1
|
Yang K, Yang F, Lu X, Li H, Yang Z, Yin Q, Zhang L, Long Y, Shen C, Chen L, Yao B, Huang C. Facile Immunoassay Constructed by Gold Nanostar-Labeled Rabbit-AFP Antibody and Gold Nanoparticle-Conjugated Goat Anti-Rabbit IgG. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:612. [PMID: 40278477 PMCID: PMC12029863 DOI: 10.3390/nano15080612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Simple and accurate analysis of cancer-related biomarkers is very important for disease screening and auxiliary diagnosis. This study proposed a facile immunoassay that used gold nanostar-labeled rabbit anti-AFP as a capture antibody and gold nanoparticle-conjugated goat anti-rabbit IgG as an enhance antibody for the construction of a detection strategy for AFP analysis. Investigations indicated that the 50 nm diameter GNS-labeled capture antibody can specifically catch AFPs by direct detection profile or by further signal amplification through AuNP-tagged enhance antibody combination. Results showed that the developed method holds 8.6 ng/mL sensitivity, 20.0-110.0 ng/mL detection range, acceptable precision and fine accuracy, as well as favorable specificity. Results of application to real serum determination by the proposed method are highly related to those of the ECLIA method (correlation coefficient is 0.931). The proposed method has simple-operation merit and is very suitable for clinical screening of large-scale serum samples of cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chenghong Huang
- School of Chemistry and Chemical Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| |
Collapse
|
2
|
Vo KQ, Huynh TTT, Nguyen TA, Truong TT. Rational side-by-side self-assembly of gold nanorods with short and medium aspect ratios via the self-evaporation method to boost their potential as a surface-enhanced Raman scattering (SERS) substrate. Dalton Trans 2025; 54:2540-2560. [PMID: 39758015 DOI: 10.1039/d4dt03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Surface-enhanced Raman scattering (SERS) represents a compelling detection methodology centered on the electromagnetic fields, commonly termed "hot spots", generated around noble nanoparticles. Nonetheless, the efficacy of electromagnetic field (EMF) amplification is constrained when utilizing individual nanoparticles. There has been a notable lack of experimental and theoretically simulated studies regarding the increase of the electromagnetic field when gold nanorods with different aspect ratios undergo self-assembly in either perpendicular or parallel orientations to substrates. This research presents a novel and facile methodology for fabricating SERS nanosubstrates. This method entails self-assembling gold nanorods (AuNRs) with short and medium aspect ratios (ARs) through natural evaporation. By manipulating the water-to-ethanol ratios, we ascertain the appropriate conditions for the rational alignment of the nanorods in both perpendicular and parallel orientations relative to the silicon substrate. These nanosubstrates have been experimentally evaluated for their ability to improve the Surface-Enhanced Raman Scattering (SERS) performance, presenting a novel perspective in this field. In addition, a computational analysis employing the finite-difference time-domain (FDTD) method was conducted to elucidate the electromagnetic field generated by nanoarrays when subjected to incident light of varying wavelengths, including 532 nm, 638 nm, and 785 nm. Notably, the FDTD simulation outcomes indicated that gold nanorods (AuNRs) possessing an aspect ratio of 3.0 and nanogaps of 2.0 nm exhibited exceptional electromagnetic field characteristics when aligned parallel to the substrate under 532 nm laser illumination. Conversely, when the AuNRs were oriented perpendicular to the substrates, they produced lower EMFs upon interaction with excitation laser light. These findings can potentially contribute to the advancement of SERS nanosubstrate design.
Collapse
Affiliation(s)
- Khuong Quoc Vo
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thanh-Tuyen Thi Huynh
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thu Anh Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tan-Trung Truong
- Faculty of Technology, Dong Nai Technology University, 206 Nguyen Khuyen, Trang Dai Ward, Bien Hoa City, Dong Nai 76000, Vietnam
| |
Collapse
|
3
|
Shah DD, Chorawala MR, Mansuri MKA, Parekh PS, Singh S, Prajapati BG. Biogenic metallic nanoparticles: from green synthesis to clinical translation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8603-8631. [PMID: 38935128 DOI: 10.1007/s00210-024-03236-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mohammad Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
4
|
Bemidinezhad A, Radmehr S, Moosaei N, Efati Z, Kesharwani P, Sahebkar A. Enhancing radiotherapy for melanoma: the promise of high-Z metal nanoparticles in radiosensitization. Nanomedicine (Lond) 2024; 19:2391-2411. [PMID: 39382020 PMCID: PMC11492696 DOI: 10.1080/17435889.2024.2403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Melanoma is a type of skin cancer that can be challenging to treat, especially in advanced stages. Radiotherapy is one of the main treatment modalities for melanoma, but its efficacy can be limited due to the radioresistance of melanoma cells. Recently, there has been growing interest in using high-Z metal nanoparticles (NPs) to enhance the effectiveness of radiotherapy for melanoma. This review provides an overview of the current state of radiotherapy for melanoma and discusses the physical and biological mechanisms of radiosensitization through high-Z metal NPs. Additionally, it summarizes the latest research on using high-Z metal NPs to sensitize melanoma cells to radiation, both in vitro and in vivo. By examining the available evidence, this review aims to shed light on the potential of high-Z metal NPs in improving radiotherapy outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Moosaei
- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Zohreh Efati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
King J, Lin Z, Zanca F, Luo H, Zhang L, Cullen P, Danaie M, Hirscher M, Meloni S, Elena AM, Szilágyi PÁ. Controlling nanocluster growth through nanoconfinement: the effect of the number and nature of metal-organic framework functionalities. Phys Chem Chem Phys 2024; 26:25021-25028. [PMID: 39301657 DOI: 10.1039/d4cp02422b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Controlled nanocluster growth via nanoconfinement is an attractive approach as it allows for geometry control and potential surface-chemistry modification simultaneously. However, it is still not a straight-forward method and much of its success depends on the nature and possibly concentration of functionalities on the cavity walls that surround the clusters. To independently probe the effect of the nature and number of functional groups on the controlled Pd nanocluster growth within the pores of the metal-organic frameworks, Pd-laden UiO-66 analogues with mono- and bi-functionalised linkers of amino and methyl groups were successfully prepared and studied in a combined experimental-computational approach. The nature of the functional groups determines the strength of host-guest interactions, while the number of functional groups affects the extent of Pd loading. The interplay of these two effects means that for a successful Pd embedding, mono-functionalised host matrices are more favourable. Interestingly, in the context of the present and previous research, we find that host frameworks with functional groups displaying higher Lewis basicity are more successful at controlled Pd NC growth via nanoconfinement in MOFs.
Collapse
Affiliation(s)
- James King
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Campus, E1 4NS, London, UK
| | - Zhipeng Lin
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Campus, E1 4NS, London, UK
| | - Federica Zanca
- Scientific Computing Department, Science and Technologies Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - Hui Luo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Linda Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Hydrogen Storage Group, Max Planck Institute for Intelligent Systems, Heisenbergstrasse. 3, Stuttgart 70569, Germany
| | - Patrick Cullen
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Campus, E1 4NS, London, UK
| | - Mohsen Danaie
- electron Physical Science Imaging Centre (ePSIC), Diamond Light Source, Didcot, OX11 0DE, UK
| | - Michael Hirscher
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Hydrogen Storage Group, Max Planck Institute for Intelligent Systems, Heisenbergstrasse. 3, Stuttgart 70569, Germany
| | - Simone Meloni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via Luigi Borsari 46, Ferrara 44121, Italy
| | - Alin M Elena
- Scientific Computing Department, Science and Technologies Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - Petra Á Szilágyi
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway.
| |
Collapse
|
6
|
Naqvi SMA, Islam SN, Kumar A, Patil CR, Kumar A, Ahmad A. Enhanced anti-cancer potency of sustainably synthesized anisotropic silver nanoparticles as compared with L-asparaginase. Int J Biol Macromol 2024; 263:130238. [PMID: 38367787 DOI: 10.1016/j.ijbiomac.2024.130238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Acute lymphoblastic leukemia (ALL), a hematologic cancer that involves the production of abnormal lymphoid precursor cells, primarily affects children aged 2 to 10 years. The bacterial enzyme L-asparaginase produced from Escherichia coli is utilised as first-line therapy, despite the fact that 30 % of patients have a treatment-limiting hypersensitivity reaction. The current study elucidates the biosynthesis of extremely stable, water-dispersible, anisotropic silver nanoparticles (ANI Ag NPs) at room temperature and investigation of its anti-tumor potency in comparison to L-asparaginase. The optical, morphological, compositional, and structural properties of synthesized nanoparticles were evaluated using UV-Vis-NIR spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy, and X-ray Diffractometer. The UV-Vis-NIR spectra revealed the typical Surface Plasmon Resonance (SPR) at 423 nm along with additional NIR absorption at 962 nm and 1153 nm, while TEM images show different shapes and sizes of Ag nanoparticles ranging from 6.81 nm to 46 nm, together confirming their anisotropic nature. Further, the MTT assay demonstrated promising anticancer effects of ANI Ag NPs with an IC50 value of ∼7 μg/mL against HuT-78 cells. These sustainable anisotropic silver nanoparticles exhibited approximately four times better cytotoxic ability (at and above 10 μg/mL concentrations) than L-asparaginase against HuT-78 cells (a human T lymphoma cell line). Apoptosis analysis by Wright-Geimsa, Annexin-V, and DAPI staining indicated the role of apoptosis in ANI Ag NPs-mediated cell death. The measurement of NO, and Bcl2 and cleaved caspase-3 levels by colorimetric method and immunoblotting, respectively suggested their involvement in ANI Ag NPs-elicited apoptosis. The findings indicate that the biogenic approach proposed herein holds tremendous promise for the rapid and straightforward design of novel multifunctional nanoparticles for the treatment of T cell malignancies.
Collapse
Affiliation(s)
- Syed Mohd Adnan Naqvi
- Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh UP-202002, India
| | - Sk Najrul Islam
- Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh UP-202002, India
| | - Abhishek Kumar
- Tumor Biomarkers and Therapeutic Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi UP-221005, India
| | | | - Ajay Kumar
- Tumor Biomarkers and Therapeutic Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi UP-221005, India.
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh UP-202002, India.
| |
Collapse
|
7
|
Radzikowska-Büchner E, Flieger W, Pasieczna-Patkowska S, Franus W, Panek R, Korona-Głowniak I, Suśniak K, Rajtar B, Świątek Ł, Żuk N, Bogucka-Kocka A, Makuch-Kocka A, Maciejewski R, Flieger J. Antimicrobial and Apoptotic Efficacy of Plant-Mediated Silver Nanoparticles. Molecules 2023; 28:5519. [PMID: 37513392 PMCID: PMC10383343 DOI: 10.3390/molecules28145519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Phytogenically synthesised nanoparticle (NP)-based drug delivery systems have promising potential in the field of biopharmaceuticals. From the point of view of biomedical applications, such systems offer the small size, high surface area, and possible synergistic effects of NPs with embedded biomolecules. This article describes the synthesis of silver nanoparticles (Ag-NPs) using extracts from the flowers and leaves of tansy (Tanacetum vulgare L.), which is known as a remedy for many health problems, including cancer. The reducing power of the extracts was confirmed by total phenolic and flavonoid content and antioxidant tests. The Ag-NPs were characterised by various analytical techniques including UV-vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy, and a dynamic light scattering (DLS) system. The obtained Ag-NPs showed higher cytotoxic activity than the initial extracts against both human cervical cancer cell lines HeLa (ATCC CCL-2) and human melanoma cell lines A375 and SK-MEL-3 by MTT assay. However, the high toxicity to Vero cell culture (ATCC CCL-81) and human fibroblast cell line WS-1 rules out the possibility of their use as anticancer agents. The plant-mediated Ag-NPs were mostly bactericidal against tested strains with MBC/MIC index ≤4. Antifungal bioactivity (C. albicans, C. glabrata, and C. parapsilosis) was not observed for aqueous extracts (MIC > 8000 mg L-1), but Ag-NPs synthesised using both the flowers and leaves of tansy were very potent against Candida spp., with MIC 15.6 and 7.8 µg mL-1, respectively.
Collapse
Affiliation(s)
| | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Sylwia Pasieczna-Patkowska
- Department of Chemical Technology, Faculty of Chemistry, Maria Curie Skłodowska University, Pl. Maria Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Wojciech Franus
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Rafał Panek
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Katarzyna Suśniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Barbara Rajtar
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Natalia Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Zhang S, Chen S, Zhu R. Electroporation-Assisted Surface-Enhanced Raman Detection for Long-Term, Label-Free, and Noninvasive Molecular Profiling of Live Single Cells. ACS Sens 2023; 8:555-564. [PMID: 36399395 DOI: 10.1021/acssensors.2c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Molecule characterization of live single cells is greatly important in disease diagnoses and personalized treatments. Conventional molecule detection methods, such as mass spectrography, gene sequencing, or immunofluorescence, are usually destructive or labeled and unable to monitor the dynamic change of live cellular molecules. Herein, we propose an electroporation-assisted surface-enhanced Raman scattering (EP-SERS) method using a microchip to implement label-free, noninvasive, and continuous detections of the molecules of live single cells. The microchip containing microelectrodes with nanostructured EP-SERS probes has a multifunction of cell positioning, electroporation, and SERS detection. The EP-SERS method capably detects both the intracellular and extracellular molecules of live single cells without losing cell viability so as to enable long-term monitoring of the molecular pathological process in situ. We detect the molecules of single cells for two breast cancer cell lines with different malignancies (MCF-7 and MDA-MB-231), one liver cancer cell line (Huh-7), and one normal cell line (293T) using the EP-SERS method and classify these cell types to achieve high accuracies of 91.4-98.3% using their SERS spectra. Furthermore, 24 h continuous monitoring of the heterogeneous molecular responses of different cancer cell lines under doxorubicin treatment is successfully implemented using the EP-SERS method. This work provides a long-term, label-free, and biocompatible approach to simultaneously detect intracellular and extracellular molecules of live single cells on a chip, which would facilitate research and applications of cancer diagnoses and personalized treatments.
Collapse
Affiliation(s)
- Shengsen Zhang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Shengjie Chen
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| |
Collapse
|
9
|
Jiracheewanun S, Cortie MB, Pissuwan D. Thermal Effect during Laser-Induced Plasmonic Heating of Polyelectrolyte-Coated Gold Nanorods in Well Plates. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:845. [PMID: 36903723 PMCID: PMC10005119 DOI: 10.3390/nano13050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
We examined the generation and transfer of heat when laser irradiation is applied to water containing a suspension of gold nanorods coated with different polyelectrolytes. The ubiquitous well plate was used as the geometry for these studies. The predictions of a finite element model were compared to experimental measurements. It is found that relatively high fluences must be applied in order to generate biologically relevant changes in temperature. This is due to the significant lateral heat transfer from the sides of the well, which strongly limits the temperature that can be achieved. A 650 mW continuous-wave (CW) laser, with a wavelength that is similar to the longitudinal plasmon resonance peak of the gold nanorods, can deliver heat with an overall efficiency of up to 3%. This is double the efficiency achievable without the nanorods. An increase in temperature of up to 15 °C can be achieved, which is suitable for the induction of cell death by hyperthermia. The nature of the polymer coating on the surface of the gold nanorods is found to have a small effect.
Collapse
Affiliation(s)
- Sujin Jiracheewanun
- Department of Mechanical Technology Education, Faculty of Industrial Education and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10400, Thailand
| | - Michael B. Cortie
- School of Mechanical, Materials, Mechatronics and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - Dakrong Pissuwan
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Oliveira BB, Ferreira D, Fernandes AR, Baptista PV. Engineering gold nanoparticles for molecular diagnostics and biosensing. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1836. [PMID: 35932114 DOI: 10.1002/wnan.1836] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Advances in nanotechnology and medical science have spurred the development of engineered nanomaterials and nanoparticles with particular focus on their applications in biomedicine. In particular, gold nanoparticles (AuNPs) have been the focus of great interest, due to their exquisite intrinsic properties, such as ease of synthesis and surface functionalization, tunable size and shape, lack of acute toxicity and favorable optical, electronic, and physicochemical features, which possess great value for application in biodetection and diagnostics purposes, including molecular sensing, photoimaging, and application under the form of portable and simple biosensors (e.g., lateral flow immunoassays that have been extensively exploited during the current COVID-19 pandemic). We shall discuss the main properties of AuNPs, their synthesis and conjugation to biorecognition moieties, and the current trends in sensing and detection in biomedicine and diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Beatriz B Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
11
|
Nguyen QN, Wang C, Shang Y, Janssen A, Xia Y. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chem Rev 2022; 123:3693-3760. [PMID: 36547384 DOI: 10.1021/acs.chemrev.2c00468] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanocrystals offer a unique platform for tailoring the physicochemical properties of solid materials to enhance their performances in various applications. While most work on controlling their shapes revolves around symmetrical growth, the introduction of asymmetrical growth and thus symmetry breaking has also emerged as a powerful route to enrich metal nanocrystals with new shapes and complex morphologies as well as unprecedented properties and functionalities. The success of this route critically relies on our ability to lift the confinement on symmetry by the underlying unit cell of the crystal structure and/or the initial seed in a systematic manner. This Review aims to provide an account of recent progress in understanding and controlling asymmetrical growth and symmetry breaking in a colloidal synthesis of noble-metal nanocrystals. With a touch on both the nucleation and growth steps, we discuss a number of methods capable of generating seeds with diverse symmetry while achieving asymmetrical growth for mono-, bi-, and multimetallic systems. We then showcase a variety of symmetry-broken nanocrystals that have been reported, together with insights into their growth mechanisms. We also highlight their properties and applications and conclude with perspectives on future directions in developing this class of nanomaterials. It is hoped that the concepts and existing challenges outlined in this Review will drive further research into understanding and controlling the symmetry breaking process.
Collapse
Affiliation(s)
- Quynh N. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Yuxin Shang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Annemieke Janssen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia30332, United States
| |
Collapse
|
12
|
Yasin D, Sami N, Afzal B, Husain S, Naaz H, Ahmad N, Zaki A, Rizvi MA, Fatma T. Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Aghahosseini A, Edjlali L, Jamehbozorgi S, Rezvani M, Ghasemi E. Theoretical investigations of functionalization of graphene and ZnO monolayers with Mercaptopurine at aqueous media: a dispersion-corrected DFT calculations and Molecular dynamic simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Tanwar S, Kim JH, Bulte JWM, Barman I. Surface-enhanced Raman scattering: An emerging tool for sensing cellular function. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1802. [PMID: 35510405 PMCID: PMC9302385 DOI: 10.1002/wnan.1802] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
Abstract
Continuous long-term intracellular imaging and multiplexed monitoring of biomolecular changes associated with key cellular processes remains a challenge for the scientific community. Recently, surface-enhanced Raman scattering (SERS) has been demonstrated as a powerful spectroscopic tool in the field of biology owing to its significant advantages. Some of these include the ability to provide molecule-specific information with exquisite sensitivity, working with small volumes of precious samples, real-time monitoring, and optimal optical contrast. More importantly, the availability of a large number of novel Raman reporters with narrower full width at half maximum (FWHM) of spectral peaks/vibrational modes than conventional fluorophores has created a versatile palette of SERS-based probes that allow targeted multiplex sensing surpassing the detection sensitivity of even fluorescent probes. Due to its nondestructive nature, its applicability has been recognized for biological sensing, molecular imaging, and dynamic monitoring of complex intracellular processes. We critically discuss recent developments in this area with a focus on different applications where SERS has been used for obtaining information that remains elusive for conventional imaging methods. Current reports indicate that SERS has made significant inroads in the field of biology and has the potential to be used for in vivo human applications. This article is categorized under: Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Swati Tanwar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Lee E, Lee M, Kwon S, Kim J, Kwon Y. Systematic and mechanistic analysis of AuNP-induced nanotoxicity for risk assessment of nanomedicine. NANO CONVERGENCE 2022; 9:27. [PMID: 35680772 PMCID: PMC9184696 DOI: 10.1186/s40580-022-00320-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/29/2022] [Indexed: 05/02/2023]
Abstract
For decades, nanoparticles (NPs) have been widely implemented in various biomedical fields due to their unique optical, thermal, and tunable properties. Particularly, gold nanoparticles (AuNPs) have opened new frontiers in sensing, targeted drug delivery, imaging, and photodynamic therapy, showing promising results for the treatment of various intractable diseases that affect quality of life and longevity. Despite the tremendous achievements of AuNPs-based approaches in biomedical applications, few AuNP-based nanomedicines have been evaluated in clinical trials, which is likely due to a shortage of understanding of the biological and pathological effects of AuNPs. The biological fate of AuNPs is tightly related to a variety of physicochemical parameters including size, shape, chemical structure of ligands, charge, and protein corona, and therefore evaluating the effects of these parameters on specific biological interactions is a major ongoing challenge. Therefore, this review focuses on ongoing nanotoxicology studies that aim to characterize the effect of various AuNP characteristics on AuNP-induced toxicity. Specifically, we focus on understanding how each parameter alters the specific biological interactions of AuNPs via mechanistic analysis of nano-bio interactions. We also discuss different cellular functions affected by AuNP treatment (e.g., cell motility, ROS generation, interaction with DNA, and immune response) to understand their potential human health risks. The information discussed herein could contribute to the safe usage of nanomedicine by providing a basis for appropriate risk assessment and for the development of nano-QSAR models.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Minhyeong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - San Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jongpil Kim
- Department of Chemistry, Dongguk University, Seoul, 04620, Korea.
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
16
|
Zhou J, Chen L, Chen L, Zeng X, Zhang Y, Yuan Y. Emerging role of nanoparticles in the diagnostic imaging of gastrointestinal cancer. Semin Cancer Biol 2022; 86:580-594. [DOI: 10.1016/j.semcancer.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
|
17
|
Liu Y, Ran M, Sun Y, Fan Y, Wang J, Cao X, Lu D. A sandwich SERS immunoassay platform based on a single-layer Au-Ag nanobox array substrate for simultaneous detection of SCCA and survivin in serum of patients with cervical lesions. RSC Adv 2021; 11:36734-36747. [PMID: 35494344 PMCID: PMC9043334 DOI: 10.1039/d1ra03082e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The evaluation of tumor biomarkers in blood specimens is vital for patients with cervical lesions. Herein, an ultrasensitive surface enhanced Raman scattering (SERS) platform was proposed for simultaneous detection of cervical-lesion-related serum biomarkers. Raman reporter labeled Au-Ag nanoshells (Au-AgNSs) acted as SERS tags and an Au-Ag nanobox (Au-AgNB) array substrate prepared by the oil-water interface self-assembly method was used as a capture substrate. This single-layer Au-AgNB array substrate was proved to have exceptional uniformity by atomic force microscopy and SERS mapping. Numerous "hot spots" and specific adsorption surfaces offered by the Au-AgNB array substrate were confirmed by the finite difference time domain method, which could generate a SERS signal in electromagnetic enhancement. Binding of antigens between antibodies on Au-AgNSs and the Au-AgNB array substrate led to the formation of a sandwich-structure by the two metal nanostructures. Consequently, an ultralow detection limit of 6 pg mL-1 for squamous cell carcinoma antigen (SCCA) and 5 pg mL-1 for survivin in a wide linear logarithmic range of 10 pg mL-1 to 10 μg mL-1 was acquired. High selectivity and reproducibility with relative standard deviations of 7.701% and 6.943% were detected. Furthermore, the simultaneous detection of the two biomarkers in practical specimens was conducted, and the results were consistent with those of the enzyme-linked immunosorbent assay. This platform exhibited good robustness in the rapid and sensitive detection of SCCA and survivin, which could be a promising tool in early clinical diagnosis for different grades of cervical lesions.
Collapse
Affiliation(s)
- Yifan Liu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University Yangzhou P. R. China
- The Yangzhou School of Clinial Medicine of Dalian Medical University Yangzhou P. R. China
| | - Menglin Ran
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University Yangzhou P. R. China
- The Yangzhou School of Clinial Medicine of Dalian Medical University Yangzhou P. R. China
| | - Yue Sun
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University Yangzhou 225001 China
| | - Yongxin Fan
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University Yangzhou 225001 China
| | - Jinghan Wang
- The Yangzhou School of Clinial Medicine of Dalian Medical University Yangzhou P. R. China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University Yangzhou 225001 China
| | - Dan Lu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou P. R. China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University Yangzhou P. R. China
- The Yangzhou School of Clinial Medicine of Dalian Medical University Yangzhou P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou P. R. China
| |
Collapse
|
18
|
|
19
|
Kumari S, Sharma N, Sahi SV. Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy. Pharmaceutics 2021; 13:1174. [PMID: 34452135 PMCID: PMC8398544 DOI: 10.3390/pharmaceutics13081174] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
In this review, advancement in cancer therapy that shows a transition from conventional thermal therapies to laser-based photothermal therapies is discussed. Laser-based photothermal therapies are gaining popularity in cancer therapeutics due to their overall outcomes. In photothermal therapy, light is converted into heat to destruct the various types of cancerous growth. The role of nanoparticles as a photothermal agent is emphasized in this review article. Magnetic, as well as non-magnetic, nanoparticles have been effectively used in the photothermal-based cancer therapies. The discussion includes a critical appraisal of in vitro and in vivo, as well as the latest clinical studies completed in this area. Plausible evidence suggests that photothermal therapy is a promising avenue in the treatment of cancer.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, KY 42101-1080, USA;
| | - Shivendra V. Sahi
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| |
Collapse
|
20
|
Khan NU, Lin J, Younas MR, Liu X, Shen L. Synthesis of gold nanorods and their performance in the field of cancer cell imaging and photothermal therapy. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00092-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractCancer is one of the most common incident in the world, with malignant tumors having a death rate of up to 19%. A new method of treating cancer cells effectively with minimal cytotoxicity is needed. In the field of biomedicine with unique shape-dependent optical properties, gold nanorods (GNRs) have attracted worldwide interest. These nanorods have two distinct plasmon bands. One is transverse plasmon band in the area of visible light, and the other is longitudinal band of plasmons in near infrared region. These specific characters provide promise for the design of new optically active reagents that simultaneously perform light-mediated imaging and photothermal cancer treatment. We begin our review by summarizing the latest developments in gold nanorods synthesis with a focus on seed-mediated growth method. Nanorods spontaneous self-assembly, polymer-based alignment and its applications as a novel agent for simultaneous bioimaging and photothermal cancer therapy are listed in particular.
Collapse
|
21
|
Shen YM, Gao MY, Chen X, Shen AG, Hu JM. Fine synthesis of Prussian-blue analogue coated gold nanoparticles (Au@PBA NPs) for sorting specific cancer cell subtypes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119566. [PMID: 33607489 DOI: 10.1016/j.saa.2021.119566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 05/23/2023]
Abstract
Multiplex surface-enhanced Raman scattering (SERS) detection of markers without background in tumor biosystems has its superiority over other optical methods. Herein, we reported a strategy of quantitative discrimination of two breast cancer cell subtypes. Based on our previous studies, two kinds of Prussian blue analogue coated gold nanoparticles (Au@PBA NPs) were designed and synthesized by the replacement of Fe2+ with Pb2+ or Cu2+. Therefore, two distinct SERS emissions of C≡N bonds at 2122 cm-1 and 2176 cm-1 have been acquired. When modified with aptamers of epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), which are both expressed in MCF-7 and MDA-MB-231 cell lines but in different levels, the SERS nanoprobes simultaneously identified the relative expression of these biomarkers on the cell surface, providing a good example for ratiometric detection in biosystems without any interference. Each surface marker of tumor cells corresponds to a single SERS emission. Thus, each subtype could be described in a molecular profiling way through duplex C≡N bonds-based SERS emission, which is more advanced than traditional flow cytometry method.
Collapse
Affiliation(s)
- Ya-Min Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; School of Printing and Packaging, Wuhan University, Wuhan 430079, PR China
| | - Meng-Yue Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xu Chen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University, Wuhan 430079, PR China.
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
22
|
Liu Y, Zhang Z, Park Y, Lee SE. Ultraprecision Imaging and Manipulation of Plasmonic Nanostructures by Integrated Nanoscopic Correction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007610. [PMID: 33856109 DOI: 10.1002/smll.202007610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Optical manipulation and imaging of nano-objects with nanometer precision is highly desirable for nanomaterial and biological studies due to inherent noninvasiveness. However, time constraints and current segregated experimental systems for nanoimaging and nanomanipulation limits real-time super-resolution imaging with spatially enhanced manipulation. Here, an integrated nanoscopic correction (iNC) method to enable multimodal nanomanipulation-nanoimaging is reported. The iNC consists of a multimodal voltage-tunable power modulator, polarization rotator, and polarizer. Using the iNC, plasmonic nano-objects which are below the diffraction limit and which can be distinguished by direct observation without post processing are demonstrated. Furthermore, such direct observations with enhanced nanometer spatial stability and millisecond high speed are shown. Precise trapping and rapid rotation of gold nanorods with the iNC are demonstrated successfully. With non-invasive post-processing free nanoimaging and nanomanipulation, it is anticipated that the iNC will make contributions in the nanomaterial and biological sciences requiring precision optics.
Collapse
Affiliation(s)
- Yunbo Liu
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhijia Zhang
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Younggeun Park
- Department of Mechanical Engineering, Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Somin Eunice Lee
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
23
|
Abdul-Moqueet MM, Tovias L, Lopez P, Mayer KM. Synthesis and bioconjugation of alkanethiol-stabilized gold bipyramid nanoparticles. NANOTECHNOLOGY 2021; 32:10.1088/1361-6528/abe823. [PMID: 33607639 PMCID: PMC8374007 DOI: 10.1088/1361-6528/abe823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
Gold bipyramid (GBP) nanoparticles are promising for a range of biomedical applications, including biosensing and surface-enhanced Raman spectroscopy, due to their favorable optical properties and ease of chemical functionalization. Here we report improved synthesis methods, including preparation of gold seed particles with an increased shelf life of ∼1 month, and preparation of GBPs with significantly shortened synthesis time (< 1 h). We also report methods for the functionalization and bioconjugation of the GBPs, including functionalization with alkanethiol self-assembled monolayers (SAMs) and bioconjugation with proteins via carbodiimide cross-linking. Binding of specific antibodies to the nanoparticle-bound proteins was subsequently observed via localized surface plasmon resonance sensing. Rabbit IgG and goat anti-Rabbit IgG antibodies were used as a model system for antibody-antigen interactions. As-synthesized, SAM-functionalized, and bioconjugated bipyramids were characterized using scanning electron microscopy, UV-vis spectroscopy, zeta potential, and dynamic light scattering.
Collapse
Affiliation(s)
- Mohammad M Abdul-Moqueet
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Leeana Tovias
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Priscilla Lopez
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Kathryn M Mayer
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
24
|
Dasari S, Yedjou CG, Brodell RT, Cruse AR, Tchounwou PB. Therapeutic strategies and potential implications of silver nanoparticles in the management of skin cancer. NANOTECHNOLOGY REVIEWS 2020; 9:1500-1521. [PMID: 33912377 PMCID: PMC8078871 DOI: 10.1515/ntrev-2020-0117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Skin cancer (SC) is the most common carcinoma affecting 3 million people annually in the United States and millions of people worldwide. It is classified as melanoma SC (MSC) and non-melanoma SC (NMSC). NMSC represents approximately 80% of SC and includes squamous cell carcinoma and basal cell carcinoma. MSC, however, has a higher mortality rate than SC because of its ability to metastasize. SC is a major health problem in the United States with significant morbidity and mortality in the Caucasian population. Treatment options for SC include cryotherapy, excisional surgery, Mohs surgery, curettage and electrodessication, radiation therapy, photodynamic therapy, immunotherapy, and chemotherapy. Treatment is chosen based on the type of SC and the potential for side effects. Novel targeted therapies are being used with increased frequency for large tumors and for metastatic disease. A scoping literature search on PubMed, Google Scholar, and Cancer Registry websites revealed that traditional chemotherapeutic drugs have little effect against SC after the cancer has metastasized. Following an overview of SC biology, epidemiology, and treatment options, this review focuses on the mechanisms of advanced technologies that use silver nanoparticles in SC treatment regimens.
Collapse
Affiliation(s)
- Shaloam Dasari
- Department of Biology, Environmental Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, MS 39217, United States of America
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, United States of America
| | - Robert T. Brodell
- Department of Dermatology, University of Mississippi Medical Center, 2500N. State Street, Jackson, MS 39216, United States of America
| | - Allison R. Cruse
- Department of Dermatology, University of Mississippi Medical Center, 2500N. State Street, Jackson, MS 39216, United States of America
| | - Paul B. Tchounwou
- Department of Biology, Environmental Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, MS 39217, United States of America
| |
Collapse
|
25
|
Ortiz-Castillo JE, Gallo-Villanueva RC, Madou MJ, Perez-Gonzalez VH. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213489] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Majeed SA, Sekhosana KE, Tuhl A. Progress on phthalocyanine-conjugated Ag and Au nanoparticles: Synthesis, characterization, and photo-physicochemical properties. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
27
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
28
|
Choi J, Kim G, Cho SB, Im HJ. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnology 2020; 18:122. [PMID: 32883290 PMCID: PMC7470617 DOI: 10.1186/s12951-020-00684-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is an essential step during the treatment of glioblastoma multiforme (GBM), one of the most lethal malignancies. The survival in patients with GBM was improved by the current standard of care for GBM established in 2005 but has stagnated since then. Since GBM is a radioresistant malignancy and the most of GBM recurrences occur in the radiotherapy field, increasing the effectiveness of radiotherapy using high-Z metal nanoparticles (NPs) has recently attracted attention. This review summarizes the progress in radiotherapy approaches for the current treatment of GBM, the physical and biological mechanisms of radiosensitization through high-Z metal NPs, and the results of studies on radiosensitization in the in vitro and in vivo GBM models using high-Z metal NPs to date.
Collapse
Affiliation(s)
- Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Gaeun Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Su Bin Cho
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Kaushal S, Nanda SS, Yi DK, Ju H. Effects of Aspect Ratio Heterogeneity of an Assembly of Gold Nanorod on Localized Surface Plasmon Resonance. J Phys Chem Lett 2020; 11:5972-5979. [PMID: 32631062 DOI: 10.1021/acs.jpclett.0c01507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We examine the effects of aspect ratio (AR) heterogeneity of an assembly of gold nanorods (GNRs) in a colloid on the total cross-section for its light scattering via localized surface plasmons at visible wavelengths. We observe the extraordinary broadening of the extinction spectrum of light through an assembly of GNRs, a colloidal mixture of those having two different ARs. The interparticle distance estimated as ∼1.2-1.3 μm, being greater than the incident wavelength, allows the radiative dipolar coupling to govern the long-range interaction between GNRs. We find that the coupling enhanced local fields can activate the nonresonant polarization of GNRs to turn into a quasi-resonant one. These higher-order effects for GNR polarization can produce the deviation of total cross-section of GNRs assembly beyond the simple sum of an individual cross-section of GNRs that are assumed to have no such long-range coupling. The extraordinary properties of the extinction spectrum need to be taken into account for modulating the spectral distribution of electromagnetic field in photonic devices where an assembly of GNRs is utilized for field enhancement such as those for surface-enhanced spectroscopy, highly efficient photovoltaics, photothermal nanotherapy, and ultrathin absorption filters.
Collapse
Affiliation(s)
- Sandeep Kaushal
- Department of Chemistry, Myongji University, 17058 Yongin, Republic of Korea
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, 17058 Yongin, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, College of Bionano Technology, Gachon University, 13120 Seongnam, Republic of Korea
| |
Collapse
|
30
|
Ahmad T, Sarwar R, Iqbal A, Bashir U, Farooq U, Halim SA, Khan A, Al-Harrasi A. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomedicine (Lond) 2020; 15:1221-1237. [DOI: 10.2217/nnm-2020-0051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The diverse behavior of nanogold in the therapeutic field is related to its unique size and shape. Nanogold offers improvements in modern diagnostic and therapeutic implications, increases disease specificity and targeted drug delivery, and is relatively economical compared with other chemotherapeutic protocols. The diagnosis of cancer and photothermal therapy improve drastically with the implementation of nanotechnology. Different types of nanoparticles, that is, gold silica nanoshells, nanorods and nanospheres of diverse shapes and geometries, are used widely in the photothermal therapy of cancerous cells and nodules. Numerous reviews have been published on the therapeutic applications of gold nanoparticles, but studies on combinatorial applications of nanogold in cancer therapy are limited. This review focuses on the combinatorial cancer therapy using optical properties of nanogold with different shapes and geometries, and their therapeutic applications in cancer diagnosis, photothermal therapy, cancer imaging and targeted drug delivery.
Collapse
Affiliation(s)
- Touqeer Ahmad
- Natural & Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Ayesha Iqbal
- Division of Pharmacy Practice & Policy, School of pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Uzma Bashir
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Sobia Ahsan Halim
- Natural & Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| | - Ajmal Khan
- Natural & Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| |
Collapse
|
31
|
Hao B, Wang K, Zhou Y, Sui C, Wang L, Bai R, Yang Z. Label-Free Detecting of the Compaction and Decompaction of ctDNA Molecules Induced by Surfactants with SERS Based on a nanoPAA-ZnCl 2-AuLs Solid Substrate. ACS OMEGA 2020; 5:1109-1119. [PMID: 31984267 PMCID: PMC6977030 DOI: 10.1021/acsomega.9b03294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/24/2019] [Indexed: 06/02/2023]
Abstract
DNA molecular compaction/decompaction is of great significance for the exploration of basic life processes, the research of biomedical and genetic engineering, and so forth. However, the detailed mechanism of DNA compaction/decompaction caused by surfactants remains an open and challenging problem that has not been fully solved so far. In this paper, a sort of novel solid substrate, nanoPAA-ZnCl2-AuLs, with good stability and high sensitivity, was prepared by a self-assembly method. Based on this substrate, the surface-enhanced Raman scattering (SERS) technology was employed to investigate characteristics of interactions between DNA molecules and surfactants at a single molecular level. SERS spectra of calf thymus DNA (ctDNA), cetyl trimethyl ammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) with a concentration as low as 10-9 M, and SERS spectra of ctDNA-CTAB and ctDNA-CTAB-SDS composites were collected, respectively. The interactions between ctDNA and surfactants were analyzed by changes in SERS spectra, for example, disappearances and appearances of SERS bands and relative changes of peak intensity, in which CTAB resulted in the compaction of the DNA molecule while SDS induced the decompaction of the ctDNA-CTAB complex. Moreover, UV-visible spectrophotometry was employed to demonstrate the compaction/decompaction of ctDNA molecules caused by surfactants. The local binding modes of ctDNA molecules and surfactant molecules were expounded. This work will be helpful for understanding biological processes such as DNA compaction and recombination within nucleus or/and cells and for the development of gene therapy technologies.
Collapse
Affiliation(s)
- Bojuan Hao
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi
Province, National Center for International Research of Photoelectric
Technology & Nano-Functional Materials and Application, Institute
of Photonics and Photon-Technology, Northwest
University, Xi’an 710069, China
| | - Kaige Wang
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi
Province, National Center for International Research of Photoelectric
Technology & Nano-Functional Materials and Application, Institute
of Photonics and Photon-Technology, Northwest
University, Xi’an 710069, China
| | - Yukun Zhou
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi
Province, National Center for International Research of Photoelectric
Technology & Nano-Functional Materials and Application, Institute
of Photonics and Photon-Technology, Northwest
University, Xi’an 710069, China
| | - Chaofan Sui
- State
Key Laboratory of Cultivation Base for Photoelectric Technology and
Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi
Province, National Center for International Research of Photoelectric
Technology & Nano-Functional Materials and Application, Institute
of Photonics and Photon-Technology, Northwest
University, Xi’an 710069, China
| | - Lei Wang
- Xi’an
Institute of Applied Optics, Xi’an 710065, China
| | - Ren Bai
- Medical
College, Xi’an International University, Xi’an 710077, China
| | - Zhaojin Yang
- Xi’an
Institute of Applied Optics, Xi’an 710065, China
| |
Collapse
|
32
|
Wu A, Tanaka YY, Shimura T. Plasmon-hybridization-induced optical torque between twisted metal nanorods. OPTICS EXPRESS 2020; 28:2398-2410. [PMID: 32121930 DOI: 10.1364/oe.382671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
We present a numerical study of optical torque between two twisted metal nanorods due to the angular momentum of the electromagnetic field emerging from their plasmonic coupling. Our results indicate that the interaction optical torque on the nanorods can be strongly enhanced by their plasmon coupling, which highly depends on not only the gap size but also the twisted angle between the nanorods. The behaviors of the optical torque are different between two plasmon coupling modes: hybridized bonding and anti-bonding modes with different resonances. The rotations of the twisted nanorods with the bonding and anti-bonding mode excitations lead to mutually parallel and perpendicular alignments, respectively. At an incident intensity of 10 mW/μm2, the rotational potential depths are more than 30 times as large as the Brownian motion energy, enabling the optical alignments with angle fluctuations less than ∼±10°. Thus, this optical alignment of the nanoparticles with the plasmon coupling allows dynamic control of the plasmonic characteristics and functions.
Collapse
|
33
|
Zhang Z, Meng X, Lu H, Li M. The melting temperature of nanorods: diameter and length dependences. Phys Chem Chem Phys 2020; 22:14210-14215. [DOI: 10.1039/d0cp02091e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An analytical thermodynamic model was developed to describe the effect of diameter and length on the melting temperature of nanorods.
Collapse
Affiliation(s)
- Zhengming Zhang
- School of Electronics and Information
- Hangzhou Dianzi University
- Hangzhou
- China
- National Laboratory of Solid State Microstructures
| | - Xianshang Meng
- National Laboratory of Solid State Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- College of Engineering and Applied Sciences
- Nanjing University
- Nanjing
| | - Haiming Lu
- National Laboratory of Solid State Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- College of Engineering and Applied Sciences
- Nanjing University
- Nanjing
| | - Ming Li
- School of Physics and Electric Information
- Huaibei Normal University
- Huaibei
- China
| |
Collapse
|
34
|
Mioc A, Mioc M, Ghiulai R, Voicu M, Racoviceanu R, Trandafirescu C, Dehelean C, Coricovac D, Soica C. Gold Nanoparticles as Targeted Delivery Systems and Theranostic Agents in Cancer Therapy. Curr Med Chem 2019; 26:6493-6513. [PMID: 31057102 DOI: 10.2174/0929867326666190506123721] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Cancer is still a leading cause of death worldwide, while most chemotherapies induce nonselective toxicity and severe systemic side effects. To address these problems, targeted nanoscience is an emerging field that promises to benefit cancer patients. Gold nanoparticles are nowadays in the spotlight due to their many well-established advantages. Gold nanoparticles are easily synthesizable in various shapes and sizes by a continuously developing set of means, including chemical, physical or eco-friendly biological methods. This review presents gold nanoparticles as versatile therapeutic agents playing many roles, such as targeted delivery systems (anticancer agents, nucleic acids, biological proteins, vaccines), theranostics and agents in photothermal therapy. They have also been outlined to bring great contributions in the bioimaging field such as radiotherapy, magnetic resonance angiography and photoacoustic imaging. Nevertheless, gold nanoparticles are therapeutic agents demonstrating its in vitro anti-angiogenic, anti-proliferative and pro-apoptotic effects on various cell lines, such as human cervix, human breast, human lung, human prostate and murine melanoma cancer cells. In vivo studies have pointed out data regarding the bioaccumulation and cytotoxicity of gold nanoparticles, but it has been emphasized that size, dose, surface charge, sex and especially administration routes are very important variables.
Collapse
Affiliation(s)
- Alexandra Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Marius Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Cristina Trandafirescu
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| |
Collapse
|
35
|
Darienzo RE, Wang J, Chen O, Sullivan M, Mironava T, Kim H, Tannenbaum R. Surface-Enhanced Raman Spectroscopy Characterization of Breast Cell Phenotypes: Effect of Nanoparticle Geometry. ACS APPLIED NANO MATERIALS 2019; 2:6960-6970. [PMID: 34308266 PMCID: PMC8297918 DOI: 10.1021/acsanm.9b01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of surface-enhanced Raman spectroscopy (SERS) to delineate between the breast epithelial cell lines MCF10A, SK-BR-3, and MDA-MB-231 is explored utilizing varied morphologies of gold nanoparticles. The nanoparticles studied had spherical, star-like, and quasi-fractal (nanocaltrop) morphologies and possessed varying degrees of surface inhomogeneity and complexity. The efficacy of Raman enhancement of these nanoparticles was a function of their size, their surface morphology, and the associated density of "hot spots," as well as their cellular uptake. The spherical and star-like nanoparticles provided strong signal enhancement that allowed for the discernment among the three cell phenotypes based solely on the acquired Raman spectra. The presence of overlapping Raman band spectral regions, as well as unique spectral bands, suggests that the underlying biological differences between these cells can be accessed without the need for tagging the nanoparticles or for specific cell targeting, demonstrating the potential ubiquity of this technique in imaging any cancer. This work provides clear evidence for the potential application of SERS as a tool for mapping cancerous lesions, possibly during surgery and under histopathological analysis.
Collapse
Affiliation(s)
- Richard E. Darienzo
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jingming Wang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, United States
| | - Olivia Chen
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Maurinne Sullivan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tatsiana Mironava
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, United States
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
36
|
Falahati M, Attar F, Sharifi M, Saboury AA, Salihi A, Aziz FM, Kostova I, Burda C, Priecel P, Lopez-Sanchez JA, Laurent S, Hooshmand N, El-Sayed MA. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim Biophys Acta Gen Subj 2019; 1864:129435. [PMID: 31526869 DOI: 10.1016/j.bbagen.2019.129435] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gold nanoparticles (AuNPs) with unique physicochemical properties have received a great deal of interest in the field of biological, chemical and biomedical implementations. Despite the widespread use of AuNPs in chemical and biological sensing, catalysis, imaging and diagnosis, and more recently in therapy, no comprehensive summary has been provided to explain how AuNPs could aid in developing improved sensing and catalysts systems as well as medical settings. SCOPE OF REVIEW The chemistry of Au-based nanosystems was followed by reviewing different applications of Au nanomaterials in biological and chemical sensing, catalysis, imaging and diagnosis by a number of approaches, and finally synergistic combination therapy of different cancers. Afterwards, the clinical impacts of AuNPs, future application of AuNPs, and opportunities and challenges of AuNPs application were also discussed. MAJOR CONCLUSIONS AuNPs show exclusive colloidal stability and are considered as ideal candidates for colorimetric detection, catalysis, imaging, and photothermal transducers, because their physicochemical properties can be tuned by adjusting their structural dimensions achieved by the different manufacturing methods. GENERAL SIGNIFICANCE This review provides some details about using AuNPs in sensing and catalysis applications as well as promising theranostic nanoplatforms for cancer imaging and diagnosis, and sensitive, non-invasive, and synergistic methods for cancer treatment in an almost comprehensive manner.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav St., Sofia 1000, Bulgaria
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Peter Priecel
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Jose A Lopez-Sanchez
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8 B-6041 Gosselies, Belgium
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
37
|
Fahmy HM, El-Feky AS, Abd El-Daim TM, Abd El-Hameed MM, Gomaa DA, Hamad AM, Elfky AA, Elkomy YH, Farouk NA. Eco-Friendly Methods of Gold Nanoparticles Synthesis. NANOSCIENCE & NANOTECHNOLOGY-ASIA 2019; 9:311-328. [DOI: 10.2174/2210681208666180328154926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/14/2018] [Accepted: 05/16/2018] [Indexed: 09/01/2023]
Abstract
Background:Owing to the importance of metallic nanoparticles, different researches and studies have been induced to synthesize them in many ways. One of the ways that paid attention last years is the green synthesis methods of nanoparticles or the so-called ''eco-friendly methods''. The most common sources that has been used for green synthesis of nanoparticles are plants, leaves, fungi and microorganisms. The green synthesis methods are widely used because they are inexpensive, usable, and nontoxic. Moreover, plant extracts are rich in reducing and capping agents.Methods:In the present review, green synthesis methods of gold nanoparticles (AuNps) using Chitosan, Klebsiella pneumoniae, Magnolia Kobus, Elettaria cardamomum (Elaichi) aqueous extract and other agents as a reducing/capping agents will be discussed in details. Moreover, we will make a comparison between different green routes of synthesis and the characterization of the obtained nanoparticles from each route.Results:The characterization and applications of the prepared GNPs from different routes are reviewed.Conclusion:The utilization of gold nanoparticles has been advocated because of their high biocomptability, administration in clinical applicability and in diverse aspects of life. It seems that plants are good candidates for nanoparticles production because they are inexpensive, available and renewable sources in addition, it is too simple to prepare extracts from them. Moreover, the great diversity in the types and amounts of reducing agents from plant extracts is responsible for the effortless generation of metallic nanoparticles of various shapes and morphologies.
Collapse
Affiliation(s)
- Heba M. Fahmy
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Amena S. El-Feky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Donia A. Gomaa
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Amany M. Hamad
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Alyaa A. Elfky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Yomna H. Elkomy
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Nawal A. Farouk
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
38
|
Ashikbayeva Z, Tosi D, Balmassov D, Schena E, Saccomandi P, Inglezakis V. Application of Nanoparticles and Nanomaterials in Thermal Ablation Therapy of Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1195. [PMID: 31450616 PMCID: PMC6780818 DOI: 10.3390/nano9091195] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023]
Abstract
Cancer is one of the major health issues with increasing incidence worldwide. In spite of the existing conventional cancer treatment techniques, the cases of cancer diagnosis and death rates are rising year by year. Thus, new approaches are required to advance the traditional ways of cancer therapy. Currently, nanomedicine, employing nanoparticles and nanocomposites, offers great promise and new opportunities to increase the efficacy of cancer treatment in combination with thermal therapy. Nanomaterials can generate and specifically enhance the heating capacity at the tumor region due to optical and magnetic properties. The mentioned unique properties of nanomaterials allow inducing the heat and destroying the cancerous cells. This paper provides an overview of the utilization of nanoparticles and nanomaterials such as magnetic iron oxide nanoparticles, nanorods, nanoshells, nanocomposites, carbon nanotubes, and other nanoparticles in the thermal ablation of tumors, demonstrating their advantages over the conventional heating methods.
Collapse
Affiliation(s)
- Zhannat Ashikbayeva
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Daniele Tosi
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
- PI National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Damir Balmassov
- Department of Pedagogical Sciences, Astana International University, 8 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan
| | - Emiliano Schena
- Measurements and Biomedical Instrumentation Lab, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milano, Italy
| | - Vassilis Inglezakis
- Environmental Science & Technology Group (ESTg), Chemical & Materials Engineering Department, Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 53 Kabanbay batyr ave., 010000 Nur-Sultan, Kazakhstan.
| |
Collapse
|
39
|
The potential of nanomaterials in theranostics of oral squamous cell carcinoma: Recent progress. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Yang D, Deng F, Liu D, He B, He B, Tang X, Zhang Q. The appliances and prospects of aurum nanomaterials in biodiagnostics, imaging, drug delivery and combination therapy. Asian J Pharm Sci 2019; 14:349-364. [PMID: 32104465 PMCID: PMC7032133 DOI: 10.1016/j.ajps.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
Aurum nanomaterials (ANM), combining the features of nanotechnology and metal elements, have demonstrated enormous potential and aroused great attention on biomedical applications over the past few decades. Particularly, their advantages, such as controllable particle size, flexible surface modification, higher drug loading, good stability and biocompatibility, especially unique optical properties, promote the development of ANM in biomedical field. In this review, we will discuss the advanced preparation process of ANM and summarize their recent applications as well as their prospects in diagnosis and therapy. Besides, multi-functional ANM-based theranostic nanosystems will be introduced in details, including radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), and so on.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dechun Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
41
|
Morales-Dalmau J, Vilches C, Sanz V, de Miguel I, Rodríguez-Fajardo V, Berto P, Martínez-Lozano M, Casanovas O, Durduran T, Quidant R. Quantification of gold nanoparticle accumulation in tissue by two-photon luminescence microscopy. NANOSCALE 2019; 11:11331-11339. [PMID: 31166337 DOI: 10.1039/c9nr01198f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomedicine has emerged as a promising strategy to address some of the limitations of traditional biomedical sensing, imaging and therapy modalities. Its applicability and efficacy are, in part, hindered by the difficulty in both controllably delivering nanoparticles to specific regions and accurately monitoring them in tissue. Gold nanoparticles are among the most extensively used inorganic nanoparticles which benefit from high biocompatibility, flexible functionalization, strong and tunable resonant absorption, and production scalability. Moreover, their capability to enhance optical fields at their plasmon resonance enables local boosting of non-linear optical processes, which are otherwise very inefficient. In particular, two-photon induced luminescence (TPL) in gold offers high signal specificity for monitoring gold nanoparticles in a biological environment. In this article, we demonstrate that TPL microscopy provides a robust sub-micron-resolution technique able to quantify accumulated gold nanorods (GNRs) both in cells and in tissues. First, the temporal accumulation of GNRs with two different surface chemistries was measured in 786-O cells during the first 24 hours of incubation, and at different nanoparticle concentrations. Subsequently, GNR accumulation in mice, 6 h and 24 hours after tail vein injection, was quantified by TPL microscopy in biopsied tissue from kidney, spleen, liver and clear cell renal cell carcinoma (ccRCC) tumors, in good agreement with inductively coupled mass spectroscopy. Our data suggest that TPL microscopy stands as a powerful tool to understand and quantify the delivery mechanisms of gold nanoparticles, highly relevant to the development of future theranostic medicines.
Collapse
Affiliation(s)
- Jordi Morales-Dalmau
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hlapisi N, Motaung TE, Linganiso LZ, Oluwafemi OS, Songca SP. Encapsulation of Gold Nanorods with Porphyrins for the Potential Treatment of Cancer and Bacterial Diseases: A Critical Review. Bioinorg Chem Appl 2019; 2019:7147128. [PMID: 31182957 PMCID: PMC6515112 DOI: 10.1155/2019/7147128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Cancer and bacterial diseases have been the most incidental diseases to date. According to the World Health Report 2018, at least every family is affected by cancer around the world. In 2012, 14.1 million people were affected by cancer, and that figure is bound to increase to 21.6 million in 2030. Medicine therefore sorts out ways of treatment using conventional methods which have been proven to have many side effects. Researchers developed photothermal and photodynamic methods to treat both cancer and bacterial diseases. These methods pose fewer effects on the biological systems but still no perfect method has been synthesized. The review serves to explore porphyrin and gold nanorods to be used in the treatment of cancer and bacterial diseases: porphyrins as photosensitizers and gold nanorods as delivery agents. In addition, the review delves into ways of incorporating photothermal and photodynamic therapy aimed at producing a less toxic, more efficacious, and specific compound for the treatment.
Collapse
Affiliation(s)
- Nthabeleng Hlapisi
- Department of Chemistry, University of Zululand, X1001, KwaDlangezwa, KwaZulu-Natal, South Africa
| | - Tshwafo E. Motaung
- Department of Chemistry, University of Zululand, X1001, KwaDlangezwa, KwaZulu-Natal, South Africa
| | - Linda Z. Linganiso
- Department of Chemistry, University of Zululand, X1001, KwaDlangezwa, KwaZulu-Natal, South Africa
| | - Oluwatobi S. Oluwafemi
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg, South Africa
| | - Sandile P. Songca
- Department of Chemistry, University of Kwazulu Natal, Kwazulu Natal, South Africa
| |
Collapse
|
43
|
Label-free diagnosis of lung cancer with tissue-slice surface-enhanced Raman spectroscopy and statistical analysis. Lasers Med Sci 2019; 34:1849-1855. [DOI: 10.1007/s10103-019-02781-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/27/2019] [Indexed: 01/05/2023]
|
44
|
Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem Rev 2019; 119:8972-9073. [DOI: 10.1021/acs.chemrev.8b00745] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Myung Jun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
45
|
Qin L, Niu D, Jiang Y, He J, Jia X, Zhao W, Li P, Li Y. Confined growth of multiple gold nanorices in dual-mesoporous silica nanospheres for improved computed tomography imaging and photothermal therapy. Int J Nanomedicine 2019; 14:1519-1532. [PMID: 30880962 PMCID: PMC6396883 DOI: 10.2147/ijn.s184192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION In this work, we have developed a novel "confined-growth" strategy to synthesize PEGylated multiple gold nanorices-encapsulated dual-mesoporous silica nanospheres (designated as PEGylated MGNRs@DMSSs) containing both small mesopores (2.5 nm) in the shell and large mesopores (21.7 nm) in the core based on a well-established, seed-mediated growth method. The photothermal effect and CT imaging ability were also studied. METHODS The nanoparticles were characterized by Fourier transform infrared (FT-IR) spectra, N2 absorption isotherms, Field-emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Confocal microscopy. RESULTS The longitudinally-localized surface (LSPR) absorption properties of MGNRs@DMSSs can be easily tuned by altering the amount of HAuCl4 in the gold growth solution. Additionally, the resultant PEGylated MGNRs@DMSSs have monodispersed, spherical morphology and good colloidal stability in an aqueous solution. More importantly, when exposed to NIR irradiation, the PEGylated MGNRs@DMSSs exhibit both higher temperature increments and better photothermal effects than that of single PEGylated gold nanorods at nearly an equivalent LSPR absorption. In addition, as CT contrast agents, the PEGylated MGNRs@DMSSs display a better CT imaging performance, in comparison with single PEGylated gold nanorods at the same Au concentration. CONCLUSION Taken together, results indicate the potential for MGNRs@DMSSs used in CT imaging-guided photothermal therapy. Such a simple "confined-growth" strategy within a porous matrix offers a promising platform to design and prepare novel metal(s) oxide@silica nanocomposites for use in further cancer bio-imaging and therapy.
Collapse
Affiliation(s)
- Limei Qin
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Dechao Niu
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Yu Jiang
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Jianping He
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Xiaobo Jia
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Wenru Zhao
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Pei Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yongsheng Li
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| |
Collapse
|
46
|
Wagner O, Schultz M, Edri E, Meir R, Barnoy E, Meiri A, Shpaisman H, Sloutskin E, Zalevsky Z. Imaging of nanoparticle dynamics in live and apoptotic cells using temporally-modulated polarization. Sci Rep 2019; 9:1650. [PMID: 30733548 PMCID: PMC6367359 DOI: 10.1038/s41598-018-38375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022] Open
Abstract
Gold nanoparticles are widely exploited in phototherapy. Owing to their biocompatibility and their strong visible-light surface plasmonic resonance, these particles also serve as contrast agents for cell image enhancement and super-resolved imaging. Yet, their optical signal is still insufficiently strong for many important real-life applications. Also, the differentiation between adjacent nanoparticles is usually limited by the optical resolution and the orientations of non-spherical particles are unknown. These limitations hamper the progress in cell research by direct optical microscopy and narrow the range of phototherapy applications. Here we demonstrate exploiting the optical anisotropy of non-spherical nanoparticles to achieve super-resolution in live cell imaging and to resolve the intracellular nanoparticle orientations. In particular, by modulating the light polarization and taking advantage of the polarization-dependence of gold nanorod optical properties, we realize the 'lock-in amplification', widely-used in electronic engineering, to achieve image enhancement in live cells and in cells that undergo apoptotic changes.
Collapse
Affiliation(s)
- Omer Wagner
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Moty Schultz
- Department of Physics and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eitan Edri
- Department of Chemistry, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Rinat Meir
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eran Barnoy
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Amihai Meiri
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Hagay Shpaisman
- Department of Chemistry, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Eli Sloutskin
- Department of Physics and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
47
|
Gupta TK, Budarapu PR, Chappidi SR, Y.B. SS, Paggi M, Bordas SP. Advances in Carbon Based Nanomaterials for Bio-Medical Applications. Curr Med Chem 2019; 26:6851-6877. [DOI: 10.2174/0929867326666181126113605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/19/2023]
Abstract
:
The unique mechanical, electrical, thermal, chemical and optical properties of carbon
based nanomaterials (CBNs) like: Fullerenes, Graphene, Carbon nanotubes, and their derivatives
made them widely used materials for various applications including biomedicine.
Few recent applications of the CBNs in biomedicine include: cancer therapy, targeted drug
delivery, bio-sensing, cell and tissue imaging and regenerative medicine. However, functionalization
renders the toxicity of CBNs and makes them soluble in several solvents including
water, which is required for biomedical applications. Hence, this review represents the complete
study of development in nanomaterials of carbon for biomedical uses. Especially, CBNs
as the vehicles for delivering the drug in carbon nanomaterials is described in particular. The
computational modeling approaches of various CBNs are also addressed. Furthermore, prospectus,
issues and possible challenges of this rapidly developing field are highlighted.
Collapse
Affiliation(s)
- Tejendra Kumar Gupta
- Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201313, India
| | - Pattabhi Ramaiah Budarapu
- School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India
| | | | - Sudhir Sastry Y.B.
- Department of Aeronautical Engineering, Institute of Aeronautical Engineering, Dundigal, Hyderabad 500043, India
| | - Marco Paggi
- Multi-scale Analysis of Materials Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy
| | - Stephane P. Bordas
- Universit´e du Luxembourg, Maison du Nombre, 6, Avenue de la Fonte, L-4364 Esch-sur- Alzette, Luxembourg
| |
Collapse
|
48
|
Wang J, Zhang HZ, Liu JJ, Yuan D, Li RS, Huang CZ. Time-resolved visual detection of heparin by accelerated etching of gold nanorods. Analyst 2019; 143:824-828. [PMID: 29363687 DOI: 10.1039/c7an01923h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmonic gold nanorods are promising and sensitive light scattering probes, which can reach the single particle level. Herein, we present the light scattering properties of gold nanorods for time-resolved visual detection of heparin based on the rapid etching of gold nanorods under dark-field microscopy.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | |
Collapse
|
49
|
Gao B, Chen X, Huang X, Pei K, Xiong Y, Wu Y, Duan H, Lai W, Xiong Y. Urease-induced metallization of gold nanorods for the sensitive detection of Salmonella enterica Choleraesuis through colorimetric ELISA. J Dairy Sci 2019; 102:1997-2007. [PMID: 30612795 DOI: 10.3168/jds.2018-15580] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/04/2018] [Indexed: 01/06/2023]
Abstract
We applied urease-induced silver metallization on the surface of gold nanorods (AuNR) to improve colorimetric ELISA for the rapid and sensitive detection of Salmonella enterica Choleraesuis. To this end, we introduced a biotin-streptavidin system as a bridge to determine the correlation between urease and S. enterica Choleraesuis concentrations. The captured urease can catalyze the hydrolysis of urea into carbon dioxide and ammonia, and the generated ammonia can then induce the deposition of silver shell on the surface of AuNR in the presence of silver nitrate and glucose. With the decreased aspect ratio (length divided by width) of AuNR, a multicolor change of AuNR solution and a significant blue shift in the longitudinal localized surface plasmon resonance absorption peak (Δλmax) of AuNR were obtained at the target concentrations of 1.21 × 101 to 1.21 × 108 cfu/mL. Consequently, the detection limits of our proposed colorimetric ELISA were as low as 1.21 × 102 cfu/mL for qualitative detection with naked eyes, and 1.21 × 101 cfu/mL for quantitative detection, in which changes in Δλmax of AuNR were recorded with a microplate reader. These values were at least 2 to 3 orders of magnitude lower than those obtained with conventional horseradish peroxidase-based ELISA. The analytical performance of our developed colorimetric ELISA in terms of selectivity, accuracy, reliability, and practicability were investigated by analyzing S. enterica Choleraesuis-spiked pasteurized whole milk samples.
Collapse
Affiliation(s)
- Bao Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China.
| | - Ke Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Ying Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Yunqing Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China.
| |
Collapse
|
50
|
Gai M, Li W, Frueh J, Sukhorukov GB. Polylactic acid sealed polyelectrolyte complex microcontainers for controlled encapsulation and NIR-Laser based release of cargo. Colloids Surf B Biointerfaces 2019; 173:521-528. [DOI: 10.1016/j.colsurfb.2018.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/14/2023]
|