1
|
Timilsina MP, Stanfield MK, Smith JA, Thickett SC. Synthesis and Characterization of Thiol-Ene Networks Derived from Levoglucosenone. Chempluschem 2024; 89:e202400383. [PMID: 39190021 DOI: 10.1002/cplu.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/03/2024] [Indexed: 08/28/2024]
Abstract
Levoglucosenone (LGO), a renewable compound obtained from cellulose biomass, has been utilized to prepare novel monomers bearing alkene functional groups. These monomer derivatives of LGO were subsequently cured via ultraviolet (UV)-initiated radical thiol-ene "click" chemistry with commercially available multifunctional thiols to obtain colourless, optically transparent cross-linked thermosets. The monomers prepared in this work are unique due to utilising the internal double bond of the LGO ring during polymerization as part of the cross-linked network. The thermal and mechanical properties along with the degradation of thermosets containing both ether and ester linkages within the LGO monomers were studied. These thermosets had tensile strengths of 1.3-3.3 MPa, glass transition temperatures between 23.2 and 27.2 °C, and good thermal stability of up to 300 °C.
Collapse
Affiliation(s)
- Mahesh Prasad Timilsina
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Melissa K Stanfield
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Jason A Smith
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Stuart C Thickett
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
2
|
Chiaradia V, Pensa E, Machado TO, Dove AP. Improving the Performance of Photoactive Terpene-Based Resin Formulations for Light-Based Additive Manufacturing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:6904-6912. [PMID: 38725455 PMCID: PMC11077580 DOI: 10.1021/acssuschemeng.3c08191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Photocurable liquid formulations have been a key research focus for the preparation of mechanically robust and thermally stable networks. However, the development of renewable resins to replace petroleum-based commodities presents a great challenge in the field. From this perspective, we disclose the design of photoactive resins based on terpenes and itaconic acid, both potentially naturally sourced, to prepare photosets with adjustable thermomechanical properties. Biobased perillyl itaconate (PerIt) was synthesized from renewable perillyl alcohol and itaconic anhydride via a scalable solvent-free method. Photoirradiation of PerIt in the presence of a multiarm thiol and photoinitiator led to the formation of networks over a range of compositions. Addition of nonmodified terpenes (perillyl alcohol, linalool, or limonene) as reactive diluents allowed for more facile preparation of photocured networks. Photosets within a wide range of properties were accessed, and these could be adjusted by varying diluent type and thiol stoichiometry. The resins showed rapid photocuring kinetics and the ability to form either brittle or elastic materials, with Young's modulus and strain at break ranging from 3.6 to 358 MPa and 15 to 367%, respectively, depending on the chemical composition of the resin. Glass transition temperatures (Tg) were influenced by thioether content, with temperatures ranging from 5 to 43 °C, and all photosets displayed good thermal resistance with Td,5% > 190 °C. Selected formulations containing PerIt and limonene demonstrated suitability for additive manufacturing technologies and high-resolution objects were printed via digital light processing (DLP). Overall, this work presents a simple and straightforward route to prepare renewable resins for rapid prototyping applications.
Collapse
Affiliation(s)
- Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Elena Pensa
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Thiago O. Machado
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Maturi M, Spanu C, Maccaferri E, Locatelli E, Benelli T, Mazzocchetti L, Sambri L, Giorgini L, Franchini MC. (Meth)acrylate-Free Three-Dimensional Printing of Bio-Derived Photocurable Resins with Terpene- and Itaconic Acid-Derived Poly(ester-thioether)s. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:17285-17298. [PMID: 38099084 PMCID: PMC10716902 DOI: 10.1021/acssuschemeng.3c04576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Vat photopolymerization, a very efficient and precise object manufacturing technique, still strongly relies on the use of acrylate- and methacrylate-based formulations because of their low cost and high reactivity. However, the environmental impact of using fossil fuel-based, volatile, and toxic (meth)acrylic acid derivatives is driving the scientific community toward the development of alternatives that can match the mechanical performance and three-dimensional (3D) printing processability of traditional photocurable mixtures but are made from environmentally friendly building blocks. Herein, itaconic acid is polymerized with polyols derived from naturally occurring terpenes to produce photocurable poly(ester-thioether)s. The formulation of such polymers using itaconic acid-based reactive diluents allows the preparation of a series of (meth)acrylate-free photocurable resins, which can be 3D printed into solid objects. Extensive analysis has been conducted on the properties of photocured polymers including their thermal, thermomechanical, and mechanical characteristics. The findings suggest that these materials exhibit properties comparable to those of traditional alternatives that are created using harmful and toxic blends. Notably, the photocured polymers are composed of biobased constituents ranging from 75 to 90 wt %, which is among the highest values ever recorded for vat photopolymerization applications.
Collapse
Affiliation(s)
- Mirko Maturi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Chiara Spanu
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Emanuele Maccaferri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Erica Locatelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Tiziana Benelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Laura Mazzocchetti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Letizia Sambri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Loris Giorgini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Mauro Comes Franchini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
4
|
Deng Y, Wang R, Ma Z, Zuo W, Zhu M. Synthesis and Fabrication of Betulin-Derived Polysulfide and Polysulfoxide Electrospun Fibers for Fruit Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18857-18864. [PMID: 37994873 DOI: 10.1021/acs.jafc.3c07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Plant-derived biocompounds play a crucial role in the field of renewable materials due to their sustainability as they can be converted into monomers for polymerization, comparable to numerous monomers obtained from petroleum. In this work, betulin, a triterpene derivative with antibacterial properties obtained from birch tree bark, was esterified to produce two varieties of α,ω-diene derivatives with different lengths of methylene spacers. These derivatives were then copolymerized with 2,2'-(ethylenedioxy)diethanethiol using thiol-ene photopolymerization. We optimized and confirmed the polymerization parameters such as solvents, catalysts, and monomer concentrations. These analyses allowed for the obtainment of polysulfides with a high molar mass of up to 38.9 kg/mol under the optimized conditions. Furthermore, the polysulfides were converted into polysulfoxides by using a dilute hydrogen peroxide solution. Thermal analysis of the obtained polymers revealed excellent thermal stability (up to 300 °C) and tunable glass transition temperatures depending on their molar mass and composition. We successfully produced fibers with a diameter of approximately 3.9 μm by using the electrospinning technique. The morphology and hydrophobicity of the fibers were analyzed by using scanning electron microscopy and water contact angle analysis. Plant-derived polymeric fibers exhibited good cellular biocompatibility and broad-spectrum antibacterial activity, making them promising candidates for applications in fruit preservation.
Collapse
Affiliation(s)
- Yiding Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
5
|
Mukhtar Gunam Resul MF, Rehman A, Saleem F, Usman M, López Fernández AM, Eze VC, Harvey AP. Recent advances in catalytic and non-catalytic epoxidation of terpenes: a pathway to bio-based polymers from waste biomass. RSC Adv 2023; 13:32940-32971. [PMID: 38025849 PMCID: PMC10630890 DOI: 10.1039/d3ra04870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Epoxides derived from waste biomass are a promising avenue for the production of bio-based polymers, including polyamides, polyesters, polyurethanes, and polycarbonates. This review article explores recent efforts to develop both catalytic and non-catalytic processes for the epoxidation of terpene, employing a variety of oxidizing agents and techniques for process intensification. Experimental investigations into the epoxidation of limonene have shown that these methods can be extended to other terpenes. To optimize the epoxidation of bio-based terpene, there is a need to develop continuous processes that address limitations in mass and heat transfer. This review discusses flow chemistry and innovative reactor designs as part of a multi-scale approach aimed at industrial transformation. These methods facilitate continuous processing, improve mixing, and either eliminate or reduce the need for solvents by enhancing heat transfer capabilities. Overall, the objective of this review is to contribute to the development of commercially viable processes for producing bio-based epoxides from waste biomass.
Collapse
Affiliation(s)
- Mohamad Faiz Mukhtar Gunam Resul
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Abdul Rehman
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of Chemical and Polymer Engineering, University of Engineering and Technology Lahore Faisalabad Campus Pakistan
| | - Faisal Saleem
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of Chemical and Polymer Engineering, University of Engineering and Technology Lahore Faisalabad Campus Pakistan
| | - Muhammd Usman
- Department of Chemical and Polymer Engineering, University of Engineering and Technology Lahore Faisalabad Campus Pakistan
| | | | - Valentine C Eze
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Adam P Harvey
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
6
|
Sudarikov DV, Nikitina LE, Rollin P, Izmest’ev ES, Rubtsova SA. Monoterpene Thiols: Synthesis and Modifications for Obtaining Biologically Active Substances. Int J Mol Sci 2023; 24:15884. [PMID: 37958865 PMCID: PMC10649346 DOI: 10.3390/ijms242115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Monoterpene thiols are one of the classes of natural flavors that impart the smell of citrus fruits, grape must and wine, black currants, and guava and are used as flavoring agents in the food and perfume industries. Synthetic monoterpene thiols have found an application in asymmetric synthesis as chiral auxiliaries, derivatizing agents, and ligands for metal complex catalysis and organocatalysts. Since monoterpenes and monoterpenoids are a renewable source, there are emerging trends to use monoterpene thiols as monomers for producing new types of green polymers. Monoterpene thioderivatives are also known to possess antioxidant, anticoagulant, antifungal, and antibacterial activity. The current review covers methods for the synthesis of acyclic, mono-, and bicyclic monoterpene thiols, as well as some investigations related to their usage for the preparation of the compounds with antimicrobial properties.
Collapse
Affiliation(s)
- Denis V. Sudarikov
- Institute of Chemistry, Federal Research Center “Komi Scientific Center”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia; (E.S.I.); (S.A.R.)
| | - Liliya E. Nikitina
- General and Organic Chemistry Department, Kazan State Medical University, 49 Butlerov St., 420012 Kazan, Russia;
| | - Patrick Rollin
- Institute of Organic and Analytical Chemistry (ICOA), Université d’Orléans et the French National Center for Scientific Research (CNRS), UMR 7311, BP 6759, F-45067 Orléans, France;
| | - Evgeniy S. Izmest’ev
- Institute of Chemistry, Federal Research Center “Komi Scientific Center”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia; (E.S.I.); (S.A.R.)
| | - Svetlana A. Rubtsova
- Institute of Chemistry, Federal Research Center “Komi Scientific Center”, Ural Branch, Russian Academy of Sciences, 167000 Syktyvkar, Russia; (E.S.I.); (S.A.R.)
| |
Collapse
|
7
|
An R, Liu C, Wang J, Jia P. Wood-Derived Polymers from Olefin-Functionalized Lignin and Ethyl Cellulose via Thiol-Ene Click Chemistry. Polymers (Basel) 2023; 15:polym15081923. [PMID: 37112070 PMCID: PMC10140994 DOI: 10.3390/polym15081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lignin and cellulose derivatives have vast potential to be applied in polymer materials. The preparation of cellulose and lignin derivatives through esterification modification is an important method to endow cellulose and lignin with good reactivity, processability and functionality. In this study, ethyl cellulose and lignin are modified via esterification to prepare olefin-functionalized ethyl cellulose and lignin, which are further used to prepare cellulose and lignin cross-linker polymers via thiol-ene click chemistry. The results show that the olefin group concentration in olefin-functionalized ethyl cellulose and lignin reached 2.8096 mmol/g and 3.7000 mmol/g. The tensile stress at break of the cellulose cross-linked polymers reached 23.59 MPa. The gradual enhancement in mechanical properties is positively correlated with the olefin group concentration. The existence of ester groups in the cross-linked polymers and degradation products makes them more thermally stable. In addition, the microstructure and pyrolysis gas composition are also investigated in this paper. This research is of vast significance to the chemical modification and practical application of lignin and cellulose.
Collapse
Affiliation(s)
- Rongrong An
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chengguo Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin North Road, Nanjing 210042, China
| | - Jun Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin North Road, Nanjing 210042, China
| |
Collapse
|
8
|
Guerrero F, Ramis X, De la Flor S, Serra À. Preparation and Characterization of a Series of Self-Healable Bio-Based Poly(thiourethane) Vitrimer-like Materials. Polymers (Basel) 2023; 15:polym15061583. [PMID: 36987363 PMCID: PMC10058196 DOI: 10.3390/polym15061583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A series of poly(thiourethanes) (PTUs) from biobased monomers have been synthesized. Limonene and squalene were transformed into polyfunctional thiols by thiol-ene reaction with thioacetic acid and further saponification. They were then reacted in different proportions with hexamethylene diisocyanate (HDI) in the presence of a catalyst to prepare bio-based poly(thiourethane) vitrimer-like materials. The different functionalities of squalene and limonene thiols (six and two, respectively) allow for changing the characteristics of the final material by only varying their relative proportions in the reactive mixture. The proportions of thiol and isocyanate groups were stoichiometric in all the formulations tested. An acidic and a basic catalyst were tested in the preparation of the networked polymers. As the acidic catalyst, we selected dibutyltin dilaurate (DBTDL), and as the basic catalyst, a tetraphenylborate salt of 1,8-diazabicyclo(5.4.0)undec-7-ene (BGDBU), which has the advantage of only releasing the base at high temperatures. The materials obtained were characterized by thermogravimetry and thermomechanical analysis. The vitrimeric-like behavior was evaluated, and we could see that higher proportions of the limonene derivative in the formulations led to faster stress relaxation of the material. The use of the base catalyst led to a much shorter relaxation time. The materials obtained demonstrated good self-healing efficiency.
Collapse
Affiliation(s)
- Federico Guerrero
- Analytical and Organic Chemistry Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n Edificio N4, 43007 Tarragona, Spain
| | - Xavier Ramis
- Thermodynamics Laboratory, Universitat Politècnica de Catalunya ETSEIB, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Àngels Serra
- Analytical and Organic Chemistry Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n Edificio N4, 43007 Tarragona, Spain
| |
Collapse
|
9
|
Choi G, Oh Y, Jeong S, Chang M, Kim H. Synthesis of Renewable, Recyclable, Degradable Thermosets Endowed with Highly Branched Polymeric Structures and Reinforced with Carbon Fibers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Geunyoung Choi
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Yuree Oh
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Mincheol Chang
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
10
|
Pang S, Chen Z, Li J, Chen Y, Liu Z, Wu H, Duan C, Huang F, Cao Y. High-efficiency organic solar cells processed from a real green solvent. MATERIALS HORIZONS 2023; 10:473-482. [PMID: 36468609 DOI: 10.1039/d2mh01314b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fabrication of organic solar cells (OSCs) depends heavily on the use of highly toxic chlorinated solvents, which are incompatible with industrial manufacturing. The reported alternative solvents such as non-halogenated aromatic hydrocarbons and cyclic ethers are also not really "green" according to the "Globally Harmonized System of Classification and Labelling of Chemicals" of the United Nations. Therefore, processing from real green solvents such as water, alcohols, or anisole will constitute a big breakthrough for OSCs. However, it is fundamentally challenging to obtain high-performance photovoltaic materials processable from these solvents. Herein, we propose the incorporation of a B-N covalent bond, which has a dipole moment of 1.84 Debye, into the conjugated backbone of polymer donors to fabricate high-efficiency OSCs from anisole, a real green and eco-compatible solvent recommended by the United Nations. Based on a newly developed B-N-based polymer, the OSCs with a record-high efficiency of 15.65% in the 0.04 cm2 device and 14.01% in the 1.10 cm2 device have thus been realized via real green processing.
Collapse
Affiliation(s)
- Shuting Pang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zhili Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Institute of Materials for Optoelectronics and New Energy, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Junyu Li
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yuting Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zhitian Liu
- Institute of Materials for Optoelectronics and New Energy, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
11
|
Mouren A, Avérous L. Sustainable cycloaliphatic polyurethanes: from synthesis to applications. Chem Soc Rev 2023; 52:277-317. [PMID: 36520183 DOI: 10.1039/d2cs00509c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyurethanes (PUs) are a versatile and major polymer family, mainly produced via polyaddition between polyols and polyisocyanates. A large variety of fossil-based building blocks is commonly used to develop a wide range of macromolecular architectures with specific properties. Due to environmental concerns, legislation, rarefaction of some petrol fractions and price fluctuation, sustainable feedstocks are attracting significant attention, e.g., plastic waste and biobased resources from biomass. Consequently, various sustainable building blocks are available to develop new renewable macromolecular architectures such as aromatics, linear aliphatics and cycloaliphatics. Meanwhile, the relationship between the chemical structures of these building blocks and properties of the final PUs can be determined. For instance, aromatic building blocks are remarkable to endow materials with rigidity, hydrophobicity, fire resistance, chemical and thermal stability, whereas acyclic aliphatics endow them with oxidation and UV light resistance, flexibility and transparency. Cycloaliphatics are very interesting as they combine most of the advantages of linear aliphatic and aromatic compounds. This original and unique review presents a comprehensive overview of the synthesis of sustainable cycloaliphatic PUs using various renewable products such as biobased terpenes, carbohydrates, fatty acids and cholesterol and/or plastic waste. Herein, we summarize the chemical modification of the main sustainable cycloaliphatic feedstocks, synthesis of PUs using these building blocks and their corresponding properties and subsequently present their major applications in hot-topic fields, including building, transportation, packaging and biomedicine.
Collapse
Affiliation(s)
- Agathe Mouren
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
12
|
Wadgaonkar SP, Wagner M, Baptista LA, Cortes-Huerto R, Frey H, Müller AHE. Anionic Polymerization of the Terpene-Based Diene β-Ocimene: Complex Mechanism Due to Stereoisomer Reactivities. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shivani P. Wadgaonkar
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128Mainz, Germany
| | - Luis Andre Baptista
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128Mainz, Germany
| | | | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128Mainz, Germany
| | - Axel H. E. Müller
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128Mainz, Germany
| |
Collapse
|
13
|
Burelo M, Gutiérrez S, Treviño-Quintanilla CD, Cruz-Morales JA, Martínez A, López-Morales S. Synthesis of Biobased Hydroxyl-Terminated Oligomers by Metathesis Degradation of Industrial Rubbers SBS and PB: Tailor-Made Unsaturated Diols and Polyols. Polymers (Basel) 2022; 14:polym14224973. [PMID: 36433100 PMCID: PMC9692933 DOI: 10.3390/polym14224973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Biobased hydroxyl-terminated polybutadiene (HTPB) was successfully synthesized in a one-pot reaction via metathesis degradation of industrial rubbers. Thus, polybutadiene (PB) and poly(styrene-butadiene-styrene) (SBS) were degraded via metathesis with high yields (>94%), using the fatty alcohol 10-undecen-1-ol as a chain transfer agent (CTA) and the second-generation Grubbs−Hoveyda catalyst. The identification of the hydroxyl groups (-OH) and the formation of biobased HTPB were verified by FT-IR and NMR. Likewise, the molecular weight and properties of the HTPB were controlled by changing the molar ratio of rubber to CTA ([C=C]/CTA) from 1:1 to 100:1, considering a constant molar ratio of the catalyst ([C=C]/Ru = 500:1). The number average molecular weight (Mn) ranged between 583 and 6580 g/mol and the decomposition temperatures between 134 and 220 °C. Moreover, the catalyst optimization study showed that at catalyst loadings as low as [C=C]/Ru = 5000:1, the theoretical molecular weight is in good agreement with the experimental molecular weight and the expected diols and polyols are formed. At higher ratios than those, the difference between theoretical and experimental molecular weight is wide, and there is no control over HTPB. Therefore, the rubber/CTA molar ratio and the amount of catalyst play an important role in PB degradation and HTPB synthesis. Biobased HTPB can be used to synthesize engineering design polymers, intermediates, fine chemicals, and in the polyurethane industry, and contribute to the development of environmentally friendly raw materials.
Collapse
Affiliation(s)
- Manuel Burelo
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro 76146, Mexico
- Correspondence: (M.B.); (S.G.); (C.D.T.-Q.)
| | - Selena Gutiérrez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
- Correspondence: (M.B.); (S.G.); (C.D.T.-Q.)
| | - Cecilia D. Treviño-Quintanilla
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro 76146, Mexico
- Correspondence: (M.B.); (S.G.); (C.D.T.-Q.)
| | - Jorge A. Cruz-Morales
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Araceli Martínez
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex. Hacienda de San José de la Huerta, Morelia 58190, Michoacán, Mexico
| | - Salvador López-Morales
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
14
|
Sustainable ABA triblock methacrylate copolymers incorporating both high and low Tg terpene-derived monomers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Vemuri GN, Hughes JR, Iovine PM. Synthesis and characterization of terpene-derived cationic bolaamphiphiles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Sahu P, Oh JS. Biobased Elastomer from Renewable Biomass β-Farnesene: Synthesis, Characterization, and Properties. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pranabesh Sahu
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, 501, Jinju-daero, Jinju 52828, Republic of Korea
| | - Jeong Seok Oh
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, 501, Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
17
|
Zhang J, Aydogan C, Patias G, Smith T, Al-Shok L, Liu H, Eissa AM, Haddleton DM. Polymerization of Myrcene in Both Conventional and Renewable Solvents: Postpolymerization Modification via Regioselective Photoinduced Thiol-Ene Chemistry for Use as Carbon Renewable Dispersants. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:9654-9664. [PMID: 35935282 PMCID: PMC9344384 DOI: 10.1021/acssuschemeng.2c03755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Polymeric dispersants are useful materials used in many different industries and often derived from oil-based chemicals, for example, in automotive fluids so as to prevent particulates from precipitation and causing potential damage. These are very often polyisobutene derivatives, and there is a growing need to replace these using chemicals using renewable resources such as the use of naturally occurring myrcene. Polymyrcene (PMy), with an ordered microstructure, has been successfully synthesized via both anionic and radical polymerization in different solvents and subsequently subjected to functionalization via photoinduced thiol-ene click reactions with a number of thiols, methyl thioglycolate, 3-mercaptopropionic acid, 3-mercapto-1-hexanol, 2-mercaptoethanol, and 1-thioglycerol, using 2,2-dimethoxy-2-phenylacetophenone as a photoinitiator under UV irradiation (λ = 365 nm) at ambient temperature. The polarity of the solvent has an important impact on the microstructure of the produced polymyrcene and, in particular, 1,2-unit (∼4%), 3,4-unit (∼41%), and 1,4-unit (∼51%) PMy were obtained via anionic polymerization in a polar solvent (THF) at ambient temperature, while 3,4-unit (∼6%) and 1,4-unit (∼94%, including cis and trans) PMy were obtained with cyclohexane as the solvent. Subsequently, photochemical thiol-ene reactions were carried out on the resulting PMy with different isomers exhibiting different reactivities of the double bonds. This strategy allows for the introduction of functional/polar groups (-COOH, -OH) into hydrophobic PMy in a controlled process. Hydrogenation of PMy and derivatized PMy was carried out to investigate any effects on the stabilities of the products which are desirable for many applications.
Collapse
Affiliation(s)
- Jirui Zhang
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United
Kingdom
| | - Cansu Aydogan
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United
Kingdom
| | - Georgios Patias
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United
Kingdom
| | - Timothy Smith
- Lubrizol,
Ltd., Nether Lane, Hazelwood, Derbyshire DE56 4AN, United Kingdom
| | - Lucas Al-Shok
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United
Kingdom
| | - Huizhe Liu
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United
Kingdom
| | - Ahmed M. Eissa
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United
Kingdom
| | - David M. Haddleton
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United
Kingdom
| |
Collapse
|
18
|
Eze VC, Rehman A, Patel M, Ahmad S, Harvey AP. Synthesis of cyclic α-pinane carbonate - a potential monomer for bio-based polymers. RSC Adv 2022; 12:17454-17465. [PMID: 35765421 PMCID: PMC9192141 DOI: 10.1039/d1ra07943c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
This work reports the first known synthesis of α-pinane carbonate from an α-pinene derivative. Pinane carbonate is potentially useful as a monomer for poly(pinane carbonate), which would be a sustainable bio-based polymer. α-Pinene is a major waste product from the pulp and paper industries and the most naturally abundant monoterpene in turpentine oil. α-Pinene is routinely converted to pinene oxide and pinanediol, but no study has yet demonstrated the conversion of pinanediol into α-pinane carbonate. Here, α-pinane carbonate was synthesised via carboxylation of α-pinanediol with dimethyl carbonate under base catalysis using triazabicyclodecene guanidine (TBD). 81.1 ± 2.8% α-pinane carbonate yield was achieved at 98.7% purity. The produced α-pinane carbonate was a white crystalline solid with a melting point of 86 °C. It was characterised using FTIR, NMR, GCMS and a quadrupole time-of-flight (QTOF) mass spectrometer. The FTIR exhibited a C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O peak at 1794 cm−1 confirming the presence of a cyclic carbonate. GCMS showed that the α-pinane carbonate fragments with loss of CO2, forming pinene epoxide. Base hydrolysis of the α-pinane carbonate using NaOH/ethanol/water regenerated the pinanediol with formations of Na2CO3. Synthesis of α-pinane carbonate from an α-pinene derivative.![]()
Collapse
Affiliation(s)
- Valentine C Eze
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Abdul Rehman
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK.,Department of Chemical and Polymer Engineering, University of Engineering and Technology Lahore Faisalabad Campus Pakistan
| | - Manthan Patel
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Sajjad Ahmad
- Department of Chemical and Polymer Engineering, University of Engineering and Technology Lahore Faisalabad Campus Pakistan
| | - Adam P Harvey
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
19
|
Acosta Ortiz R, Sánchez Huerta RS, Ledezma Pérez AS, García Valdez AE. Synthesis of a Curing Agent Derived from Limonene and the Study of Its Performance to Polymerize a Biobased Epoxy Resin Using the Epoxy/Thiol-Ene Photopolymerization Technique. Polymers (Basel) 2022; 14:2192. [PMID: 35683863 PMCID: PMC9182678 DOI: 10.3390/polym14112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022] Open
Abstract
This study describes the synthesis of a curing agent derived from limonene as well as its application to prepare biobased thermoset polymers via the epoxy/thiol-ene photopolymerization (ETE) method. A biobased commercial epoxy resin was used to synthesize a crosslinked polymeric matrix of polyether-polythioether type. The preparation of the curing agent required two steps. First, a diamine intermediate was prepared by means of a thiol-ene coupling reaction between limonene and cysteamine hydrochloride. Second, the primary amino groups of the intermediate compound were alkylated using allyl bromide. The obtained ditertiary amine-functionalized limonene compound was purified and characterized by FTIR and NMR spectroscopies along with GC-MS. The curing agent was formulated with a tetrafunctional thiol in stoichiometric ratio, and a photoinitiator at 1 mol % concentration, as the components of a thiol-ene system (TES). Two formulations were prepared in which molar concentrations of 30 and 40 mol % of the TES were added to the epoxy resin. The kinetics of the ETE photopolymerizations were determined by means of Real-Time FTIR spectroscopy, which demonstrated high reactivity by observing photopolymerization rates in the range of 1.50-2.25 s-1 for the epoxy, double bonds and thiol groups. The obtained polymers were analyzed by thermal and thermo-mechanical techniques finding glass transition temperatures (Tg) of 60 °C and 52 °C for the polymers derived from the formulations with 30 mol % and 40 mol % of TES, respectively. Potential applications for these materials can be foreseen in the area of coatings.
Collapse
Affiliation(s)
- Ricardo Acosta Ortiz
- Centro de Investigación en Química Aplicada, Blvd Enrique Reyna No. 140, Saltillo ZC 25294, Coahuila, Mexico; (R.S.S.H.); (A.S.L.P.); (A.E.G.V.)
| | | | | | | |
Collapse
|
20
|
Constant E, King O, Weems AC. Bioderived 4D Printable Terpene Photopolymers from Limonene and β-Myrcene. Biomacromolecules 2022; 23:2342-2352. [PMID: 35608477 DOI: 10.1021/acs.biomac.2c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Green manufacturing and reducing our cultural dependency on petrochemicals have been topics of growing interest in the past decade, particularly for three-dimensional (3D) printable photopolymers where often toxic solvents and reagents have been required. Here, a simple solvent-free, free-radical polymerization is utilized to homo- and copolymerize limonene and β-myrcene monomers to produce oligomeric photopolymers (Mn < 11 kDa) displaying Newtonian, low viscosities (∼10 Pa × s) suitable for thiol-ene photo-cross-linking, yielding photoset materials in a digital light processing (DLP)-type 3D printer. The resulting photosets display tunable thermomechanical properties (poly(limonene) displays elastic moduli exceeding 1 GPa) compared with previous works focusing on monomeric terpenes as well as four-dimensional (4D) shape memory behavior. The utility of such photopolymers for biomedical applications is briefly considered on the premise of the hydrophilic nature (measured by contact angle) as well as their cytocompatibility upon seeding films with macrophages. These terpene-derived, green 4D photopolymers are shown to have promising physical behaviors suitable for an array of manufacturing and 3D printing applications.
Collapse
Affiliation(s)
- Eric Constant
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Olivia King
- Molecular and Chemical Biology, Ohio University, Athens, Ohio 45701, United States
| | - Andrew C Weems
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States.,Molecular and Chemical Biology, Ohio University, Athens, Ohio 45701, United States.,Department of Mechanical Engineering, Translational Biosciences, Orthopedic and Musculoskeletal Neurological Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
21
|
Hahn C, Wagner M, Müller AHE, Frey H. MyrDOL, a Protected Dihydroxyfunctional Diene Monomer Derived from β-Myrcene: Functional Polydienes from Renewable Resources via Anionic Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph Hahn
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
- Max Planck Graduate Center Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Axel H. E. Müller
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
22
|
Mohaman H, Tuncer D, Degirmenci I. Thiol‐Ene Polymerization of Natural Monomers: A DFT Study. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hamissou Mohaman
- Chemical Engineering Department Ondokuz Mayıs University Samsun 55139 Turkey
- CEISAM Laboratory Nantes University Nantes 44300 France
| | - Dilan Tuncer
- Chemical Engineering Department Ondokuz Mayıs University Samsun 55139 Turkey
| | - Isa Degirmenci
- Chemical Engineering Department Ondokuz Mayıs University Samsun 55139 Turkey
| |
Collapse
|
23
|
Honeycutt DS, Charbonneau WF, North AJ, Cobb SL, Lohmann D, Miri MJ. Effects of alkyl and phenyl-substituted 1,3-propanediols on the synthesis and properties of polyesters with 2,5-furandicarboxylic acid. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
de la Cruz-Martínez F, Castro-Osma JA, Lara-Sánchez A. Catalytic synthesis of bio-sourced organic carbonates and sustainable hybrid materials from CO2. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Bonjour O, Nederstedt H, Arcos-Hernandez MV, Laanesoo S, Vares L, Jannasch P. Lignin-Inspired Polymers with High Glass Transition Temperature and Solvent Resistance from 4-Hydroxybenzonitrile, Vanillonitrile, and Syringonitrile Methacrylates. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:16874-16880. [PMID: 34956739 PMCID: PMC8693774 DOI: 10.1021/acssuschemeng.1c07048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/02/2021] [Indexed: 06/14/2023]
Abstract
We here report on the synthesis and polymerization of nitrile-containing methacrylate monomers, prepared via straightforward nitrilation of the corresponding lignin-inspired aldehyde. The polymethacrylates reached exceptionally high glass transition temperatures (T g values), i.e., 150, 164, and 238 °C for the 4-hydroxybenzonitrile, vanillonitrile, and syringonitrile derivatives, respectively, and were thermally stable up to above 300 °C. Copolymerizations of the nitrile monomers with styrene and methyl methacrylate, respectively, gave potentially melt processable materials with tunable T g values and enhanced solvent resistance. The use of lignin-derived nitrile-containing monomers represents an efficient strategy toward well-defined biobased high T g polymer materials.
Collapse
Affiliation(s)
- Olivier Bonjour
- Center
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Hannes Nederstedt
- Center
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Monica V. Arcos-Hernandez
- Center
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Siim Laanesoo
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Lauri Vares
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Patric Jannasch
- Center
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
26
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Gomez Fernandez MA, Nascimento de Oliveira M, Zanetti A, Schwertz G, Cossy J, Amara Z. Photochemical Hydrothiolation of Amorphadiene and Formal Synthesis of Artemisinin via a Pummerer Rearrangement. Org Lett 2021; 23:5593-5598. [PMID: 33900782 DOI: 10.1021/acs.orglett.1c00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new access to artemisinin is reported based on a selective photochemical hydrothiolation of amorphadiene, a waste product of the industrial semisynthetic route. This study highlights the discovery of two distinctive activation pathways under solvent-free conditions or using a photocatalyst promoting H-abstraction. Subsequently, a chemoselective oxidation of the resulting photochemically generated thioether, followed by a Pummerer rearrangement, affords dihydroartemisinic aldehyde, a key intermediate in the synthesis of artemisinin.
Collapse
Affiliation(s)
- Mario Andrés Gomez Fernandez
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| | - Marllon Nascimento de Oliveira
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| | - Andrea Zanetti
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Geoffrey Schwertz
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Zacharias Amara
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| |
Collapse
|
28
|
Maraveas C, Bayer IS, Bartzanas T. Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications. Polymers (Basel) 2021; 13:polym13152465. [PMID: 34372069 PMCID: PMC8347842 DOI: 10.3390/polym13152465] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Advances in technology have led to the production of sustainable antioxidants and natural monomers for food packaging and targeted drug delivery applications. Of particular importance is the synthesis of lignin polymers, and graft polymers, dopamine, and polydopamine, inulin, quercetin, limonene, and vitamins, due to their free radical scavenging ability, chemical potency, ideal functional groups for polymerization, abundance in the natural environment, ease of production, and activation of biological mechanisms such as the inhibition of the cellular activation of various signaling pathways, including NF-κB and MAPK. The radical oxygen species are responsible for oxidative damage and increased susceptibility to cancer, cardiovascular, degenerative musculoskeletal, and neurodegenerative conditions and diabetes; such biological mechanisms are inhibited by both synthetic and naturally occurring antioxidants. The orientation of macromolecules in the presence of the plasticizing agent increases the suitability of quercetin in food packaging, while the commercial viability of terpenes in the replacement of existing non-renewable polymers is reinforced by the recyclability of the precursors (thyme, cannabis, and lemon, orange, mandarin) and marginal ecological effect and antioxidant properties. Emerging antioxidant nanoparticle polymers have a broad range of applications in tumor-targeted drug delivery, food fortification, biodegradation of synthetic polymers, and antimicrobial treatment and corrosion inhibition. The aim of the review is to present state-of-the-art polymers with intrinsic antioxidant properties, including synthesis scavenging activity, potential applications, and future directions. This review is distinct from other works given that it integrates different advances in antioxidant polymer synthesis and applications such as inulin, quercetin polymers, their conjugates, antioxidant-graft-polysaccharides, and polymerization vitamins and essential oils. One of the most comprehensive reviews of antioxidant polymers was published by Cirillo and Iemma in 2012. Since then, significant progress has been made in improving the synthesis, techniques, properties, and applications. The review builds upon existing research by presenting new findings that were excluded from previous reviews.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
- Correspondence: (C.M.); (I.S.B.)
| | - Ilker S. Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Correspondence: (C.M.); (I.S.B.)
| | - Thomas Bartzanas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
29
|
Wahlen C, Frey H. Anionic Polymerization of Terpene Monomers: New Options for Bio-Based Thermoplastic Elastomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00770] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christian Wahlen
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
30
|
Yarolimek MR, Bookbinder HR, Coia BM, Kennemur JG. Ring-Opening Metathesis Polymerization of δ-Pinene: Well-Defined Polyolefins from Pine Sap. ACS Macro Lett 2021; 10:760-766. [PMID: 35549097 DOI: 10.1021/acsmacrolett.1c00284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Well-controlled ring-opening metathesis polymerization (ROMP) of δ-pinene is reported. The monomer is produced through a facile, metal-free, three-step synthesis from highly abundant and sustainable α-pinene. Using Grubbs third-generation catalyst, δ-pinene undergoes ROMP to high conversion (>95%) with molar mass up to 70 kg mol-1 and narrow dispersity (<1.2). A highly regioregular propagation mechanism was concluded by NMR spectroscopic analysis that revealed a head-to-tail (HT, >95%) microstructure and high trans content (>98%). Successful ROMP is corroborated with density functional theory calculations on δ-pinene's ring strain energy (∼35 kJ mol-1). Poly(δ-pinene) has a high glass transition temperature (∼104 °C) and a unique chiral microstructure bearing gem-dimethylcyclobutane rings. Controlled ROMP also allowed the synthesis of block copolymers containing segments of poly(δ-pinene) and polynorbornene which are discussed. Finally, bulk polymerization of δ-pinene is possible, indicating a greener approach to these materials, albeit with some loss of control.
Collapse
Affiliation(s)
- Mark R. Yarolimek
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Heather R. Bookbinder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Brianna M. Coia
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
31
|
Montanari C, Ogawa Y, Olsén P, Berglund LA. High Performance, Fully Bio-Based, and Optically Transparent Wood Biocomposites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100559. [PMID: 34194952 PMCID: PMC8224414 DOI: 10.1002/advs.202100559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 05/05/2023]
Abstract
The sustainable development of engineering biocomposites has been limited due to a lack of bio-based monomers combining favorable processing with high performance. Here, the authors report a novel and fully bio-based transparent wood biocomposite based on green synthesis of a new limonene acrylate monomer from renewable resources. The monomer is impregnated and readily polymerized in a delignified, succinylated wood substrate to form optically transparent biocomposites. The chemical structure of the limonene acrylate enables diffusion into the cell wall, and the polymer phase is both refractive index-matched and covalently linked to the wood substrate. This results in nanostructured biocomposites combining an excellent optical transmittance of 90% at 1.2 mm thickness and a remarkably low haze of 30%, with a high mechanical performance (strength 174 MPa, Young's modulus 17 GPa). Bio-based transparent wood holds great potential towards the development of sustainable wood nanotechnologies for structural applications, where transparency and mechanical performance are combined.
Collapse
Affiliation(s)
- Céline Montanari
- Department of Fibre and Polymer TechnologyWallenberg Wood Science CenterKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| | - Yu Ogawa
- Université Grenoble AlpesCNRSCERMAVGrenoble38000France
| | - Peter Olsén
- Department of Fibre and Polymer TechnologyWallenberg Wood Science CenterKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| | - Lars A. Berglund
- Department of Fibre and Polymer TechnologyWallenberg Wood Science CenterKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| |
Collapse
|
32
|
Plant oil-based polymers. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polymer materials derived from natural resources have gained increasing attention in recent years because of the uncertainties concerning petroleum supply and prices in the future as well as their environmental pollution problems. As one of the most abundant renewable resources, plant oils are suitable starting materials for polymers because of their low cost, the rich chemistry that their triglyceride structure provides, and their potential biodegradability. This chapter covers the structure, modification of triglycerides and their derivatives as well as synthesis of polymers therefrom. The remarkable advances during the last two decades in organic synthesis using plant oils and the basic oleochemicals derived from them are selectively reported and updated. Various methods, such as condensation, radical/cationic polymerization, metathesis procedure, and living polymerization, have also been applied in constructing oil-based polymers. Based on the advance of these changes, traditional polymers such as polyamides, polyesters, and epoxy resins have been renewed. Partial oil-based polymers have already been applied in some industrial areas and recent developments in this field offer promising new opportunities.
Collapse
|
33
|
UV Polymerization of Methacrylates-Preparation and Properties of Novel Copolymers. Polymers (Basel) 2021; 13:polym13101659. [PMID: 34065176 PMCID: PMC8161330 DOI: 10.3390/polym13101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
More environmentally friendly polymeric materials for use in corrosive conditions were obtained in the process of UV polymerization of terpene methacrylate monomers: geranyl methacrylate and citronellyl methacrylate and the commercially available monomer methyl methacrylate. Selected properties (solvent resistance, chemical resistance, glass transition temperature, thermal stability, and decomposition course during heating) were evaluated. It was found that the properties of the materials directly depended on the monomer percentage and the conditioning temperatures used. An increase in the geranyl or citronellyl methacrylate monomer content in the copolymers reduced the solubility and chemical resistance of the materials post-cured at 50 °C. The samples post-cured at 120 °C were characterized by high resistance to polar and non-polar solvents and the chemical environment, regardless of the percentage composition. The glass transition temperatures for samples conditioned at 120 °C increased with increasing content of methyl methacrylate in the copolymers. The thermal stability of copolymers depended on the conditioning temperatures used. It was greater than 200 °C for most copolymers post-cured at 120 °C. The process of pyrolysis of copolymers led to the emission of geranyl methacrylate, citronellyl methacrylate, and methyl methacrylate monomers as the main pyrolysis volatiles.
Collapse
|
34
|
Dev A, Rösler A, Schlaad H. Limonene as a renewable unsaturated hydrocarbon solvent for living anionic polymerization of β-myrcene. Polym Chem 2021. [DOI: 10.1039/d1py00570g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The acyclic monoterpene β-myrcene is polymerized by living anionic polymerization at room temperature using the cyclic monoterpene limonene as an unsaturated hydrocarbon solvent.
Collapse
Affiliation(s)
- Akhil Dev
- University of Potsdam
- Institute of Chemistry
- 14476 Potsdam
- Germany
| | | | - Helmut Schlaad
- University of Potsdam
- Institute of Chemistry
- 14476 Potsdam
- Germany
| |
Collapse
|
35
|
Palenzuela M, Sánchez-Roa D, Damián J, Sessini V, Mosquera ME. Polymerization of terpenes and terpenoids using metal catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Asli UA, Azman NR, Abidin MHSZ, Sakaria ND, Abd-Talib N, Pa’ee KF, Len KYT. Green solvents for bioremediation. GREEN SUSTAINABLE PROCESS FOR CHEMICAL AND ENVIRONMENTAL ENGINEERING AND SCIENCE 2021:239-256. [DOI: 10.1016/b978-0-12-821884-6.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
37
|
Yarolimek MR, Coia BM, Bookbinder HR, Kennemur JG. Investigating the effect of α-pinene on the ROMP of δ-pinene. Polym Chem 2021. [DOI: 10.1039/d1py00931a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ring opening metathesis polymerization of δ-pinene with varying amounts of α-pinene is explored.
Collapse
Affiliation(s)
- Mark R. Yarolimek
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Brianna M. Coia
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Heather R. Bookbinder
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Justin G. Kennemur
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
38
|
Atkinson RL, Monaghan OR, Elsmore MT, Topham PD, Toolan DTW, Derry MJ, Taresco V, Stockman RA, De Focatiis DSA, Irvine DJ, Howdle SM. RAFT polymerisation of renewable terpene (meth)acrylates and the convergent synthesis of methacrylate–acrylate–methacrylate triblock copolymers. Polym Chem 2021. [DOI: 10.1039/d1py00326g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We now report the synthesis of well-defined terpene-based polymers and precise di- and multiblock copolymer architectures by use of RAFT, wide range of Tg and promising adhesive properties are observed.
Collapse
Affiliation(s)
| | | | | | - Paul D. Topham
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
| | - Daniel T. W. Toolan
- Department of Chemistry
- The University of Sheffield
- Dainton Building
- The University of Sheffield
- Sheffield S3 7HF
| | - Matthew J. Derry
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
| | | | | | | | | | | |
Collapse
|
39
|
Drozdov FV, Cherkaev GV, Muzafarov AM. Synthesis of new siloxane or sulfur containing symmetrical monomers based on carvone. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1804141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fedor V. Drozdov
- Organosilicon Compounds Division, N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russian Federation
| | - Georgij V. Cherkaev
- Organosilicon Compounds Division, N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russian Federation
| | - Aziz M. Muzafarov
- Organosilicon Compounds Division, N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russian Federation
- Organosilicon Compounds Division, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
40
|
Bareuther J, Plank M, Kuttich B, Kraus T, Frey H, Gallei M. Temperature Variation Enables the Design of Biobased Block Copolymers via One-Step Anionic Copolymerization. Macromol Rapid Commun 2020; 42:e2000513. [PMID: 33047426 DOI: 10.1002/marc.202000513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Indexed: 12/23/2022]
Abstract
A one-pot approach for the preparation of diblock copolymers consisting of polystyrene and polymyrcene blocks is described via a temperature-induced block copolymer (BCP) formation strategy. A monomer mixture of styrene and myrcene is employed. The unreactive nature of myrcene in a polar solvent (tetrahydrofuran) at -78 °C enables the sole formation of active polystyrene macroinitiators, while an increase of the temperature (-38 °C to room temperature) leads to poly(styrene-block-myrcene) formation due to polymerization of myrcene. Well-defined BCPs featuring molar masses in the range of 44-117.2 kg mol-1 with dispersities, Ð, of 1.09-1.21, and polymyrcene volume fractions of 30-64% are accessible. Matrix assisted laser desorption ionization-time of flight mass spectrometry measurements reveal the temperature-controlled polymyrcene block formation, while both transmission electron microscopy and small-angle X-ray scattering measurements prove the presence of clearly microphase-separated, long range-ordered domains in the block copolymers. The temperature-controlled one-pot anionic block copolymerization approach may be general for other terpene-diene monomers.
Collapse
Affiliation(s)
- Jennifer Bareuther
- Ernst-Berl-Institute of Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Martina Plank
- Ernst-Berl-Institute of Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Björn Kuttich
- INM-Leibniz-Institute for New Materials, Campus D2 2, Saarland University, Saarbrücken, 66123, Germany
| | - Tobias Kraus
- INM-Leibniz-Institute for New Materials, Campus D2 2, Saarland University, Saarbrücken, 66123, Germany.,Colloid and Interface Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, Saarbrücken, 66123, Germany
| |
Collapse
|
41
|
Fernández-Baeza J, Sánchez-Barba LF, Lara-Sánchez A, Sobrino S, Martínez-Ferrer J, Garcés A, Navarro M, Rodríguez AM. NNC-Scorpionate Zirconium-Based Bicomponent Systems for the Efficient CO 2 Fixation into a Variety of Cyclic Carbonates. Inorg Chem 2020; 59:12422-12430. [PMID: 32811145 DOI: 10.1021/acs.inorgchem.0c01532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two new derivatives of the bis(3,5-dimethylpyrazol-1-yl)methane modified by introduction of organosilyl groups on the central carbon atom, one of which bearing a chiral fragment, have been easily prepared. We verified the potential utility of these compounds through the reaction with [Zr(NMe2)4] for the preparation of novel zirconium complexes in which an ancillary bis(pyrazol-1-yl)methanide acts as a robust monoanionic tridentate scorpionate in a κ3-NNC chelating mode, forming strained four-membered heterometallacycles. These κ3-NNC-scorpionate zirconium amides were investigated as catalysts in combination with tetra-n-butylammonium bromide as cocatalyst for CO2 fixation into five-membered cyclic carbonate products. The study has led to the development of an efficient zirconium-based bicomponent system for the selective cycloaddition reaction of CO2 with epoxides. Kinetics investigations confirmed apparent first-order dependence on the catalyst and cocatalyst concentrations. In addition, this system displays very broad substrate scope, including mono- and disubstituted substrates, as well as the challenging biorenewable terpene derived limonene oxide, under mild and solvent-free conditions.
Collapse
Affiliation(s)
- Juan Fernández-Baeza
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Luis F Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Sonia Sobrino
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Jaime Martínez-Ferrer
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Andrés Garcés
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Marta Navarro
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| |
Collapse
|
42
|
Montanari U, Taresco V, Liguori A, Gualandi C, Howdle SM. Synthesis of novel carvone (meth)acrylate monomers for the production of hydrophilic polymers with high terpene content. POLYM INT 2020. [DOI: 10.1002/pi.6096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ulisse Montanari
- School of Chemistry University of Nottingham, University Park Nottingham UK
| | - Vincenzo Taresco
- School of Chemistry University of Nottingham, University Park Nottingham UK
| | - Anna Liguori
- Department of Chemistry ‘Giacomo Ciamician’ and INSTM UdR of Bologna University of Bologna Bologna Italy
| | - Chiara Gualandi
- Department of Chemistry ‘Giacomo Ciamician’ and INSTM UdR of Bologna University of Bologna Bologna Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI‐MAM University of Bologna Bologna Italy
| | - Steven M Howdle
- School of Chemistry University of Nottingham, University Park Nottingham UK
| |
Collapse
|
43
|
Banwell MG, Liu X, Connal LA, Gardiner MG. Synthesis of Functionally and Stereochemically Diverse Polymers via Ring-Opening Metathesis Polymerization of Derivatives of the Biomass-Derived Platform Molecule Levoglucosenone Produced at Industrial Scale. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin G. Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Liu
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Michael G. Gardiner
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
44
|
Maltby KA, Hutchby M, Plucinski P, Davidson MG, Hintermair U. Selective Catalytic Synthesis of 1,2- and 8,9-Cyclic Limonene Carbonates as Versatile Building Blocks for Novel Hydroxyurethanes. Chemistry 2020; 26:7405-7415. [PMID: 32077537 PMCID: PMC7317810 DOI: 10.1002/chem.201905561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/19/2022]
Abstract
The selective catalytic synthesis of limonene-derived monofunctional cyclic carbonates and their subsequent functionalisation via thiol-ene addition and amine ring-opening is reported. A phosphotungstate polyoxometalate catalyst used for limonene epoxidation in the 1,2-position is shown to also be active in cyclic carbonate synthesis, allowing a two-step, one-pot synthesis without intermittent epoxide isolation. When used in conjunction with a classical halide catalyst, the polyoxometalate increased the rate of carbonation in a synergistic double-activation of both substrates. The cis isomer is shown to be responsible for incomplete conversion and by-product formation in commercial mixtures of 1,2-limomene oxide. Carbonation of 8,9-limonene epoxide furnished the 8,9-limonene carbonate for the first time. Both cyclic carbonates underwent thiol-ene addition reactions to yield linked di-monocarbonates, which can be used in linear non-isocyanate polyurethanes synthesis, as shown by their facile ring-opening with N-hexylamine. Thus, the selective catalytic route to monofunctional limonene carbonates gives straightforward access to monomers for novel bio-based polymers.
Collapse
Affiliation(s)
- Katarzyna A Maltby
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| | - Marc Hutchby
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| | - Pawel Plucinski
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| | - Matthew G Davidson
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| | - Ulrich Hintermair
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY, Bath, UK
| |
Collapse
|
45
|
Abstract
The limited source of fossil-fuel and the predominance of petroleum-based chemistry in the manufacturing of commodity polymers has generated tremendous interest in replacing the fossil source-based polymers with renewable counterparts. The field of sustainable elastomers has grown in the past three decades, from a few examples to a plethora of reports in modern polymer science and technology. Applications of elastomers are huge and vital for everyday living. The present review aims to portray a birds-eye view of various sustainable elastomers obtained from the wide family of acyclic terpenes (renewable feedstocks from different plant oils) via various polymerization techniques and their properties, as well as plausible developments in the future applications of sustainable polymers. Not only the homopolymers, but also their copolymers with both green and commercial fossil based comonomers, are reviewed.
Collapse
|
46
|
Lanteri D, Quattrosoldi S, Soccio M, Basso A, Cavallo D, Munari A, Riva R, Lotti N, Moni L. Regioselective Photooxidation of Citronellol: A Way to Monomers for Functionalized Bio-Polyesters. Front Chem 2020; 8:85. [PMID: 32117900 PMCID: PMC7031484 DOI: 10.3389/fchem.2020.00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Dye-sensitized photooxygenation reaction of bio-based double bond-containing substrates is proposed as sustainable functionalization of terpenes and terpenoids to transform them into polyoxygenated compounds to be employed for the synthesis of new bio-based polyesters. As proof of concept, citronellol 1 has been regioselectively converted into diol 4 using singlet oxygen (1O2), a traceless reagent that can be generated from air, visible light and zeolite supported-photosensitizer (Thionine-NaY). With our synthetic approach, diol 4 has been obtained in two-steps, with good regioselectivity, using green reagents such as light and air, and finally a solvent-free oxidation step. From this compound, a citronellol-based copolyester of poly(butylene succinate) (PBS) has been synthesized and fully characterized. The results obtained evidence that the proposed copolymerization of PBS with the citronellol-based building blocks allows to obtain a more flexible and functionalizable material, by exploiting a largely available natural molecule modified through a green synthetic path.
Collapse
Affiliation(s)
- Deianira Lanteri
- Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy
| | - Silvia Quattrosoldi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy
| | - Andrea Munari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Renata Riva
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy
| |
Collapse
|
47
|
Mahato N, Sharma K, Sinha M, Baral ER, Koteswararao R, Dhyani A, Hwan Cho M, Cho S. Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: A review. J Adv Res 2020; 23:61-82. [PMID: 32082624 DOI: 10.1016/j.jare.2020.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/26/2023] Open
Abstract
Citrus waste includes peels, pulp and membrane residue and seeds, constituting approximately 40-60% of the whole fruit. This amount exceeds ~110-120 million tons annually worldwide. Recent investigations have been focused on developing newer techniques to explore various applications of the chemicals obtained from the citrus wastes. The organic acids obtained from citrus waste can be utilized in developing biodegradable polymers and functional materials for food processing, chemical and pharmaceutical industries. The peel microstructures have been investigated to create bio-inspired materials. The peel residue can be processed to produce fibers and fabrics, 3D printed materials, carbon nanodots for bio-imaging, energy storage materials and nanostructured materials for various applications so as to leave no waste at all. The article reviews recent advances in scientific investigations to produce valuable products from citrus wastes and possibilities of innovating future materials and promote zero remaining waste for a cleaner environment for future generation.
Collapse
Affiliation(s)
- Neelima Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kavita Sharma
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.,Department of Chemistry, Idaho State University, Pocatello 83209, ID, USA
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India
| | - Ek Raj Baral
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rakoti Koteswararao
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India
| | - Archana Dhyani
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sunghun Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
48
|
Navarro M, Sánchez-Barba LF, Garcés A, Fernández-Baeza J, Fernández I, Lara-Sánchez A, Rodríguez AM. Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00593b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The binuclear aluminum complexes [AlR2(κ2-NN′;κ2-NN′)AlR2] with TBAB/PPNCl behave as excellent systems for cyclic carbonate formation from CO2 with challenging epoxides.
Collapse
Affiliation(s)
- Marta Navarro
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Luis F. Sánchez-Barba
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Andrés Garcés
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Juan Fernández-Baeza
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- Madrid
- Spain
| | - Agustín Lara-Sánchez
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| |
Collapse
|
49
|
Abstract
The use of renewable terpene-based monomers for the preparation of sustainable functional polymers is highlighted.
Collapse
Affiliation(s)
- Francesco Della Monica
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute for Science & Technology (BIST)
- 43007 Tarragona
- Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute for Science & Technology (BIST)
- 43007 Tarragona
- Spain
- Catalan Institute for Research and Advanced Studies (ICREA)
| |
Collapse
|
50
|
Xiong Q, Zhang X, Wei W, Wei G, Su Z. Enzyme-mediated reversible deactivation radical polymerization for functional materials: principles, synthesis, and applications. Polym Chem 2020. [DOI: 10.1039/d0py00136h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enzymes provide a potential and highly efficient way to mediate the formation of various functional polymer materials with wide applications.
Collapse
Affiliation(s)
- Qingyun Xiong
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Xiaoyuan Zhang
- Chair of Materials Science (CMS)
- Otto Schott Institute of Materials Research (OSIM)
- Friedrich Schiller University Jena
- Jena 07743
- Germany
| | - Wenfeng Wei
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Gang Wei
- College of Chemistry and Chemical Engineering
- Qingdao University
- 266071 Qingdao
- China
- Faculty of Production Engineering
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| |
Collapse
|