1
|
Szroeder P, Banaszak-Piechowska A, Sahalianov I. Tailoring Electrocatalytic Properties of sp 2-Bonded Carbon Nanoforms Through Doping. Molecules 2025; 30:1265. [PMID: 40142041 PMCID: PMC11944806 DOI: 10.3390/molecules30061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
The symmetry of the valence and conduction bands in graphene and carbon nanotubes allows for easy modification of the electronic structure, which is correlated with their electrocatalytic activity. Modifying the electronic structure of the sp2-bonded nanocarbons by substituting carbon atoms with electron donors/acceptors and through covalent functionalization can facilitate heterogeneous electron transfer (HET), which is beneficial for designing carbon-based, high-performance electrocatalysts. Based on the Gerischer-Marcus model, we discuss how we can match the density of π-electron states (DOS) of a nanocarbon electrode to the redox potential of redox species using electron and hole doping. Along with the results, this article provides guidance on how to match the properties of nanocarbons to specific electroactive analytes, oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER).
Collapse
Affiliation(s)
- Paweł Szroeder
- Faculty of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland;
| | | | - Ihor Sahalianov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden;
| |
Collapse
|
2
|
Pan Y, Baster D, Käch D, Reger J, Wettstein L, Krumeich F, El Kazzi M, Bezdek MJ. Triphenylphosphine Oxide: A Versatile Covalent Functionality for Carbon Nanotubes. Angew Chem Int Ed Engl 2024; 63:e202412084. [PMID: 39087346 DOI: 10.1002/anie.202412084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Broadening the scope of functionalities that can be covalently bound to single-walled carbon nanotubes (SWCNTs) is crucial for enhancing the versatility of this promising nanomaterial class in applied settings. Here we report the covalent linkage of triphenylphosphine oxide [Ph3P(O)] to SWCNTs, a hitherto overlooked surface functionality. We detail the synthesis and structural characterization of a new family of phosphine oxide-functionalized diaryliodonium salts that can facilitate direct Ph3P(O) transfer and afford novel SWCNTs with tunable Ph3P(O) content (SWCNT-P). The molecularly-distributed and robust nature of the covalent Ph3P(O) attachment in SWCNT-P was supported by a combination of characterization methods including Raman, infrared, UV/Vis-NIR and X-ray photoelectron spectroscopies coupled with thermogravimetric analysis. Electron microscopy further revealed the effectiveness of the Ph3P(O) moiety for de-bundling SWCNTs to yield SWCNT-P with superior dispersibility and processability. Finally, electrochemical studies established that SWCNT-P is sensitive to the presence of Li+, Na+ and K+ wherein the Gutmann-Beckett Lewis acidity parameters of the ions were quantitatively transduced by Ph3P(O) to electrochemical responses. This work hence presents a synthetic, structural, spectroscopic and electrochemical foundation for a new phosphorus-enriched responsive nanomaterial platform featuring the Ph3P(O) functionality.
Collapse
Affiliation(s)
- Yanlin Pan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Dominika Baster
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Daniel Käch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Jan Reger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Lionel Wettstein
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Mario El Kazzi
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Máté J Bezdek
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| |
Collapse
|
3
|
Plačkić A, Neubert TJ, Patel K, Kuhl M, Watanabe K, Taniguchi T, Zurutuza A, Sordan R, Balasubramanian K. Electrochemistry at the Edge of a van der Waals Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306361. [PMID: 38109121 DOI: 10.1002/smll.202306361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Artificial van der Waals heterostructures, obtained by stacking two-dimensional (2D) materials, represent a novel platform for investigating physicochemical phenomena and applications. Here, the electrochemistry at the one-dimensional (1D) edge of a graphene sheet, sandwiched between two hexagonal boron nitride (hBN) flakes, is reported. When such an hBN/graphene/hBN heterostructure is immersed in a solution, the basal plane of graphene is encapsulated by hBN, and the graphene edge is exclusively available in the solution. This forms an electrochemical nanoelectrode, enabling the investigation of electron transfer using several redox probes, e.g., ferrocene(di)methanol, hexaammineruthenium, methylene blue, dopamine and ferrocyanide. The low capacitance of the van der Waals edge electrode facilitates cyclic voltammetry at very high scan rates (up to 1000 V s-1), allowing voltammetric detection of redox species down to micromolar concentrations with sub-second time resolution. The nanoband nature of the edge electrode allows operation in water without added electrolyte. Finally, two adjacent edge electrodes are realized in a redox-cycling format. All the above-mentioned phenomena can be investigated at the edge, demonstrating that nanoscale electrochemistry is a new application avenue for van der Waals heterostructures. Such an edge electrode will be useful for studying electron transfer mechanisms and the detection of analyte species in ultralow sample volumes.
Collapse
Affiliation(s)
- Aleksandra Plačkić
- L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, Como, 22100, Italy
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, Novi Sad, 21000, Serbia
| | - Tilmann J Neubert
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof & Department of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Kishan Patel
- L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, Como, 22100, Italy
| | - Michel Kuhl
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof & Department of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Amaia Zurutuza
- Graphenea Semiconductor SLU, Mikeletegi Pasealekua 83, San Sebastián, 20009, Spain
| | - Roman Sordan
- L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, Como, 22100, Italy
| | - Kannan Balasubramanian
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof & Department of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
4
|
Zhou L, Yang C, Yang X, Zhang J, Wang C, Wang W, Li M, Lu X, Li K, Yang H, Zhou H, Chen J, Zhan D, Fal'ko VI, Cheng J, Tian Z, Geim AK, Cao Y, Hu S. Angstrom-Scale Electrochemistry at Electrodes with Dimensions Commensurable and Smaller than Individual Reacting Species. Angew Chem Int Ed Engl 2023; 62:e202314537. [PMID: 37966039 DOI: 10.1002/anie.202314537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
In nature and technologies, many chemical reactions occur at interfaces with dimensions approaching that of a single reacting species in nano- and angstrom-scale. Mechanisms governing reactions at this ultimately small spatial regime remain poorly explored because of challenges to controllably fabricate required devices and assess their performance in experiment. Here we report how efficiency of electrochemical reactions evolves for electrodes that range from just one atom in thickness to sizes comparable with and exceeding hydration diameters of reactant species. The electrodes are made by encapsulating graphene and its multilayers within insulating crystals so that only graphene edges remain exposed and partake in reactions. We find that limiting current densities characterizing electrochemical reactions exhibit a pronounced size effect if reactant's hydration diameter becomes commensurable with electrodes' thickness. An unexpected blockade effect is further revealed from electrodes smaller than reactants, where incoming reactants are blocked by those adsorbed temporarily at the atomically narrow interfaces. The demonstrated angstrom-scale electrochemistry offers a venue for studies of interfacial behaviors at the true molecular scale.
Collapse
Affiliation(s)
- Lijun Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chongyang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaohui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Cong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Mengyan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiangchao Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ke Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Huiping Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Han Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiajia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Vladimir I Fal'ko
- Department of Physics and Astronomy, the University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, the University of Manchester, Manchester, M13 9PL, UK
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Andre K Geim
- Department of Physics and Astronomy, the University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, the University of Manchester, Manchester, M13 9PL, UK
| | - Yang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
5
|
Wang Z, Chen J, Ni C, Nie W, Li D, Ta N, Zhang D, Sun Y, Sun F, Li Q, Li Y, Chen R, Bu T, Fan F, Li C. Visualizing the role of applied voltage in non-metal electrocatalysts. Natl Sci Rev 2023; 10:nwad166. [PMID: 37565210 PMCID: PMC10411668 DOI: 10.1093/nsr/nwad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Understanding how applied voltage drives the electrocatalytic reaction at the nanoscale is a fundamental scientific problem, particularly in non-metallic electrocatalysts, due to their low intrinsic carrier concentration. Herein, using monolayer molybdenum disulfide (MoS2) as a model system of non-metallic catalyst, the potential drops across the basal plane of MoS2 (ΔVsem) and the electric double layer (ΔVedl) are decoupled quantitatively as a function of applied voltage through in-situ surface potential microscopy. We visualize the evolution of the band structure under liquid conditions and clarify the process of EF keeping moving deep into Ec, revealing the formation process of the electrolyte gating effect. Additionally, electron transfer (ET) imaging reveals that the basal plane exhibits high ET activity, consistent with the results of surface potential measurements. The potential-dependent behavior of kf and ns in the ET reaction are further decoupled based on the measurements of ΔVsem and ΔVedl. Comparing the ET and hydrogen evolution reaction imaging results suggests that the low electrocatalytic activity of the basal plane is mainly due to the absence of active sites, rather than its electron transfer ability. This study fills an experimental gap in exploring driving forces for electrocatalysis at the nanoscale and addresses the long-standing issue of the inability to decouple charge transfer from catalytic processes.
Collapse
Affiliation(s)
- Ziyuan Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Chenwei Ni
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Nie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Na Ta
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Deyun Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Fusai Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Yuran Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruotian Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tiankai Bu
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Fengtao Fan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
6
|
Kharlamova MV, Kramberger C. Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:640. [PMID: 36839009 PMCID: PMC9961505 DOI: 10.3390/nano13040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
This paper is dedicated to the discussion of applications of carbon material in electrochemistry. The paper starts with a general discussion on electrochemical doping. Then, investigations by spectroelectrochemistry are discussed. The Raman spectroscopy experiments in different electrolyte solutions are considered. This includes aqueous solutions and acetonitrile and ionic fluids. The investigation of carbon nanotubes on different substrates is considered. The optical absorption experiments in different electrolyte solutions and substrate materials are discussed. The chemical functionalization of carbon nanotubes is considered. Finally, the application of carbon materials and chemically functionalized carbon nanotubes in batteries, supercapacitors, sensors, and nanoelectronic devices is presented.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Centre for Advanced Materials Application (CEMEA) of Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Bratislava, Slovakia
| | | |
Collapse
|
7
|
Xu T, Ji W, Zhang Y, Wang X, Gao N, Mao L, Zhang M. Synergistic Charge Percolation in Conducting Polymers Enables High‐Performance In Vivo Sensing of Neurochemical and Neuroelectrical Signals. Angew Chem Int Ed Engl 2022; 61:e202204344. [DOI: 10.1002/anie.202204344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tianci Xu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Wenliang Ji
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yue Zhang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Xiaofang Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Nan Gao
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Lanqun Mao
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Meining Zhang
- Department of Chemistry Renmin University of China Beijing 100872 China
| |
Collapse
|
8
|
Zhang M, Xu T, Ji W, Zhang Y, Wang X, Gao N, Mao L. Synergistic Charge Percolation in Conducting Polymers Enables High‐Performance In Vivo Sensing of Neurochemical and Neuroelectrical Signals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meining Zhang
- Renmin University of China Department of Chemistry zhongguancun street 59th 100872 Beijing CHINA
| | - Tianci Xu
- Renmin University of China Department of Chemistry CHINA
| | - Wenliang Ji
- Renmin University of China Department of Chemistry CHINA
| | - Yue Zhang
- Renmin University of China Department of Chemistry CHINA
| | - Xiaofang Wang
- Renmin University of China Department of Chemistry CHINA
| | - Nan Gao
- Renmin University of China Department of Chemistry CHINA
| | - Lanqun Mao
- Beijing Normal University College of Chemistry CHINA
| |
Collapse
|
9
|
Li Q, Yang D, Liu Q, Wang J, Ma Z, Xu D, Gao J. Long-Chain Modification of the Tips and Inner Walls of MWCNTs and Their Nanocomposite Reverse Osmosis Membranes. MEMBRANES 2022; 12:794. [PMID: 36005709 PMCID: PMC9415691 DOI: 10.3390/membranes12080794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) were modified on the tips and inner walls by 12-chloro-12-oxododecanedioic acid-methyl ester groups and then added to the polyamide composite membranes to prepare MWCNT-CH2OCOC12H23O2 membranes for desalination. The characterization results of transmission electron microscopy, Fourier transform, infrared transform, and thermogravimetric analysis showed that the 12-chloro-12-oxododecanedioic acid-methyl ester group was successfully grafted to the entrances and inner walls of the MWCNTs. The performance of the MWCNTs' composite membranes was evaluated by scanning electron microscopy, contact angle, and filtration test. The modified membrane morphology is more uniform, and there is no structural damage. The grafting of carbon nanotubes with methyl 12-chloro-12-oxydodecyldicarboxylate could improve the hydrophilicity of the membrane. Under identical conditions, the water flux of MWCNT-CH2OCOC12H23O2 membranes was higher than that of the pristine carbon nanotube's membrane, and the desalination rate was also slightly improved.
Collapse
Affiliation(s)
- Qing Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dengfeng Yang
- College of Chemistry and Pharmaceutical Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Qingzhi Liu
- College of Chemistry and Pharmaceutical Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Jianhua Wang
- College of Chemistry and Pharmaceutical Science, Qingdao Agriculture University, Qingdao 266109, China
| | - Zhun Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongmei Xu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jun Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
10
|
Thobakgale L, Ombinda-Lemboumba S, Mthunzi-Kufa P. Chemical Sensor Nanotechnology in Pharmaceutical Drug Research. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2688. [PMID: 35957119 PMCID: PMC9370582 DOI: 10.3390/nano12152688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The increase in demand for pharmaceutical treatments due to pandemic-related illnesses has created a need for improved quality control in drug manufacturing. Understanding the physical, biological, and chemical properties of APIs is an important area of health-related research. As such, research into enhanced chemical sensing and analysis of pharmaceutical ingredients (APIs) for drug development, delivery and monitoring has become immensely popular in the nanotechnology space. Nanomaterial-based chemical sensors have been used to detect and analyze APIs related to the treatment of various illnesses pre and post administration. Furthermore, electrical and optical techniques are often coupled with nano-chemical sensors to produce data for various applications which relate to the efficiencies of the APIs. In this review, we focus on the latest nanotechnology applied to probing the chemical and biochemical properties of pharmaceutical drugs, placing specific interest on several types of nanomaterial-based chemical sensors, their characteristics, detection methods, and applications. This study offers insight into the progress in drug development and monitoring research for designing improved quality control methods for pharmaceutical and health-related research.
Collapse
Affiliation(s)
- Lebogang Thobakgale
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| | - Saturnin Ombinda-Lemboumba
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| |
Collapse
|
11
|
Unwin P. Concluding remarks: next generation nanoelectrochemistry - next generation nanoelectrochemists. Faraday Discuss 2022; 233:374-391. [PMID: 35229863 DOI: 10.1039/d2fd00020b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this paper is to describe the scientific journey taken to arrive at present-day nanoelectrochemistry and consider how the area might develop in the future, particularly in light of papers presented at this Faraday Discussion. By adopting a generational approach, this brief contribution traces the story of the nanoelectrochemistry family within the broader electrochemistry field, with a focus on scientific capability and themes that were important to each generation. I shall consider research questions and the impact of technology that was developed or available in each period. Nanoelectrochemistry is still somewhat niche, but is attracting increasing numbers of researchers. It is set to become a major part of electrochemistry and interfacial science. It is studied by people with a fairly unique skillset, and I shall speculate on the skills and expertise that will be needed by nanoelectrochemists to address the challenges and opportunities that lie ahead. I conclude by asking: who will be the nanoelectrochemists of the future and what will they do?
Collapse
Affiliation(s)
- Patrick Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
Mezzasalma SA, Grassi L, Grassi M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112480. [PMID: 34857266 DOI: 10.1016/j.msec.2021.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
The open border between non-living and living matter, suggested by increasingly emerging fields of nanoscience interfaced to biological systems, requires a detailed knowledge of nanomaterials properties. An account of the wide spectrum of phenomena, belonging to physical chemistry of interfaces, materials science, solid state physics at the nanoscale and bioelectrochemistry, thus is acquainted for a comprehensive application of carbon nanotubes interphased with neuron cells. This review points out a number of conceptual tools to further address the ongoing advances in coupling neuronal networks with (carbon) nanotube meshworks, and to deepen the basic issues that govern a biological cell or tissue interacting with a nanomaterial. Emphasis is given here to the properties and roles of carbon nanotube systems at relevant spatiotemporal scales of individual molecules, junctions and molecular layers, as well as to the point of view of a condensed matter or materials scientist. Carbon nanotube interactions with blood-brain barrier, drug delivery, biocompatibility and functionalization issues are also regarded.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Ruder Bošković Institute, Materials Physics Division, Bijeniška cesta 54, 10000 Zagreb, Croatia; Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University, IDEON Building, Delta 5, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Lucia Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
13
|
Zambianco NA, da Silva VA, Orzari LO, Corat EJ, Zanin HG, Silva TA, Buller GA, Keefe EM, Banks CE, Janegitz BC. Determination of tadalafil in pharmaceutical samples by vertically oriented multi-walled carbon nanotube electrochemical sensing device. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Leppänen E, Sainio S, Jiang H, Mikladal B, Varjos I, Laurila T. Effect of Electrochemical Oxidation on Physicochemical Properties of Fe‐Containing Single‐Walled Carbon Nanotubes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elli Leppänen
- Department of Electrical Engineering and Automation School of Electrical Engineering Aalto University P.O. Box. 13500 FI-00076 Aalto Finland
| | - Sami Sainio
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA, 94025 USA
- Microelectronics Research Unit Faculty of Information Technology and Electrical Engineering University of Oulu P.O. Box. 4500 90570 Oulu Finland
| | - Hua Jiang
- Department of Applied Physics School of Science Aalto University Finland P.O. Box 15100 Espoo, Aalto 02150, FI-00076 Finland
| | | | - Ilkka Varjos
- Canatu Oy Tiilenlyöjänkuja 9 00390 01720 Vantaa Finland
| | - Tomi Laurila
- Department of Electrical Engineering and Automation School of Electrical Engineering Aalto University P.O. Box. 13500 FI-00076 Aalto Finland
| |
Collapse
|
15
|
Sedki M, Chen Y, Mulchandani A. Non-Carbon 2D Materials-Based Field-Effect Transistor Biosensors: Recent Advances, Challenges, and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4811. [PMID: 32858906 PMCID: PMC7506755 DOI: 10.3390/s20174811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
Abstract
In recent years, field-effect transistors (FETs) have been very promising for biosensor applications due to their high sensitivity, real-time applicability, scalability, and prospect of integrating measurement system on a chip. Non-carbon 2D materials, such as transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), black phosphorus (BP), and metal oxides, are a group of new materials that have a huge potential in FET biosensor applications. In this work, we review the recent advances and remarkable studies of non-carbon 2D materials, in terms of their structures, preparations, properties and FET biosensor applications. We will also discuss the challenges facing non-carbon 2D materials-FET biosensors and their future perspectives.
Collapse
Affiliation(s)
- Mohammed Sedki
- Department of Materials Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Ying Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. SENSORS 2019; 19:s19194214. [PMID: 31569330 PMCID: PMC6806101 DOI: 10.3390/s19194214] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
During recent years, field-effect transistor biosensors (Bio-FET) for biomedical applications have experienced a robust development with evolutions in FET characteristics as well as modification of bio-receptor structures. This review initially provides contemplation on this progress by analyzing and summarizing remarkable studies on two aforementioned aspects. The former includes fabricating unprecedented nanostructures and employing novel materials for FET transducers whereas the latter primarily synthesizes compact molecules as bio-probes (antibody fragments and aptamers). Afterwards, a future perspective on research of FET-biosensors is also predicted depending on current situations as well as its great demand in clinical trials of disease diagnosis. From these points of view, FET-biosensors with infinite advantages are expected to continuously advance as one of the most promising tools for biomedical applications.
Collapse
|
17
|
Antonatos N, Bouša D, Shcheka S, Beladi-Mousavi SM, Pumera M, Sofer Z. In Situ Doping of Black Phosphorus by High-Pressure Synthesis. Inorg Chem 2019; 58:10227-10238. [PMID: 31322864 DOI: 10.1021/acs.inorgchem.9b01398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Black phosphorus is a two-dimensional semiconductor with promising properties for catalysis, energy storage, and conversion as well as electronic device applications, and control of its electronic structure is critical for such applications. Substitutional doping of phosphorus by electron donating (e.g., sulfur) or electron accepting elements (e.g., germanium) can significantly change its properties, especially charge carrier concentration. Here, we report the in situ doping of black phosphorus by its direct synthesis from a mixture of red phosphorus and a dopant by high pressure synthesis. In detail, we study the incorporation of germanium, sulfur, selenium, and tellurium within black phosphorus, showing significant differences in incorporation of individual elements and assess their suitability for potential electrochemical applications.
Collapse
Affiliation(s)
- Nikolas Antonatos
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Czech Republic
| | - Daniel Bouša
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Czech Republic
| | - Svyatoslav Shcheka
- Bayerisches Geoinstitut (BGI) , Universität Bayreuth , Universtätstrasse 30 , 95447 Bayreuth , Germany
| | - Seyyed Mohsen Beladi-Mousavi
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Czech Republic
| |
Collapse
|
18
|
Viet NX, Kishimoto S, Ohno Y. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6389-6395. [PMID: 30672689 DOI: 10.1021/acsami.8b19252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemical sensors based on carbon nanotubes (CNTs) have great potential for use in wearable or implantable biomedical sensor applications because of their excellent mechanical flexibility and biocompatibility. However, the main challenge associated with CNT-based sensors is their uniform and reproducible fabrication on the flexible plastic film. Here, we introduce and demonstrate a highly reliable technique to fabricate flexible CNT microelectrodes on a plastic film. The technique involves a process whereby the CNT film is formed by the dry transfer process based on the floating-catalyst chemical vapor deposition. An oxide protection layer, which is used to cover the CNT thin film during the fabrication process, minimizes contamination of the surface. The fabricated flexible CNT microelectrodes show almost ideal electrochemical characteristics for microelectrodes with the average value of the quartile potentials, Δ E = | E3/4 - E1/4|, being 60.4 ± 2.9 mV for the 28 electrodes, while the ideal value of Δ E = 56.4 mV. The CNT microelectrodes also showed enhanced resistance to surface fouling during dopamine oxidation in comparison to carbon fiber and gold microelectrodes; the degradation of the oxidation current after 10 consecutive cycles were 1.8, 8.3, and 13.9% for CNT, carbon fiber, and gold microelectrodes, respectively. The high-sensitivity detection of dopamine is also demonstrated with differential-pulse voltammetry, with a resulting limit of detection of ∼50 nM. The reliability, uniformity, and sensitivity of the present CNT microelectrodes provide a platform for flexible electrochemical sensors.
Collapse
|
19
|
|
20
|
Enhancement of the electron transfer rate in carbon nanotube flexible electrochemical sensors by surface functionalization. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. Enhanced Direct Electron Transfer of Fructose Dehydrogenase Rationally Immobilized on a 2-Aminoanthracene Diazonium Cation Grafted Single-Walled Carbon Nanotube Based Electrode. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy
| | - Yuya Hibino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
22
|
Abellán-Llobregat A, Vidal L, Rodríguez-Amaro R, Canals A, Morallón E. Evaluation of herringbone carbon nanotubes-modified electrodes for the simultaneous determination of ascorbic acid and uric acid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Sugime H, Ushiyama T, Nishimura K, Ohno Y, Noda S. An interdigitated electrode with dense carbon nanotube forests on conductive supports for electrochemical biosensors. Analyst 2018; 143:3635-3642. [PMID: 29956699 DOI: 10.1039/c8an00528a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A highly sensitive interdigitated electrode (IDE) with vertically aligned dense carbon nanotube forests directly grown on conductive supports was demonstrated by combining UV lithography and a low temperature chemical vapor deposition process (470 °C). The cyclic voltammetry (CV) measurements of K4[Fe(CN)6] showed that the redox current of the IDE with CNT forests (CNTF-IDE) reached the steady state much more quickly compared to that of conventional gold IDE (Au-IDE). The performance of the CNTF-IDE largely depended on the geometry of the electrodes (e.g. width and gap). With the optimum three-dimensional electrode structure, the anodic current was amplified by a factor of ∼18 and ∼67 in the CV and the chronoamperometry measurements, respectively. The collection efficiency, defined as the ratio of the cathodic current to the anodic current at steady state, was improved up to 97.3%. The selective detection of dopamine (DA) under the coexistence of l-ascorbic acid with high concentration (100 μM) was achieved with a linear range of 100 nM-100 μM, a sensitivity of 14.3 mA mol-1 L, and a limit of detection (LOD, S/N = 3) of 42 nM. Compared to the conventional carbon electrodes, the CNTF-IDE showed superior anti-fouling property, which is of significant importance for practical applications, with a negligible shift of the half-wave potential (ΔE1/2 < 1.4 mV) for repeated CV measurements of DA at high concentration (100 μM).
Collapse
Affiliation(s)
- Hisashi Sugime
- Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishi Waseda, Shijuku-ku, Tokyo 169-8050, Japan.
| | | | | | | | | |
Collapse
|
24
|
Abellán-Llobregat A, González-Gaitán C, Vidal L, Canals A, Morallón E. Portable electrochemical sensor based on 4-aminobenzoic acid-functionalized herringbone carbon nanotubes for the determination of ascorbic acid and uric acid in human fluids. Biosens Bioelectron 2018; 109:123-131. [DOI: 10.1016/j.bios.2018.02.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
|
25
|
Xing Y, Dittrich PS. One-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices. SENSORS 2018; 18:s18010134. [PMID: 29303990 PMCID: PMC5795670 DOI: 10.3390/s18010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed.
Collapse
Affiliation(s)
- Yanlong Xing
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e. V, 12489 Berlin, Germany.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
26
|
A Microneedle Functionalized with Polyethyleneimine and Nanotubes for Highly Sensitive, Label-Free Quantification of DNA. SENSORS 2017; 17:s17081883. [PMID: 28812987 PMCID: PMC5579740 DOI: 10.3390/s17081883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Abstract
The accurate measure of DNA concentration is necessary for many DNA-based biological applications. However, the current methods are limited in terms of sensitivity, reproducibility, human error, and contamination. Here, we present a microneedle functionalized with polyethyleneimine (PEI) and single-walled carbon nanotubes (SWCNTs) for the highly sensitive quantification of DNA. The microneedle was fabricated using ultraviolet (UV) lithography and anisotropic etching, and then functionalized with PEI and SWCNTs through a dip coating process. The electrical characteristics of the microneedle change with the accumulation of DNA on the surface. Current-voltage measurements in deionized water were conducted to study these changes in the electrical properties of the sensor. The sensitivity test found the signal to be discernable from the noise level down to 100 attomolar (aM), demonstrating higher sensitivity than currently available UV fluorescence and UV absorbance based methods. A microneedle without any surface modification only had a 100 femtomolar (fM) sensitivity. All measurement results were consistent with fluorescence microscopy.
Collapse
|
27
|
|
28
|
Zhang R, Zhang Y, Wei F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem Soc Rev 2017; 46:3661-3715. [DOI: 10.1039/c7cs00104e] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the growth mechanism, controlled synthesis, characterization, properties and applications of horizontally aligned carbon nanotube arrays.
Collapse
Affiliation(s)
- Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Yingying Zhang
- Department of Chemistry and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
29
|
Salam MA, Obaid AY, El-Shishtawy R, Mohamed SA. Synthesis of nanocomposites of polypyrrole/carbon nanotubes/silver nano particles and their application in water disinfection. RSC Adv 2017. [DOI: 10.1039/c7ra01033h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Contamination of drinking or irrigation water with pathogenic bacteria, such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), is a major global health problem.
Collapse
Affiliation(s)
- Mohamed Abdel Salam
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah Y. Obaid
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Saleh A. Mohamed
- Biochemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
30
|
Amemiya S, Chen R, Nioradze N, Kim J. Scanning Electrochemical Microscopy of Carbon Nanomaterials and Graphite. Acc Chem Res 2016; 49:2007-14. [PMID: 27602588 DOI: 10.1021/acs.accounts.6b00323] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carbon materials are tremendously important as electrode materials in both fundamental and applied electrochemistry. Recently, significant attention has been given not only to traditional carbon materials, but also to carbon nanomaterials for various electrochemical applications in energy conversion and storage as well as sensing. Importantly, many of these applications require fast electron-transfer (ET) reactions between a carbon surface and a redox-active molecule in solution. It, however, has not been well understood how heterogeneous ET kinetics at a carbon/solution interface is affected by the electronic structure, defect, and contamination of the carbon surface. Problematically, it is highly challenging to measure the intrinsic electrochemical reactivity of a carbon surface, which is readily passivated by adventitious organic contaminants. This Account summarizes our recent studies of carbon nanomaterials and graphite by scanning electrochemical microscopy (SECM) not only to reveal the fast ET kinetics of simple ferrocene derivatives at their graphitic surfaces, but also to obtain mechanistic insights into their extraordinary electrochemical reactivity. Specifically, we implemented new principles and technologies to reliably and reproducibly enable nanoscale SECM measurements. We took advantage of a new SECM imaging principle to resolve the high reactivity of the sidewall of individual single walled carbon nanotubes. In addition, we developed SECM-based nanogap voltammetry to find that monolayer graphene grown by chemical vapor deposition yields an unprecedentedly high standard ET rate constant, k(0), of ≥25 cm/s, which was >1000 times higher than that reported in the literature. Remarkably, the nonideal asymmetry of paired nanogap voltammograms revealed that the high reactivity of graphitic surfaces is compromised by their contamination with airborne hydrocarbons. Most recently, we protected the clean surface of highly oriented pyrolytic graphite from the airborne contaminants during its exfoliation and handling by forming a water adlayer to obtain a reliable k(0) value of ≥12 cm/s from symmetric pairs of nanogap voltammograms. We envision that SECM of clean graphitic surfaces will enable us to reliably address not only effects of their electronic structures on their electrochemical reactivity, but also the activity of carbon-based or carbon-supported electrocatalysts for fuel cells and batteries.
Collapse
Affiliation(s)
- Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ran Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nikoloz Nioradze
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiyeon Kim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
31
|
Fan Y, Han C, Zhang B. Recent advances in the development and application of nanoelectrodes. Analyst 2016; 141:5474-87. [PMID: 27510555 DOI: 10.1039/c6an01285j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanoelectrodes have key advantages compared to electrodes of conventional size and are the tool of choice for numerous applications in both fundamental electrochemistry research and bioelectrochemical analysis. This Minireview summarizes recent advances in the development, characterization, and use of nanoelectrodes in nanoscale electroanalytical chemistry. Methods of nanoelectrode preparation include laser-pulled glass-sealed metal nanoelectrodes, mass-produced nanoelectrodes, carbon nanotube based and carbon-filled nanopipettes, and tunneling nanoelectrodes. Several new topics of their recent application are covered, which include the use of nanoelectrodes for electrochemical imaging at ultrahigh spatial resolution, imaging with nanoelectrodes and nanopipettes, electrochemical analysis of single cells, single enzymes, and single nanoparticles, and the use of nanoelectrodes to understand single nanobubbles.
Collapse
Affiliation(s)
- Yunshan Fan
- Department of Chemistry, University of Washington, Seattle, Washington 98115, USA.
| | | | | |
Collapse
|
32
|
Chen R, Balla RJ, Li Z, Liu H, Amemiya S. Origin of Asymmetry of Paired Nanogap Voltammograms Based on Scanning Electrochemical Microscopy: Contamination Not Adsorption. Anal Chem 2016; 88:8323-31. [DOI: 10.1021/acs.analchem.6b02273] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ryan J. Balla
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Zhiting Li
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
33
|
McSweeney RL, Chamberlain TW, Baldoni M, Lebedeva MA, Davies ES, Besley E, Khlobystov AN. Direct Measurement of Electron Transfer in Nanoscale Host-Guest Systems: Metallocenes in Carbon Nanotubes. Chemistry 2016; 22:13540-9. [DOI: 10.1002/chem.201602116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Robert L. McSweeney
- School of Chemistry; University of Nottingham, University Park; Nottingham NG7 2RD UK
| | - Thomas W. Chamberlain
- Institute of Process Research & Development; School of Chemistry; University of Leeds, Woodhouse Lane; Leeds LS2 9JT UK
| | - Matteo Baldoni
- School of Chemistry; University of Nottingham, University Park; Nottingham NG7 2RD UK
| | - Maria A. Lebedeva
- School of Chemistry; University of Nottingham, University Park; Nottingham NG7 2RD UK
- Department of Materials; Oxford University; Oxford OX1 3PH UK
| | - E. Stephen Davies
- School of Chemistry; University of Nottingham, University Park; Nottingham NG7 2RD UK
| | - Elena Besley
- School of Chemistry; University of Nottingham, University Park; Nottingham NG7 2RD UK
| | - Andrei N. Khlobystov
- School of Chemistry; University of Nottingham, University Park; Nottingham NG7 2RD UK
- National University of Science & Technology, MISiS; Moscow 119049 Russia
| |
Collapse
|
34
|
Cuharuc AS, Zhang G, Unwin PR. Electrochemistry of ferrocene derivatives on highly oriented pyrolytic graphite (HOPG): quantification and impacts of surface adsorption. Phys Chem Chem Phys 2016; 18:4966-77. [PMID: 26812483 DOI: 10.1039/c5cp06325f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyclic voltammetry of three ferrocene derivatives - (ferrocenylmethyl)trimethylammonium (FcTMA(+)), ferrocenecarboxylic acid (FcCOOH), and ferrocenemethanol (FcCH2OH) - in aqueous solutions shows that the reduced form of the first two redox species weakly adsorbs onto freshly cleaved surfaces of highly oriented pyrolytic graphite (HOPG), with the fractional surface coverage being in excess of 10% of a monolayer at a bulk concentration level of 0.25 mM for both compounds. FcCH2OH was found to exhibit greater and stronger adsorption (up to a monolayer) for the same bulk concentration. The adsorption of FcTMA(+) on freshly cleaved surfaces of high quality (low step edge density) and low quality (high step edge density) HOPG is the same within experimental error, suggesting that the amount of step edges has no influence on the adsorption process. The amount of adsorption of FcTMA(+) is the same (within error) for low quality HOPG, irrespective of whether the surface is freshly cleaved or left in air for up to 12 hours, while - with aging - high quality HOPG adsorbs notably more FcTMA(+). The formation of an airborne contaminating film is proposed to be responsible for the enhanced entrapment of FcTMA(+) on aged high quality HOPG surfaces, while low quality surfaces appear less prone to the accumulation of such films. The impact of the adsorption of ferrocene derivatives on graphite for voltammetric studies is discussed. Adsorption is quantified by developing a theory and methodology to process cyclic voltammetry data from peak current measurements. The accuracy and applicability, as well as limits of the approach, are demonstrated for various adsorption isotherms.
Collapse
Affiliation(s)
| | - Guohui Zhang
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
35
|
Reid RC, Jones SR, Hickey DP, Minteer SD, Gale BK. Modeling Carbon Nanotube Connectivity and Surface Activity in a Contact Lens Biofuel Cell. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Tan SY, Zhang J, Bond AM, Macpherson JV, Unwin PR. Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements. Anal Chem 2016; 88:3272-80. [PMID: 26877069 DOI: 10.1021/acs.analchem.5b04715] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sze-yin Tan
- Department
of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jie Zhang
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Alan M. Bond
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Julie V. Macpherson
- Department
of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| |
Collapse
|
37
|
Electrochemical Oxidations of p-Doped Semiconducting Single-Walled Carbon Nanotubes. JOURNAL OF NANOTECHNOLOGY 2016. [DOI: 10.1155/2016/8073593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two oxidation peaks at 0.99, 1.48 V versus Fc/Fc+appear in the cyclic voltammograms of a series of defect-site functionalized SWNTs in methylene chloride solution in the presence of ferrocenes. These two peaks are demonstrated to be the electrochemical responses to the independent oxidation of v1and v2valence bands ofp-doped semiconducting SWNTs.
Collapse
|
38
|
Chen R, Nioradze N, Santhosh P, Li Z, Surwade SP, Shenoy GJ, Parobek DG, Kim MA, Liu H, Amemiya S. Ultrafast Electron Transfer Kinetics of Graphene Grown by Chemical Vapor Deposition. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Chen R, Nioradze N, Santhosh P, Li Z, Surwade SP, Shenoy GJ, Parobek DG, Kim MA, Liu H, Amemiya S. Ultrafast Electron Transfer Kinetics of Graphene Grown by Chemical Vapor Deposition. Angew Chem Int Ed Engl 2015; 54:15134-7. [DOI: 10.1002/anie.201507005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/01/2015] [Indexed: 11/05/2022]
|
40
|
Hartleb H, Späth F, Hertel T. Evidence for Strong Electronic Correlations in the Spectra of Gate-Doped Single-Wall Carbon Nanotubes. ACS NANO 2015; 9:10461-70. [PMID: 26381021 DOI: 10.1021/acsnano.5b04707] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have investigated the photophysical properties of electrochemically gate-doped semiconducting single-wall carbon nanotubes (s-SWNTs). A comparison of photoluminescence (PL) and simultaneously recorded absorption spectra reveals that free-carrier densities correlate well with the first sub-band exciton or trion oscillator strengths but not with PL intensities. We thus used a global analysis of the first sub-band exciton absorption for a detailed investigation of gate-doping, here of the (6,5) SWNT valence band. Our data are consistent with a doping-induced valence band shift according to Δϵv = n × b, where n is the free-carrier density, ϵv is the valence band edge, and b = 0.15 ± 0.05 eV·nm. We also predict such band gap renormalization of one-dimensional gate-doped semiconductors to be accompanied by a stepwise increase of the carrier density by Δn = (32meffb)/(πℏ)(2) (meff is effective carrier mass). Moreover, we show that the width of the spectroelectrochemical window of the first sub-band exciton of 1.55 ± 0.05 eV corresponds to the fundamental band gap of the undoped (6,5) SWNTs in our samples and not to the renormalized band gap of the doped system. These observations as well as a previously unidentified absorption band emerging at high doping levels in the Pauli-blocked region of the single-particle Hartree band structure provide clear evidence for strong electronic correlations in the optical spectra of SWNTs.
Collapse
Affiliation(s)
- Holger Hartleb
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, and ‡Röntgen Research Center for Complex Material Systems, Julius-Maximilian University Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Florian Späth
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, and ‡Röntgen Research Center for Complex Material Systems, Julius-Maximilian University Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Tobias Hertel
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, and ‡Röntgen Research Center for Complex Material Systems, Julius-Maximilian University Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
41
|
Kleisath E, Marta RA, Martens S, Martens J, McMahon T. Structures and Energetics of Protonated Clusters of Methylamine with Phenylalanine Analogs, Characterized by Infrared Multiple Photon Dissociation Spectroscopy and Electronic Structure Calculations. J Phys Chem A 2015; 119:6689-702. [DOI: 10.1021/acs.jpca.5b02794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth Kleisath
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Rick A. Marta
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Sabrina Martens
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jon Martens
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Terry McMahon
- Department
of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
42
|
Kilina S, Kilin D, Tretiak S. Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chem Rev 2015; 115:5929-78. [DOI: 10.1021/acs.chemrev.5b00012] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Svetlana Kilina
- Chemistry
and Biochemistry Department, North Dakota State University, Fargo, North Dakota 5810, United States
| | - Dmitri Kilin
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Sergei Tretiak
- Theoretical
Division, Center for Nonlinear Studies (CNLS) and Center for Integrated
Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
43
|
Güell AG, Cuharuc AS, Kim YR, Zhang G, Tan SY, Ebejer N, Unwin PR. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS NANO 2015; 9:3558-71. [PMID: 25758160 DOI: 10.1021/acsnano.5b00550] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.
Collapse
Affiliation(s)
- Aleix G Güell
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Anatolii S Cuharuc
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Yang-Rae Kim
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Guohui Zhang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sze-yin Tan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Neil Ebejer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
44
|
Zhu X, Li J, He H, Huang M, Zhang X, Wang S. Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens Bioelectron 2015; 74:113-33. [PMID: 26134290 DOI: 10.1016/j.bios.2015.04.069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Jiao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Hanping He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China.
| | - Min Huang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| |
Collapse
|
45
|
Miller TS, Macpherson JV, Unwin PR. Electrochemical activation of pristine single walled carbon nanotubes: impact on oxygen reduction and other surface sensitive redox processes. Phys Chem Chem Phys 2015; 16:9966-73. [PMID: 24472842 DOI: 10.1039/c3cp53717j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of systematic anodic pre-treatments of pristine single walled carbon nanotube (SWNT) forests on the electrochemical response towards a variety of redox processes is investigated. An experimental arrangement is adopted whereby a microcapillary containing the solution of interest and a quasi reference-counter electrode is brought into contact with a small portion of the forest to enable measurements on the surface before and after controlled anodic polarisation (AP). AP of the surface is found to both improve the voltammetric response (faster apparent heterogeneous electron transfer kinetics) of surface sensitive redox processes, such as Fe(2+/3+), and enhance the electrocatalytic response of the SWNTs towards oxygen reduction; the extent of which can be carefully controlled via the applied anodic potential. AP is expected to remove any trace organic (atmospheric) contaminants that may accumulate on the forest over extended periods as well as allowing the controlled introduction of defects, as confirmed by micro-Raman spectroscopy.
Collapse
Affiliation(s)
- Thomas S Miller
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | |
Collapse
|
46
|
Rees HR, Anderson SE, Privman E, Bau HH, Venton BJ. Carbon nanopipette electrodes for dopamine detection in Drosophila. Anal Chem 2015; 87:3849-55. [PMID: 25711512 PMCID: PMC4400659 DOI: 10.1021/ac504596y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Small, robust, sensitive electrodes are desired for in vivo neurotransmitter measurements. Carbon nanopipettes have been previously manufactured and used for single-cell drug delivery and electrophysiological measurements. Here, a modified fabrication procedure was developed to produce batches of solid carbon nanopipette electrodes (CNPEs) with ∼250 nm diameter tips, and controllable lengths of exposed carbon, ranging from 5 to 175 μm. The electrochemical properties of CNPEs were characterized with fast-scan cyclic voltammetry (FSCV) for the first time. CNPEs were used to detect the electroactive neurotransmitters dopamine, serotonin, and octopamine. CNPEs were significantly more sensitive for serotonin detection than traditional carbon-fiber microelectrodes (CFMEs). Similar to CFMEs, CNPEs have a linear response for dopamine concentrations ranging from 0.1 to 10 μM and a limit of detection of 25 ± 5 nM. Recordings with CNPEs were stable for over 3 h when the applied triangle waveform was scanned between -0.4 and +1.3 V vs Ag/AgCl/Cl(-) at 400 V/s. CNPEs were used to detect endogenous dopamine release in Drosophila larvae using optogenetics, which verified the utility of CNPEs for in vivo neuroscience studies. CNPEs are advantageous because they are 1 order of magnitude smaller in diameter than typical CFMEs and have a sharp, tunable geometry that facilitates penetration and implantation for localized measurements in distinct regions of small organisms, such as the Drosophila brain.
Collapse
Affiliation(s)
| | - Sean E Anderson
- §Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Haim H Bau
- §Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
47
|
Zhou W, Wang YY, Lim TS, Pham T, Jain D, Burke PJ. Detection of single ion channel activity with carbon nanotubes. Sci Rep 2015; 5:9208. [PMID: 25778101 PMCID: PMC4361846 DOI: 10.1038/srep09208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 12/16/2022] Open
Abstract
Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.
Collapse
Affiliation(s)
- Weiwei Zhou
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Yung Yu Wang
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Tae-Sun Lim
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Ted Pham
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Dheeraj Jain
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| | - Peter J. Burke
- Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, 92697 USA
| |
Collapse
|
48
|
E SP, Miller TS, Macpherson JV, Unwin PR. Controlled functionalisation of single-walled carbon nanotube network electrodes for the enhanced voltammetric detection of dopamine. Phys Chem Chem Phys 2015; 17:26394-402. [DOI: 10.1039/c5cp04905a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Acid functionalised SWNT network electrodes enhance the voltammetric detection of dopamine and minimise surface fouling.
Collapse
Affiliation(s)
- Sharel P. E
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | | |
Collapse
|
49
|
Yildiz UH, Inci F, Wang S, Toy M, Tekin HC, Javaid A, Lau DTY, Demirci U. Recent advances in micro/nanotechnologies for global control of hepatitis B infection. Biotechnol Adv 2015; 33:178-190. [PMID: 25450190 PMCID: PMC4433022 DOI: 10.1016/j.biotechadv.2014.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/18/2022]
Abstract
The control of hepatitis B virus (HBV) infection is a challenging task, specifically in developing countries there is limited access to diagnostics and antiviral treatment mainly due to high costs and insufficient healthcare infrastructure. Although the current diagnostic technologies can reliably detect HBV, they are relatively laborious, impractical and require expensive resources that are not suitable for resource-limited settings. Advances in micro/nanotechnology are pioneering the development of new generation methodologies in diagnosis and screening of HBV. Owing to combination of nanomaterials (metal/inorganic nanoparticles, carbon nanotubes, etc.) with microfabrication technologies, utilization of miniaturized sensors detecting HBV and other viruses from ultra-low volume of blood, serum and plasma is realized. The state-of-the-art microfluidic devices with integrated nanotechnologies potentially allow for inexpensive HBV screening at low cost. This review aims to highlight recent advances in nanotechnology and microfabrication processes that are employed for developing point-of-care (POC) HBV assays.
Collapse
Affiliation(s)
- U Hakan Yildiz
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection, Palo Alto, CA 94304, United States
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection, Palo Alto, CA 94304, United States
| | - ShuQi Wang
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection, Palo Alto, CA 94304, United States
| | - Mehlika Toy
- Department of Surgery, Stanford School of Medicine, Palo Alto, CA, United States
| | - H Cumhur Tekin
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection, Palo Alto, CA 94304, United States
| | - Asad Javaid
- Department of Medicine, Beth Israel Deaconnes Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daryl T-Y Lau
- Department of Medicine, Beth Israel Deaconnes Medical Center, Harvard Medical School, Boston, MA, United States
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection, Palo Alto, CA 94304, United States.
| |
Collapse
|
50
|
Zhang G, Cuharuc AS, Güell AG, Unwin PR. Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models. Phys Chem Chem Phys 2015; 17:11827-38. [DOI: 10.1039/c5cp00383k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transfer kinetics for outer-sphere redox couples is fast on the basal surface of highly oriented pyrolytic graphite (HOPG).
Collapse
Affiliation(s)
- Guohui Zhang
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | | |
Collapse
|