanthin in Cyanobacterial Carotenoid-Binding Proteins HCP2 and HCP3. J Phys Chem B 2020; 124:4896-4905. [DOI: 10.1021/acs.jpcb.0c03137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tuhin Khan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Maria Agustina Dominguez-Martin
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ivana Šímová
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
10
|
Lou W, Niedzwiedzki DM, Jiang RJ, Blankenship RE, Liu H. Binding of red form of Orange Carotenoid Protein (OCP) to phycobilisome is not sufficient for quenching. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148155. [PMID: 31935359 DOI: 10.1016/j.bbabio.2020.148155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The Orange Carotenoid Protein (OCP) is responsible for photoprotection in many cyanobacteria. Absorption of blue light drives the conversion of the orange, inactive form (OCPO) to the red, active form (OCPR). Concomitantly, the N-terminal domain (NTD) and the C-terminal domain (CTD) of OCP separate, which ultimately leads to the formation of a quenched OCPR-PBS complex. The details of the photoactivation of OCP have been intensely researched. Binding site(s) of OCPR on the PBS core have also been proposed. However, the post-binding events of the OCPR-PBS complex remain unclear. Here, we demonstrate that PBS-bound OCPR is not sufficient as a PBS excitation energy quencher. Using site-directed mutagenesis, we generated a suite of single point mutations at OCP Leucine 51 (L51) of Synechocystis 6803. Steady-state and time-resolved fluorescence analyses demonstrated that all mutant proteins are unable to quench the PBS fluorescence, owing to either failed OCP binding to PBS, or, if bound, an OCP-PBS quenching state failed to form. The SDS-PAGE and Western blot analysis support that the L51A (Alanine) mutant binds to the PBS and therefore belongs to the second category. We hypothesize that upon binding to PBS, OCPR likely reorganizes and adopts a new conformational state (OCP3rd) different than either OCPO or OCPR to allow energy quenching, depending on the cross-talk between OCPR and its PBS core-binding counterpart.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ruidong J Jiang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Kuznetsova V, Dominguez-Martin MA, Bao H, Gupta S, Sutter M, Kloz M, Rebarz M, Přeček M, Chen Y, Petzold CJ, Ralston CY, Kerfeld CA, Polívka T. Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148120. [PMID: 31734194 PMCID: PMC6943196 DOI: 10.1016/j.bbabio.2019.148120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 01/12/2023]
Abstract
The orange carotenoid protein (OCP) is a structurally and functionally modular photoactive protein involved in cyanobacterial photoprotection. Recently, based on bioinformatic analysis and phylogenetic relationships, new families of OCP have been described, OCP2 and OCPx. The first characterization of the OCP2 showed both faster photoconversion and back-conversion, and lower fluorescence quenching of phycobilisomes relative to the well-characterized OCP1. Moreover, OCP2 is not regulated by the fluorescence recovery protein (FRP). In this work, we present a comprehensive study combining ultrafast spectroscopy and structural analysis to compare the photoactivation mechanisms of OCP1 and OCP2 from Tolypothrix PCC 7601. We show that despite significant differences in their functional characteristics, the spectroscopic properties of OCP1 and OCP2 are comparable. This indicates that the OCP functionality is not directly related to the spectroscopic properties of the bound carotenoid. In addition, the structural analysis by X-ray footprinting reveals that, overall, OCP1 and OCP2 have grossly the same photoactivation mechanism. However, the OCP2 is less reactive to radiolytic labeling, suggesting that the protein is less flexible than OCP1. This observation could explain fast photoconversion of OCP2.
Collapse
Affiliation(s)
- Valentyna Kuznetsova
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | | | - Han Bao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miroslav Kloz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - Mateusz Rebarz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - Martin Přeček
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - Yan Chen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corie Y Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
12
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Muzzopappa F, Kirilovsky D. Changing Color for Photoprotection: The Orange Carotenoid Protein. TRENDS IN PLANT SCIENCE 2020; 25:92-104. [PMID: 31679992 DOI: 10.1016/j.tplants.2019.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 05/09/2023]
Abstract
Under high irradiance, light becomes dangerous for photosynthetic organisms and they must protect themselves. Cyanobacteria have developed a simple mechanism, involving a photoactive soluble carotenoid protein, the orange carotenoid protein (OCP), which increases thermal dissipation of excess energy by interacting with the cyanobacterial antenna, the phycobilisome. Here, we summarize our knowledge of the OCP-related photoprotective mechanism, including the remarkable progress that has been achieved in recent years on OCP photoactivation and interaction with phycobilisomes, as well as with the fluorescence recovery protein, which is necessary to end photoprotection. A recently discovered unique mechanism of carotenoid transfer between soluble proteins related to OCP is also described.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| |
Collapse
|
14
|
Adir N, Bar-Zvi S, Harris D. The amazing phycobilisome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148047. [PMID: 31306623 DOI: 10.1016/j.bbabio.2019.07.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Cyanobacteria and red-algae share a common light-harvesting complex which is different than all other complexes that serve as photosynthetic antennas - the Phycobilisome (PBS). The PBS is found attached to the stromal side of thylakoid membranes, filling up most of the gap between individual thylakoids. The PBS self assembles from similar homologous protein units that are soluble and contain conserved cysteine residues that covalently bind the light absorbing chromophores, linear tetra-pyrroles. Using similar construction principles, the PBS can be as large as 16.8 MDa (68×45×39nm), as small as 1.2 MDa (24 × 11.5 × 11.5 nm), and in some unique cases smaller still. The PBS can absorb light between 450 nm to 650 nm and in some cases beyond 700 nm, depending on the species, its composition and assembly. In this review, we will present new observations and structures that expand our understanding of the distinctive properties that make the PBS an amazing light harvesting system. At the end we will suggest why the PBS, for all of its excellent properties, was discarded by photosynthetic organisms that arose later in evolution such as green algae and higher plants.
Collapse
Affiliation(s)
- Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Shira Bar-Zvi
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dvir Harris
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
15
|
Lou W, Wolf BM, Blankenship RE, Liu H. Cu+ Contributes to the Orange Carotenoid Protein-Related Phycobilisome Fluorescence Quenching and Photoprotection in Cyanobacteria. Biochemistry 2019; 58:3109-3115. [DOI: 10.1021/acs.biochem.9b00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenjing Lou
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin M. Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Robert E. Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
16
|
Gupta S, Sutter M, Remesh SG, Dominguez-Martin MA, Bao H, Feng XA, Chan LJG, Petzold CJ, Kerfeld CA, Ralston CY. X-ray radiolytic labeling reveals the molecular basis of orange carotenoid protein photoprotection and its interactions with fluorescence recovery protein. J Biol Chem 2019; 294:8848-8860. [PMID: 30979724 DOI: 10.1074/jbc.ra119.007592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/05/2019] [Indexed: 11/06/2022] Open
Abstract
In cyanobacterial photoprotection, the orange carotenoid protein (OCP) is photoactivated under excess light conditions and binds to the light-harvesting antenna, triggering the dissipation of captured light energy. In low light, the OCP relaxes to the native state, a process that is accelerated in the presence of fluorescence recovery protein (FRP). Despite the importance of the OCP in photoprotection, the precise mechanism of photoactivation by this protein is not well-understood. Using time-resolved X-ray-mediated in situ hydroxyl radical labeling, we probed real-time solvent accessibility (SA) changes at key OCP residues during photoactivation and relaxation. We observed a biphasic photoactivation process in which carotenoid migration preceded domain dissociation. We also observed a multiphasic relaxation process, with collapsed domain association preceding the final conformational rearrangement of the carotenoid. Using steady-state hydroxyl radical labeling, we identified sites of interaction between the FRP and OCP. In combination, the findings in this study provide molecular-level insights into the factors driving structural changes during OCP-mediated photoprotection in cyanobacteria, and furnish a basis for understanding the physiological relevance of the FRP-mediated relaxation process.
Collapse
Affiliation(s)
- Sayan Gupta
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Markus Sutter
- From the Molecular Biophysics and Integrated Bioimaging Division.,the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.,the Environmental Genomics and Systems Biology Division, and
| | - Soumya G Remesh
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Maria Agustina Dominguez-Martin
- the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Han Bao
- the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xinyu A Feng
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Leanne-Jade G Chan
- the Biological Systems and Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| | - Christopher J Petzold
- the Biological Systems and Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| | - Cheryl A Kerfeld
- From the Molecular Biophysics and Integrated Bioimaging Division, .,the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.,the Environmental Genomics and Systems Biology Division, and
| | - Corie Y Ralston
- From the Molecular Biophysics and Integrated Bioimaging Division,
| |
Collapse
|
17
|
Mezzetti A, Alexandre M, Thurotte A, Wilson A, Gwizdala M, Kirilovsky D. Two-Step Structural Changes in Orange Carotenoid Protein Photoactivation Revealed by Time-Resolved Fourier Transform Infrared Spectroscopy. J Phys Chem B 2019; 123:3259-3266. [DOI: 10.1021/acs.jpcb.9b01242] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Mezzetti
- Sorbonne Université, CNRS, Laboratoire Réactivité de Surface, UMR CNRS 7197, F-75252 Paris, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Maxime Alexandre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Adrien Thurotte
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Metabolism, Engineering of Microalgal Molecules and Applications (MIMMA) Team, Mer, Molécules, Santé/Sea, Molecules & Health (EA2160), Département de Biologie et Géosciences, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Adjelé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Michal Gwizdala
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Department of Physics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private bag X20, 0028 Hatfield, South Africa
- Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| |
Collapse
|
18
|
Squires AH, Dahlberg PD, Liu H, Magdaong NCM, Blankenship RE, Moerner WE. Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein. Nat Commun 2019; 10:1172. [PMID: 30862823 PMCID: PMC6414729 DOI: 10.1038/s41467-019-09084-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
The Orange Carotenoid Protein (OCP) is a cytosolic photosensor that is responsible for non-photochemical quenching (NPQ) of the light-harvesting process in most cyanobacteria. Upon photoactivation by blue-green light, OCP binds to the phycobilisome antenna complex, providing an excitonic trap to thermally dissipate excess energy. At present, both the binding site and NPQ mechanism of OCP are unknown. Using an Anti-Brownian ELectrokinetic (ABEL) trap, we isolate single phycobilisomes in free solution, both in the presence and absence of activated OCP, to directly determine the photophysics and heterogeneity of OCP-quenched phycobilisomes. Surprisingly, we observe two distinct OCP-quenched states, with lifetimes 0.09 ns (6% of unquenched brightness) and 0.21 ns (11% brightness). Photon-by-photon Monte Carlo simulations of exciton transfer through the phycobilisome suggest that the observed quenched states are kinetically consistent with either two or one bound OCPs, respectively, underscoring an additional mechanism for excitation control in this key photosynthetic unit. Upon photoactivation the Orange Carotenoid Protein (OCP) binds to the phycobilisome and prevents damage by thermally dissipating excess energy. Here authors use an Anti-Brownian ELectrokinetic trap to determine the photophysics of single OCP-quenched phycobilisomes and observe two distinct OCP-quenched states with either one or two OCPs bound.
Collapse
Affiliation(s)
- Allison H Squires
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Haijun Liu
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nikki Cecil M Magdaong
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Konold PE, van Stokkum IHM, Muzzopappa F, Wilson A, Groot ML, Kirilovsky D, Kennis JTM. Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. J Am Chem Soc 2019; 141:520-530. [PMID: 30511841 PMCID: PMC6331140 DOI: 10.1021/jacs.8b11373] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 01/10/2023]
Abstract
The orange carotenoid protein (OCP) is a two-domain photoactive protein that noncovalently binds an echinenone (ECN) carotenoid and mediates photoprotection in cyanobacteria. In the dark, OCP assumes an orange, inactive state known as OCPO; blue light illumination results in the red active state, known as OCPR. The OCPR state is characterized by large-scale structural changes that involve dissociation and separation of C-terminal and N-terminal domains accompanied by carotenoid translocation into the N-terminal domain. The mechanistic and dynamic-structural relations between photon absorption and formation of the OCPR state have remained largely unknown. Here, we employ a combination of time-resolved UV-visible and (polarized) mid-infrared spectroscopy to assess the electronic and structural dynamics of the carotenoid and the protein secondary structure, from femtoseconds to 0.5 ms. We identify a hereto unidentified carotenoid excited state in OCP, the so-called S* state, which we propose to play a key role in breaking conserved hydrogen-bond interactions between carotenoid and aromatic amino acids in the binding pocket. We arrive at a comprehensive reaction model where the hydrogen-bond rupture with conserved aromatic side chains at the carotenoid β1-ring in picoseconds occurs at a low yield of <1%, whereby the β1-ring retains a trans configuration with respect to the conjugated π-electron chain. This event initiates structural changes at the N-terminal domain in 1 μs, which allow the carotenoid to translocate into the N-terminal domain in 10 μs. We identified infrared signatures of helical elements that dock on the C-terminal domain β-sheet in the dark and unfold in the light to allow domain separation. These helical elements do not move within the experimental range of 0.5 ms, indicating that domain separation occurs on longer time scales, lagging carotenoid translocation by at least 2 decades of time.
Collapse
Affiliation(s)
- Patrick E. Konold
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Universite Paris-Sud,
Universite Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut Joliot, Commissariat a l’Energie
Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Universite Paris-Sud,
Universite Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut Joliot, Commissariat a l’Energie
Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Marie-Louise Groot
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Universite Paris-Sud,
Universite Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut Joliot, Commissariat a l’Energie
Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - John T. M. Kennis
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Sonani RR, Gardiner A, Rastogi RP, Cogdell R, Robert B, Madamwar D. Site, trigger, quenching mechanism and recovery of non-photochemical quenching in cyanobacteria: recent updates. PHOTOSYNTHESIS RESEARCH 2018; 137:171-180. [PMID: 29574660 DOI: 10.1007/s11120-018-0498-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria exhibit a novel form of non-photochemical quenching (NPQ) at the level of the phycobilisome. NPQ is a process that protects photosystem II (PSII) from possible highlight-induced photo-damage. Although significant advancement has been made in understanding the NPQ, there are still some missing details. This critical review focuses on how the orange carotenoid protein (OCP) and its partner fluorescence recovery protein (FRP) control the extent of quenching. What is and what is not known about the NPQ is discussed under four subtitles; where does exactly the site of quenching lie? (site), how is the quenching being triggered? (trigger), molecular mechanism of quenching (quenching) and recovery from quenching. Finally, a recent working model of NPQ, consistent with recent findings, is been described.
Collapse
Affiliation(s)
- Ravi R Sonani
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India.
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK.
- CEA, Institute of Biology and Technology of Saclay, CNRS, 91191, Gif/Yvette, France.
- School of Sciences, P. P. Savani University, Dhamdod, Kosamba, Surat, Gujarat, 394125, India.
| | - Alastair Gardiner
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK
| | - Rajesh P Rastogi
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India
| | - Richard Cogdell
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Bruno Robert
- CEA, Institute of Biology and Technology of Saclay, CNRS, 91191, Gif/Yvette, France.
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India.
| |
Collapse
|
21
|
Sluchanko NN, Slonimskiy YB, Maksimov EG. Features of Protein-Protein Interactions in the Cyanobacterial Photoprotection Mechanism. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523061 DOI: 10.1134/s000629791713003x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoprotective mechanisms of cyanobacteria are characterized by several features associated with the structure of their water-soluble antenna complexes - the phycobilisomes (PBs). During energy transfer from PBs to chlorophyll of photosystem reaction centers, the "energy funnel" principle is realized, which regulates energy flux due to the specialized interaction of the PBs core with a quenching molecule capable of effectively dissipating electron excitation energy into heat. The role of the quencher is performed by ketocarotenoid within the photoactive orange carotenoid protein (OCP), which is also a sensor for light flux. At a high level of insolation, OCP is reversibly photoactivated, and this is accompanied by a significant change in its structure and spectral characteristics. Such conformational changes open the possibility for protein-protein interactions between OCP and the PBs core (i.e., activation of photoprotection mechanisms) or the fluorescence recovery protein. Even though OCP was discovered in 1981, little was known about the conformation of its active form until recently, as well as about the properties of homologs of its N and C domains. Studies carried out during recent years have made a breakthrough in understanding of the structural-functional organization of OCP and have enabled discovery of new aspects of the regulation of photoprotection processes in cyanobacteria. This review focuses on aspects of protein-protein interactions between the main participants of photoprotection reactions and on certain properties of representatives of newly discovered families of OCP homologs.
Collapse
Affiliation(s)
- N N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
22
|
Magdaong NCM, Blankenship RE. Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. J Biol Chem 2018; 293:5018-5025. [PMID: 29298897 DOI: 10.1074/jbc.tm117.000233] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light-harvesting complexes (LHCs) serve a dual role in photosynthesis, depending on the prevailing light conditions. In low light, they ensure photosynthetic efficiency by maximizing the light absorption cross-section and subsequent energy storage. Under excess light conditions, LHCs perform photoprotective quenching functions to prevent harmful chemical species such as triplet chlorophyll and singlet oxygen from forming and damaging the photosynthetic apparatus. In this Minireview, various photoprotective quenching mechanisms that have been identified in different photosynthetic organisms are surveyed and summarized, and implications for improving photosynthetic productivity are briefly discussed.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- From the Departments of Biology and Chemistry and.,the Photosynthetic Antenna Research Center, Washington University in Saint Louis, St. Louis, Missouri 63130
| | - Robert E Blankenship
- From the Departments of Biology and Chemistry and .,the Photosynthetic Antenna Research Center, Washington University in Saint Louis, St. Louis, Missouri 63130
| |
Collapse
|
23
|
Zhan J, Wang Q. Photoresponse Mechanism in Cyanobacteria: Key Factor in Photoautotrophic Chassis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:75-96. [PMID: 30091092 DOI: 10.1007/978-981-13-0854-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the oldest oxygenic photoautotrophic prokaryotes, cyanobacteria have outstanding advantages as the chassis cell in the research field of synthetic biology. Cognition of photosynthetic mechanism, including the photoresponse mechanism under high-light (HL) conditions, is important for optimization of the cyanobacteria photoautotrophic chassis for synthesizing biomaterials as "microbial cell factories." Cyanobacteria are well-established model organisms for the study of oxygenic photosynthesis and have evolved various acclimatory responses to HL conditions to protect the photosynthetic apparatus from photodamage. Here, we reviewed the latest progress in the mechanism of HL acclimation in cyanobacteria. The subsequent acclimatory responses and the corresponding molecular mechanisms are included: (1) acclimatory responses of PSII and PSI; (2) the degradation of phycobilisome; (3) induction of the photoprotective mechanisms such as state transitions, OCP-dependent non-photochemical quenching, and the induction of HLIP family; and (4) the regulation mechanisms of the gene expression under HL.
Collapse
Affiliation(s)
- Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Kruk C, Segura AM, Nogueira L, Alcántara I, Calliari D, Martínez de la Escalera G, Carballo C, Cabrera C, Sarthou F, Scavone P, Piccini C. A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean. HARMFUL ALGAE 2017; 70:23-36. [PMID: 29169566 DOI: 10.1016/j.hal.2017.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
The Microcystis aeruginosa complex (MAC) clusters cosmopolitan and conspicuous harmful bloom-forming cyanobacteria able to produce cyanotoxins. It is hypothesized that low temperatures and brackish salinities are the main barriers to MAC proliferation. Here, patterns at multiple levels of organization irrespective of taxonomic identity (i.e. a trait-based approach) were analyzed. MAC responses from the intracellular (e.g. respiratory activity) to the ecosystem level (e.g. blooms) were evaluated in wide environmental gradients. Experimental results on buoyancy and respiratory activity in response to increased salinity (0-35) and a literature review of maximum growth rates under different temperatures and salinities were combined with field sampling from headwaters (800km upstream) to the marine end of the Rio de la Plata estuary (Uruguay-South America). Salinity and temperature were the major variables affecting MAC responses. Experimentally, freshwater MAC cells remained active for 24h in brackish waters (salinity=15) while colonies increased their flotation velocity. At the population level, maximum growth rate decreased with salinity and presented a unimodal exponential response with temperature, showing an optimum at 27.5°C and a rapid decrease thereafter. At the community and ecosystem levels, MAC occurred from fresh to marine waters (salinity 30) with a sustained relative increase of large mucilaginous colonies biovolume with respect to individual cells. Similarly, total biomass and, specific and morphological richness decreased with salinity while blooms were only detected in freshwater both at high (33°C) and low (11°C) temperatures. In brackish waters, large mucilaginous colonies presented advantages under osmotic restrictive conditions. These traits values have also been associated with higher toxicity potential. This suggest salinity or low temperatures would not represent effective barriers for the survival and transport of potentially toxic MAC under likely near future scenarios of increasing human impacts (i.e. eutrophication, dam construction and climate change).
Collapse
Affiliation(s)
- Carla Kruk
- Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional Este-Rocha, Universidad de la República, Uruguay; Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay.
| | - Angel M Segura
- Modelización y Análisis de Recursos Naturales, Centro Universitario Regional Este-Rocha, Universidad de la República, Uruguay
| | - Lucía Nogueira
- Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Ignacio Alcántara
- Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay; Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Uruguay
| | - Danilo Calliari
- Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional Este-Rocha, Universidad de la República, Uruguay; Oceanografía, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | | | - Carmela Carballo
- Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional Este-Rocha, Universidad de la República, Uruguay; Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Carolina Cabrera
- Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional Este-Rocha, Universidad de la República, Uruguay; Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Florencia Sarthou
- Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional Este-Rocha, Universidad de la República, Uruguay; Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Paola Scavone
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Uruguay
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Uruguay
| |
Collapse
|
25
|
Maksimov EG, Sluchanko NN, Mironov KS, Shirshin EA, Klementiev KE, Tsoraev GV, Moldenhauer M, Friedrich T, Los DA, Allakhverdiev SI, Paschenko VZ, Rubin AB. Fluorescent Labeling Preserving OCP Photoactivity Reveals Its Reorganization during the Photocycle. Biophys J 2017; 112:46-56. [PMID: 28076815 DOI: 10.1016/j.bpj.2016.11.3193] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/29/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Orange carotenoid protein (OCP), responsible for the photoprotection of the cyanobacterial photosynthetic apparatus under excessive light conditions, undergoes significant rearrangements upon photoconversion and transits from the stable orange to the signaling red state. This is thought to involve a 12-Å translocation of the carotenoid cofactor and separation of the N- and C-terminal protein domains. Despite clear recent progress, the detailed mechanism of the OCP photoconversion and associated photoprotection remains elusive. Here, we labeled the OCP of Synechocystis with tetramethylrhodamine-maleimide (TMR) and obtained a photoactive OCP-TMR complex, the fluorescence of which was highly sensitive to the protein state, showing unprecedented contrast between the orange and red states and reflecting changes in protein conformation and the distances from TMR to the carotenoid throughout the photocycle. The OCP-TMR complex was sensitive to the light intensity, temperature, and viscosity of the solvent. Based on the observed Förster resonance energy transfer, we determined that upon photoconversion, the distance between TMR (donor) bound to a cysteine in the C-terminal domain and the carotenoid (acceptor) increased by 18 Å, with simultaneous translocation of the carotenoid into the N-terminal domain. Time-resolved fluorescence anisotropy revealed a significant decrease of the OCP rotation rate in the red state, indicating that the light-triggered conversion of the protein is accompanied by an increase of its hydrodynamic radius. Thus, our results support the idea of significant structural rearrangements of OCP, providing, to our knowledge, new insights into the structural rearrangements of OCP throughout the photocycle and a completely novel approach to the study of its photocycle and non-photochemical quenching. We suggest that this approach can be generally applied to other photoactive proteins.
Collapse
Affiliation(s)
- Eugene G Maksimov
- Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia.
| | - Nikolai N Sluchanko
- Laboratory of Structural Biochemistry of Proteins, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Kirill S Mironov
- Laboratory of Cell Regulation, K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny A Shirshin
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | | | - Georgy V Tsoraev
- Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| | - Marcus Moldenhauer
- Department of Intracellular Regulation, Institute of Plant Physiology, Moscow, Russia
| | - Thomas Friedrich
- Department of Intracellular Regulation, Institute of Plant Physiology, Moscow, Russia
| | - Dmitry A Los
- Department of Intracellular Regulation, Institute of Plant Physiology, Moscow, Russia
| | - Suleyman I Allakhverdiev
- Laboratory of Cell Regulation, K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Moscow, Russia.
| | | | - Andrew B Rubin
- Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
26
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
27
|
Bao H, Melnicki MR, Kerfeld CA. Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:1-9. [PMID: 28391046 DOI: 10.1016/j.pbi.2017.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Rapidly-induced photoprotection in cyanobacteria involves thermal dissipation of excess energy absorbed by the phycobilisome (PBS), the primary light-harvesting antenna. This process is called non-photochemical quenching (NPQ), and is mediated by a water-soluble photoactive protein, the Orange Carotenoid Protein (OCP). The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain, and a carotenoid. Blue-green light induces a structural transition of the OCP from the orange inactive form, OCPo, to the red active form, OCPR. Translocation of the carotenoid into the effector domain accompanies photoactivation. The OCPR binds to the PBS core, where it triggers dissipation of excitation energy and quenches fluorescence. To recover the antenna capacity under low light conditions, the Fluorescence Recovery Protein (FRP) participates in detaching the OCP from the PBS and accelerates back-conversion of OCPR to OCPo. Increased sequencing of cyanobacterial genomes has allowed the identification of new paralogous families of the OCP and its domain homologs, the Helical Carotenoid Proteins (HCPs), which have been found distributed widely among taxonomically and ecophysiologically diverse cyanobacteria. Distinct functions from the canonical OCP have been revealed for some of these paralogs by recent structural and functional studies.
Collapse
Affiliation(s)
- Han Bao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Abstract
Photoprotection is essential for efficient photosynthesis. Cyanobacteria have evolved a unique photoprotective mechanism mediated by a water-soluble carotenoid-based photoreceptor known as orange carotenoid protein (OCP). OCP undergoes large conformational changes in response to intense blue light, and the photoactivated OCP facilitates dissipation of excess energy via direct interaction with allophycocyanins at the phycobilisome core. However, the structural events leading up to the OCP photoactivation remain elusive at the molecular level. Here we present direct observations of light-induced structural changes in OCP captured by dynamic crystallography. Difference electron densities between the dark and illuminated states reveal widespread and concerted atomic motions that lead to altered protein-pigment interactions, displacement of secondary structures, and domain separation. Based on these crystallographic observations together with site-directed mutagenesis, we propose a molecular mechanism for OCP light perception, in which the photochemical property of a conjugated carbonyl group is exploited. We hypothesize that the OCP photoactivation starts with keto-enol tautomerization of the essential 4-keto group in the carotenoid, which disrupts the strong hydrogen bonds between the bent chromophore and the protein moiety. Subsequent structural changes trapped in the crystal lattice offer a high-resolution glimpse of the initial molecular events as OCP begins to transition from the orange-absorbing state to the active red-absorbing state.
Collapse
|
29
|
Šlouf V, Kuznetsova V, Fuciman M, de Carbon CB, Wilson A, Kirilovsky D, Polívka T. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. PHOTOSYNTHESIS RESEARCH 2017; 131:105-117. [PMID: 27612863 DOI: 10.1007/s11120-016-0302-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.
Collapse
Affiliation(s)
- Václav Šlouf
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Valentyna Kuznetsova
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Céline Bourcier de Carbon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Tomáš Polívka
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
30
|
Kirilovsky D, Kerfeld CA. Cyanobacterial photoprotection by the orange carotenoid protein. NATURE PLANTS 2016; 2:16180. [PMID: 27909300 DOI: 10.1038/nplants.2016.180] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/20/2016] [Indexed: 05/18/2023]
Abstract
In photosynthetic organisms, the production of dangerous oxygen species is stimulated under high irradiance. To cope with this stress, these organisms have evolved photoprotective mechanisms. One type of mechanism functions to decrease the energy arriving at the photochemical centres by increasing thermal dissipation at the level of antennae. In cyanobacteria, the trigger for this mechanism is the photoactivation of a soluble carotenoid protein, the orange carotenoid protein (OCP), which is a structurally and functionally modular protein. The inactive orange form (OCPo) is compact and globular, with the carotenoid spanning the effector and the regulatory domains. In the active red form (OCPr), the two domains are completely separated and the carotenoid has translocated entirely into the effector domain. The activated OCPr interacts with the phycobilisome (PBS), the cyanobacterial antenna, and induces excitation-energy quenching. A second protein, the fluorescence recovery protein (FRP), dislodges the active OCPr from the PBSs and accelerates its conversion to the inactive OCP.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Berkeley Synthetic Biology Institute, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Maksimov EG, Moldenhauer M, Shirshin EA, Parshina EA, Sluchanko NN, Klementiev KE, Tsoraev GV, Tavraz NN, Willoweit M, Schmitt FJ, Breitenbach J, Sandmann G, Paschenko VZ, Friedrich T, Rubin AB. A comparative study of three signaling forms of the orange carotenoid protein. PHOTOSYNTHESIS RESEARCH 2016; 130:389-401. [PMID: 27161566 DOI: 10.1007/s11120-016-0272-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Orange carotenoid protein (OCP) is a water-soluble photoactive protein responsible for a photoprotective mechanism of nonphotochemical quenching in cyanobacteria. Under blue-green illumination, OCP converts from the stable orange into the signaling red quenching form; however, the latter form could also be obtained by chemical activation with high concentrations of sodium thiocyanate (NaSCN) or point mutations. In this work, we show that a single replacement of tryptophan-288, normally involved in protein-chromophore interactions, by alanine, results in formation of a new protein form, hereinafter referred to as purple carotenoid protein (PCP). Comparison of resonance Raman spectra of the native photoactivated red form, chemically activated OCP, and PCP reveals that carotenoid conformation is sensitive to the structure of the C-domain, implicating that the chromophore retains some interactions with this part of the protein in the active red form. Combination of differential scanning fluorimetry and picosecond time-resolved fluorescence anisotropy measurements allowed us to compare the stability of different OCP forms and to estimate relative differences in protein rotation rates. These results were corroborated by hydrodynamic analysis of proteins by dynamic light scattering and analytical size-exclusion chromatography, indicating that the light-induced conversion of the protein is accompanied by a significant increase in its size. On the whole, our data support the idea that the red form of OCP is a molten globule-like protein in which, however, interactions between the carotenoid and the C-terminal domain are preserved.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - M Moldenhauer
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - E A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - E A Parshina
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - N N Sluchanko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - K E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - G V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - N N Tavraz
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - M Willoweit
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - F-J Schmitt
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - J Breitenbach
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University of Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - G Sandmann
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University of Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - V Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - T Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - A B Rubin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
32
|
Melnicki MR, Leverenz RL, Sutter M, López-Igual R, Wilson A, Pawlowski EG, Perreau F, Kirilovsky D, Kerfeld CA. Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria. MOLECULAR PLANT 2016; 9:1379-1394. [PMID: 27392608 DOI: 10.1016/j.molp.2016.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/25/2016] [Accepted: 06/20/2016] [Indexed: 05/15/2023]
Abstract
Using a phylogenomic approach, we have identified and subclassified a new family of carotenoid-binding proteins. These proteins have sequence homology to the N-terminal domain (NTD) of the Orange Carotenoid Protein (OCP), and are referred to as Helical Carotenoid Proteins (HCPs). These proteins comprise at least nine distinct clades and are found in diverse organisms, frequently as multiple paralogs representing the distinct clades. These seem to be out-paralogs maintained from ancient duplications associated with subfunctionalization. All of the HCPs share conservation of the residues for carotenoid binding, and we confirm that carotenoid binding is a fundamental property of HCPs. We solved two crystal structures of the Nostoc sp. PCC 7120 HCP1 protein, each binding a different carotenoid, suggesting that the proteins flexibly bind a range of carotenoids. Based on a comprehensive phylogenetic analysis, we propose that one of the HCP subtypes is likely the evolutionary ancestor of the NTD of the OCP, which arose following a domain fusion event. However, we predict that the majority of HCPs have functions distinct from the NTD of the OCP. Our results demonstrate that the HCPs are a new family of functionally diverse carotenoid-binding proteins found among ecophysiologically diverse cyanobacteria.
Collapse
Affiliation(s)
- Matthew R Melnicki
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan L Leverenz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rocío López-Igual
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Emily G Pawlowski
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - François Perreau
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Cheryl A Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
33
|
Yadav RK, Thagela P, Tripathi K, Abraham G. Physiological and proteomic analysis of salinity tolerance of the halotolerant cyanobacterium Anabaena sp. World J Microbiol Biotechnol 2016; 32:147. [PMID: 27430514 DOI: 10.1007/s11274-016-2098-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/15/2016] [Indexed: 12/12/2022]
Abstract
The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na(+) content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K(+) content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K(+)/Na(+) ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K(+)/Na(+). Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF-MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na(+) content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na(+) ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the halotolerant cyanobacterium Anabaena sp is grown under low and high salinity levels.
Collapse
Affiliation(s)
- Ravindra Kumar Yadav
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Preeti Thagela
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Keshawanand Tripathi
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - G Abraham
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
34
|
Yang W, Zhu L, Cui Y, Wang H, Wang Y, Yuan L, Chen H. Improvement of Site-Directed Protein-Polymer Conjugates: High Bioactivity and Stability Using a Soft Chain-Transfer Agent. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15967-15974. [PMID: 27284806 DOI: 10.1021/acsami.6b05408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protein has been widely applied in biotechnology and biomedicine thanks to its unique properties of high catalytic activity, outstanding receptor-ligand specificity, and controllable sequence mutability. Owing to the easily induced structural variation and thus the inactivation of protein, there has been much effort to improve the structural stability and biological activity of proteins by the use of polymers to modify protein to construct protein-polymer conjugates. However, during the conjugation of polymer to protein active center, the great loss in the original biological activity of the protein is still a serious and so far unsolved question. Here, for the purpose of preparing site-directed and highly structurally stable protein-polymer conjugate, which would possess at least a substantially similar level of biological activity as the original unmodified protein, we proposed a new strategy by using a pyridine chain-transfer agent (CTA-Py) with a soft pyridine-terminated chain for visible-light-induced reversible addition-fragmentation chain transfer (RAFT) polymerization specifically on a number of sites close to the protein active center. The results showed that all the intermediate conjugates PPa-CTA-Py at different modification sites could retain full enzymatic activities (about 110-130% of the unmodified PPa). It was demonstrated by dynamic computer simulation that introducing of CTA-Py had little interference to the protein spatial structure as compared to the popular maleimide chain-transfer agent (CTA-Ma) with rigid maleimide-terminated. Moreover, intermediate conjugates PPa-CTA-Py is facile and ready for further light polymerization under mild conditions. Final PPa-PNIPAAm conjugate produced from CTA-Py exhibited excellent temperature responsiveness and maintained its enzymatic activity even at high temperature. These highly stable and responsive protein-polymer conjugates have great potential and could be widely used in various industrial, chemical, biological, and pharmaceutical applications.
Collapse
Affiliation(s)
- Weikang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, PR China
| | - Lijuan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, PR China
| | - Yuecheng Cui
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, PR China
| | - Hongwei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, PR China
| | - Yanwei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, PR China
| | - Lin Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, PR China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, PR China
| |
Collapse
|
35
|
Maksimov EG, Shirshin EA, Sluchanko NN, Zlenko DV, Parshina EY, Tsoraev GV, Klementiev KE, Budylin GS, Schmitt FJ, Friedrich T, Fadeev VV, Paschenko VZ, Rubin AB. The Signaling State of Orange Carotenoid Protein. Biophys J 2016; 109:595-607. [PMID: 26244741 DOI: 10.1016/j.bpj.2015.06.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/01/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022] Open
Abstract
Orange carotenoid protein (OCP) is the photoactive protein that is responsible for high light tolerance in cyanobacteria. We studied the kinetics of the OCP photocycle by monitoring changes in its absorption spectrum, intrinsic fluorescence, and fluorescence of the Nile red dye bound to OCP. It was demonstrated that all of these three methods provide the same kinetic parameters of the photocycle, namely, the kinetics of OCP relaxation in darkness was biexponential with a ratio of two components equal to 2:1 independently of temperature. Whereas the changes of the absorption spectrum of OCP characterize the geometry and environment of its chromophore, the intrinsic fluorescence of OCP reveals changes in its tertiary structure, and the fluorescence properties of Nile red indicate the exposure of hydrophobic surface areas of OCP to the solvent following the photocycle. The results of molecular-dynamics studies indicated the presence of two metastable conformations of 3'-hydroxyechinenone, which is consistent with characteristic changes in the Raman spectra. We conclude that rotation of the β-ionylidene ring in the C-terminal domain of OCP could be one of the first conformational rearrangements that occur during photoactivation. The obtained results suggest that the photoactivated form of OCP represents a molten globule-like state that is characterized by increased mobility of tertiary structure elements and solvent accessibility.
Collapse
Affiliation(s)
- Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - Evgeny A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Zlenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Evgenia Y Parshina
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgy V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Gleb S Budylin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Franz-Josef Schmitt
- Institute of Chemistry, Max-Volmer Laboratory of Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - Thomas Friedrich
- Institute of Chemistry, Max-Volmer Laboratory of Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - Victor V Fadeev
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Andrew B Rubin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
36
|
Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proc Natl Acad Sci U S A 2016; 113:E1655-62. [PMID: 26957606 DOI: 10.1073/pnas.1523680113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cyanobacteria, photoprotection from overexcitation of photochemical centers can be obtained by excitation energy dissipation at the level of the phycobilisome (PBS), the cyanobacterial antenna, induced by the orange carotenoid protein (OCP). A single photoactivated OCP bound to the core of the PBS affords almost total energy dissipation. The precise mechanism of OCP energy dissipation is yet to be fully determined, and one question is how the carotenoid can approach any core phycocyanobilin chromophore at a distance that can promote efficient energy quenching. We have performed intersubunit cross-linking using glutaraldehyde of the OCP and PBS followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS) to identify cross-linked residues. The only residues of the OCP that cross-link with the PBS are situated in the linker region, between the N- and C-terminal domains and a single C-terminal residue. These links have enabled us to construct a model of the site of OCP binding that differs from previous models. We suggest that the N-terminal domain of the OCP burrows tightly into the PBS while leaving the OCP C-terminal domain on the exterior of the complex. Further analysis shows that the position of the small core linker protein ApcC is shifted within the cylinder cavity, serving to stabilize the interaction between the OCP and the PBS. This is confirmed by a ΔApcC mutant. Penetration of the N-terminal domain can bring the OCP carotenoid to within 5-10 Å of core chromophores; however, alteration of the core structure may be the actual source of energy dissipation.
Collapse
|
37
|
Otsuka M, Mori Y, Takano K. Theoretical study on photophysical properties of 3′-hydroxyechinenone and the effects of interactions with orange carotenoid protein. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore. Proc Natl Acad Sci U S A 2015; 112:15880-5. [PMID: 26669441 DOI: 10.1073/pnas.1519177113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, L(CM). The chromophore domain of L(CM) forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in L(CM) by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of L(CM). Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution.
Collapse
|
39
|
Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. PHOTOSYNTHESIS RESEARCH 2015; 126:3-17. [PMID: 25139327 DOI: 10.1007/s11120-014-0031-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/08/2014] [Indexed: 05/09/2023]
Abstract
Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), SB2SM, Bat 532, Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191, Gif sur Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191, Gif sur Yvette, France.
| |
Collapse
|
40
|
Leverenz RL, Sutter M, Wilson A, Gupta S, Thurotte A, Bourcier de Carbon C, Petzold CJ, Ralston C, Perreau F, Kirilovsky D, Kerfeld CA. PHOTOSYNTHESIS. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science 2015; 348:1463-6. [PMID: 26113721 DOI: 10.1126/science.aaa7234] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pigment-protein and pigment-pigment interactions are of fundamental importance to the light-harvesting and photoprotective functions essential to oxygenic photosynthesis. The orange carotenoid protein (OCP) functions as both a sensor of light and effector of photoprotective energy dissipation in cyanobacteria. We report the atomic-resolution structure of an active form of the OCP consisting of the N-terminal domain and a single noncovalently bound carotenoid pigment. The crystal structure, combined with additional solution-state structural data, reveals that OCP photoactivation is accompanied by a 12 angstrom translocation of the pigment within the protein and a reconfiguration of carotenoid-protein interactions. Our results identify the origin of the photochromic changes in the OCP triggered by light and reveal the structural determinants required for interaction with the light-harvesting antenna during photoprotection.
Collapse
Affiliation(s)
- Ryan L Leverenz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adjélé Wilson
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France. Centre National de la Recherche Scientifique (CNRS), I2BC, UMR 9198, 91191 Gif-sur-Yvette, France
| | - Sayan Gupta
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adrien Thurotte
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France. Centre National de la Recherche Scientifique (CNRS), I2BC, UMR 9198, 91191 Gif-sur-Yvette, France
| | - Céline Bourcier de Carbon
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France. Centre National de la Recherche Scientifique (CNRS), I2BC, UMR 9198, 91191 Gif-sur-Yvette, France
| | - Christopher J Petzold
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corie Ralston
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - François Perreau
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France. Centre National de la Recherche Scientifique (CNRS), I2BC, UMR 9198, 91191 Gif-sur-Yvette, France
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Stadnichuk IN, Krasilnikov PM, Zlenko DV, Freidzon AY, Yanyushin MF, Rubin AB. Electronic coupling of the phycobilisome with the orange carotenoid protein and fluorescence quenching. PHOTOSYNTHESIS RESEARCH 2015; 124:315-335. [PMID: 25948498 DOI: 10.1007/s11120-015-0148-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Using computational modeling and known 3D structure of proteins, we arrived at a rational spatial model of the orange carotenoid protein (OCP) and phycobilisome (PBS) interaction in the non-photochemical fluorescence quenching. The site of interaction is formed by the central cavity of the OCP monomer in the capacity of a keyhole to the characteristic external tip of the phycobilin-containing domain (PB) and folded loop of the core-membrane linker LCM within the PBS core. The same central protein cavity was shown to be also the site of the OCP and fluorescence recovery protein (FRP) interaction. The revealed geometry of the OCP to the PBLCM attachment is believed to be the most advantageous one as the LCM, being the major terminal PBS fluorescence emitter, gathers, before quenching by OCP, the energy from most other phycobilin chromophores of the PBS. The distance between centers of mass of the OCP carotenoid 3'-hydroxyechinenone (hECN) and the adjacent phycobilin chromophore of the PBLCM was determined to be 24.7 Å. Under the dipole-dipole approximation, from the point of view of the determined mutual orientation and the values of the transition dipole moments and spectral characteristics of interacting chromophores, the time of the direct energy transfer from the phycobilin of PBLCM to the S1 excited state of hECN was semiempirically calculated to be 36 ps, which corresponds to the known experimental data and implies the OCP is a very efficient energy quencher. The complete scheme of OCP and PBS interaction that includes participation of the FRP is proposed.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- K. A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya, 35, 127726, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
42
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|
43
|
Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation. Colloids Surf B Biointerfaces 2015; 128:172-180. [PMID: 25747311 DOI: 10.1016/j.colsurfb.2015.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 01/21/2015] [Accepted: 02/01/2015] [Indexed: 11/21/2022]
Abstract
Liposomes have become an attractive alternative to encapsulate carotenoids to improve their solubility, stability and bioavailability. The interaction mechanism of carotenoid with lipid bilayer is one of the major concerns in improving the delivery efficiency of liposomes. In this study, the microstructure and carotenoid encapsulation efficiency of liposomes composed of native phospholipid (egg yolk phosphatidylcholine, EYPC) and nonionic surfactant Tween 80 were investigated by atomic force microscopy, dynamic light scattering, and Raman spectroscopy, respectively. Subsequently, the effects of carotenoid incorporation on the physical properties of liposomal membrane were performed by Raman spectroscopy, fluorescence polarization, and electron paramagnetic resonance. Results showed that the incorporation of carotenoids affected the liposomes morphology, size and size distribution to various extents. Analysis on the Raman characteristic peaks of carotenoids revealed that lutein exhibited the strongest incorporating ability into liposomes, followed by β-carotene, lycopene, and canthaxanthin. Furthermore, it was demonstrated that carotenoids modulated the dynamics, structure and hydrophobicity of liposomal membrane, highly depending on their molecular structures and incorporated concentration. These modulations were closely correlated with the stabilization of liposomes, including mediating particle aggregation and fusion. These findings should guide the rationale designing for liposomal encapsulation technology to efficiently deliver carotenoids in pharmaceutics, nutraceuticals and functional foods.
Collapse
|
44
|
Wahadoszamen M, D'Haene S, Ara AM, Romero E, Dekker JP, Grondelle RV, Berera R. Identification of common motifs in the regulation of light harvesting: The case of cyanobacteria IsiA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:486-492. [PMID: 25615585 DOI: 10.1016/j.bbabio.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
When cyanobacteria are grown under iron-limited or other oxidative stress conditions the iron stress inducible pigment-protein IsiA is synthesized in variable amounts. IsiA accumulates in aggregates inside the photosynthetic membrane that strongly dissipate chlorophyll excited state energy. In this paper we applied Stark fluorescence (SF) spectroscopy at 77K to IsiA aggregates to gain insight into the nature of the emitting and energy dissipating state(s). Our study shows that two emitting states are present in the system, one emitting at 684 nm and the other emitting at about 730 nm. The new 730 nm state exhibits strongly reduced fluorescence (F) together with a large charge transfer character. We discuss these findings in the light of the energy dissipation mechanisms involved in the regulation of photosynthesis in plants, cyanobacteria and diatoms. Our results suggest that photosynthetic organisms have adopted common mechanisms to cope with the deleterious effects of excess light under unfavorable growth conditions.
Collapse
Affiliation(s)
- Md Wahadoszamen
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands; Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Sandrine D'Haene
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Anjue Mane Ara
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands; Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Elisabet Romero
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Jan P Dekker
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Rudi Berera
- Biophysics of Photosynthesis/Physics of Energy, Department of Physics Astronomy, Faculty of Sciences, VU University Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Kosumi D, Fujii R, Sugisaki M, Oka N, Iha M, Hashimoto H. Characterization of the intramolecular transfer state of marine carotenoid fucoxanthin by femtosecond pump-probe spectroscopy. PHOTOSYNTHESIS RESEARCH 2014; 121:61-68. [PMID: 24676808 DOI: 10.1007/s11120-014-9995-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Fucoxanthin, containing a carbonyl group in conjugation with its polyene backbone, is a naturally occurring pigment in marine organisms and is essential to the photosynthetic light-harvesting function in brown alga and diatom. Fucoxanthin exhibits optical characteristics attributed to an intramolecular charge transfer (ICT) state that arises in polar environments due to the presence of the carbonyl group. In this study, we report the spectroscopic properties of fucoxanthin in methanol (polar and protic solvent) observed by femtosecond pump-probe measurements in the near-infrared region, where transient absorption associated with the optically allowed S2 (1(1)B u (+) ) state and stimulated emission from the strongly coupled S1/ICT state were observed following one-photon excitation to the S2 state. The results showed that the amplitude of the stimulated emission of the S1/ICT state increased with decreasing excitation energy, demonstrating that the fucoxanthin form associated with the lower energy of the steady-state absorption exhibits stronger ICT character.
Collapse
Affiliation(s)
- Daisuke Kosumi
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan,
| | | | | | | | | | | |
Collapse
|
46
|
Niedzwiedzki DM, Liu H, Blankenship RE. Excited State Properties of 3′-Hydroxyechinenone in Solvents and in the Orange Carotenoid Protein from Synechocystis sp. PCC 6803. J Phys Chem B 2014; 118:6141-9. [DOI: 10.1021/jp5041794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Dariusz M. Niedzwiedzki
- Department of Chemistry, ‡Photosynthetic Antenna
Research Center (PARC), §Department of Biology, Washington University in St. Louis, One Brookings Drive, St.
Louis, Missouri 63130, United States
| | - Haijun Liu
- Department of Chemistry, ‡Photosynthetic Antenna
Research Center (PARC), §Department of Biology, Washington University in St. Louis, One Brookings Drive, St.
Louis, Missouri 63130, United States
| | - Robert E. Blankenship
- Department of Chemistry, ‡Photosynthetic Antenna
Research Center (PARC), §Department of Biology, Washington University in St. Louis, One Brookings Drive, St.
Louis, Missouri 63130, United States
| |
Collapse
|
47
|
De Re E, Schlau-Cohen GS, Leverenz RL, Huxter VM, Oliver TAA, Mathies RA, Fleming GR. Insights into the structural changes occurring upon photoconversion in the orange carotenoid protein from broadband two-dimensional electronic spectroscopy. J Phys Chem B 2014; 118:5382-9. [PMID: 24779893 DOI: 10.1021/jp502120h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Carotenoids play an essential role in photoprotection, interacting with other pigments to safely dissipate excess absorbed energy as heat. In cyanobacteria, the short time scale photoprotective mechanisms involve the photoactive orange carotenoid protein (OCP), which binds a single carbonyl carotenoid. Blue-green light induces the photoswitching of OCP from its ground state form (OCPO) to a metastable photoproduct (OCPR). OCPR can bind to the phycobilisome antenna and induce fluorescence quenching. The photoswitching is accompanied by structural and functional changes at the level of the protein and of the bound carotenoid. Here, we use broadband two-dimensional electronic spectroscopy to study the differences in excited state dynamics of the carotenoid in the two forms of OCP. Our results provide insight into the origin of the pronounced vibrational lineshape and oscillatory dynamics observed in linear absorption and 2D electronic spectroscopy of OCPO and the large inhomogeneous broadening in OCPR, with consequences for the chemical function of the two forms.
Collapse
Affiliation(s)
- Eleonora De Re
- Applied Science and Technology Graduate Group, University of California , Berkeley, California 94720, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Mulders KJM, Lamers PP, Martens DE, Wijffels RH. Phototrophic pigment production with microalgae: biological constraints and opportunities. JOURNAL OF PHYCOLOGY 2014; 50:229-42. [PMID: 26988181 DOI: 10.1111/jpy.12173] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/22/2013] [Indexed: 05/10/2023]
Abstract
There is increasing interest in naturally produced colorants, and microalgae represent a bio-technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal-based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β-carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented.
Collapse
Affiliation(s)
- Kim J M Mulders
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
- FeyeCon Development & Implementation, Rijnkade 17a, Weesp, 1382 GS, The Netherlands
| | - Packo P Lamers
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
| | - Dirk E Martens
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
| | - René H Wijffels
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
| |
Collapse
|
49
|
Kuzminov FI, Bolychevtseva YV, Elanskaya IV, Karapetyan NV. Effect of APCD and APCF subunits depletion on phycobilisome fluorescence of the cyanobacterium Synechocystis PCC 6803. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 133:153-60. [PMID: 24727864 DOI: 10.1016/j.jphotobiol.2014.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Long-wavelength allophycocyanin (APC) subunits in cyanobacteria (APCD, APCE, and APCF) are required for phycobilisome (PBS) assembly, stability, and energy transfer to photosystems. Here we studied fluorescence properties of PBS in vivo, using Synechocystis PCC 6803 mutant cells deficient in both photosystems and/or long-wavelength APC subunits. At room temperature, an absence of APCD and APCF subunits resulted in ∼2-fold decrease of long-wavelength APC (APC680) fluorescence. In 77K fluorescence spectra, we observed only a slight shift of long-wavelength emission. However, 77K fluorescence of a PSI/PSII/APCF-less mutant was also characterized by increased emission from short-wavelength APC, which suggested the importance of this subunit in energy transfer from APC660 to APC680. Under blue-green actinic light, all mutants showed significant non-photochemical fluorescence quenching of up to 80% of the initial dark fluorescence level. Based on the mutants' quenching spectra, we determined quenching to originate from the pool of short-wavelength APC, while the spectral data alone was not sufficient to make unambiguous conclusion on the involvement of long-wavelength APC in non-photochemical quenching. Using a model of quenching center formation, we determined interaction rates between PBS and orange carotenoid protein (OCP) in vivo. Absence of APCD or APCF subunits had no effect on the rates of quenching center formation confirming the data obtained for isolated OCP-PBS complexes. Thus, although APCD and APCF subunits were required for energy transfer in PBS in vivo, their absence did not affect rates of OCP-PBS binding.
Collapse
Affiliation(s)
- F I Kuzminov
- A.N. Bach Institute of Biochemistry RAS, 119071 Moscow, Russia; Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | - I V Elanskaya
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - N V Karapetyan
- A.N. Bach Institute of Biochemistry RAS, 119071 Moscow, Russia
| |
Collapse
|
50
|
Maksimov EG, Schmitt FJ, Shirshin EA, Svirin MD, Elanskaya IV, Friedrich T, Fadeev VV, Paschenko VZ, Rubin AB. The time course of non-photochemical quenching in phycobilisomes of Synechocystis sp. PCC6803 as revealed by picosecond time-resolved fluorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1540-7. [PMID: 24463052 DOI: 10.1016/j.bbabio.2014.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/25/2013] [Accepted: 01/15/2014] [Indexed: 11/29/2022]
Abstract
As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In Synechocystis sp. PCC6803 this role is carried by the orange carotenoid protein (OCP), which reacts to high-intensity light by a series of conformational changes, enabling the binding of OCP to the PBs reducing the flow of energy into the photosystems. In this paper the mechanisms of energy migration in two mutant PB complexes of Synechocystis sp. were investigated and compared. The mutant CK is lacking phycocyanin in the PBs while the mutant ΔPSI/PSII does not contain both photosystems. Fluorescence decay spectra with picosecond time resolution were registered using a single photon counting technique. The studies were performed in a wide range of temperatures - from 4 to 300 K. The time course of NPQ and fluorescence recovery in darkness was studied at room temperature using both steady-state and time-resolved fluorescence measurements. The OCP induced NPQ has been shown to be due to EET from PB cores to the red form of OCP under photon flux densities up to 1000 μmolphotonsm⁻²s⁻¹. The gradual changes of the energy transfer rate from allophycocyanin to OCP were observed during the irradiation of the sample with blue light and consequent adaptation to darkness. This fact was interpreted as the revelation of intermolecular interaction between OCP and PB binding site. At low temperatures a significantly enhanced EET from allophycocyanin to terminal emitters has been shown, due to the decreased back transfer from terminal emitter to APC. The activation of OCP not only leads to fluorescence quenching, but also affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra. The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - F-J Schmitt
- Institute of Chemistry, Biophysical Chemistry, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - E A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - M D Svirin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - I V Elanskaya
- Department of Genetics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - T Friedrich
- Institute of Chemistry, Biophysical Chemistry, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - V V Fadeev
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - V Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - A B Rubin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|