1
|
Andrade KHS, Coelho JAS, Frade R, Madureira AM, Nunes JPM, Caddick S, Gomes RFA, Afonso CAM. Functionalized Cyclopentenones with Low Electrophilic Character as Anticancer Agents. ChemMedChem 2023; 18:e202300104. [PMID: 37062707 DOI: 10.1002/cmdc.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
In this study were synthesized non-Michael acceptor cyclopentenones (CP) from biomass derivative furfural as anticancer agents. Cyclic enones, both from natural sources and synthetic analogues, have been described as cytotoxic agents. Most of these agents were unsuccessful in becoming valuable therapeutic agents due to toxicity problems derived from unselective critical biomacromolecule alkylation. This may be caused by Michael addition to the enone system. Ab initio studies revealed that 2,4-substituted CPs are less prone to Michael additions, and as such were tested three families of those derivatives. We prepare the new CPs from furfural through a tandem furan ring opening/Nazarov electrocyclization and further functionalization. Experimentally the 2,4-substituted CPs exhibited no reactivity towards sulphur nucleophiles, while maintaining cytotoxicity against HT-29, MCF-7, NCI-H460, HCT-116 and MDA-MB 231 cells lines. Moreover, the selected CP are non-toxic against healthy HEK 293T cell lines and present proper calculated drug-like properties.
Collapse
Affiliation(s)
- Késsia H S Andrade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Raquel Frade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Ana M Madureira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - João P M Nunes
- Abzena Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Stephen Caddick
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Rafael F A Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, 1749-024, Lisboa, Portugal
| | - Carlos A M Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| |
Collapse
|
2
|
Ahmad I, Khan H, Serdaroğlu G. Physicochemical Properties, Drug Likeness, ADMET, DFT Studies and in vitro antioxidant activity of Oxindole Derivatives. Comput Biol Chem 2023; 104:107861. [PMID: 37060784 DOI: 10.1016/j.compbiolchem.2023.107861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Poor pharmacokinetic and safety profiles create significant hurdles in the drug development process. This work focuses on a detailed understanding of drug discovery interplay among physicochemical, pharmacokinetic, toxicity endpoints, and antioxidant properties of oxindole derivatives. DFT compıutations were also performed at B3LYP/6-311G** level to evaluate the physicochemical properties, global reactivity features, and intramolecular interactions. The BOILED-Egg pharmacokinetic model envisaged gastrointestinal absorption, blood-brain barrier penetration, and no interaction with p-glycoprotein for compounds C1 and C2. The physicochemical evaluation revealed that C1 possesses superior drug-like properties fit for oral absorption. Both derivatives were predicted to have high plasma protein binding, efficient distribution, and inhibiting CYP 450 major isoforms but serve as substrates only for a few of them. Both molecules have mild to moderate clearance rates. Out of ten toxicity parameters, only hepatotoxicity was predicted. DFT results implied that the meta position of the -OH group made the possibility of charge transfer greater than -para positioned -OH, due to the ΔNmax (eV) values of molecules C1 and C2 being calculated at 2.596 and 2.477, respectively. Both C1 and C2 exhibited a concentration dependant DPPH and ABTS radical scavenging activity. The chemical structure-physicochemical-pharmacokinetic relationship identified the meta position as the favorite for the electron-withdrawing hydroxyl group. This provides useful insight to medicinal chemists to design 6-chlorooxindole derivatives with an acceptable drug-like and pharmacokinetic property.
Collapse
|
3
|
Ahmad I, Kuznetsov AE, Pirzada AS, Alsharif KF, Daglia M, Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front Chem 2023; 11:1145974. [PMID: 37123881 PMCID: PMC10133580 DOI: 10.3389/fchem.2023.1145974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Computational pharmacology and chemistry of drug-like properties along with pharmacokinetic studies have made it more amenable to decide or predict a potential drug candidate. 4-Hydroxyisoleucine is a pharmacologically active natural product with prominent antidiabetic properties. In this study, ADMETLab 2.0 was used to determine its important drug-related properties. 4-Hydroxyisoleucine is compliant with important drug-like physicochemical properties and pharma giants' drug-ability rules like Lipinski's, Pfizer, and GlaxoSmithKline (GSK) rules. Pharmacokinetically, it has been predicted to have satisfactory cell permeability. Blood-brain barrier permeation may add central nervous system (CNS) effects, while a very slight probability of being CYP2C9 substrate exists. None of the well-known toxicities were predicted in silico, being congruent with wet lab results, except for a "very slight risk" for respiratory toxicity predicted. The molecule is non ecotoxic as analyzed with common indicators such as bioconcentration and LC50 for fathead minnow and daphnia magna. The toxicity parameters identified 4-hydroxyisoleucine as non-toxic to androgen receptors, PPAR-γ, mitochondrial membrane receptor, heat shock element, and p53. However, out of seven parameters, not even a single toxicophore was found. The density functional theory (DFT) study provided support to the findings obtained from drug-like property predictions. Hence, it is a very logical approach to proceed further with a detailed pharmacokinetics and drug development process for 4-hydroxyisoleucine.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aleksey E. Kuznetsov
- Department of Chemistry, Universidad Tecnica Federico Santa Maria, Santiago, Chile
| | | | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- *Correspondence: Haroon Khan,
| |
Collapse
|
4
|
McCoy MA, Spicer D, Wells N, Hoogewijs K, Fiedler M, Baud MGJ. Biophysical Survey of Small-Molecule β-Catenin Inhibitors: A Cautionary Tale. J Med Chem 2022; 65:7246-7261. [PMID: 35581674 PMCID: PMC9150122 DOI: 10.1021/acs.jmedchem.2c00228] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The canonical Wingless-related
integration site signaling pathway
plays a critical role in human physiology, and its dysregulation can
lead to an array of diseases. β-Catenin is a multifunctional
protein within this pathway and an attractive yet challenging therapeutic
target, most notably in oncology. This has stimulated the search for
potent small-molecule inhibitors binding directly to the β-catenin
surface to inhibit its protein–protein interactions and downstream
signaling. Here, we provide an account of the claimed (and some putative)
small-molecule ligands of β-catenin from the literature. Through
in silico analysis, we show that most of these molecules contain promiscuous
chemical substructures notorious for interfering with screening assays.
Finally, and in line with this analysis, we demonstrate using orthogonal
biophysical techniques that none of the examined small molecules bind
at the surface of β-catenin. While shedding doubts on their
reported mode of action, this study also reaffirms β-catenin
as a prominent target in drug discovery.
Collapse
Affiliation(s)
- Michael A McCoy
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Dominique Spicer
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Neil Wells
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Kurt Hoogewijs
- National University of Ireland, University Road, Galway H91 TK33, Ireland
| | - Marc Fiedler
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Matthias G J Baud
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
5
|
Using filters in virtual screening: A comprehensive guide to minimize errors and maximize efficiency. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Kryshchyshyn-Dylevych A, Radko L, Finiuk N, Garazd M, Kashchak N, Posyniak A, Niemczuk K, Stoika R, Lesyk R. Synthesis of novel indole-thiazolidinone hybrid structures as promising scaffold with anticancer potential. Bioorg Med Chem 2021; 50:116453. [PMID: 34634616 DOI: 10.1016/j.bmc.2021.116453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
A series of novel indole-azolidinone hybrids has been synthesized via Knoevenagel reaction of 5-fluoro-3-formyl-1H-indole-2-carboxylic acid methyl ester and some azolidinones differing in heteroatoms in positions 1, 2 and 4. Their anticancer activity in vitro was screened towards MCF-7 (breast cancer), HCT116 (colon cancer), HepG2 (hepatoma), HeLa (cervical cancer), A549 (lung cancer), WM793 (melanoma) and THP-1 (leukemia) cell lines, and a highly active 5-fluoro-3-(4-oxo-2-thioxothiazolidin-5-ylidenemethyl)-1H-indole-2-carboxylic acid methyl ester (3a) was identified and subjected to in-depth investigation of cytotoxicity mechanisms. This compound was found to possess the highest cytotoxic action towards tumor cells comparing with the action of other derivatives (1, 3b, 3c, 3d, 3e). Compound 3a exhibited toxicity toward MCF-7, HCT116, and A549, HepG2 cancer cells, while the non-malignant cells (human keratinocytes of HaCaT line and murine embryonic fibroblasts of Balb/c 3T3 line) possessed moderate sensitivity to it. The compound 3a induced apoptosis in studied tumor cells via caspase 3-, PARP1-, and Bax-dependent mechanisms; however, it did not affect the G1/S transition in HepG2 cells. The compound 3a impaired nuclear DNA in HepG2, HCT116, and MCF-7 cells without intercalating this biomolecule, but much less DNA damage events were induced by 3a in normal Balb/c 3T3 fibroblasts compared with HepG2 carcinoma cells. Thus, 5-fluoro-3-(4-oxo-2-thioxothiazolidin-5-ylidenemethyl)-1H-indole-2-carboxylic acid methyl ester 3a was shown to trigger DNA damage and induce apoptosis of human tumor cells and it might be considered as an anticancer agent perspective for in-depth studies.
Collapse
Affiliation(s)
- Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | | | - Nataliya Kashchak
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Krzysztof Niemczuk
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
7
|
Begley CG, Ashton M, Baell J, Bettess M, Brown MP, Carter B, Charman WN, Davis C, Fisher S, Frazer I, Gautam A, Jennings MP, Kearney P, Keeffe E, Kelly D, Lopez AF, McGuckin M, Parker MW, Rayner C, Roberts B, Rush JS, Sullivan M. Drug repurposing: Misconceptions, challenges, and opportunities for academic researchers. Sci Transl Med 2021; 13:eabd5524. [PMID: 34550729 DOI: 10.1126/scitranslmed.abd5524] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Mark Ashton
- UniQuest Pty Ltd., University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan Baell
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | | | - Michael P Brown
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Brett Carter
- Bioseer Pty Ltd., Glen Iris, Victoria, Australia
| | - William N Charman
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Christopher Davis
- Institute for Glycomics, Griffith University, Gold Coast campus, Queensland, Australia
| | - Simon Fisher
- Novartis Pharmaceuticals Australia Pty Ltd., Macquarie Park, New South Wales, Australia
| | - Ian Frazer
- University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | | | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast campus, Queensland, Australia
| | - Philip Kearney
- Merck Sharp & Dohme, Macquarie Park, New South Wales, Australia
| | - Eloise Keeffe
- Institute for Glycomics, Griffith University, Gold Coast campus, Queensland, Australia
| | - Darren Kelly
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, Adelaide, South Australia, Australia
| | | | - Michael W Parker
- Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | | | - Brett Roberts
- Novartis Pharmaceuticals Australia Pty Ltd., Macquarie Park, New South Wales, Australia
| | | | - Mark Sullivan
- Medicines Development for Global Health, Southbank, Victoria, Australia
| |
Collapse
|
8
|
Berndt N, Bippes CC, Michalk I, Bartsch T, Arndt C, Puentes-Cala E, Soto JA, Loureiro LR, Kegler A, Bachmann D, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Bergmann R, Schmitz M, Feldmann A, Bachmann MP. And Yet It Moves: Oxidation of the Nuclear Autoantigen La/SS-B Is the Driving Force for Nucleo-Cytoplasmic Shuttling. Int J Mol Sci 2021; 22:9699. [PMID: 34575862 PMCID: PMC8470643 DOI: 10.3390/ijms22189699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Decades ago, we and many other groups showed a nucleo-cytoplasmic translocation of La protein in cultured cells. This shuttling of La protein was seen after UV irradiation, virus infections, hydrogen peroxide exposure and the Fenton reaction based on iron or copper ions. All of these conditions are somehow related to oxidative stress. Unfortunately, these harsh conditions could also cause an artificial release of La protein. Even until today, the shuttling and the cytoplasmic function of La/SS-B is controversially discussed. Moreover, the driving mechanism for the shuttling of La protein remains unclear. Recently, we showed that La protein undergoes redox-dependent conformational changes. Moreover, we developed anti-La monoclonal antibodies (anti-La mAbs), which are specific for either the reduced form of La protein or the oxidized form. Using these tools, here we show that redox-dependent conformational changes are the driving force for the shuttling of La protein. Moreover, we show that translocation of La protein to the cytoplasm can be triggered in a ligand/receptor-dependent manner under physiological conditions. We show that ligands of toll-like receptors lead to a redox-dependent shuttling of La protein. The shuttling of La protein depends on the redox status of the respective cell type. Endothelial cells are usually resistant to the shuttling of La protein, while dendritic cells are highly sensitive. However, the deprivation of intracellular reducing agents in endothelial cells makes endothelial cells sensitive to a redox-dependent shuttling of La protein.
Collapse
Affiliation(s)
- Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Irene Michalk
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Instituto de Investigación Masira, Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Cúcuta 540001, Colombia
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Dominik Bachmann
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany;
| | - Joanne K. Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Department of Biophysics and Radiobiology, Semmelweis University, 1094 Budapest, Hungary
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| |
Collapse
|
9
|
Alhadrami HA, Sayed AM, Al-Khatabi H, Alhakamy NA, Rateb ME. Scaffold Hopping of α-Rubromycin Enables Direct Access to FDA-Approved Cromoglicic Acid as a SARS-CoV-2 M Pro Inhibitor. Pharmaceuticals (Basel) 2021; 14:541. [PMID: 34198933 PMCID: PMC8229550 DOI: 10.3390/ph14060541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from Streptomyces collinus ATCC19743, which was able to suppress the catalytic activity (IC50 = 5.4 µM and Ki = 3.22 µM) of one of the viral key enzymes (i.e., MPro). However, it showed high cytotoxicity toward normal human fibroblasts (CC50 = 16.7 µM). To reduce the cytotoxicity of this microbial metabolite, we utilized a number of in silico tools (ensemble docking, molecular dynamics simulation, binding free energy calculation) to propose a novel scaffold having the main pharmacophoric features to inhibit MPro with better drug-like properties and reduced/minimal toxicity. Nevertheless, reaching this novel scaffold synthetically is a time-consuming process, particularly at this critical time. Instead, this scaffold was used as a template to explore similar molecules among the FDA-approved medications that share its main pharmacophoric features with the aid of pharmacophore-based virtual screening software. As a result, cromoglicic acid (aka cromolyn) was found to be the best hit, which, upon in vitro MPro testing, was 4.5 times more potent (IC50 = 1.1 µM and Ki = 0.68 µM) than α-rubromycin, with minimal cytotoxicity toward normal human fibroblasts (CC50 > 100 µM). This report highlights the potential of MNPs in providing unprecedented scaffolds with a wide range of therapeutic efficacy. It also revealed the importance of cheminformatics tools in speeding up the drug discovery process, which is extremely important in such a critical situation.
Collapse
Affiliation(s)
- Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia; (H.A.A.); (H.A.-K.)
- Molecular Diagnostic Lab, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Heba Al-Khatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia; (H.A.A.); (H.A.-K.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| |
Collapse
|
10
|
Berndt N, Bippes CC, Michalk I, Bachmann D, Bachmann J, Puentes-Cala E, Bartsch T, Loureiro LR, Kegler A, Bergmann R, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Schmitz M, Fahmy K, Feldmann A, Arndt C, Bachmann MP. Two Be or Not Two Be: The Nuclear Autoantigen La/SS-B Is Able to Form Dimers and Oligomers in a Redox Dependent Manner. Int J Mol Sci 2021; 22:3377. [PMID: 33806091 PMCID: PMC8036718 DOI: 10.3390/ijms22073377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
According to the literature, the autoantigen La is involved in Cap-independent translation. It was proposed that one prerequisite for this function is the formation of a protein dimer. However, structural analyses argue against La protein dimers. Noteworthy to mention, these structural analyses were performed under reducing conditions. Here we describe that La protein can undergo redox-dependent structural changes. The oxidized form of La protein can form dimers, oligomers and even polymers stabilized by disulfide bridges. The primary sequence of La protein contains three cysteine residues. Only after mutation of all three cysteine residues to alanine La protein becomes insensitive to oxidation, indicating that all three cysteines are involved in redox-dependent structural changes. Biophysical analyses of the secondary structure of La protein support the redox-dependent conformational changes. Moreover, we identified monoclonal anti-La antibodies (anti-La mAbs) that react with either the reduced or oxidized form of La protein. Differential reactivities to the reduced and oxidized form of La protein were also found in anti-La sera of autoimmune patients.
Collapse
Affiliation(s)
- Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Irene Michalk
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Dominik Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Jennifer Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
- Department of Biophysics and Radiobiology, Semmelweis University, 1094 Budapest, Hungary
| | - Joanne K. Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany;
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (E.P.-C.); (T.B.); (L.R.L.); (A.K.); (R.B.); (A.F.); (C.A.)
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| |
Collapse
|
11
|
Mohareb RM, Milad YR, Mostafa BM, El-Ansary RA. New Approaches for the Synthesis of Heterocyclic Compounds Corporating Benzo[d]imidazole as Anticancer Agents, Tyrosine, Pim-1 Kinases Inhibitions and their PAINS Evaluations. Anticancer Agents Med Chem 2021; 21:327-342. [PMID: 32698742 DOI: 10.2174/1871520620666200721111230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzo[d]imidazoles are highly biologically active, in addition, they are considered as a class of heterocyclic compounds with many pharmaceutical applications. OBJECTIVE We are aiming in this work to synthesize target molecules that possess not only anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the benzo[d]imidazole derivatives followed by their heterocyclization reactions to produce anticancer target molecules. METHODS The 1-(1H-benzo[d]imidazol-2-yl)propan-2-one (3) and the ethyl 2-(1H-benzo[d]imidazol-2- yl)acetate (16) were used as the key starting material which reacted with salicylaldehyde to give the corresponding benzo[4,5]imidazo[1,2-a]quinoline derivatives. On the other hand, both of them were reacted with different reagents to give thiophene, pyran and benzo[4,5]imidazo[1,2-c]pyrimidine derivatives. The synthesized compounds were evaluated against the six cancer cell lines A549, HT-29, MKN-45, U87MG, SMMC-7721, and H460 together with inhibitions toward tyrosine kinases, c-Met kinase and prostate cancer cell line PC-3 using the standard MTT assay in vitro, with foretinib as the positive control. RESULTS Most of the synthesized compounds exhibited high inhibitions toward the tested cancer cell lines. In addition, tyrosine and Pim-1 kinases inhibitions were performed for the most active compounds where the variation of substituent through the aryl ring and heterocyclic ring afforded compounds with high activities. Our analysis showed that there is a strong correlation between the structure of the compound and the substituents of target molecules. CONCLUSION Our present research proved that the synthesized heterocyclic compounds with varieties of substituents have a strong impact on the activity of compounds. The evaluations through different cell lines and tyrosine kinases indicated that the compounds were the excellent candidates as anticancer agents. This could encourage doing further research within this field for the building of compounds with high inhibitions.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Yara R Milad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Bahaa M Mostafa
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Reem A El-Ansary
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Jackson PA, Schares HAM, Jones KFM, Widen JC, Dempe DP, Grillet F, Cuellar ME, Walters MA, Harki DA, Brummond KM. Synthesis of Guaianolide Analogues with a Tunable α-Methylene-γ-lactam Electrophile and Correlating Bioactivity with Thiol Reactivity. J Med Chem 2020; 63:14951-14978. [PMID: 33201697 DOI: 10.1021/acs.jmedchem.0c01464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Methylene-γ-lactones are present in ∼3% of known natural products, and compounds comprising this motif display a range of biological activities. However, this reactive lactone limits informed structure-activity relationships for these bioactive molecules. Herein, we describe chemically tuning the electrophilicity of the α-methylene-γ-lactone by replacement with an α-methylene-γ-lactam. Guaianolide analogues having α-methylene-γ-lactams are synthesized using the allenic Pauson-Khand reaction. Substitution of the lactam nitrogen with electronically different groups affords diverse thiol reactivity. Cellular NF-κB inhibition assays for these lactams were benchmarked against parthenolide and a synthetic α-methylene-γ-lactone showing a positive correlation between thiol reactivity and bioactivity. Cytotoxicity assays show good correlation at the outer limits of thiol reactivity but less so for compounds with intermediate reactivity. A La assay to detect reactive molecules by nuclear magnetic resonance and mass spectrometry peptide sequencing assays with the La antigen protein demonstrate that lactam analogues with muted nonspecific thiol reactivities constitute a better electrophile for rational chemical probe and therapeutic molecule design.
Collapse
Affiliation(s)
- Paul A Jackson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Henry A M Schares
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katherine F M Jones
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C Widen
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel P Dempe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Francois Grillet
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew E Cuellar
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kay M Brummond
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
13
|
2-aminothiazoles in drug discovery: Privileged structures or toxicophores? Chem Biol Interact 2020; 330:109244. [PMID: 32861748 DOI: 10.1016/j.cbi.2020.109244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 01/11/2023]
Abstract
The 2-aminothiazole functionality has long been established as a privileged structural feature and therefore frequently exploited in the process of drug discovery and development. It has been introduced into numerous compounds due to its capacity for targeting a wide range of therapeutic target proteins. On the other hand, the aminothiazole group has also been classified as a toxicophore susceptible to metabolic activation and the ensuing reactive metabolite formation, hence caution is warranted when used in drug design. This review is divided into three parts entailing: (i) the general characteristics of the aminothiazole group, (ii) the advantages of the aminothiazole group in medicinal chemistry, and (iii) the impact of the integrated aminothiazole group on compound safety profile.
Collapse
|
14
|
Mohareb RM, Wardakhan WW, Abbas NS. Synthesis of Tetrahydrobenzo[ b]thiophene-3-carbohydrazide Derivatives as Potential Anti-cancer Agents and Pim-1 Kinase Inhibitors. Anticancer Agents Med Chem 2020; 19:1737-1753. [PMID: 30947678 DOI: 10.2174/1871520619666190402153429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/22/2018] [Accepted: 03/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tetrahydrobenzo[b]thiophene derivatives are well known to be biologically active compounds and many of them occupy a wide range of anticancer agent drugs. OBJECTIVE One of the main aim of this work was to synthesize target molecules not only possessing anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7- tetrahydrobenzo[b]thiophene-3-carbohydrazide derivatives using cyclohexan-1,4-dione and cyanoacetylhydrazine to give the 2-amino-6-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbohydrazide (3) as the key starting material for many heterocyclization reactions. METHODS Compound 3 was reacted with some aryldiazonium salts and the products were cyclised when reacted with either malononitrile or ethyl cyanoacetate. Thiazole derivatives were also obtained through the reaction of compound 3 with phenylisothiocyanate followed by heterocyclization with α-halocarbonyl derivatives. Pyrazole, triazole and pyran derivatives were also obtained. RESULTS The compounds obtained in this work were evaluated for their in-vitro cytotoxic activity against c-Met kinase, and the six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721). The results of anti-proliferative evaluations and c-Met kinase, Pim-1 kinse inhibitions revealed that some compounds showed high activities. CONCLUSION The most promising compounds 5b, 5c, 7c, 7d, 11b, 14a, 16b, 18b, 19, 21a, 23c, 23d and 23i against c-Met kinase were further investigated against the five tyrosin kinases (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 5b, 5c, 7d, 7e, 11b, 11c, 16c, 16d, 18c, 19, 23e, 23k and 23m were selected to examine their Pim-1 kinase inhibitions activity where compounds 7d, 7e, 11b, 11c, 16d, 18c and 23e showed high activities. All of the synthesized compounds have no impaired effect toward the VERO normal cell line.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Chemistry Department, Faculty of Science Cairo University, New Cairo, A.R, Egypt
| | - Wagnat W Wardakhan
- National Organization for Drug Control & Research, P.O. Box 29, Cairo, A.R, Egypt
| | - Nermeen S Abbas
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, A.R, Egypt.,Department of Chemistry, Faculty of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
15
|
Mohareb RM, Manhi FM, Mahmoud MAA, Abdelwahab A. Uses of dimedone to synthesis pyrazole, isoxazole and thiophene derivatives with antiproliferative, tyrosine kinase and Pim-1 kinase inhibitions. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02579-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Megally Abdo NY, Samir EM, Mohareb RM. Synthesis and evaluation of novel 4
H
‐pyrazole and thiophene derivatives derived from chalcone as potential anti‐proliferative agents, Pim‐1 kinase inhibitors, and PAINS. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadia Y. Megally Abdo
- Chemistry Department, Faculty of EducationAlexandria University Alexandria A. R. Egypt
| | - Eman M. Samir
- Department of Organic Chemistry, National Organization for Drug Control & Research (NODCAR), P.O. 29 Cairo A. R. Egypt
| | - Rafat M. Mohareb
- Department of Chemistry, Faculty of ScienceCairo University Cairo A. R. Egypt
| |
Collapse
|
17
|
Mohareb RM, Megally Abdo NY, Gamaan MS. Uses of cyclohexan‐1,3‐dione for the synthesis of tetrahydrochromeno[3,4‐
c
]chromen derivatives with anti‐tumor activities. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rafat M. Mohareb
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | | | - Marwa S. Gamaan
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| |
Collapse
|
18
|
Xie Y, Tummala P, Oakley AJ, Deora GS, Nakano Y, Rooke M, Cuellar ME, Strasser JM, Dahlin JL, Walters MA, Casarotto MG, Board PG, Baell JB. Development of Benzenesulfonamide Derivatives as Potent Glutathione Transferase Omega-1 Inhibitors. J Med Chem 2020; 63:2894-2914. [PMID: 32105470 DOI: 10.1021/acs.jmedchem.9b01391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase omega-1 (GSTO1-1) is an enzyme whose function supports the activation of interleukin (IL)-1β and IL-18 that are implicated in a variety of inflammatory disease states for which small-molecule inhibitors are sought. The potent reactivity of the active-site cysteine has resulted in reported inhibitors that act by covalent labeling. In this study, structure-activity relationship (SAR) elaboration of the reported GSTO1-1 inhibitor C1-27 was undertaken. Compounds were evaluated for inhibitory activity toward purified recombinant GSTO1-1 and for indicators of target engagement in cell-based assays. As covalent inhibitors, the kinact/KI values of selected compounds were determined, as well as in vivo pharmacokinetics analysis. Cocrystal structures of key novel compounds in complex with GSTO1-1 were also solved. This study represents the first application of a biochemical assay for GSTO1-1 to determine kinact/KI values for tested inhibitors and the most extensive set of cell-based data for a GSTO1-1 inhibitor SAR series reported to date. Our research culminated in the discovery of 25, which we propose as the preferred biochemical tool to interrogate cellular responses to GSTO1-1 inhibition.
Collapse
Affiliation(s)
- Yiyue Xie
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Padmaja Tummala
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Yuji Nakano
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Melissa Rooke
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Matthew E Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jayme L Dahlin
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
19
|
Mohareb RM, Alwan ES. Heterocyclization of 2-(2-phenylhydrazono)cyclohexane-1,3-dione to Synthesis Thiophene, Pyrazole and 1,2,4-triazine Derivatives with Anti-Tumor and Tyrosine Kinase Inhibitions. Anticancer Agents Med Chem 2020; 20:1209-1220. [PMID: 32156245 DOI: 10.2174/1871520620666200310093911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recently tetrahydrobenzo[b]thiazole derivatives acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Through the market it was found that many pharmacological drugs containing the thiazole nucleus were known. OBJECTIVE This work aimed to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the arylhydrazonocyclohexan-1,3-dione followed by their heterocyclization reactions to produce anticancer target molecules. METHODS The arylhydrazone derivatives 3a-c underwent different heterocyclization reactions to produce thiophene, thiazole, pyrazole and 1,2,4-triazine derivatives. The anti-proliferative activity of twenty six compounds among the synthesized compounds toward the six cancer cell lines namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. RESULTS Anti-proliferative evaluations, tyrosine and Pim-1 kinase inhibitions were perform for most of the synthesized compounds where the varieties of substituent through the aryl ring and the thiophene moiety afforded compounds with high activities. CONCLUSION The compounds with high anti-proliferative activity towards the cancer cell lines showed that compounds 3b, 3c, 5e, 5f, 8c, 9c, 11c, 12c, 14e, 14f and 16c were the most cytotoxic compounds. Further tests of the latter compounds toward the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR and Pim-1 kinase showed that compounds 3c, 5e, 5f, 8c, 9c, 12c, 14e, 14f and 16c were the most potent of the tested compounds toward the five tyrosine kinases and compounds 6d, 11a, 20b and 21e were of the highest inhibitions towards Pim-1 kinase. Pan Assay Interference Compounds (PAINS) for the most cytotoxic compounds showed zero PAINS alert and can be used as lead compounds.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ensaf S Alwan
- Department of Quality Assurance, Yemen Drug Company for Industry and Commerce, (YEDCO), Sana'a, Yemen
| |
Collapse
|
20
|
Paulose R, Jegatheesan K, Balakrishnan GS. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction. Indian J Pharmacol 2018; 50:169-176. [PMID: 30505052 PMCID: PMC6234712 DOI: 10.4103/ijp.ijp_304_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
CONTEXT: Chemical toxicity prediction at early stage drug discovery phase has been researched for years, and newest methods are always investigated. Research data comprising chemical physicochemical properties, toxicity, assay, and activity details create massive data which are becoming difficult to manage. Identifying the desired featured chemical with the desired biological activity from millions of chemicals is a challenging task. AIMS: In this study, we investigate and explore big data technologies and machine learning approaches to do an efficient chemical data mining for endocrine receptor disruption prediction and virtual compound screening. The power of artificial neural network (ANN) in predicting chemicals' activity toward androgen receptor (AR) and estrogen receptor (ER) and thereby classifying into human endocrine disruptor or nondisruptor is investigated. SUBJECTS AND METHODS: Molecules are collected along with their Inhibitory Concentration (IC
50) values toward AR and ER. Training and test datasets are created with active and inactive classes of molecules. Molecular fingerprints of Electro Topological State (E-State) are generated for describing every compound. ANN machine learning model is created using Apache Spark and implemented in Hadoop big data environment. Test chemical's structural similarity toward active class of training compounds is estimated and combined with ANN model for improving prediction accuracy. RESULTS: AR and ER predictive models applied on corresponding test datasets gave 86.31% and 89.57% accuracies, respectively, in correctly classifying molecules as disruptor or nondisruptor. Molecular fragments and functional groups are ranked based on their importance in forming ANN model and influence toward the AR and ER disruption behavior. Training molecules that are specific to the test molecules' endocrine disruption prediction are retrieved based on the structural similarity values. CONCLUSIONS: The current study demonstrates a new approach of chemical endocrine receptor disruption prediction combining ANN machine learning method and molecular similarity in a big data environment. This method of predictive modeling can be further tested with more receptors and hormones and predictive power can be examined.
Collapse
Affiliation(s)
- Renjith Paulose
- Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kalirajan Jegatheesan
- Center for Research and PG Studies in Botany and Biotechnology, Thiagarajar College (Autonomous), Madurai, Tamil Nadu, India
| | | |
Collapse
|
21
|
Jarhad DB, Mashelkar KK, Kim HR, Noh M, Jeong LS. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) Inhibitors as Potential Therapeutics. J Med Chem 2018; 61:9791-9810. [PMID: 29985601 DOI: 10.1021/acs.jmedchem.8b00185] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a member of an evolutionarily conserved family of protein kinases that belongs to the CMGC group of kinases. DYRK1A, encoded by a gene located in the human chromosome 21q22.2 region, has attracted attention due to its association with both neuropathological phenotypes and cancer susceptibility in patients with Down syndrome (DS). Inhibition of DYRK1A attenuates cognitive dysfunctions in animal models for both DS and Alzheimer's disease (AD). Furthermore, DYRK1A has been studied as a potential cancer therapeutic target because of its role in the regulation of cell cycle progression by affecting both tumor suppressors and oncogenes. Consequently, selective synthetic inhibitors have been developed to determine the role of DYRK1A in various human diseases. Our perspective includes a comprehensive review of potent and selective DYRK1A inhibitors and their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Karishma K Mashelkar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
22
|
Xie Y, Dahlin JL, Oakley AJ, Casarotto MG, Board PG, Baell JB. Reviewing Hit Discovery Literature for Difficult Targets: Glutathione Transferase Omega-1 as an Example. J Med Chem 2018; 61:7448-7470. [PMID: 29652143 DOI: 10.1021/acs.jmedchem.8b00318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early stage drug discovery reporting on relatively new or difficult targets is often associated with insufficient hit triage. Literature reviews of such targets seldom delve into the detail required to critically analyze the associated screening hits reported. Here we take the enzyme glutathione transferase omega-1 (GSTO1-1) as an example of a relatively difficult target and review the associated literature involving small-molecule inhibitors. As part of this process we deliberately pay closer-than-usual attention to assay interference and hit quality aspects. We believe this Perspective will be a useful guide for future development of GSTO1-1 inhibitors, as well serving as a template for future review formats of new or difficult targets.
Collapse
Affiliation(s)
- Yiyue Xie
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia
| | - Jayme L Dahlin
- Department of Pathology , Brigham and Women's Hospital , Boston , Massachusetts 02135 , United States
| | - Aaron J Oakley
- School of Chemistry , University of Wollongong , Wollongong , NSW 2522 , Australia
| | - Marco G Casarotto
- John Curtin School of Medical Research , Australian National University , Canberra , ACT 2600 , Australia
| | - Philip G Board
- John Curtin School of Medical Research , Australian National University , Canberra , ACT 2600 , Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Victoria 3052 , Australia.,School of Pharmaceutical Sciences , Nanjing Tech University , Nanjing , 211816 , People's Republic of China
| |
Collapse
|
23
|
Dahlin JL, Cuellar M, Singh G, Nelson KM, Strasser J, Rappe T, Xia Y, Veglia G, Walters MA. ALARM NMR for HTS triage and chemical probe validation. ACTA ACUST UNITED AC 2018; 10:91-117. [PMID: 30034947 DOI: 10.1002/cpch.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nonspecific target engagement by test compounds and purported chemical probes is a significant source of assay interference and promiscuous bioactivity in high-throughput screening (HTS) and chemical biology. Most counter-screens for thiol-reactive compounds utilize mass spectrometry or fluorescence detection, and non-proteinaceous reporters like glutathione that may not always approximate the reactivity of protein side-chains. By contrast, a La assay to detect reactive molecules by nuclear magnetic resonance (ALARM NMR) is an industry-developed protein-based [1H-13C]-heteronuclear multiple quantum coherence (HMQC) NMR counter-screen to identify nonspecific protein interactions by test compounds by reporting their tendencies to modulate the human La antigen conformation. This Current Protocol is a users-guide to the production of the 13C-labeled La antigen reporter protein, the reaction of test compounds with this reporter protein, as well as the collection and analysis of characteristic NMR spectra. Combined with other assay interference counter-screens, this assay will enhance chemical biology by helping researchers better prioritize chemical matter and which will increase the number of tractable HTS screening actives and aid in the development of better chemical probes.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Gurpreet Singh
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn M Nelson
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Jessica Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Todd Rappe
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Youlin Xia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
24
|
Azad I, Nasibullah M, Khan T, Hassan F, Akhter Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J Mol Graph Model 2018; 81:211-228. [PMID: 29609141 DOI: 10.1016/j.jmgm.2018.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect. Molecular docking was performed with vascular endothelial growth factor receptor-2(VEGFR2) and glutathione S-transferase-1 (GSTP1) because both are common cancer causing proteins. Sunitinib and Doxorubicin possess great affinity to inhibit these cancers causing protein. Self-organizing map (SOM) was used to depict data in a simple 2D presentation. Our studies justify that good oral bioavailability and therapeutic efficacy of 10, 12-19 and 22-27 compounds can be considered as potential anticancer agents.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India.
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India; Department of Chemistry, Isabella Thoburn College, University of Lucknow, Lucknow 226007, UP, India
| | - Firoj Hassan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, UP 2260025, India
| |
Collapse
|
25
|
Abstract
Over the past few decades, NMR spectroscopy has become an established tool in drug discovery. This communication will highlight the potential of NMR spectroscopy as a method for identification of problematic compounds and as a valuable aid toward revealing some mechanisms of promiscuous behavior. NMR methods for detecting false positives will be analyzed on the basis of their performance, strengths, limitations, and potential pitfalls. Additionally, this communication aims to provide an insight into the limitations of NMR-based methodologies applied to ligand screening in the context of false-positive hits.
Collapse
Affiliation(s)
- Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Sonmez F, Zengin Kurt B, Gazioglu I, Basile L, Dag A, Cappello V, Ginex T, Kucukislamoglu M, Guccione S. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017; 32:285-297. [PMID: 28097911 PMCID: PMC6010140 DOI: 10.1080/14756366.2016.1250753] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 11/20/2022] Open
Abstract
New coumaryl-thiazole derivatives with the acetamide moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and in vitro tested as acetylcholinesterase (AChE) inhibitors. 2-(diethylamino)-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)acetamide (6c, IC50 value of 43 nM) was the best AChE inhibitor with a selectivity index of 4151.16 over BuChE. Kinetic study of AChE inhibition revealed that 6c was a mixed-type inhibitor. Moreover, the result of H4IIE hepatoma cell toxicity assay for 6c showed negligible cell death. Molecular docking studies were also carried out to clarify the inhibition mode of the more active compounds. Best pose of compound 6c is positioned into the active site with the coumarin ring wedged between the residues of the CAS and catalytic triad of AChE. In addition, the coumarin ring is anchored into the gorge of the enzyme by H-bond with Tyr130.
Collapse
Affiliation(s)
- Fatih Sonmez
- Pamukova Vocational High School, Sakarya University, Sakarya, Turkey
| | - Belma Zengin Kurt
- Department of Analytical and Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Isil Gazioglu
- Department of Analytical and Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Livia Basile
- Department of Drug Sciences, University of Catania, Città Universitaria, Catania, Italy
| | - Aydan Dag
- Department of Analytical and Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Valentina Cappello
- Department of Drug Sciences, University of Catania, Città Universitaria, Catania, Italy
| | - Tiziana Ginex
- Molecular Modelling Laboratory, Department of Food Science, University of Parma, Parma, Italy
| | - Mustafa Kucukislamoglu
- Faculty of Arts and Science, Department of Chemistry, Sakarya University, Sakarya, Turkey
| | - Salvatore Guccione
- Department of Drug Sciences, University of Catania, Città Universitaria, Catania, Italy
| |
Collapse
|
27
|
Assay interference and off-target liabilities of reported histone acetyltransferase inhibitors. Nat Commun 2017; 8:1527. [PMID: 29142305 PMCID: PMC5688144 DOI: 10.1038/s41467-017-01657-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
Many compounds with potentially reactive chemical motifs and poor physicochemical properties are published as selective modulators of biomolecules without sufficient validation and then propagated in the scientific literature as useful chemical probes. Several histone acetyltransferase (HAT) inhibitors with these liabilities are now routinely used to probe epigenetic pathways. We profile the most commonly used HAT inhibitors and confirm that the majority of them are nonselective interference compounds. Most (15 out of 23, 65%) of the inhibitors are flagged by ALARM NMR, an industry-developed counter-screen for promiscuous compounds. Biochemical counter-screens confirm that most of these compounds are either thiol-reactive or aggregators. Selectivity panels show many of these compounds modulate unrelated targets in vitro, while several also demonstrate nonspecific effects in cell assays. These data demonstrate the usefulness of performing counter-screens for bioassay promiscuity and assay interference, and raise caution about the utility of many widely used, but insufficiently validated, compounds employed in chemical biology. A substantial obstacle in basic research is the use of poorly validated tool compounds with purported useful biological functions. Here, the authors systematically profile widely used histone acetyltransferase inhibitors and find that the majority are nonselective interference compounds.
Collapse
|
28
|
Yang JJ, Ursu O, Lipinski CA, Sklar LA, Oprea TI, Bologa CG. Badapple: promiscuity patterns from noisy evidence. J Cheminform 2016; 8:29. [PMID: 27239230 PMCID: PMC4884375 DOI: 10.1186/s13321-016-0137-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background Bioassay data analysis continues to be an essential, routine, yet challenging task in modern drug discovery and chemical biology research. The challenge is to infer reliable knowledge from big and noisy data. Some aspects of this problem are general with solutions informed by existing and emerging data science best practices. Some aspects are domain specific, and rely on expertise in bioassay methodology and chemical biology. Testing compounds for biological activity requires complex and innovative methodology, producing results varying widely in accuracy, precision, and information content. Hit selection criteria involve optimizing such that the overall probability of success in a project is maximized, and resource-wasteful “false trails” are avoided. This “fail-early” approach is embraced both in pharmaceutical and academic drug discovery, since follow-up capacity is resource-limited. Thus, early identification of likely promiscuous compounds has practical value. Results Here we describe an algorithm for identifying likely promiscuous compounds via associated scaffolds which combines general and domain-specific features to assist and accelerate drug discovery informatics, called Badapple: bioassay-data associative promiscuity pattern learning engine. Results are described from an analysis using data from MLP assays via the BioAssay Research Database (BARD) http://bard.nih.gov. Specific examples are analyzed in the context of medicinal chemistry, to illustrate associations with mechanisms of promiscuity. Badapple has been developed at UNM, released and deployed for public use two ways: (1) BARD plugin, integrated into the public BARD REST API and BARD web client; and (2) public web app hosted at UNM. Conclusions Badapple is a method for rapidly identifying likely promiscuous compounds via associated scaffolds. Badapple generates a score associated with a pragmatic, empirical definition of promiscuity, with the overall goal to identify “false trails” and streamline workflows. Unlike methods reliant on expert curation of chemical substructure patterns, Badapple is fully evidence-driven, automated, self-improving via integration of additional data, and focused on scaffolds. Badapple is robust with respect to noise and errors, and skeptical of scanty evidence. Electronic supplementary material The online version of this article (doi:10.1186/s13321-016-0137-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeremy J Yang
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131 USA
| | - Oleg Ursu
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131 USA
| | | | - Larry A Sklar
- Department of Pathology, Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM 87131 USA
| | - Tudor I Oprea
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131 USA
| | - Cristian G Bologa
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131 USA
| |
Collapse
|
29
|
Malik EM, Müller CE. Anthraquinones As Pharmacological Tools and Drugs. Med Res Rev 2016; 36:705-48. [PMID: 27111664 DOI: 10.1002/med.21391] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs.
Collapse
Affiliation(s)
- Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
30
|
Baell JB. Feeling Nature's PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). JOURNAL OF NATURAL PRODUCTS 2016; 79:616-28. [PMID: 26900761 DOI: 10.1021/acs.jnatprod.5b00947] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have previously reported on classes of compounds that can interfere with bioassays via a number of different mechanisms and termed such compounds Pan Assay INterference compoundS, or PAINS. These compounds were defined on the basis of high-throughput data derived from vendor-supplied synthetics. The question therefore arises whether the concept of PAINS is relevant to compounds of natural origin. Here, it is shown that this is indeed the case, but that the context of the biological readout is an important factor that must be brought into consideration.
Collapse
Affiliation(s)
- Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria 3084, Australia
| |
Collapse
|
31
|
Abstract
Attrition due to nonclinical safety represents a major issue for the productivity of pharmaceutical research and development (R&D) organizations, especially during the compound optimization stages of drug discovery and the early stages of clinical development. Focusing on decreasing nonclinical safety-related attrition is not a new concept, and various approaches have been experimented with over the last two decades. Front-loading testing funnels in Discovery with in vitro toxicity assays designed to rapidly identify unfavorable molecules was the approach adopted by most pharmaceutical R&D organizations a few years ago. However, this approach has also a non-negligible opportunity cost. Hence, significant refinements to the "fail early, fail often" paradigm have been proposed recently to reflect the complexity of accurately categorizing compounds with early data points without taking into account other important contextual aspects, in particular efficacious systemic and tissue exposures. This review provides an overview of toxicology approaches and models that can be used in pharmaceutical Discovery at the series/lead identification and lead optimization stages to guide and inform chemistry efforts, as well as a personal view on how to best use them to meet nonclinical safety-related attrition objectives consistent with a sustainable pharmaceutical R&D model. The scope of this review is limited to small molecules, as large molecules are associated with challenges that are quite different. Finally, a perspective on how several emerging technologies may impact toxicity evaluation is also provided.
Collapse
Affiliation(s)
- Eric A G Blomme
- Global Preclinical Safety, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yvonne Will
- Drug Safety Research and Development, Pfizer , Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
32
|
Dahlin JL, Nissink JWM, Francis S, Strasser JM, John K, Zhang Z, Walters MA. Post-HTS case report and structural alert: Promiscuous 4-aroyl-1,5-disubstituted-3-hydroxy-2H-pyrrol-2-one actives verified by ALARM NMR. Bioorg Med Chem Lett 2015; 25:4740-4752. [PMID: 26318992 PMCID: PMC6002837 DOI: 10.1016/j.bmcl.2015.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 12/19/2022]
Abstract
Despite its wide use, not every high-throughput screen (HTS) yields chemical matter suitable for drug development campaigns, and seldom are 'go/no-go' decisions in drug discovery described in detail. This case report describes the follow-up of a 4-aroyl-1,5-disubstituted-3-hydroxy-2H-pyrrol-2-one active from a cell-free HTS to identify small-molecule inhibitors of Rtt109-catalyzed histone acetylation. While this compound and structural analogs inhibited Rtt109-catalyzed histone acetylation in vitro, further work on this series was halted after several risk mitigation strategies were performed. Compounds with this chemotype had a poor structure-activity relationship, exhibited poor selectivity among other histone acetyltransferases, and tested positive in a β-lactamase counter-screen for chemical aggregates. Furthermore, ALARM NMR demonstrated compounds with this chemotype grossly perturbed the conformation of the La protein. In retrospect, this chemotype was flagged as a 'frequent hitter' in an analysis of a large corporate screening deck, yet similar compounds have been published as screening actives or chemical probes versus unrelated biological targets. This report-including the decision-making process behind the 'no-go' decision-should be informative for groups engaged in post-HTS triage and highlight the importance of considering physicochemical properties in early drug discovery.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Subhashree Francis
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Kristen John
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA.
| |
Collapse
|
33
|
Pouliot M, Jeanmart S. Pan Assay Interference Compounds (PAINS) and Other Promiscuous Compounds in Antifungal Research. J Med Chem 2015; 59:497-503. [DOI: 10.1021/acs.jmedchem.5b00361] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Martin Pouliot
- Syngenta Crop Protection Research, Schaffhauserstrasse, 4332 Stein, Switzerland
| | - Stephane Jeanmart
- Syngenta Crop Protection Research, Schaffhauserstrasse, 4332 Stein, Switzerland
| |
Collapse
|
34
|
Catrow JL, Zhang Y, Zhang M, Ji H. Discovery of Selective Small-Molecule Inhibitors for the β-Catenin/T-Cell Factor Protein-Protein Interaction through the Optimization of the Acyl Hydrazone Moiety. J Med Chem 2015; 58:4678-92. [PMID: 25985283 DOI: 10.1021/acs.jmedchem.5b00223] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acyl hydrazone is an important functional group for the discovery of bioactive small molecules. This functional group is also recognized as a pan assay interference structure. In this study, a new small-molecule inhibitor for the β-catenin/Tcf protein-protein interaction (PPI), ZINC02092166, was identified through AlphaScreen and FP assays. This compound contains an acyl hydrazone group and exhibits higher inhibitory activities in cell-based assays than biochemical assays. Inhibitor optimization resulted in chemically stable derivatives that disrupt the β-catenin/Tcf PPI. The binding mode of new inhibitors was characterized by site-directed mutagenesis and structure-activity relationship studies. This series of inhibitors with a new scaffold exhibits dual selectivity for β-catenin/Tcf over β-catenin/cadherin and β-catenin/APC PPIs. One derivative of this series suppresses canonical Wnt signaling, downregulates the expression of Wnt target genes, and inhibits the growth of cancer cells. This compound represents a solid starting point for the development of potent and selective β-catenin/Tcf inhibitors.
Collapse
Affiliation(s)
- J Leon Catrow
- Department of Chemistry, Center for Cell and Genome Science, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yongqiang Zhang
- Department of Chemistry, Center for Cell and Genome Science, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Min Zhang
- Department of Chemistry, Center for Cell and Genome Science, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Department of Chemistry, Center for Cell and Genome Science, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
35
|
Dahlin JL, Nissink JWM, Strasser JM, Francis S, Higgins L, Zhou H, Zhang Z, Walters MA. PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J Med Chem 2015; 58:2091-113. [PMID: 25634295 PMCID: PMC4360378 DOI: 10.1021/jm5019093] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant resources in early drug discovery are spent unknowingly pursuing artifacts and promiscuous bioactive compounds, while understanding the chemical basis for these adverse behaviors often goes unexplored in pursuit of lead compounds. Nearly all the hits from our recent sulfhydryl-scavenging high-throughput screen (HTS) targeting the histone acetyltransferase Rtt109 were such compounds. Herein, we characterize the chemical basis for assay interference and promiscuous enzymatic inhibition for several prominent chemotypes identified by this HTS, including some pan-assay interference compounds (PAINS). Protein mass spectrometry and ALARM NMR confirmed these compounds react covalently with cysteines on multiple proteins. Unfortunately, compounds containing these chemotypes have been published as screening actives in reputable journals and even touted as chemical probes or preclinical candidates. Our detailed characterization and identification of such thiol-reactive chemotypes should accelerate triage of nuisance compounds, guide screening library design, and prevent follow-up on undesirable chemical matter.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, Minnesota 55905, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Devine SM, Mulcair MD, Debono CO, Leung EWW, Nissink JWM, Lim SS, Chandrashekaran IR, Vazirani M, Mohanty B, Simpson JS, Baell JB, Scammells PJ, Norton RS, Scanlon MJ. Promiscuous 2-aminothiazoles (PrATs): a frequent hitting scaffold. J Med Chem 2015; 58:1205-14. [PMID: 25559643 DOI: 10.1021/jm501402x] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have identified a class of molecules, known as 2-aminothiazoles (2-ATs), as frequent-hitting fragments in biophysical binding assays. This was exemplified by 4-phenylthiazol-2-amine being identified as a hit in 14/14 screens against a diverse range of protein targets, suggesting that this scaffold is a poor starting point for fragment-based drug discovery. This prompted us to analyze this scaffold in the context of an academic fragment library used for fragment-based drug discovery (FBDD) and two larger compound libraries used for high-throughput screening (HTS). This analysis revealed that such "promiscuous 2-aminothiazoles" (PrATs) behaved as frequent hitters under both FBDD and HTS settings, although the problem was more pronounced in the fragment-based studies. As 2-ATs are present in known drugs, they cannot necessarily be deemed undesirable, but the combination of their promiscuity and difficulties associated with optimizing them into a lead compound makes them, in our opinion, poor scaffolds for fragment libraries.
Collapse
Affiliation(s)
- Shane M Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Litterman NK, Lipinski CA, Bunin BA, Ekins S. Computational prediction and validation of an expert's evaluation of chemical probes. J Chem Inf Model 2014; 54:2996-3004. [PMID: 25244007 DOI: 10.1021/ci500445u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In a decade with over half a billion dollars of investment, more than 300 chemical probes have been identified to have biological activity through NIH funded screening efforts. We have collected the evaluations of an experienced medicinal chemist on the likely chemistry quality of these probes based on a number of criteria including literature related to the probe and potential chemical reactivity. Over 20% of these probes were found to be undesirable. Analysis of the molecular properties of these compounds scored as desirable suggested higher pKa, molecular weight, heavy atom count, and rotatable bond number. We were particularly interested whether the human evaluation aspect of medicinal chemistry due diligence could be computationally predicted. We used a process of sequential Bayesian model building and iterative testing as we included additional probes. Following external validation of these methods and comparing different machine learning methods, we identified Bayesian models with accuracy comparable to other measures of drug-likeness and filtering rules created to date.
Collapse
Affiliation(s)
- Nadia K Litterman
- Collaborative Drug Discovery, Inc. , 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | | | | | | |
Collapse
|
38
|
Dahlin JL, Walters MA. The essential roles of chemistry in high-throughput screening triage. Future Med Chem 2014; 6:1265-90. [PMID: 25163000 PMCID: PMC4465542 DOI: 10.4155/fmc.14.60] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It is increasingly clear that academic high-throughput screening (HTS) and virtual HTS triage suffers from a lack of scientists trained in the art and science of early drug discovery chemistry. Many recent publications report the discovery of compounds by screening that are most likely artifacts or promiscuous bioactive compounds, and these results are not placed into the context of previous studies. For HTS to be most successful, it is our contention that there must exist an early partnership between biologists and medicinal chemists. Their combined skill sets are necessary to design robust assays and efficient workflows that will weed out assay artifacts, false positives, promiscuous bioactive compounds and intractable screening hits, efforts that ultimately give projects a better chance at identifying truly useful chemical matter. Expertise in medicinal chemistry, cheminformatics and purification sciences (analytical chemistry) can enhance the post-HTS triage process by quickly removing these problematic chemotypes from consideration, while simultaneously prioritizing the more promising chemical matter for follow-up testing. It is only when biologists and chemists collaborate effectively that HTS can manifest its full promise.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Michael A Walters
- Institute for Therapeutics Discovery & Development, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
39
|
Ekins S. Progress in computational toxicology. J Pharmacol Toxicol Methods 2013; 69:115-40. [PMID: 24361690 DOI: 10.1016/j.vascn.2013.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/08/2013] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Computational methods have been widely applied to toxicology across pharmaceutical, consumer product and environmental fields over the past decade. Progress in computational toxicology is now reviewed. METHODS A literature review was performed on computational models for hepatotoxicity (e.g. for drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity and genotoxicity. In addition various publications have been highlighted that use machine learning methods. Several computational toxicology model datasets from past publications were used to compare Bayesian and Support Vector Machine (SVM) learning methods. RESULTS The increasing amounts of data for defined toxicology endpoints have enabled machine learning models that have been increasingly used for predictions. It is shown that across many different models Bayesian and SVM perform similarly based on cross validation data. DISCUSSION Considerable progress has been made in computational toxicology in a decade in both model development and availability of larger scale or 'big data' models. The future efforts in toxicology data generation will likely provide us with hundreds of thousands of compounds that are readily accessible for machine learning models. These models will cover relevant chemistry space for pharmaceutical, consumer product and environmental applications.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay Varina, NC 27526, USA; Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA; Department of Pharmacology, Rutgers University-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599-7355, USA.
| |
Collapse
|
40
|
Zeng Q, Nair AG, Rosenblum SB, Huang HC, Lesburg CA, Jiang Y, Selyutin O, Chan TY, Bennett F, Chen KX, Venkatraman S, Sannigrahi M, Velazquez F, Duca JS, Gavalas S, Huang Y, Pu H, Wang L, Pinto P, Vibulbhan B, Agrawal S, Ferrari E, Jiang CK, Li C, Hesk D, Gesell J, Sorota S, Shih NY, Njoroge FG, Kozlowski JA. Discovery of an irreversible HCV NS5B polymerase inhibitor. Bioorg Med Chem Lett 2013; 23:6585-7. [DOI: 10.1016/j.bmcl.2013.10.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022]
|
41
|
Mah R, Thomas JR, Shafer CM. Drug discovery considerations in the development of covalent inhibitors. Bioorg Med Chem Lett 2013; 24:33-9. [PMID: 24314671 DOI: 10.1016/j.bmcl.2013.10.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 12/31/2022]
Abstract
In recent years, the number of drug candidates with a covalent mechanism of action progressing through clinical trials or being approved by the FDA has increased significantly. And as interest in covalent inhibitors has increased, the technical challenges for characterizing and optimizing these inhibitors have become evident. A number of new tools have been developed to aid this process, but these have not gained wide-spread use. This review will highlight a number of methods and tools useful for prosecuting covalent inhibitor drug discovery programs.
Collapse
Affiliation(s)
- Robert Mah
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, Klybeckstrasse 141, CH-4057 Basel, Switzerland
| | - Jason R Thomas
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Cynthia M Shafer
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, USA.
| |
Collapse
|
42
|
Jane Tseng Y, Martin E, G Bologa C, Shelat AA. Cheminformatics aspects of high throughput screening: from robots to models: symposium summary. J Comput Aided Mol Des 2013; 27:443-53. [PMID: 23636795 PMCID: PMC4205101 DOI: 10.1007/s10822-013-9646-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/08/2013] [Indexed: 12/21/2022]
Abstract
The "Cheminformatics aspects of high throughput screening (HTS): from robots to models" symposium was part of the computers in chemistry technical program at the American Chemical Society National Meeting in Denver, Colorado during the fall of 2011. This symposium brought together researchers from high throughput screening centers and molecular modelers from academia and industry to discuss the integration of currently available high throughput screening data and assays with computational analysis. The topics discussed at this symposium covered the data-infrastructure at various academic, hospital, and National Institutes of Health-funded high throughput screening centers, the cheminformatics and molecular modeling methods used in real world examples to guide screening and hit-finding, and how academic and non-profit organizations can benefit from current high throughput screening cheminformatics resources. Specifically, this article also covers the remarks and discussions in the open panel discussion of the symposium and summarizes the following talks on "Accurate Kinase virtual screening: biochemical, cellular and selectivity", "Selective, privileged and promiscuous chemical patterns in high-throughput screening" and "Visualizing and exploring relationships among HTS hits using network graphs".
Collapse
Affiliation(s)
- Y Jane Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | |
Collapse
|
43
|
Bancos I, Bida JP, Tian D, Bundrick M, John K, Holte MN, Her YF, Evans D, Saenz DT, Poeschla EM, Hook D, Georg G, Maher LJ. High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. PLoS One 2013; 8:e56827. [PMID: 23451094 PMCID: PMC3579935 DOI: 10.1371/journal.pone.0056827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/15/2013] [Indexed: 01/06/2023] Open
Abstract
Classical tumor suppressor genes block neoplasia by regulating cell growth and death. A remarkable puzzle is therefore presented by familial paraganglioma (PGL), a neuroendocrine cancer where the tumor suppressor genes encode subunits of succinate dehydrogenase (SDH), an enzyme of the tricarboxylic acid (TCA) cycle of central metabolism. Loss of SDH initiates PGL through mechanisms that remain unclear. Could this metabolic defect provide a novel opportunity for chemotherapy of PGL? We report the results of high throughput screening to identify compounds differentially toxic to SDH mutant cells using a powerful S. cerevisiae (yeast) model of PGL. Screening more than 200,000 compounds identifies 12 compounds that are differentially toxic to SDH-mutant yeast. Interestingly, two of the agents, dequalinium and tetraethylthiuram disulfide (disulfiram), are anti-malarials with the latter reported to be a glycolysis inhibitor. We show that four of the additional hits are potent inhibitors of yeast alcohol dehydrogenase. Because alcohol dehydrogenase regenerates NAD(+) in glycolytic cells that lack TCA cycle function, this result raises the possibility that lactate dehydrogenase, which plays the equivalent role in human cells, might be a target of interest for PGL therapy. We confirm that human cells deficient in SDH are differentially sensitive to a lactate dehydrogenase inhibitor.
Collapse
Affiliation(s)
- Irina Bancos
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - John Paul Bida
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Defeng Tian
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Mary Bundrick
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Kristen John
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Yeng F. Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Debra Evans
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Dyana T. Saenz
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Eric M. Poeschla
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Derek Hook
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - Gunda Georg
- Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota–Twin Cities, Minneapolis, Minnesota, United States of America
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| |
Collapse
|
44
|
Kombo DC, Tallapragada K, Jain R, Chewning J, Mazurov AA, Speake JD, Hauser TA, Toler S. 3D molecular descriptors important for clinical success. J Chem Inf Model 2013; 53:327-42. [PMID: 23244494 DOI: 10.1021/ci300445e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pharmacokinetic and safety profiles of clinical drug candidates are greatly influenced by their requisite physicochemical properties. In particular, it has been shown that 2D molecular descriptors such as fraction of Sp3 carbon atoms (Fsp3) and number of stereo centers correlate with clinical success. Using the proteomic off-target hit rate of nicotinic ligands, we found that shape-based 3D descriptors such as the radius of gyration and shadow indices discriminate off-target promiscuity better than do Fsp3 and the number of stereo centers. We have deduced the relevant descriptor values required for a ligand to be nonpromiscuous. Investigating the MDL Drug Data Report (MDDR) database as compounds move from the preclinical stage toward the market, we have found that these shape-based 3D descriptors predict clinical success of compounds at preclinical and phase1 stages vs compounds withdrawn from the market better than do Fsp3 and LogD. Further, these computed 3D molecular descriptors correlate well with experimentally observed solubility, which is among well-known physicochemical properties that drive clinical success. We also found that about 84% of launched drugs satisfy either Shadow index or Fsp3 criteria, whereas withdrawn and discontinued compounds fail to meet the same criteria. Our studies suggest that spherical compounds (rather than their elongated counterparts) with a minimal number of aromatic rings may exhibit a high propensity to advance from clinical trials to market.
Collapse
Affiliation(s)
- David C Kombo
- Targacept, Inc., 200 East First Street, Suite 300, Winston-Salem, North Carolina 27101-4165, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Challenges and recommendations for obtaining chemical structures of industry-provided repurposing candidates. Drug Discov Today 2013; 18:58-70. [DOI: 10.1016/j.drudis.2012.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/17/2012] [Accepted: 11/08/2012] [Indexed: 02/07/2023]
|
46
|
Baell JB, Ferrins L, Falk H, Nikolakopoulos G. PAINS: Relevance to Tool Compound Discovery and Fragment-Based Screening. Aust J Chem 2013. [DOI: 10.1071/ch13551] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pan assay interference compounds (PAINS) are readily discovered in any bioassay and can appear to give selective and optimisable hits. The most common PAINS can be readily recognised by their structure. However, there are compounds that closely resemble PAINS that are not specifically recognised by the PAINS filters. In addition, highly reactive compounds are not encoded for in the PAINS filters because they were excluded from the high-throughput screening (HTS) library used to develop the filters and so were never present to provide indicting data. A compounding complication in the area is that very occasionally a PAINS compound may serve as a viable starting point for progression. Despite such an occasional example, the literature is littered with an overwhelming number of examples of compounds that fail to progress and were probably not optimisable in the first place, nor useful tool compounds. Thus it is with great caution and diligence that compounds possessing a known PAINS core should be progressed through to medicinal chemistry optimisation, if at all, as the chances are very high that the hits will be found to be non-progressable, often after a significant waste of resources.
Collapse
|
47
|
Baell JB. Broad coverage of commercially available lead-like screening space with fewer than 350,000 compounds. J Chem Inf Model 2012. [PMID: 23198812 DOI: 10.1021/ci300461a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In establishing what we propose is the globe's highest quality collection of available screening compounds, it is convincingly shown that the globe's pool of such compounds is extremely shallow and can be represented by fewer than 350,000 compounds. To support our argument, we discuss and fully disclose our extensive battery of functional group filters. We discuss the use of PAINS filters and also show the effect of similarity exclusion on structure-activity relationships. We show why limited analogue representation requires screening at higher concentrations to capture hit classes for difficult targets that otherwise may be prosecuted unsuccessfully. We construct our arguments in a structurally focused manner to be most useful to medicinal chemists, the key players in drug discovery.
Collapse
Affiliation(s)
- Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
48
|
Abstract
INTRODUCTION The design of target-specific covalent inhibitors is conceptually attractive because of increased biochemical efficiency through covalency and increased duration of action that outlasts the pharmacokinetics of the agent. Although many covalent inhibitors have been approved or are in advanced clinical trials to treat indications such as cancer and hepatitis C, there is a general tendency to avoid them as drug candidates because of concerns regarding immune-mediated toxicity that can arise from indiscriminate reactivity with off-target proteins. AREAS COVERED The review examines potential reason(s) for the excellent safety record of marketed covalent agents and advanced clinical candidates for emerging therapeutic targets. A significant emphasis is placed on proteomic techniques and chemical/biochemical reactivity assays that aim to provide a systematic rank ordering of pharmacologic selectivity relative to off-target protein reactivity of covalent inhibitors. EXPERT OPINION While tactics to examine selective covalent modification of the pharmacologic target are broadly applicable in drug discovery, it is unclear whether the output from such studies can prospectively predict idiosyncratic immune-mediated drug toxicity. Opinions regarding an acceptable threshold of protein reactivity/body burden for a toxic electrophile and a non-toxic electrophilic covalent drug have not been defined. Increasing confidence in proteomic and chemical/biochemical reactivity screens will require a retrospective side-by-side profiling of marketed covalent drugs and electrophiles known to cause deleterious toxic effects via non-selective covalent binding.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism Department, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA.
| | | |
Collapse
|
49
|
Tomašić T, Peterlin Mašič L. Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opin Drug Discov 2012; 7:549-60. [PMID: 22607309 DOI: 10.1517/17460441.2012.688743] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Nandhikonda P, Lynt WZ, McCallum MM, Ara T, Baranowski AM, Yuan NY, Pearson D, Bikle DD, Guy RK, Arnold LA. Discovery of the first irreversible small molecule inhibitors of the interaction between the vitamin D receptor and coactivators. J Med Chem 2012; 55:4640-51. [PMID: 22563729 DOI: 10.1021/jm300460c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The vitamin D receptor (VDR) is a nuclear hormone receptor that regulates cell proliferation, cell differentiation, and calcium homeostasis. The receptor is activated by vitamin D analogues that induce the disruption of VDR-corepressor binding and promote VDR-coactivator interactions. The interactions between VDR and coregulators are essential for VDR-mediated transcription. Small molecule inhibition of VDR-coregulator binding represents an alternative method to the traditional ligand-based approach in order to modulate the expression of VDR target genes. A high throughput fluorescence polarization screen that quantifies the inhibition of binding between VDR and a fluorescently labeled steroid receptor coactivator 2 peptide was applied to discover the new small molecule VDR-coactivator inhibitors, 3-indolylmethanamines. Structure-activity relationship studies with 3-indolylmethanamine analogues were used to determine their mode of VDR-binding and to produce the first VDR-selective and irreversible VDR-coactivator inhibitors with the ability to regulate the transcription of the human VDR target gene TRPV6.
Collapse
Affiliation(s)
- Premchendar Nandhikonda
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53211, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|