1
|
Pérez‐Ocampo J, Taborda NA, Yassin LM, Higuita‐Gutiérrez LF, Hernandez JC. Exploring the Association Between Systemic Lupus Erythematosus and High-Density Lipoproteins: A Systematic Review and Meta-Analysis. ACR Open Rheumatol 2024; 6:648-661. [PMID: 39030864 PMCID: PMC11471950 DOI: 10.1002/acr2.11700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is an autoimmune disease with inflammation as a critical feature. Recently, high-density lipoprotein cholesterol (HDLc) have been evidenced to have anti-inflammatory effects, suggesting a potential link between HDL and SLE that needs to be thoroughly studied. The aim was to explore the association between SLE and HDLc through a systematic review with meta-analysis. METHODS A systematic review with meta-analysis was conducted to assess mean differences in HDL levels between patients with SLE and healthy controls. Both qualitative and quantitative syntheses were performed, including an assessment of heterogeneity using I2, a publication bias evaluation, a methodologic quality assessment, and a forest plot under a random effects model. Subgroup analyses were conducted based on disease activity and the report of corticosteroid dosage. RESULTS A total of 53 studies were included in the qualitative synthesis, and 35 studies were included in the quantitative synthesis, comprising 3,002 patients with SLE and 2,123 healthy controls. Mean HDL levels were found to be lower in patients with SLE as follows: in the meta-analysis including all articles -6.55 (95% confidence interval [CI] -8.77 to -4.33); in patients with mild disease activity -5.46 (95% CI -8.26 to -2.65); in patients with moderate or severe disease activity -9.42 (95% CI -15.49 to -3.34); in patients using corticosteroids -5.32 (95% CI -10.35 to -0.29); and in studies with excellent methodologic quality -8.71 (95% CI -12.38 to -5.03). CONCLUSION HDL levels appear to be quantitatively altered in patients with SLE, suggesting a potential contribution to immune dysregulation, highlighting the importance of HDL in autoimmune diseases.
Collapse
Affiliation(s)
- Julián Pérez‐Ocampo
- Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | - Natalia A. Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la SaludCorporación Universitaria RemingtonMedellínColombia
| | - Lina M. Yassin
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la SaludCorporación Universitaria RemingtonMedellínColombia
| | - Luis Felipe Higuita‐Gutiérrez
- Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
- Escuela de microbiología, Universidad de Antioquia UdeAMedellinColombia
| | - Juan C. Hernandez
- Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
- Grupo Inmunovirología, Facultad de Medicina (UdeA)Universidad de Antioquia UdeAMedellínColombia
| |
Collapse
|
2
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
3
|
Batty M, Bennett MR, Yu E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022; 11:3843. [PMID: 36497101 PMCID: PMC9735601 DOI: 10.3390/cells11233843] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular system and is the leading cause of cardiovascular diseases worldwide. Excessive generation of reactive oxygen species (ROS) leads to a state of oxidative stress which is a major risk factor for the development and progression of atherosclerosis. ROS are important for maintaining vascular health through their potent signalling properties. However, ROS also activate pro-atherogenic processes such as inflammation, endothelial dysfunction and altered lipid metabolism. As such, considerable efforts have been made to identify and characterise sources of oxidative stress in blood vessels. Major enzymatic sources of vascular ROS include NADPH oxidases, xanthine oxidase, nitric oxide synthases and mitochondrial electron transport chains. The production of ROS is balanced by ROS-scavenging antioxidant systems which may become dysfunctional in disease, contributing to oxidative stress. Changes in the expression and function of ROS sources and antioxidants have been observed in human atherosclerosis while in vitro and in vivo animal models have provided mechanistic insight into their functions. There is considerable interest in utilising antioxidant molecules to balance vascular oxidative stress, yet clinical trials are yet to demonstrate any atheroprotective effects of these molecules. Here we will review the contribution of ROS and oxidative stress to atherosclerosis and will discuss potential strategies to ameliorate these aspects of the disease.
Collapse
Affiliation(s)
| | | | - Emma Yu
- Section of Cardiorespiratory Medicine, University of Cambridge, Cambridge CB2 0BB, UK
| |
Collapse
|
4
|
Guzmán-Martínez G, Marañón C. Immune mechanisms associated with cardiovascular disease in systemic lupus erythematosus: A path to potential biomarkers. Front Immunol 2022; 13:974826. [PMID: 36420265 PMCID: PMC9677819 DOI: 10.3389/fimmu.2022.974826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/13/2022] [Indexed: 10/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) patients display an increased risk of cardiovascular disease (CVD). With the improved clinical management of other classical severe manifestation of the disease, CVD is becoming one of the most relevant complications of SLE, and it is an important factor causing morbidity and mortality. Several immune constituents have been shown to be involved in the pathogenesis of atherosclerosis and endothelial damage in SLE patients, including specific circulating cell populations, autoantibodies, and inflammatory mediators. In this review, we summarize the presentation of CVD in SLE and the role of the autoimmune responses present in SLE patients in the induction of atherogenesis, endothelial impairment and cardiac disease. Additionally, we discuss the utility of these immune mediators as early CVD biomarkers and targets for clinical intervention in SLE patients.
Collapse
Affiliation(s)
- Gabriela Guzmán-Martínez
- Atrys Health, Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
- Department of Cardiology, La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Concepción Marañón
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
5
|
Richter P, Cardoneanu A, Rezus C, Burlui AM, Rezus E. Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus. Int J Mol Sci 2022; 23:ijms232012604. [PMID: 36293458 PMCID: PMC9604037 DOI: 10.3390/ijms232012604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of high mortality in patients with systemic lupus erythematosus (SLE). The Framingham risk score and other traditional risk factors do not fully reflect the CVD risk in SLE patients. Therefore, in order to stratify these high-risk patients, additional biomarkers for subclinical CVD are needed. The mechanisms of atherogenesis in SLE are still being investigated. During the past decades, many reports recognized that inflammation plays a crucial role in the development of atherosclerosis. The aim of this report is to present novel proinflammatory and pro-atherosclerotic risk factors that are closely related to SLE inflammation and which determine an increased risk for the occurrence of early cardiovascular events.
Collapse
Affiliation(s)
- Patricia Richter
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Anca Cardoneanu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (A.C.); (C.R.); Tel.: +40232301615 (A.C. & C.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- “Sfantul Spiridon” Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (A.C.); (C.R.); Tel.: +40232301615 (A.C. & C.R.)
| | - Alexandra Maria Burlui
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
6
|
Shao B, Snell-Bergeon JK, Pyle LL, Thomas KE, de Boer IH, Kothari V, Segrest J, Davidson WS, Bornfeldt KE, Heinecke JW. Pulmonary surfactant protein B carried by HDL predicts incident CVD in patients with type 1 diabetes. J Lipid Res 2022; 63:100196. [PMID: 35300983 PMCID: PMC9010748 DOI: 10.1016/j.jlr.2022.100196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic CVD is the major cause of death in patients with type 1 diabetes mellitus (T1DM). Alterations in the HDL proteome have been shown to associate with prevalent CVD in T1DM. We therefore sought to determine which proteins carried by HDL might predict incident CVD in patients with T1DM. Using targeted MS/MS, we quantified 50 proteins in HDL from 181 T1DM subjects enrolled in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used Cox proportional regression analysis and a case-cohort design to test associations of HDL proteins with incident CVD (myocardial infarction, coronary artery bypass grafting, angioplasty, or death from coronary heart disease). We found that only one HDL protein-SFTPB (pulmonary surfactant protein B)-predicted incident CVD in all the models tested. In a fully adjusted model that controlled for lipids and other risk factors, the hazard ratio was 2.17 per SD increase of SFTPB (95% confidence interval, 1.12-4.21, P = 0.022). In addition, plasma fractionation demonstrated that SFTPB is nearly entirely bound to HDL. Although previous studies have shown that high plasma levels of SFTPB associate with prevalent atherosclerosis only in smokers, we found that SFTPB predicted incident CVD in T1DM independently of smoking status and a wide range of confounding factors, including HDL-C, LDL-C, and triglyceride levels. Because SFTPB is almost entirely bound to plasma HDL, our observations support the proposal that SFTPB carried by HDL is a marker-and perhaps mediator-of CVD risk in patients with T1DM.
Collapse
Affiliation(s)
- Baohai Shao
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | - Laura L Pyle
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katie E Thomas
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ian H de Boer
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vishal Kothari
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jere Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William S Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Mohammed CJ, Lamichhane S, Connolly JA, Soehnlen SM, Khalaf FK, Malhotra D, Haller ST, Isailovic D, Kennedy DJ. A PON for All Seasons: Comparing Paraoxonase Enzyme Substrates, Activity and Action including the Role of PON3 in Health and Disease. Antioxidants (Basel) 2022; 11:antiox11030590. [PMID: 35326240 PMCID: PMC8945423 DOI: 10.3390/antiox11030590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
Abstract
Paraoxonases (PONs) are a family of hydrolytic enzymes consisting of three members, PON1, PON2, and PON3, located on human chromosome 7. Identifying the physiological substrates of these enzymes is necessary for the elucidation of their biological roles and to establish their applications in the biomedical field. PON substrates are classified as organophosphates, aryl esters, and lactones based on their structure. While the established native physiological activity of PONs is its lactonase activity, the enzymes’ exact physiological substrates continue to be elucidated. All three PONs have antioxidant potential and play an important anti-atherosclerotic role in several diseases including cardiovascular diseases. PON3 is the last member of the family to be discovered and is also the least studied of the three genes. Unlike the other isoforms that have been reviewed extensively, there is a paucity of knowledge regarding PON3. Thus, the current review focuses on PON3 and summarizes the PON substrates, specific activities, kinetic parameters, and their association with cardiovascular as well as other diseases such as HIV and cancer.
Collapse
Affiliation(s)
- Chrysan J. Mohammed
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Sabitri Lamichhane
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (S.L.); (D.I.)
| | - Jacob A. Connolly
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Sophia M. Soehnlen
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Fatimah K. Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
- Department of Clinical Pharmacy, College of Pharmacy, University of Alkafeel, Najaf 61001, Iraq
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (S.L.); (D.I.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
- Correspondence: ; Tel.: +1-419-383-6822
| |
Collapse
|
8
|
Altered HDL Proteome Predicts Incident CVD in Chronic Kidney Disease Patients. J Lipid Res 2021; 62:100135. [PMID: 34634315 PMCID: PMC8566900 DOI: 10.1016/j.jlr.2021.100135] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at high risk for CVD. However, traditional lipid risk factors, including low HDL levels, cannot completely explain the increased risk. Altered HDL proteome is linked with both CVD and CKD, but the role of HDL proteins in incident CVD events in patients with CKD is unknown. In this prospective case-control study, we used targeted proteomics to quantify 31 HDL proteins in 92 subjects (46 incident new CVD and 46 one-to-one matched controls) at various stages of CKD. We tested associations of HDL proteins with incident CVD using matched logistic regression analysis. In the model fully adjusted for clinical confounders, lipid levels, C-reactive protein, and proteinuria, no significant associations were found for HDL-C, but we observed inverse associations between levels of HDL proteins paraoxonase/arylesterase 1 (PON1), paraoxonase/arylesterase 3 (PON3), and LCAT and incident CVD. Odds ratios (per 1 SD) were 0.38 (0.18–0.97, P = 0.042), 0.42 (0.20–0.92, P = 0.031), and 0.30 (0.11–0.83, P = 0.020) for PON1, PON3, and LCAT, respectively. Apolipoprotein A-IV remained associated with incident CVD in CKD patients in models adjusted for clinical confounders and lipid levels but lost significance with the addition of C-reactive protein and proteinuria to the model. In conclusion, levels of four HDL proteins, PON1, PON3, LCAT, and apolipoprotein A-IV, were found to be inversely associated with incident CVD events in CKD patients. Our observations indicate that HDLs' protein cargo, but not HDL-C levels, can serve as a marker—and perhaps mediator—for elevated CVD risk in CKD patients.
Collapse
|
9
|
Cardiovascular disease in systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:157-172. [PMID: 35880242 PMCID: PMC9242526 DOI: 10.2478/rir-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022]
Abstract
There is a well-known increased risk for cardiovascular disease that contributes to morbidity and mortality in systemic lupus erythematosus (SLE). Major adverse cardiovascular events and subclinical atherosclerosis are both increased in this patient population. While traditional cardiac risk factors do contribute to the increased risk that is seen, lupus disease-related factors, medications, and genetic factors also impact the overall risk. SLE-specific inflammation, including oxidized lipids, cytokines, and altered immune cell subtypes all are likely to play a role in the pathogenesis of atherosclerotic plaques. Research is ongoing to identify biomarkers that can help clinicians to predict which SLE patients are at the greatest risk for cardiovascular disease (CVD). While SLE-specific treatment regimens for the prevention of cardiovascular events have not been identified, current strategies include minimization of traditional cardiac risk factors and lowering of overall lupus disease activity.
Collapse
|
10
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
11
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021; 10:cells10051061. [PMID: 33947039 PMCID: PMC8146776 DOI: 10.3390/cells10051061] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (A.L.C.); (G.D.N.)
| | - Giuseppe D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- Correspondence: (A.L.C.); (G.D.N.)
| |
Collapse
|
12
|
Skaggs BJ, Grossman J, Sahakian L, Perry L, FitzGerald J, Charles-Schoeman C, Gorn A, Taylor M, Moriarty J, Ragavendra N, Weisman M, Wallace DJ, Hahn BH, McMahon M. A Panel of Biomarkers Associates With Increased Risk for Cardiovascular Events in Women With Systemic Lupus Erythematosus. ACR Open Rheumatol 2021; 3:209-220. [PMID: 33605563 PMCID: PMC8063147 DOI: 10.1002/acr2.11223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/14/2023] Open
Abstract
Objective The increase in cardiovascular events (CVEs) in systemic lupus erythematosus (SLE) is not fully explained by traditional risk factors. We previously identified four biomarkers (proinflammatory high‐density lipoprotein, leptin, soluble TNF‐like weak inducer of apoptosis (sTWEAK), and homocysteine) that we combined with age and diabetes to create the predictors of risk for elevated flares, damage progression, and increased cardiovascular diseasein patients with SLE (PREDICTS) risk profile. PREDICTS more accurately identified patients with SLE at risk for progression of subclinical atherosclerosis than any individual variable. We examined whether PREDICTS can also identify patients with SLE at risk for future CVEs. Methods A total of 342 patients with SLE and 155 matched control subjects participated in this longitudinal prospective study. A high PREDICTS score was defined as three or more predictors or diabetes + one or more predictor. The biomarkers were measured at baseline using published methods. All major adverse CVEs (MACEs) were confirmed by medical record review. Results During 116 months of follow‐up, 5% of patients with SLE died, 12% had a cerebrovascular event, and 5% had a cardiac event. Overall, 20% of patients with lupus experienced any new MACE compared with 5% of control subjects (P < 0.0001). More patients with SLE with a new MACE had high PREDICTS score at baseline (77%) versus patients with no new events (34%) (P < 0.0001). High baseline PREDICTS score also associated with cerebrovascular (P < 0.0001) and cardiac events (P < 0.0001) in SLE. Using Cox regression, a baseline high PREDICTS score associated with a 3.7‐fold increased hazard ratio (HR) for a new MACE (P < 0.0001) in SLE. Hypertension (HR = 2.1; P = 0.006) was also a risk. Conclusion A high PREDICTS score and hypertension confer increased risk for new MACEs in patients with SLE.
Collapse
Affiliation(s)
- Brian J Skaggs
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Jennifer Grossman
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Lori Sahakian
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Lucas Perry
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - John FitzGerald
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | | | - Alan Gorn
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Mihaela Taylor
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - John Moriarty
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Nagesh Ragavendra
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | | | - Daniel J Wallace
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA.,Cedars Sinai Medical Center, Los Angeles, California
| | - Bevra H Hahn
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Maureen McMahon
- University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
13
|
Zimetti F, Adorni MP, Marsillach J, Marchi C, Trentini A, Valacchi G, Cervellati C. Connection between the Altered HDL Antioxidant and Anti-Inflammatory Properties and the Risk to Develop Alzheimer's Disease: A Narrative Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6695796. [PMID: 33505588 PMCID: PMC7811424 DOI: 10.1155/2021/6695796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
Abstract
The protein composition of high-density lipoprotein (HDL) is extremely fluid. The quantity and quality of protein constituents drive the multiple biological functions of these lipoproteins, which include the ability to contrast atherogenesis, sustained inflammation, and toxic effects of reactive species. Several diseases where inflammation and oxidative stress participate in the pathogenetic process are characterized by perturbation in the HDL proteome. This change inevitably affects the functionality of the lipoprotein. An enlightening example in this frame comes from the literature on Alzheimer's disease (AD). Growing lines of epidemiological evidence suggest that loss of HDL-associated proteins, such as lipoprotein phospholipase A2 (Lp-PLA2), glutathione peroxidase-3 (GPx-3), and paraoxonase-1 and paraoxonase-3 (PON1, PON3), may be a feature of AD, even at the early stage. Moreover, the decrease in these enzymes with antioxidant/defensive action appears to be accompanied by a parallel increase of prooxidant and proinflammatory mediators, in particular myeloperoxidase (MPO) and serum amyloid A (SAA). This type of derangement of balance between two opposite forces makes HDL dysfunctional, i.e., unable to exert its "natural" vasculoprotective property. In this review, we summarized and critically analyzed the most significant findings linking HDL accessory proteins and AD. We also discuss the most convincing hypothesis explaining the mechanism by which an observed systemic occurrence may have repercussions in the brain.
Collapse
Affiliation(s)
- Francesca Zimetti
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, Parma 43121, Italy
| | - Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
- Plants for Human Health Institute, Animal Sciences Department, NC Research Campus Kannapolis, NC State University, 28081 NC, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Paraoxonase Role in Human Neurodegenerative Diseases. Antioxidants (Basel) 2020; 10:antiox10010011. [PMID: 33374313 PMCID: PMC7824310 DOI: 10.3390/antiox10010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|
15
|
Xiao J, Li X, Yuan Q, Zhang S, Qu K, Wu B, Wang Y, Duan S. PON1 Hypermethylation and PON3 Hypomethylation are Associated with Risk of Cerebral Infarction. Curr Neurovasc Res 2020; 16:115-122. [PMID: 30977447 DOI: 10.2174/1567202616666190412154407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Paraoxonase (PON) family genes are closely related to the etiology and prognosis of cerebral infarction. This study explored the association of the promoter methylation of PON family genes (PON1, PON2 and PON3) with the risk of cerebral infarction. MATERIALS AND METHODS In this study, 152 patients with confirmed cerebral infarction were selected as the case group, and 152 healthy controls were selected as the control group. The quantitative methylation-specific PCR (qMSP) was used to determine the promoter methylation levels of PON1, PON2 and PON3 genes. The methylation level was expressed as a methylation reference percentage (PMR). RESULTS Our results indicated that PON1 methylation was significantly higher in the case group than in the control group (P = 0.0001). On the contrary, PON3 methylation was significantly lower in the case group than in the control group (P = 0.002). In addition, we found that PON2 gene had a very low level of methylation in both case and control groups (PMR = 0). Subgroup analysis showed that PON1 and PON3 methylation were associated with cerebral infarction only in males (PON1, P = 0.0002; PON3, P = 0.007). Interestingly, the methylation levels of PON1 and PON3 were correlated with each other (case: r = 0.418, P = 0.0001; control: r = 0.3, P = 0.0002). Further multiple regression analysis suggested that elevated methylation levels of PON3 were a protective factor for cerebral infarction [OR (95%CI) = 0.979 (0.96, 0.999), β = -0.021, P = 0.035)], highdensity lipoprotein (HDL) and uric acid (UA) also were protective factors for cerebral infarction [HDL, OR (95% CI) = 0.01 (0.003, 0.033), P < 0.0001); UA, OR (95% CI) = 0.995 (0.991, 0.998), P = 0.003)]. The ROC curve analysis found that the combination of PON3, HDL, and UA had a good predictive power for cerebral infarction (AUC=0.878, 95% CI=0.839-0.918, sensitivity 73.7%, specificity 89.7%, P < 0.0001). CONCLUSION PON1 and PON3 promoter methylation levels in peripheral blood were closely related. PON1 and PON3 methylation were associated with the risk of cerebral infarction in men. PON3 promoter methylation combined with HDL and UA could be used as potential biomarkers for the diagnosis of cerebral infarction.
Collapse
Affiliation(s)
- Jianhao Xiao
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014, China.,Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, China
| | - Xiaodong Li
- Department of Neurology, Zhengzhou Central Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Qian Yuan
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014, China
| | - Simiao Zhang
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014, China
| | - Kun Qu
- Department of Neurology, the 148th Hospital of PLA, Zibo, Shandong, 255330, China
| | - Boyi Wu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yunliang Wang
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014, China.,Department of Neurology, the 148th Hospital of PLA, Zibo, Shandong, 255330, China
| | - Shiwei Duan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
16
|
Lou Y, Li X, Cao L, Qin P, Shi J, Zhang Y, Wang C, Ma J, Wang L, Peng X, Chen H, Xu S, Hu F, Zhao Y, Zhao P. LDL-cholesterol to HDL-cholesterol ratio discordance with lipid parameters and carotid intima-media thickness: a cohort study in China. Lipids Health Dis 2020; 19:141. [PMID: 32552893 PMCID: PMC7302368 DOI: 10.1186/s12944-020-01324-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Background The discordance of the low-density lipoprotein cholesterol-to-high-density lipoprotein cholesterol (LDL-C/HDL-C) ratio with alterative lipid parameters may explain the inconsistent association of CIMT with the LDL-C/HDL-C ratio. Therefore, this study aimed to explore the associations between LDL-C/HDL-C ratio discordance with alternative lipid parameters and elevated carotid intima-media thickness (CIMT) risk in a large cohort in Beijing, China. Methods In total, 13,612 adults who didn’t have elevated CIMT at baseline and who participated in at least one follow-up of annual examination between 2009 and 2016 were included in this cohort study. A multivariable Cox regression model was utilized to evaluate the associations of discordance of the LDL-C/HDL-C ratio with TC, TGs, LDL-C and HDL-C with elevated CIMT risk. Results During 37,999 person-years of follow-up, 2004 individuals (1274 men and 730 women) developed elevated CIMT. Among individuals with normal TC and TGs, 16.6 and 15.2% individuals had a discordantly high LDL-C/HDL-C ratio, respectively, and the risk of elevated CIMT increased by 1.54 (95% CI 1.33, 1.77) and 1.53 (95% CI 1.33, 1.76), respectively, comparing to individuals with a concordantly low LDL-C/HDL-C ratio. A high LDL-C/HDL-C ratio could significantly increase elevated CIMT risk regardless of discordance/concordance with LDL-C and HDL-C (P < 0.001). A low LDL-C/HDL-C ratio with discordantly normal HDL-C and high LDL-C (13.2% of individuals) had a 32% (HR = 1.32, 95% CI 1.11, 1.57) higher risk of elevated CIMT than concordantly low LDL-C and normal HDL-C. Sensitivity analysis by excluding CIMT developed in the first 2 years follow-up further confirmed the above results. Conclusions A high LDL-C/HDL-C ratio could significantly increase elevated CIMT risk regardless of discordance/concordance with TC, TGs, LDL-C and HDL-C Even a low LDL-C/HDL-C ratio with discordantly high LDL-C and normal HDL-C could also significantly increase CIMT risk. Individuals should maintain both the LDL-C/HDL-C ratio and LDL-C at normal levels to prevent elevated CIMT.
Collapse
Affiliation(s)
- Yanmei Lou
- Department of Health Management, Beijing Xiao Tang Shan Hospital, Beijing, People's Republic of China
| | - Xue Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Liming Cao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Pei Qin
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Jing Shi
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yanyan Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Changyi Wang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic disease, Shenzhen, Guangdong, People's Republic of China
| | - Jianping Ma
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic disease, Shenzhen, Guangdong, People's Republic of China
| | - Li Wang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic disease, Shenzhen, Guangdong, People's Republic of China
| | - Xiaolin Peng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic disease, Shenzhen, Guangdong, People's Republic of China
| | - Hongen Chen
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic disease, Shenzhen, Guangdong, People's Republic of China
| | - Shan Xu
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic disease, Shenzhen, Guangdong, People's Republic of China
| | - Fulan Hu
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China.
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| | - Ping Zhao
- Department of Health Management, Beijing Xiao Tang Shan Hospital, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Kim SY, Yu M, Morin EE, Kang J, Kaplan MJ, Schwendeman A. High-Density Lipoprotein in Lupus: Disease Biomarkers and Potential Therapeutic Strategy. Arthritis Rheumatol 2020; 72:20-30. [PMID: 31350818 PMCID: PMC6935404 DOI: 10.1002/art.41059] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus (SLE) patients exhibit accelerated development of atherosclerosis and increased incidents of cardiovascular disease (CVD) that cannot be explained by traditional risk factors alone. Accumulating evidence suggests that reduced levels of high-density lipoproteins (HDLs), along with altered HDL composition and function, may contribute to the accelerated atherosclerosis in SLE patients. Normally, HDLs play various atheroprotective roles through facilitating cholesterol efflux, inhibiting vascular inflammation, and scavenging oxidative species. However, systemic inflammation, oxidative stress, and autoimmunity in SLE patients induce changes in HDL size distribution and proteomic and lipidomic signatures. These compositional changes in HDLs result in the formation of proinflammatory, dysfunctional HDL. These lupus-altered HDLs have impaired antiatherogenic function with reduced cholesterol efflux capacities, impaired antioxidation abilities, and diminished antiinflammatory properties. In fact, dysfunctional HDL may promote atherogenesis by inducing inflammation. Thus, dysfunctional HDLs could be an important biomarker of accelerated atherosclerosis in lupus. Additionally, HDL-targeted therapies, especially infusion of reconstituted HDLs, may serve as a potential therapeutic intervention for SLE patients with CVD.
Collapse
Affiliation(s)
- Sang Yeop Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily E. Morin
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jukyung Kang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Paraoxonase 3: Structure and Its Role in Pathophysiology of Coronary Artery Disease. Biomolecules 2019; 9:biom9120817. [PMID: 31816846 PMCID: PMC6995636 DOI: 10.3390/biom9120817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Spanning three decades in research, Paraoxonases (PON1) carried potential of dealing with neurotoxicity of organophosphates entering the circulation and preventing cholinergic crisis. In the past few years, the Paraoxonase multigene family (PON1, PON2, PON3) has been shown to play an important role in pathogenesis of cardiovascular disorders including coronary artery disease (CAD). The PON genes are clustered in tandem on the long arm of human chromosome 7 (q21, 22). All of them have been shown to act as antioxidants. Of them, PON3 is the least studied member as its exact physiological substrate is still not clear. This has further led to limitation in our understanding of its role in pathogenesis of CAD and development of the potential therapeutic agents which might modulate its activity, expression in circulation and tissues. In the present review, we discuss the structure and activity of human PON3 enzyme and its Single nucleotide variants that could potentially lead to new clinical strategies in prevention and treatment of CAD.
Collapse
|
19
|
Janac J, Zeljkovic A, Jelic-Ivanovic Z, Dimitrijevic-Sreckovic V, Miljkovic M, Stefanovic A, Munjas J, Vekic J, Kotur-Stevuljevic J, Spasojević-Kalimanovska V. The association between lecithin-cholesterol acyltransferase activity and fatty liver index. Ann Clin Biochem 2019; 56:583-592. [PMID: 31084205 DOI: 10.1177/0004563219853596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Non-alcoholic fatty liver disease is a frequent ailment with known complications, including those within the cardiovascular system. Associations between several indicators of high-density lipoprotein metabolism and function with clinical and laboratory parameters for the assessment of fatty liver index, a surrogate marker of non-alcoholic fatty liver disease, were evaluated. Methods The study comprised 130 patients classified according to fatty liver index values: fatty liver index < 30, fatty liver index 30–59 (the intermediate group) and fatty liver index ⩾ 60. Lecithin–cholesterol acyltransferase and cholesteryl ester transfer protein activities were determined. Paraoxonase 1 concentration and its activity, paraoxonase 3 concentration and high-density lipoprotein subclass distribution were assessed. Results Increased lecithin–cholesterol acyltransferase activity correlated with increased fatty liver index ( P < 0.001). Paraoxonase 3 concentration was lower in the fatty liver index ⩾ 60 group compared with the fatty liver index < 30 group ( P < 0.05). Cholesteryl ester transfer protein activity, paraoxonase 1 concentration and its activity did not significantly differ across the fatty liver index groups. The relative proportion of small-sized high-density lipoprotein 3 subclass was higher in the fatty liver index ⩾ 60 group compared with the other two fatty liver index groups ( P < 0.01). Lecithin–cholesterol acyltransferase activity positively associated with the fatty liver index ⩾ 60 group and remained significant after adjustment for other potential confounders. Only the triglyceride concentration remained significantly associated with lecithin–cholesterol acyltransferase activity when the parameters that constitute the fatty liver index equation were examined. Conclusions Higher lecithin–cholesterol acyltransferase activity is associated with elevated fatty liver index values. Significant independent association between triglycerides and lecithin–cholesterol acyltransferase activity might indicate a role of hypertriglyceridaemia in alterations of lecithin–cholesterol acyltransferase activity in individuals with elevated fatty liver index.
Collapse
Affiliation(s)
- Jelena Janac
- 1 Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Zeljkovic
- 1 Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Zorana Jelic-Ivanovic
- 1 Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Vesna Dimitrijevic-Sreckovic
- 2 Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Miljkovic
- 1 Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stefanovic
- 1 Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Munjas
- 1 Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Vekic
- 1 Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Kotur-Stevuljevic
- 1 Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
20
|
Shao B, Zelnick LR, Wimberger J, Himmelfarb J, Brunzell J, Davidson WS, Snell-Bergeon JK, Bornfeldt KE, de Boer IH, Heinecke JW. Albuminuria, the High-Density Lipoprotein Proteome, and Coronary Artery Calcification in Type 1 Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2019; 39:1483-1491. [PMID: 31092010 DOI: 10.1161/atvbaha.119.312556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Albuminuria is an important risk factor for cardiovascular disease in diabetes mellitus. We determined whether albuminuria associates with alterations in the proteome of HDL (high-density lipoprotein) of subjects with type 1 diabetes mellitus and whether those alterations associated with coronary artery calcification. Approach and Results- In a cross-sectional study of 191 subjects enrolled in the DCCT (Diabetes Control and Complications Trial)/EDIC study (Epidemiology of Diabetes Interventions and Complications), we used isotope dilution tandem mass spectrometry to quantify 46 proteins in HDL. Stringent statistical analysis demonstrated that 8 proteins associated with albuminuria. Two of those proteins, AMBP (α1-microglobulin/bikunin precursor) and PTGDS (prostaglandin-H2 D-isomerase), strongly and positively associated with the albumin excretion rate ( P<10-6). Furthermore, PON (paraoxonase) 1 and PON3 levels in HDL strongly and negatively associated with the presence of coronary artery calcium, with odds ratios per 1-SD difference of 0.63 (95% CI, 0.43-0.92; P=0.018) for PON1 and 0.59 (95% CI, 0.40-0.87; P=0.0079) for PON3. Only 1 protein, PON1, associated with both albumin excretion rate and coronary artery calcification. Conclusions- Our observations indicate that the HDL proteome is remodeled in type 1 diabetes mellitus subjects with albuminuria. Moreover, low concentrations of the antiatherosclerotic protein PON1 in HDL associated with both albuminuria and coronary artery calcification, raising the possibility that alterations in HDL protein cargo mediate, in part, the known association of albuminuria with cardiovascular risk in type 1 diabetes mellitus. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Baohai Shao
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Leila R Zelnick
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Jake Wimberger
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Jonathan Himmelfarb
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - John Brunzell
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (W.S.D.)
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora (J.K.S.-B.)
| | - Karin E Bornfeldt
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Ian H de Boer
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| | - Jay W Heinecke
- From the Department of Medicine, University of Washington, Seattle (B.S., L.R.Z., J.W., J.H., J.B., K.E.B., I.H.d.B., J.W.H.)
| |
Collapse
|
21
|
Gourgari E, Ma J, Playford MP, Mehta NN, Goldman R, Remaley AT, Gordon SM. Proteomic alterations of HDL in youth with type 1 diabetes and their associations with glycemic control: a case-control study. Cardiovasc Diabetol 2019; 18:43. [PMID: 30922315 PMCID: PMC6437869 DOI: 10.1186/s12933-019-0846-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/18/2019] [Indexed: 11/12/2022] Open
Abstract
Background Patients with type 1 diabetes (T1DM) typically have normal or even elevated plasma high density lipoprotein (HDL) cholesterol concentrations; however, HDL protein composition can be altered without a change in cholesterol content. Alteration of the HDL proteome can result in dysfunctional HDL particles with reduced ability to protect against cardiovascular disease (CVD). The objective of this study was to compare the HDL proteomes of youth with T1DM and healthy controls (HC) and to evaluate the influence of glycemic control on HDL protein composition. Methods This was a cross-sectional case–control study. Blood samples were obtained from patients with T1DM and HC. HDL was isolated from plasma by size-exclusion chromatography and further purified using a lipid binding resin. The HDL proteome was analyzed by mass spectrometry using label-free SWATH peptide quantification. Results Samples from 26 patients with T1DM and 13 HC were analyzed and 78 HDL-bound proteins were measured. Youth with T1DM had significantly increased amounts of complement factor H related protein 2 (FHR2; adjusted P < 0.05), compared to HC. When patients were analyzed based on glucose control, several trends emerged. Some proteins were altered in T1DM and not influenced by glycemic control (e.g. FHR2) while others were partially or completely corrected with optimal glucose control (e.g. alpha-1-beta glycoprotein, A1BG). In a subgroup of poorly controlled T1DM patients, inter alpha trypsin inhibitor 4 (ITIH4) was dramatically elevated (P < 0.0001) and this was partially reversed in patients with optimal glucose control. Some proteins including complement component C3 (CO3) and albumin (ALB) were significantly different only in T1DM patients with optimal glucose control, suggesting a possible effect of exogenous insulin. Conclusions Youth with T1DM have proteomic alterations of their HDL compared to HC, despite similar concentration of HDL cholesterol. The influence of these compositional changes on HDL function are not yet known. Future efforts should focus on investigating the role of these HDL associated proteins in regard to HDL function and their role in CVD risk in patients with T1DM. Trial registration NCT02275091 Electronic supplementary material The online version of this article (10.1186/s12933-019-0846-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evgenia Gourgari
- Division of Pediatric Endocrinology, Department of Pediatrics, Georgetown University, Washington, DC, 20016, USA.
| | - Junfeng Ma
- Proteomics and Metabolomics Shared Resource, Georgetown University Medical Center, Washington, DC, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Scott M Gordon
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
22
|
Fournier M, Bonneil E, Garofalo C, Grimard G, Laverdière C, Krajinovic M, Drouin S, Sinnett D, Marcil V, Levy E. Altered proteome of high-density lipoproteins from paediatric acute lymphoblastic leukemia survivors. Sci Rep 2019; 9:4268. [PMID: 30862935 PMCID: PMC6414624 DOI: 10.1038/s41598-019-40906-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/30/2019] [Indexed: 01/16/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent malignancy in children. With the use of more modern, efficient treatments, 5-year survival has reached more than 90% in this population. However, this achievement comes with many secondary and long-term effects since more than 65% of the survivors experience at least one severe complication, including the metabolic syndrome and cardiovascular diseases. The main objective of the present work was to characterize the composition of HDL particles isolated from pediatric ALL survivors. HDLs from 8 metabolically healthy ALL survivors, 8 metabolically unhealthy ALL survivors and 8 age- and gender-matched controls were analyzed. The HDL fraction from the survivors contained less cholesterol than the controls. In addition, proteomic analyses revealed an enrichment of pro-thrombotic (e.g., fibrinogen) and pro-inflammatory (e.g., amyloid A) proteins in the HDLs deriving from metabolically unhealthy survivors. These results indicate an alteration in the composition of lipid and protein content of HDL from childhood ALL survivors with metabolic disorders. Although more work is needed to validate the functionality of these HDLs, the data seem relevant for survivor health given the detection of potential biomarkers related to HDL metabolism and functionality in cancer.
Collapse
Affiliation(s)
- Maryse Fournier
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Eric Bonneil
- Institute of Research in Immunology and Cancer, Université de Montréal, QC, H3C 3J7, Montréal, Canada
| | - Carole Garofalo
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Guy Grimard
- Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Caroline Laverdière
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Maja Krajinovic
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Simon Drouin
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Daniel Sinnett
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Valérie Marcil
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada. .,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.
| |
Collapse
|
23
|
Penn AM, Bibok MB, Saly VK, Coutts SB, Lesperance ML, Balshaw RF, Votova K, Croteau NS, Trivedi A, Jackson AM, Hegedus J, Klourfeld E, Yu AYX, Zerna C, Modi J, Barber PA, Hoag G, Borchers CH. Validation of a proteomic biomarker panel to diagnose minor-stroke and transient ischaemic attack: phase 2 of SpecTRA, a large scale translational study. Biomarkers 2018; 23:793-803. [PMID: 30010432 DOI: 10.1080/1354750x.2018.1499130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To validate our previously developed 16 plasma-protein biomarker panel to differentiate between transient ischaemic attack (TIA) and non-cerebrovascular emergency department (ED) patients. METHOD Two consecutive cohorts of ED patients prospectively enrolled at two urban medical centers into the second phase of SpecTRA study (training, cohort 2A, n = 575; test, cohort 2B, n = 528). Plasma samples were analyzed using liquid chromatography/multiple reaction monitoring-mass spectrometry. Logistic regression models which fit cohort 2A were validated on cohort 2B. RESULTS Three of the panel proteins failed quality control and were removed from the panel. During validation, panel models did not outperform a simple motor/speech (M/S) deficit variable. Post-hoc analyses suggested the measured behaviour of L-selectin and coagulation factor V contributed to poor model performance. Removal of these proteins increased the external performance of a model containing the panel and the M/S variable. CONCLUSIONS Univariate analyses suggest insulin-like growth factor-binding protein 3 and serum paraoxonase/lactonase 3 are reliable and reproducible biomarkers for TIA status. Logistic regression models indicated L-selectin, apolipoprotein B-100, coagulation factor IX, and thrombospondin-1 to be significant multivariate predictors of TIA. We discuss multivariate feature subset analyses as an exploratory technique to better understand a panel's full predictive potential.
Collapse
Affiliation(s)
- Andrew M Penn
- a Department of Neurosciences , Stroke Rapid Assessment Clinic, Island Health Authority , Victoria , Canada
| | - Maximilian B Bibok
- b Department of Research and Capacity Building , Island Health Authority , Victoria , Canada
| | - Viera K Saly
- a Department of Neurosciences , Stroke Rapid Assessment Clinic, Island Health Authority , Victoria , Canada
| | - Shelagh B Coutts
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary , Calgary , Canada
| | - Mary L Lesperance
- d Department of Mathematics and Statistics , University of Victoria , Victoria , Canada
| | - Robert F Balshaw
- e George & Fay Yee Centre for Healthcare Innovation , University of Manitoba , Winnipeg , Canada
| | - Kristine Votova
- b Department of Research and Capacity Building , Island Health Authority , Victoria , Canada.,f Division of Medical Sciences , University of Victoria , Victoria , Canada
| | - Nicole S Croteau
- b Department of Research and Capacity Building , Island Health Authority , Victoria , Canada.,d Department of Mathematics and Statistics , University of Victoria , Victoria , Canada
| | - Anurag Trivedi
- a Department of Neurosciences , Stroke Rapid Assessment Clinic, Island Health Authority , Victoria , Canada
| | - Angela M Jackson
- g Genome British Columbia Proteomics Centre, University of Victoria , Victoria , Canada
| | - Janka Hegedus
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary , Calgary , Canada
| | - Evgenia Klourfeld
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary , Calgary , Canada
| | - Amy Y X Yu
- h Department of Medicine , University of Toronto , Toronto , Canada
| | - Charlotte Zerna
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary , Calgary , Canada
| | - Jayesh Modi
- i Department of Radiology , Foothills Medical Centre , Calgary , Canada
| | - Philip A Barber
- j Department of Clinical Neurosciences , University of Calgary , Calgary , Canada
| | - Gordon Hoag
- k Department of Laboratory Medicine, Pathology & Medical Genetics , Island Health Authority , Victoria , Canada
| | - Christoph H Borchers
- g Genome British Columbia Proteomics Centre, University of Victoria , Victoria , Canada.,l Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada.,m Gerald Bronfman Department of Oncology , McGill University , Montreal , Canada.,n Proteomics Centre, Segal Cancer Centre , Lady Davis Institute , Montreal , Canada
| | | |
Collapse
|
24
|
Wang K, Zelnick LR, Hoofnagle AN, Vaisar T, Henderson CM, Imrey PB, Robinson-Cohen C, de Boer IH, Shiu YT, Himmelfarb J, Beck GJ. Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin J Am Soc Nephrol 2018; 13:1225-1233. [PMID: 30045914 PMCID: PMC6086713 DOI: 10.2215/cjn.11321017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES HDL particles obtained from patients on chronic hemodialysis exhibit lower cholesterol efflux capacity and are enriched in inflammatory proteins compared with those in healthy individuals. Observed alterations in HDL proteins could be due to effects of CKD, but also may be influenced by the hemodialysis procedure, which stimulates proinflammatory and prothrombotic pathways. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We compared HDL-associated proteins in 143 participants who initiated hemodialysis within the previous year with those of 110 participants with advanced CKD from the Hemodialysis Fistula Maturation Study. We quantified concentrations of 38 HDL-associated proteins relative to total HDL protein using targeted mass spectrometry assays that included a stable isotope-labeled internal standard. We used linear regression to compare the relative abundances of HDL-associated proteins after adjustment and required a false discovery rate q value ≤10% to control for multiple testing. We further assessed the association between hemodialysis initiation and cholesterol efflux capacity in a subset of 80 participants. RESULTS After adjustment for demographics, comorbidities, and other clinical characteristics, eight HDL-associated proteins met the prespecified false discovery threshold for association. Recent hemodialysis initiation was associated with higher HDL-associated concentrations of serum amyloid A1, A2, and A4; hemoglobin-β; haptoglobin-related protein; cholesterylester transfer protein; phospholipid transfer protein; and apo E. The trend for participants recently initiating hemodialysis for lower cholesterol efflux capacity compared with individuals with advanced CKD did not reach statistical significance. CONCLUSIONS Compared with advanced CKD, hemodialysis initiation within the previous year is associated with higher concentrations of eight HDL proteins related to inflammation and lipid metabolism. Identified associations differ from those recently observed for nondialysis-requiring CKD. Hemodialysis initiation may further impair cholesterol efflux capacity. Further work is needed to clarify the clinical significance of the identified proteins with respect to cardiovascular risk. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2018_07_25_CJASNPodcast_18_8_W.mp3.
Collapse
Affiliation(s)
- Ke Wang
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Leila R. Zelnick
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Andrew N. Hoofnagle
- Departments of Medicine and
- Laboratory Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | | | | | - Peter B. Imrey
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | | | - Ian H. de Boer
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jonathan Himmelfarb
- Departments of Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Gerald J. Beck
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - KestenbaumBryan12on behalf of the HFM Study
- Departments of Medicine and
- Laboratory Medicine and
- Kidney Research Institute, University of Washington, Seattle, Washington
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
25
|
Pedret A, Fernández-Castillejo S, Valls RM, Catalán Ú, Rubió L, Romeu M, Macià A, López de Las Hazas MC, Farràs M, Giralt M, Mosele JI, Martín-Peláez S, Remaley AT, Covas MI, Fitó M, Motilva MJ, Solà R. Cardiovascular Benefits of Phenol-Enriched Virgin Olive Oils: New Insights from the Virgin Olive Oil and HDL Functionality (VOHF) Study. Mol Nutr Food Res 2018; 62:e1800456. [PMID: 29956886 PMCID: PMC8456742 DOI: 10.1002/mnfr.201800456] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 01/09/2023]
Abstract
SCOPE The main findings of the "Virgin Olive Oil and HDL Functionality" (VOHF) study and other related studies on the effect of phenol-enriched virgin olive oil (VOO) supplementation on cardiovascular disease are integrated in the present work. METHODS AND RESULTS VOHF assessed whether VOOs, enriched with their own phenolic compounds (FVOO) or with those from thyme (FVOOT), improve quantity and functionality of HDL. In this randomized, double-blind, crossover, and controlled trial, 33 hypercholesterolemic subjects received a control VOO (80 mg kg-1 ), FVOO (500 mg kg-1 ), and FVOOT (500 mg kg-1 ; 1:1) for 3 weeks. Both functional VOOs promoted cardioprotective changes, modulating HDL proteome, increasing fat-soluble antioxidants, improving HDL subclasses distribution, reducing the lipoprotein insulin resistance index, increasing endogenous antioxidant enzymes, protecting DNA from oxidation, ameliorating endothelial function, and increasing fecal microbial metabolic activity. Additional cardioprotective benefits were observed according to phenol source and content in the phenol-enriched VOOs. These insights support the beneficial effects of OO and PC from different sources. CONCLUSION Novel therapeutic strategies should increase HDL-cholesterol levels and enhance HDL functionality. The tailoring of phenol-enriched VOOs is an interesting and useful strategy for enhancing the functional quality of HDL, and thus, it can be used as a complementary tool for the management of hypercholesterolemic individuals.
Collapse
Affiliation(s)
- Anna Pedret
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), 43204, Reus, Spain
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Sara Fernández-Castillejo
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitaria Pere Virgili, 43204, Reus, Spain
| | - Rosa-Maria Valls
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Úrsula Catalán
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitaria Pere Virgili, 43204, Reus, Spain
| | - Laura Rubió
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Universitat Rovira i Virgili, 43201, Reus, Spain
- Antioxidants Research Group, Food Technology Department, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - Marta Romeu
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Alba Macià
- Antioxidants Research Group, Food Technology Department, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - Maria Carmen López de Las Hazas
- Antioxidants Research Group, Food Technology Department, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados-Alimentación, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Marta Farràs
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025, Barcelona, Spain
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), 08003, Barcelona, Spain
| | - Montse Giralt
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Juana I Mosele
- Antioxidants Research Group, Food Technology Department, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET - Universidad de Buenos Aires, 1053, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Sandra Martín-Peláez
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029, Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), 08003, Barcelona, Spain
| | - Alan T Remaley
- Department of Laboratory Medicine Clinical Center, National Institutes of Health, 20814, Bethesda, MD, USA
- Lipoprotein Metabolism Section Cardio-Pulmonary Branch National Heart, Lung and Blood Institute National Institutes of Health, 20814, Bethesda, MD, USA
| | - Maria-Isabel Covas
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029, Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), 08003, Barcelona, Spain
- NUPROAS (Nutritional Project Assessment), Handesbolag (NUPROAS HB), 13100, Nacka, Sweden
| | - Montse Fitó
- Spanish Biomedical Research Networking Centre (CIBER), Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029, Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Research Institute (IMIM), 08003, Barcelona, Spain
| | - Maria-José Motilva
- Antioxidants Research Group, Food Technology Department, Universitat de Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - Rosa Solà
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC-Salut), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitaria Pere Virgili, 43204, Reus, Spain
- Hospital Universitari Sant Joan de Reus, 43204, Reus, Spain
| |
Collapse
|
26
|
Penn AM, Bibok MB, Saly VK, Coutts SB, Lesperance ML, Balshaw RF, Votova K, Croteau NS, Trivedi A, Jackson AM, Hegedus J, Klourfeld E, Yu AYX, Zerna C, Borchers CH. Verification of a proteomic biomarker panel to diagnose minor stroke and transient ischaemic attack: phase 1 of SpecTRA, a large scale translational study. Biomarkers 2018; 23:392-405. [PMID: 29385837 DOI: 10.1080/1354750x.2018.1434681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To derive a plasma biomarker protein panel from a list of 141 candidate proteins which can differentiate transient ischaemic attack (TIA)/minor stroke from non-cerebrovascular (mimic) conditions in emergency department (ED) settings. DESIGN Prospective clinical study (#NCT03050099) with up to three timed blood draws no more than 36 h following symptom onset. Plasma samples analysed by multiple reaction monitoring-mass spectrometry (MRM-MS). PARTICIPANTS Totally 545 participants suspected of TIA enrolled in the EDs of two urban medical centres. OUTCOMES 90-day, neurologist-adjudicated diagnosis of TIA informed by clinical and radiological investigations. RESULTS The final protein panel consists of 16 proteins whose patterns show differential abundance between TIA and mimic patients. Nine of the proteins were significant univariate predictors of TIA [odds ratio (95% confidence interval)]: L-selectin [0.726 (0.596-0.883)]; Insulin-like growth factor-binding protein 3 [0.727 (0.594-0.889)]; Coagulation factor X [0.740 (0.603-0.908)]; Serum paraoxonase/lactonase 3 [0.763 (0.630-0.924)]; Thrombospondin-1 [1.313 (1.081-1.595)]; Hyaluronan-binding protein 2 [0.776 (0.637-0.945)]; Heparin cofactor 2 [0.775 (0.634-0.947)]; Apolipoprotein B-100 [1.249 (1.037-1.503)]; and von Willebrand factor [1.256 (1.034-1.527)]. The scientific plausibility of the panel proteins is discussed. CONCLUSIONS Our panel has the potential to assist ED physicians in distinguishing TIA from mimic patients.
Collapse
Affiliation(s)
- Andrew M Penn
- a Neurosciences, Stroke Rapid Assessment Clinic , Island Health Authority , Victoria , BC , Canada
| | - Maximilian B Bibok
- b Department of Research and Capacity Building , Island Health Authority , Victoria , BC , Canada
| | - Viera K Saly
- a Neurosciences, Stroke Rapid Assessment Clinic , Island Health Authority , Victoria , BC , Canada
| | - Shelagh B Coutts
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary, Hotchkiss Brain Institute, C1242, Foothills Medical Centre , Calgary , AB , Canada
| | - Mary L Lesperance
- d Department of Mathematics and Statistics , University of Victoria , Victoria , BC , Canada
| | - Robert F Balshaw
- e British Columbia Centre for Disease Control , Vancouver , BC , Canada
| | - Kristine Votova
- b Department of Research and Capacity Building , Island Health Authority , Victoria , BC , Canada.,f Division of Medical Sciences , University of Victoria , Victoria , BC , Canada
| | - Nicole S Croteau
- b Department of Research and Capacity Building , Island Health Authority , Victoria , BC , Canada.,d Department of Mathematics and Statistics , University of Victoria , Victoria , BC , Canada
| | - Anurag Trivedi
- a Neurosciences, Stroke Rapid Assessment Clinic , Island Health Authority , Victoria , BC , Canada
| | - Angela M Jackson
- g University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park , Victoria , BC , Canada
| | - Janka Hegedus
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary, Hotchkiss Brain Institute, C1242, Foothills Medical Centre , Calgary , AB , Canada
| | - Evgenia Klourfeld
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary, Hotchkiss Brain Institute, C1242, Foothills Medical Centre , Calgary , AB , Canada
| | - Amy Y X Yu
- h Department of Medicine , University of Toronto Sunnybrook Health Sciences Centre , Toronto , ON , Canada
| | - Charlotte Zerna
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary, Hotchkiss Brain Institute, C1242, Foothills Medical Centre , Calgary , AB , Canada
| | - Christoph H Borchers
- i Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , Canada.,j Gerald Bronfman Department of Oncology , Jewish General Hospital McGill University , Montreal , QC , Canada.,k Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University , Montreal , QC , Canada
| | | |
Collapse
|
27
|
Kucuk A, Uğur Uslu A, Icli A, Cure E, Arslan S, Turkmen K, Toker A, Kayrak M. The LDL/HDL ratio and atherosclerosis in ankylosing spondylitis. Z Rheumatol 2017; 76:58-63. [PMID: 27312464 DOI: 10.1007/s00393-016-0092-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES In ankylosing spondylitis (AS) patients, cardiac and vascular involvement may manifest as atherosclerosis and coronary artery disease. Systemic inflammation, oxidative stress, increased low-density lipoprotein (LDL) cholesterol and decreased high-density lipoprotein (HDL) cholesterol constitute a significant risk for atherosclerosis. This study investigated the relationship between carotid intima-media thickness (CIMT), LDL/HDL ratio, total oxidant status (TOS; an indicator of oxidative stress) and ischemic modified albumin (IMA; an ischemic marker in AS patients). PATIENTS AND METHODS Sixty AS patients were diagnosed using the Modified New York Criteria; 54 age- and gender-matched participants were included as controls. CIMT, LDL/HDL ratio, TOS and IMA were measured using the most appropriate methods. RESULTS IMA was higher in AS patients compared to controls (p < 0.0001). TOS was also increased in AS patients (p = 0.005); as was CIMT (p < 0.0001). The LDL/HDL ratio was also greater in AS patients compared to controls (p = 0.047). A positive correlation was found between CIMT and LDL/HDL ratio among AS patients. CONCLUSION Elevated CIMT, IMA and TOS levels suggest an increased risk of atherosclerotic heart disease in AS patients. The LDL/HDL ratio was higher in AS patients compared to controls, and there was a correlation between LDL/HDL ratio and CIMT, albeit statistically weak. Therefore, the LDL/HDL ratio is not a reliable marker to predict atherosclerotic heart disease in AS patients.
Collapse
Affiliation(s)
- A Kucuk
- Division of Rheumatology, Department of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - A Uğur Uslu
- Eskişehir Military Hospital, Eskisehir, Rize, Turkey
| | - A Icli
- Necmettin Erbakan University, Konya, Turkey
| | - E Cure
- Recep Tayyip Erdogan University, Rize, Turkey
| | - S Arslan
- Necmettin Erbakan University, Konya, Turkey
| | - K Turkmen
- Necmettin Erbakan University, Konya, Turkey
| | - A Toker
- Necmettin Erbakan University, Konya, Turkey
| | - M Kayrak
- Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Epidemiological and clinical studies link low levels of HDL cholesterol (HDL-C) with increased risk of atherosclerotic cardiovascular disease (CVD). However, genetic polymorphisms linked to HDL-C do not associate consistently with CVD risk, and randomized clinical studies of drugs that elevate HDL-C via different mechanisms failed to reduce CVD risk in statin-treated patients with established CVD. New metrics that capture HDL's proposed cardioprotective effects are therefore urgently needed. RECENT FINDINGS Recent studies demonstrate cholesterol efflux capacity (CEC) of serum HDL (serum depleted of cholesterol-rich atherogenic lipoproteins) is an independent and better predictor of incident and prevalent CVD risk than HDL-C. However, it remains unclear whether therapies that increase CEC are cardioprotective. Other key issues are the impact of HDL-targeted therapies on HDL particle size and concentration and the relationship of those changes to CEC and cardioprotection. SUMMARY It is time to end the clinical focus on HDL-C and to understand how HDL's function, protein composition and size contribute to CVD risk. It will also be important to link variations in function and size to HDL-targeted therapies. Developing new metrics for quantifying HDL function, based on better understanding HDL metabolism and macrophage CEC, is critical for achieving these goals.
Collapse
Affiliation(s)
- Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química,
Universidade de São Paulo, Brazil
| | - Jay W. Heinecke
- Department of Medicine, University of Washington, Seattle, WA
98109
| |
Collapse
|
29
|
Fernández-Castillejo S, García-Heredia AI, Solà R, Camps J, López de la Hazas MC, Farràs M, Pedret A, Catalán Ú, Rubió L, Motilva MJ, Castañer O, Covas MI, Valls RM. Phenol-enriched olive oils modify paraoxonase-related variables: A randomized, crossover, controlled trial. Mol Nutr Food Res 2017; 61. [PMID: 28544610 DOI: 10.1002/mnfr.201600932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022]
Abstract
SCOPE Low paraoxonase (PON)1 activities, and high PON1 and low PON3 protein levels are characteristic of cardiovascular disease. Our aim was to assess short- and long-term effects of virgin olive oils (VOO), enriched with their own phenolic compounds (PC; FVOO) or with them plus complementary PC from thyme (FVOOT), on PON-related variables and the mechanisms involved. METHODS AND RESULTS Two randomized, controlled, double-blind, and crossover interventions were conducted. In an acute intake study, participants ingested three FVOOs differing in PC content. In a sustained intake study, participants ingested a control VOO and two different FVOOs with the same PC content but differing in PC source. Acute and sustained intake of VOO and FVOO decreased PON1 protein and increased PON1-associated specific activities, while FVOOT yielded opposite results. PON3 protein levels increased only after sustained consumption of VOO. Mechanistic studies performed in rat livers showed that intake of isolated PC from VOO and from thyme modulate mitogen-activated protein kinases and peroxisome proliferator-activated receptors regulating PON synthesis, while a combination of these PCs cancels such regulation. CONCLUSION This study reveals that the intake of phenol-enriched FVOOs modulates oxidative balance by modifying PON-related variables according to PC content and source, and this modulation can be perceived as beneficial.
Collapse
Affiliation(s)
- Sara Fernández-Castillejo
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana-Isabel García-Heredia
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Rosa Solà
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | | - Marta Farràs
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK.,Cardiovascular Risk and Nutrition Research group, IMIM- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Pedret
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Úrsula Catalán
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Rubió
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - Maria-José Motilva
- Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain
| | - Olga Castañer
- Cardiovascular Risk and Nutrition Research group, IMIM- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María-Isabel Covas
- Cardiovascular Risk and Nutrition Research group, IMIM- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,NUPROAS (Nutritional Project Assessment), Handesbolag (NUPROAS HB), Nacka, Sweden
| | - Rosa-Maria Valls
- Research Unit on Lipids and Atherosclerosis, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Functional Nutrition, Oxidation and Cardiovascular Disease (NFOC-SALUT) group, Universitat Rovira i Virgili, Reus, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Mourino-Alvarez L, Baldan-Martin M, Rincon R, Martin-Rojas T, Corbacho-Alonso N, Sastre-Oliva T, Barderas MG. Recent advances and clinical insights into the use of proteomics in the study of atherosclerosis. Expert Rev Proteomics 2017; 14:701-713. [PMID: 28689450 DOI: 10.1080/14789450.2017.1353912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The application of new proteomics methods may help to identify new diagnostic/predictive molecular markers in an attempt to improve the clinical management of atherosclerosis. Areas covered: Technological advances in proteomics have enhanced its sensitivity and multiplexing capacity, as well as the possibility of studying protein interactions and tissue structure. These advances will help us better understand the molecular mechanisms at play in atherosclerosis as a biological system. Moreover, this should help identify new predictive/diagnostic biomarkers and therapeutic targets that may facilitate effective risk stratification and early diagnosis, with the ensuing rapid implementation of treatment. This review provides a comprehensive overview of the novel methods in proteomics, including state-of-the-art techniques, novel biological samples and applications for the study of atherosclerosis. Expert commentary: Collaboration between clinicians and researchers is crucial to further validate and introduce new molecular markers to manage atherosclerosis that are identified using the most up to date proteomic approaches.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | | | - Raul Rincon
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tatiana Martin-Rojas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Nerea Corbacho-Alonso
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tamara Sastre-Oliva
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Maria G Barderas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. RECENT FINDINGS Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. SUMMARY Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.
Collapse
Affiliation(s)
- Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Costa LG, Cole TB, Garrick JM, Marsillach J, Furlong CE. Metals and Paraoxonases. ADVANCES IN NEUROBIOLOGY 2017; 18:85-111. [PMID: 28889264 DOI: 10.1007/978-3-319-60189-2_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The paraoxonases (PONs) are a three-gene family which includes PON1, PON2, and PON3. PON1 and PON3 are synthesized primarily in the liver and a portion is secreted in the plasma, where they are associated with high-density lipoproteins (HDLs), while PON2 is an intracellular enzyme, expressed in most tissues and organs, including the brain. PON1 received its name from its ability to hydrolyze paraoxon, the active metabolite of the organophosphorus (OP) insecticide parathion, and also more efficiently hydrolyzes the active metabolites of several other OPs. PON2 and PON3 do not have OP-esterase activity, but all PONs are lactonases and are capable of hydrolyzing a variety of lactones, including certain drugs, endogenous compounds, and quorum-sensing signals of pathogenic bacteria. In addition, all PONs exert potent antioxidant effects. PONs play important roles in cardiovascular diseases and other oxidative stress-related diseases, modulate susceptibility to infection, and may provide neuroprotection (PON2). Hence, significant attention has been devoted to their modulation by a variety of dietary, pharmacological, lifestyle, or environmental factors. A number of metals have been shown in in vitro, animal, and human studies to mostly negatively modulate expression of PONs, particularly PON1, the most studied in this regard. In addition, different levels of expression of PONs may affect susceptibility to toxicity and neurotoxicity of metals due to their aforementioned antioxidant properties.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA. .,Department of Medicine & Surgery, University of Parma, Parma, Italy.
| | - Toby B Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA.,Center on Human Development and Disability, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Jacqueline M Garrick
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Judit Marsillach
- Department of Medicine (Division of Medical Genetics), University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Clement E Furlong
- Department of Medicine (Division of Medical Genetics), University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA.,Department of Genome Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| |
Collapse
|
33
|
Icli A, Cure E, Cure MC, Uslu AU, Balta S, Mikhailidis DP, Ozturk C, Arslan S, Sakız D, Sahin M, Kucuk A. Endocan Levels and Subclinical Atherosclerosis in Patients With Systemic Lupus Erythematosus. Angiology 2016; 67:749-55. [PMID: 26614790 DOI: 10.1177/0003319715616240] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology. A major cause of morbidity and mortality in SLE is accelerated atherosclerosis. Endothelial-specific molecule 1 (endocan) is a potential predictor of vascular events and is expressed in response to inflammatory cytokines in endothelial cells. We investigated the relationship between endocan and carotid intima-media thickness (cIMT) as a marker of early atherosclerosis. We included 44 women with SLE and 44 healthy women as controls. Disease severity of SLE was evaluated using the SLE Disease Activity Index. Endocan, C-reactive protein, erythrocyte sedimentation rate (ESR), and lipid panel were measured. The cIMT was 0.70 (range: 0.45-1.20) mm in patients with SLE and 0.40 (0.25-0.60) mm in controls (P < .001). Endocan value was 1.6 ± 0.9 ng/mL in controls and 2.2 ± 1.0 ng/mL in patients with SLE (P = .014). Endocan levels were positively correlated with cIMT (r = .469, P < .001), body mass index (r = .373, P = .013), and ESR (r = .393, P = .008). Endocan level may be associated with subclinical atherosclerosis in SLE. Consequently, endocan levels may be a promising clinical tool for patients with SLE as a guide for preventive strategy.
Collapse
Affiliation(s)
- Abdullah Icli
- Department of Cardiology, Necmettin Erbakan University, Konya, Turkey
| | - Erkan Cure
- Department of Internal Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Medine Cumhur Cure
- Department of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ali Ugur Uslu
- Department of Internal Medicine, Eskisehir Military Hospital, Eskisehir, Turkey
| | - Sevket Balta
- Department of Cardiology, Gulhane School of Medicine, Ankara, Turkey
| | - Dimitri P Mikhailidis
- Department of Clinical Chemistry, University College London Medical School London, London, United Kingdom
| | - Cengiz Ozturk
- Department of Cardiology, Gulhane School of Medicine, Ankara, Turkey
| | - Sevket Arslan
- Division of Allergy and Clinical Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Davut Sakız
- Department of Internal Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Muhammed Sahin
- Department of Physical Medicine and Rehabilitation, Patnos State Hospital, Agri, Turkey
| | - Adem Kucuk
- Division of Rheumatology, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
34
|
Tuñón J, Barbas C, Blanco-Colio L, Burillo E, Lorenzo Ó, Martín-Ventura JL, Más S, Rupérez FJ, Egido J. Proteomics and metabolomics in biomarker discovery for cardiovascular diseases: progress and potential. Expert Rev Proteomics 2016; 13:857-71. [PMID: 27459711 DOI: 10.1080/14789450.2016.1217775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The process of discovering novel biomarkers and potential therapeutic targets may be shortened using proteomic and metabolomic approaches. AREAS COVERED Several complementary strategies, each one presenting different advantages and limitations, may be used with these novel approaches. In vitro studies show how cells involved in cardiovascular disease react, although the phenotype of cultured cells differs to that occurring in vivo. Tissue analysis either in human specimens or animal models may show the proteins that are expressed in the pathological process, although the presence of structural proteins may be confounding. To identify circulating biomarkers, analyzing the secretome of cultured atherosclerotic tissue, analysis of blood cells and/or plasma may be more straightforward. However, in the latter approach, high-abundant proteins may mask small molecules that could be potential biomarkers. The study of sub-proteomes such as high-density lipoproteins may be useful to circumvent this limitation. Regarding metabolomics, most studies have been performed in small populations, and we need to perform studies in large populations in order to discover robust biomarkers. Expert commentary: It is necessary to involve the clinicians in these areas to improve the design of clinical studies, including larger populations, in order to obtain consistent novel biomarkers.
Collapse
Affiliation(s)
- José Tuñón
- a Department of Cardiology , Fundación Jiménez Díaz , Madrid , Spain.,b Vascular Pathology Laboratory , Fundación Jiménez Díaz , Madrid , Spain.,c Department of Medicine, Autónoma University , Madrid , Spain
| | - Coral Barbas
- d CEMBIO, Centre for Metabolomics and Bioanalysis, Facultad de Farmacia , Universidad San Pablo CEU , Madrid , Spain
| | - Luis Blanco-Colio
- b Vascular Pathology Laboratory , Fundación Jiménez Díaz , Madrid , Spain
| | - Elena Burillo
- b Vascular Pathology Laboratory , Fundación Jiménez Díaz , Madrid , Spain
| | - Óscar Lorenzo
- b Vascular Pathology Laboratory , Fundación Jiménez Díaz , Madrid , Spain.,c Department of Medicine, Autónoma University , Madrid , Spain
| | - José Luis Martín-Ventura
- b Vascular Pathology Laboratory , Fundación Jiménez Díaz , Madrid , Spain.,c Department of Medicine, Autónoma University , Madrid , Spain
| | - Sebastián Más
- b Vascular Pathology Laboratory , Fundación Jiménez Díaz , Madrid , Spain.,c Department of Medicine, Autónoma University , Madrid , Spain
| | - Francisco Javier Rupérez
- d CEMBIO, Centre for Metabolomics and Bioanalysis, Facultad de Farmacia , Universidad San Pablo CEU , Madrid , Spain
| | - Jesús Egido
- b Vascular Pathology Laboratory , Fundación Jiménez Díaz , Madrid , Spain.,c Department of Medicine, Autónoma University , Madrid , Spain.,e Department of Nephrology , Fundación Jiménez Díaz , Madrid , Spain.,f CIBERDEM , Madrid , Spain
| |
Collapse
|
35
|
Kucuk A, Uğur Uslu A, Icli A, Cure E, Arslan S, Turkmen K, Toker A, Kayrak M. The LDL/HDL ratio and atherosclerosis in ankylosing spondylitis. Z Rheumatol 2016. [PMID: 27312464 DOI: 10.1007/s00393-016-0092-4.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES In ankylosing spondylitis (AS) patients, cardiac and vascular involvement may manifest as atherosclerosis and coronary artery disease. Systemic inflammation, oxidative stress, increased low-density lipoprotein (LDL) cholesterol and decreased high-density lipoprotein (HDL) cholesterol constitute a significant risk for atherosclerosis. This study investigated the relationship between carotid intima-media thickness (CIMT), LDL/HDL ratio, total oxidant status (TOS; an indicator of oxidative stress) and ischemic modified albumin (IMA; an ischemic marker in AS patients). PATIENTS AND METHODS Sixty AS patients were diagnosed using the Modified New York Criteria; 54 age- and gender-matched participants were included as controls. CIMT, LDL/HDL ratio, TOS and IMA were measured using the most appropriate methods. RESULTS IMA was higher in AS patients compared to controls (p < 0.0001). TOS was also increased in AS patients (p = 0.005); as was CIMT (p < 0.0001). The LDL/HDL ratio was also greater in AS patients compared to controls (p = 0.047). A positive correlation was found between CIMT and LDL/HDL ratio among AS patients. CONCLUSION Elevated CIMT, IMA and TOS levels suggest an increased risk of atherosclerotic heart disease in AS patients. The LDL/HDL ratio was higher in AS patients compared to controls, and there was a correlation between LDL/HDL ratio and CIMT, albeit statistically weak. Therefore, the LDL/HDL ratio is not a reliable marker to predict atherosclerotic heart disease in AS patients.
Collapse
Affiliation(s)
- A Kucuk
- Division of Rheumatology, Department of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - A Uğur Uslu
- Eskişehir Military Hospital, Eskisehir, Rize, Turkey
| | - A Icli
- Necmettin Erbakan University, Konya, Turkey
| | - E Cure
- Recep Tayyip Erdogan University, Rize, Turkey
| | - S Arslan
- Necmettin Erbakan University, Konya, Turkey
| | - K Turkmen
- Necmettin Erbakan University, Konya, Turkey
| | - A Toker
- Necmettin Erbakan University, Konya, Turkey
| | - M Kayrak
- Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
36
|
Furlong CE, Marsillach J, Jarvik GP, Costa LG. Paraoxonases-1, -2 and -3: What are their functions? Chem Biol Interact 2016; 259:51-62. [PMID: 27238723 DOI: 10.1016/j.cbi.2016.05.036] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/23/2022]
Abstract
Paraoxonase-1 (PON1), an esterase/lactonase primarily associated with plasma high-density lipoprotein (HDL), was the first member of this family of enzymes to be characterized. Its name was derived from its ability to hydrolyze paraoxon, the toxic metabolite of the insecticide parathion. Related enzymes PON2 and PON3 were named from their evolutionary relationship with PON1. Mice with each PON gene knocked out were generated at UCLA and have been key for elucidating their roles in organophosphorus (OP) metabolism, cardiovascular disease, innate immunity, obesity, and cancer. PON1 status, determined with two-substrate analyses, reveals an individual's functional Q192R genotype and activity levels. The three-dimensional structure for a chimeric PON1 has been useful for understanding the structural properties of PON1 and for engineering PON1 as a catalytic scavenger of OP compounds. All three PONs hydrolyze microbial N-acyl homoserine lactone quorum sensing factors, quenching Pseudomonas aeruginosa's pathogenesis. All three PONs modulate oxidative stress and inflammation. PON2 is localized in the mitochondria and endoplasmic reticulum. PON2 has potent antioxidant properties and is found at 3- to 4-fold higher levels in females than males, providing increased protection against oxidative stress, as observed in primary cultures of neurons and astrocytes from female mice compared with male mice. The higher levels of PON2 in females may explain the lower frequency of neurological and cardiovascular diseases in females and the ability to identify males but not females with Parkinson's disease using a special PON1 status assay. Less is known about PON3; however, recent experiments with PON3 knockout mice show them to be susceptible to obesity, gallstone formation and atherosclerosis. Like PONs 1 and 2, PON3 also appears to modulate oxidative stress. It is localized in the endoplasmic reticulum, mitochondria and on HDL. Both PON2 and PON3 are upregulated in cancer, favoring tumor progression through mitochondrial protection against oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Clement E Furlong
- Departments of Medicine (Division of Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Judit Marsillach
- Departments of Medicine (Division of Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Gail P Jarvik
- Departments of Medicine (Division of Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Neuroscience, University of Parma, Parma, Italy.
| |
Collapse
|
37
|
Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics. CHOLESTEROL 2015; 2015:296417. [PMID: 26634153 PMCID: PMC4655037 DOI: 10.1155/2015/296417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
High-Density Lipoprotein-Cholesterol (HDL-C) is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease.
Collapse
|
38
|
Ahearn J, Shields KJ, Liu CC, Manzi S. Cardiovascular disease biomarkers across autoimmune diseases. Clin Immunol 2015; 161:59-63. [DOI: 10.1016/j.clim.2015.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
|
39
|
Abstract
High-density lipoproteins (HDLs) protect against atherosclerosis by removing excess cholesterol from macrophages through the ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) pathways involved in reverse cholesterol transport. Factors that impair the availability of functional apolipoproteins or the activities of ABCA1 and ABCG1 could, therefore, strongly influence atherogenesis. HDL also inhibits lipid oxidation, restores endothelial function, exerts anti-inflammatory and antiapoptotic actions, and exerts anti-inflammatory actions in animal models. Such properties could contribute considerably to the capacity of HDL to inhibit atherosclerosis. Systemic and vascular inflammation has been proposed to convert HDL to a dysfunctional form that has impaired antiatherogenic effects. A loss of anti-inflammatory and antioxidative proteins, perhaps in combination with a gain of proinflammatory proteins, might be another important component in rendering HDL dysfunctional. The proinflammatory enzyme myeloperoxidase induces both oxidative modification and nitrosylation of specific residues on plasma and arterial apolipoprotein A-I to render HDL dysfunctional, which results in impaired ABCA1 macrophage transport, the activation of inflammatory pathways, and an increased risk of coronary artery disease. Understanding the features of dysfunctional HDL or apolipoprotein A-I in clinical practice might lead to new diagnostic and therapeutic approaches to atherosclerosis.
Collapse
|
40
|
Thomas MJ, Sorci-Thomas MG. SAA: a link between cholesterol efflux capacity and inflammation? J Lipid Res 2015; 56:1383-5. [PMID: 26078331 DOI: 10.1194/jlr.c061366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Michael J Thomas
- Departments of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, WI
| | - Mary G Sorci-Thomas
- Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|