1
|
Rychlik KA, Illingworth EJ, Sanchez IF, Attreed SE, Sinha P, Casin KM, Taube N, Loube J, Tasneen R, Kabir R, Nuermberger E, Mitzner W, Kohr MJ, Sillé FCM. Long-term effects of prenatal arsenic exposure from gestational day 9 to birth on lung, heart, and immune outcomes in the C57BL/6 mouse model. Toxicol Lett 2023; 383:17-32. [PMID: 37244563 PMCID: PMC10527152 DOI: 10.1016/j.toxlet.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Prenatal arsenic exposure is a major public health concern, associated with altered birth outcomes and increased respiratory disease risk. However, characterization of the long-term effects of mid-pregnancy (second trimester) arsenic exposure on multiple organ systems is scant. This study aimed to characterize the long-term impact of mid-pregnancy inorganic arsenic exposure on the lung, heart, and immune system, including infectious disease response using the C57BL/6 mouse model. Mice were exposed from gestational day 9 till birth to either 0 or 1000 µg/L sodium (meta)arsenite in drinking water. Male and female offspring assessed at adulthood (10-12 weeks of age) did not show significant effects on recovery outcomes after ischemia reperfusion injury but did exhibit increased airway hyperresponsiveness compared to controls. Flow cytometric analysis revealed significantly greater total numbers of cells in arsenic-exposed lungs, lower MHCII expression in natural killer cells, and increased percentages of dendritic cell populations. Activated interstitial (IMs) and alveolar macrophages (AMs) isolated from arsenic-exposed male mice produced significantly less IFN-γ than controls. Conversely, activated AMs from arsenic-exposed females produced significantly more IFN-γ than controls. Although systemic cytokine levels were higher upon Mycobacterium tuberculosis (Mtb) infection in prenatally arsenic-exposed offspring there was no difference in lung Mtb burden compared to controls. This study highlights significant long-term impacts of prenatal arsenic exposure on lung and immune cell function. These effects may contribute to the elevated risk of respiratory diseases associated with prenatal arsenic exposure in epidemiology studies and point to the need for more research into mechanisms driving these maintained responses.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Public Health Program, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Emily J Illingworth
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ian F Sanchez
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah E Attreed
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Plum Island, CT, USA
| | - Prithvi Sinha
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Casin
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Taube
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jeff Loube
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rokeya Tasneen
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raihan Kabir
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Giles BH, Mann KK. Arsenic as an immunotoxicant. Toxicol Appl Pharmacol 2022; 454:116248. [PMID: 36122737 DOI: 10.1016/j.taap.2022.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
Arsenic is world-wide contaminant to which millions of people are exposed. The health consequences of arsenic exposure are varied, including cancer, cardiometabolic disease, and respiratory disorders. Arsenic is also toxic to the immune system, which may link many of the pathologies associated with arsenic exposure. The immune system can be classified into two interconnected arms: the innate and the adaptive immune responses. Herein, we discuss the effects of arsenic on key cell types within each of these arms, highlighting both in vitro and in vivo responses. These cells include macrophages, neutrophils, dendritic cells, and both B and T lymphocytes. Furthermore, we will explore data from human populations where altered immune status is implicated in disease and identify several data gaps where research is needed to complete our understanding of the immunotoxic effects of arsenic.
Collapse
Affiliation(s)
- Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Zhang RY, Tu JB, Ran RT, Zhang WX, Tan Q, Tang P, Kuang T, Cheng SQ, Chen CZ, Jiang XJ, Chen C, Han TL, Zhang T, Cao XQ, Peng B, Zhang H, Xia YY. Using the Metabolome to Understand the Mechanisms Linking Chronic Arsenic Exposure to Microglia Activation, and Learning and Memory Impairment. Neurotox Res 2020; 39:720-739. [PMID: 32955723 DOI: 10.1007/s12640-020-00286-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
The activation of microglia is a hallmark of neuroinflammation and contributes to various neurodegenerative diseases. Chronic inorganic arsenic exposure is associated with impaired cognitive ability and increased risk of neurodegeneration. The present study aimed to investigate whether chronic inorganic arsenic-induced learning and memory impairment was associated with microglial activation, and how organic (DMAV 600 μM, MMAV 0.1 μM) and inorganic arsenic (NaAsO2 0.6 μM) affect the microglia. Male C57BL/6J mice were divided into two groups: a control group and a group exposed to arsenic in their drinking water (50 mg/L NaAsO2 for 24 weeks). The Morris water maze was performed to analyze neuro-behavior and transmission electron microscopy was used to assess alterations in cellular ultra-structures. Hematoxylin-eosin and Nissl staining were used to observe pathological changes in the cerebral cortex and hippocampus. Flow cytometry was used to reveal the polarization of the arsenic-treated microglia phenotype and GC-MS was used to assess metabolomic differences in the in vitro microglia BV-2 cell line model derived from mice. The results showed learning and memory impairments and activation of microglia in the cerebral cortex and dentate gyrus (DG) zone of the hippocampus, in mice chronically exposed to arsenic. Flow cytometry demonstrated that BV-2 cells were activated with the treatment of different arsenic species. The GC-MS data showed three important metabolites to be at different levels according to the different arsenic species used to treat the microglia. These included tyrosine, arachidonic acid, and citric acid. Metabolite pathway analysis showed that a metabolic pathways associated with tyrosine metabolism, the dopaminergic synapse, Parkinson's disease, and the citrate cycle were differentially affected when comparing exposure to organic arsenic and inorganic arsenic. Organic arsenic MMAV was predominantly pro-inflammatory, and inorganic arsenic exposure contributed to energy metabolism disruptions in BV-2 microglia. Our findings provide novel insight into understanding the neurotoxicity mechanisms of chronic arsenic exposure and reveal the changes of the metabolome in response to exposure to different arsenic species in the microglia.
Collapse
Affiliation(s)
- Rui-Yuan Zhang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie-Bai Tu
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui-Tu Ran
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wen-Xuan Zhang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiang Tan
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ping Tang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Kuang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shu-Qun Cheng
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Cheng-Zhi Chen
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xue-Jun Jiang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting-Li Han
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xian-Qing Cao
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Peng
- Department of Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hua Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yin-Yin Xia
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Zhao H, Yang X, Mu M, Zong H, Luo L, Xing M. Excessive Cu 2+ deteriorates arsenite-induced apoptosis in chicken brain and resulting in immunosuppression, not in homeostasis. CHEMOSPHERE 2020; 239:124758. [PMID: 31514009 DOI: 10.1016/j.chemosphere.2019.124758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Trace elements such as copper (Cu) and arsenic (As) are two of the major contaminants and well-known inducers of cognitive deficits and neurobehavioral changes. This study evaluated the immunotoxicity of their individual or combined exposure on different brain regions in chickens. Consequently, nuclear damage and organelle lesions, especially mitochondria were observed under Cu or/and As stress, in which positive regulation of key proteins, dynamin-related protein 1 (Drp1), Cytochrome C (Cyt c), BCL2-associated X (Bax), Caspases 3 and P53 was detected by qRCR and Western blot analyses, indicating disturbed mitochondrial dynamic equilibrium and apoptosis execution. In addition, qRCR analysis confirmed the involvement of cytokines secreted by different populations of helper T cells, indicative of cellular immunity. Gene expression studies showed marked up regulation of Th1/Th17 cytokines along with heat shock protein (HSP) 70, a synergism was noted in co-administration group. Interesting, lower apoptosis index was noted in brainstem compared to cerebrum and cerebellum. An intense immunosuppression and heat shock response against Cu or/and As was also seen in cerebrum and cerebellum but not in brainstem. In conclusion, our study suggests a synergistic neurotoxicity in chickens under Cu and As exposure. These findings provide a basic understanding of mitochondrial abnormality-initiated neuropathology in response to environmental pollutant mixtures, suggesting an adaptive response to the frangibility of the central nerve system.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hui Zong
- Guangdong Vocational College of Science and Trade, Guangzhou, PR China
| | - Liyang Luo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
5
|
Rahman MT, De Ley M. Arsenic Induction of Metallothionein and Metallothionein Induction Against Arsenic Cytotoxicity. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 240:151-168. [PMID: 27115674 DOI: 10.1007/398_2016_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Human exposure to arsenic (As) can lead to oxidative stress that can become evident in organs such as the skin, liver, kidneys and lungs. Several intracellular antioxidant defense mechanisms including glutathione (GSH) and metallothionein (MT) have been shown to minimize As cytotoxicity. The current review summarizes the involvement of MT as an intracellular defense mechanism against As cytotoxicity, mostly in blood. Zinc (Zn) and selenium (Se) supplements are also proposed as a possible remediation of As cytotoxicity. In vivo and in vitro studies on As toxicity were reviewed to summarize cytotoxic mechanisms of As. Intracellular antioxidant defense mechanisms of MT are linked in relation to As cytotoxicity. Arsenic uses a different route, compared to major metal MT inducers such as Zn, to enter/exit blood cells. A number of in vivo and in vitro studies showed that upregulated MT biosynthesis in blood components are related to toxic levels of As. Despite the cysteine residues in MT that aid to bind As, MT is not the preferred binding protein for As. Nonetheless, intracellular oxidative stress due to As toxicity can be minimized, if not eliminated, by MT. Thus MT induction by essential metals such as Zn and Se supplementation could be beneficial to fight against As toxicity.
Collapse
Affiliation(s)
| | - Marc De Ley
- Laboratorium voor Biochemie, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Postbus 2413, 3001, Leuven-Heverlee, Belgium
| |
Collapse
|
6
|
Wu Y, Yue B, Liu J. Lipopolysaccharide-induced cytokine expression pattern in peripheral blood mononuclear cells in childhood obesity. Mol Med Rep 2016; 14:5281-5287. [DOI: 10.3892/mmr.2016.5866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/01/2016] [Indexed: 11/06/2022] Open
|
7
|
Zhang D, Liang Y, Xie Q, Gao G, Wei J, Huang H, Li J, Gao J, Huang C. A novel post-translational modification of nucleolin, SUMOylation at Lys-294, mediates arsenite-induced cell death by regulating gadd45α mRNA stability. J Biol Chem 2015; 290:4784-4800. [PMID: 25561743 PMCID: PMC4335216 DOI: 10.1074/jbc.m114.598219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and; Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuguang Liang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jinlong Wei
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and.
| |
Collapse
|
8
|
Milnerowicz H, Ściskalska M, Dul M. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke. J Trace Elem Med Biol 2015; 29:1-10. [PMID: 24916792 DOI: 10.1016/j.jtemb.2014.04.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 02/01/2023]
Abstract
Metals present in tobacco smoke have the ability to cause a pro-oxidant/antioxidant imbalance through the direct generation of free radicals in accordance with the Fenton or Haber-Weiss reaction and redox properties. Metals can also interact with antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and small molecular antioxidants (glutathione) through binding to SH groups or by replacement of metals ions in the catalytic center of enzymes. Excessive free radicals production can induce an inflammatory response. The aim of this study was to review the information on the induction of inflammation by metals present in tobacco smoke such as lead (Pb), cadmium (Cd), arsenic (As), aluminum (Al), nickel (Ni) and mercury (Hg). In cellular immune response, it was demonstrated that radicals induced by metals can disrupt the transcription signaling pathway mediated by the mitogen-activated protein kinase (induced by Pb), NLRP3-ASC-caspase 1 (induced by Ni), tyrosine kinase Src (induced by As) and the nuclear factor κB (induced by Pb, Ni, Hg). The result of this is a gene transcription for early inflammatory cytokines, such as Interleukine 1β, Interleukine 6, and Tumor necrosis factor α). These cytokines can cause leukocytes recruitment and secretions of other pro-inflammatory cytokines and chemokines, which intensifies the inflammatory response. Some metals, such as cadmium (Cd), can activate an inflammatory response through tissue damage induction mediated by free radicals, which also results in leukocytes recruitment and cytokines secretions. Inflammation generated by metals can be reduced by metallothionein, which has the ability to scavenge free radicals and bind toxic metals through the release of Zn and oxidation of SH groups.
Collapse
Affiliation(s)
- Halina Milnerowicz
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Milena Ściskalska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Magdalena Dul
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Yang HL, Huang PJ, Chen SC, Cho HJ, Kumar KJS, Lu FJ, Chen CS, Chang CT, Hseu YC. Induction of macrophage cell-cycle arrest and apoptosis by humic acid. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:741-750. [PMID: 25179584 DOI: 10.1002/em.21897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Humic acid (HA) in well water is associated with Blackfoot disease and various cancers. Previously, we reported that acute humic acid exposure (25-200 µg/mL for 24 hr) induces inflammation in RAW264.7 macrophages. In this study, we observed that prolonged (72 hr) HA exposure (25-200 µg/mL) induces cell-cycle arrest and apoptosis in cultured RAW264.7 cells. We also observed that exposing macrophages to HA arrests cells in the G2 /M phase of the cell cycle by reducing cyclin A/B1 , Cdc2, and Cdc25C levels. Treating macrophages with HA triggers a sequence of events characteristic of apoptotic cell death including loss of cell viability, morphological changes, internucleosomal DNA fragmentation, sub-G1 accumulation. Molecular markers of apoptosis associated with mitochondrial dysfunction were similarly observed, including cytochrome c release, caspase-3 or caspase-9 activation, and Bcl-2/Bax dysregulation. In addition to the mitochondrial pathway, HA-induced apoptosis may also be mediated through the death receptor and ER stress pathways, as evidence by induction of Fas, caspase-8, caspase-4, and caspase-12 activity. HA also upregulates p53 expression and causes DNA damage as assessed by the comet assay. These findings yield new insight into the mechanisms by which HA exposure may trigger atherosclerosis through modulation of the macrophage-mediated immune system.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
L. Bodhank S, Adil M, Visnagri A, Shiva Kuma V, D. Kandhar A, Ghosh P. Protective Effect of Naringin on Sodium Arsenite Induced Testicular Toxicity via Modulation of Biochemical Perturbations in Experimental Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.5567/pharmacologia.2014.222.234] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Calatayud M, Gimeno-Alcañiz JV, Vélez D, Devesa V. Trivalent arsenic species induce changes in expression and levels of proinflammatory cytokines in intestinal epithelial cells. Toxicol Lett 2013; 224:40-6. [PMID: 24140498 DOI: 10.1016/j.toxlet.2013.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022]
Abstract
Chronic arsenic (As) toxicity in humans has been documented in many countries where exposure mostly occurs through drinking water. The As immunotoxic effects have been demonstrated in animal models as well as in humans. The studies of the immunotoxicity of As have centered on organs related to immune response or target organs, with few data being available at intestinal level. The present study has evaluated the changes in the expression and release of cytokines in Caco-2 cells, widely used as an intestinal epithelial model. Differentiated cells were exposed to 1 μM of As(III), 0.1 μM of monomethylarsonous acid [MMA(III)] and 1 μM of dimethylarsinous acid [DMA(III)] during 2, 4, 6 and 24 h. Additionally, the effect of As coexposure with lipopolysaccharide (LPS, 10 ng/mL) has been evaluated. The results show trivalent species to induce increases in the expression and release of the proinflammatory cytokines tumor necrosis factor alpha (TNFα), IL6, IL8 - the magnitude and time of response being different for each As species. The response of greatest magnitude corresponds to DMA(III), followed by As(III), while MMA(III) generates a limited response. Furthermore, the presence of LPS in the co-exposed cells could affect the expression and secretion of cytokines compared with individual exposure to arsenicals, especially for As(III)/LPS and DMA(III)/LPS.
Collapse
Affiliation(s)
- M Calatayud
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino 7, 46980 Paterna (Valencia), Spain
| | | | | | | |
Collapse
|
12
|
Ahmad W, Prawez S, Chanderashekara HH, Tandan SK, Sankar P, Sarkar SN. Subacute arsenic exposure through drinking water reduces the pharmacodynamic effects of ketoprofen in male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:267-276. [PMID: 22236721 DOI: 10.1016/j.etap.2011.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/14/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
We evaluated the modulatory role of the groundwater contaminant arsenic on the pharmacodynamic responses of the nonsteroidal analgesic-antipyretic drug ketoprofen and the major pro-inflammatory mediators linked to the mechanism of ketoprofen's therapeutic effects. Rats were pre-exposed to sodium arsenite (0.4, 4 and 40 ppm) through drinking water for 28 days. The pharmacological effects of orally administered ketoprofen (5 mg/kg) were evaluated the following day. Pain, inflammation and pyretic responses were, respectively, assessed through formalin-induced nociception, carrageenan-induced inflammation and lipopolysaccharide-induced pyrexia. Arsenic inhibited ketoprofen's analgesic, anti-inflammatory and antipyretic effects. Further, arsenic enhanced cyclooxygenase-1 and cyclooxygenase-2 activities and tumor necrosis factor-α, interleukin-1β and prostaglandin-E(2) production in hind paw muscle. These results suggest a functional antagonism of ketoprofen by arsenic. This may relate to arsenic-mediated local release of tumor necrosis factor-α and interleukin-1β, which causes cyclooxygenase induction and consequent prostaglandin-E(2) release. In conclusion, subacute exposure to environmentally relevant concentrations of arsenic through drinking water may aggravate pain, inflammation and pyrexia and thereby, may reduce the therapeutic efficacy of ketoprofen.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Arsenites/administration & dosage
- Arsenites/toxicity
- Carrageenan
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/metabolism
- Dinoprostone/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drinking Water/chemistry
- Drug Interactions
- Fever/chemically induced
- Fever/metabolism
- Fever/prevention & control
- Formaldehyde
- Hindlimb
- Inflammation/chemically induced
- Inflammation/metabolism
- Inflammation/prevention & control
- Inflammation Mediators/metabolism
- Interleukin-1beta/metabolism
- Ketoprofen/administration & dosage
- Ketoprofen/pharmacology
- Lipopolysaccharides
- Male
- Membrane Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Pain/chemically induced
- Pain/metabolism
- Pain/prevention & control
- Rats
- Rats, Wistar
- Sodium Compounds/administration & dosage
- Sodium Compounds/toxicity
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
- Water Pollutants, Chemical/administration & dosage
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Wasif Ahmad
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122, Bareilly, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
13
|
Huang JH, Fecher P, Ilgen G, Hu KN, Yang J. Speciation of arsenite and arsenate in rice grain – Verification of nitric acid based extraction method and mass sample survey. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.059] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Khan S, Vala JA, Nabi SU, Gupta G, Kumar D, Telang AG, Malik JK. Protective effect of curcumin against arsenic-induced apoptosis in murine splenocytes in vitro. J Immunotoxicol 2011; 9:148-59. [PMID: 22182246 DOI: 10.3109/1547691x.2011.637530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a potent environmental pollutant and immunotoxic agent. Curcumin is a natural anti-oxidant used to treat a broad variety of diseases. Here, the effects were investigated of curcumin on sodium arsenite-induced apoptosis in murine splenocytes in vitro. Cells were exposed to sodium arsenite (NaAsO₂, 5 µM) with and without curcumin (5 and 10 µg/ml) and incubated at 37°C for 12 h. NaAsO₂ caused a decrease in cell viability and induction of apoptosis. These outcomes were concurrent with increases in the numbers of cells with reactive oxygen species generation, loss of mitochondrial transmembrane potential, an increase in the frequency of cells with sub-G₁ DNA content, and DNA fragmentation. Co-administration of curcumin with the NaAsO₂ caused significant recoveries in cell viability values and mitigation of the induced apoptosis-related molecular changes. A significant protection against apoptosis parameters in murine splenocytes simultaneously treated with NaAsO₂ and curcumin suggested a protective efficacy of curcumin. From the results it is concluded that the immuno-modulation exerted by curcumin might be attributed to its multifaceted effects including its anti-oxidative and anti-apoptotic properties. These findings have implications not only for the under-standing of the toxicity of arsenic to murine splenocytes in vitro but are also potentially important for developing preventive and/or corrective strategies against/during chronic arsenicosis.
Collapse
Affiliation(s)
- Saleem Khan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | | | | | | | | | | | | |
Collapse
|
15
|
Singh A, Shukla R, Hassan S, Bhonde RR, Sastry M. Cytotoxicity and Cellular Internalization Studies of Biogenic Gold Nanotriangles in Animal Cell Lines. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/19430892.2011.633479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Potential molecular mechanisms for combined toxicity of arsenic and alcohol. J Inorg Biochem 2010; 104:1229-33. [PMID: 20817264 DOI: 10.1016/j.jinorgbio.2010.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/30/2010] [Accepted: 08/06/2010] [Indexed: 12/26/2022]
Abstract
Arsenic is a ubiquitous environmental factor that has been identified as a risk factor for a wide range of human diseases. Alcohol is clearly a toxic substance when consumed in excess. Alcohol abuse results in a variety of pathological effects, including damages to liver, heart, and brain, as well as other organs, and is associated with an increased risk of certain types of cancers. In history, arsenic-contaminated beers caused severe diseases. There are populations who are exposed to relatively high levels of arsenic in their drinking water and consume alcohol at the same time. In this focused review, we aim to discuss important molecular mechanisms responsible for arsenic toxicity and potential combined toxic effects of alcohol and arsenic.
Collapse
|
17
|
Luna AL, Acosta-Saavedra LC, Lopez-Carrillo L, Conde P, Vera E, De Vizcaya-Ruiz A, Bastida M, Cebrian ME, Calderon-Aranda ES. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children. Toxicol Appl Pharmacol 2010; 245:244-51. [PMID: 20226805 DOI: 10.1016/j.taap.2010.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Arsenic (As) exposure has been associated with alterations in the immune system, studies in experimental models and adults have shown that these effects involve macrophage function; however, limited information is available on what type of effects could be induced in children. The aim of this study was to evaluate effects of As exposure, through the association of inorganic As (iAs) and its metabolites [monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] with basal levels of nitric oxide (NO(-)) and superoxide anion (O(2)(-)), in peripheral blood mononuclear cells (PBMC) and monocytes, and NO(-) and O(2)(-) produced by activated monocytes. Hence, a cross-sectional study was conducted in 87 children (6-10 years old) who had been environmentally exposed to As through drinking water. Levels of urinary As species (iAs, MMA and DMA) were determined by hydride generation atomic absorption spectrometry, total As (tAs) represents the sum of iAs and its species; tAs urine levels ranged from 12.3 to 1411 microg/g creatinine. Using multiple linear regression models, iAs presented a positive and statistical association with basal NO(-) in PBMC (beta=0.0048, p=0.049) and monocytes (beta=0.0044, p=0.044), while basal O(2)(-) had a significant positive association with DMA (beta=0.0025, p=0.046). In activated monocytes, O(2)(-) showed a statistical and positive association with iAs (beta=0.0108, p=0.023), MMA (beta=0.0066, p=0.022), DMA (beta=0.0018, p=0.015), and tAs (beta=0.0013, p=0.015). We conclude that As exposure in the studied children was positively associated with basal levels of NO(-) and O(2)(-) in PBMC and monocytes, suggesting that As induces oxidative stress in circulating blood cells. Additionally, this study showed a positive association of O(2)(-) production with iAs and its metabolites in stimulated monocytes, supporting previous data that suggests that these cells, and particularly the O(2)(-) activation pathway, are relevant targets for As toxicity.
Collapse
Affiliation(s)
- Ana L Luna
- Toxicologia, Cinvestav, PO Box: 14-740, Mexico, D.F., 07360, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kojima C, Ramirez DC, Tokar EJ, Himeno S, Drobná Z, Stýblo M, Mason RP, Waalkes MP. Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 2009; 101:1670-81. [PMID: 19933942 DOI: 10.1093/jnci/djp414] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Inorganic arsenic is an environmental carcinogen that may act through multiple mechanisms including formation of methylated derivatives in vivo. Sodium arsenite (up to 5.0 microM) renders arsenic methylation-competent TRL1215 rat liver epithelial cells tumorigenic in nude mice at 18 weeks of exposure and arsenic methylation-deficient RWPE-1 human prostate epithelial cells tumorigenic at 30 weeks of exposure. We assessed the role of arsenic biomethylation in oxidative DNA damage (ODD) using a recently developed immuno-spin trapping method. METHODS Immuno-spin trapping was used to measure ODD after chronic exposure of cultured TRL1215 vs RWPE-1 cells, or of methylation-competent UROtsa/F35 vs methylation-deficient UROtsa human urothelial cells, to sodium arsenite. Secreted matrix metalloproteinase (MMP)-2 and -9 activity, as analyzed by zymography, cellular invasiveness by using a transwell assay, and colony formation by using soft agar assay were compared in cells exposed to arsenite with and without selenite, an arsenic biomethylation inhibitor, to assess the role of ODD in the transition to an in vitro cancer phenotype. RESULTS Exposure of methylation-competent TRL1215 cells to up to 1.0 microM sodium arsenite was followed by a substantial increase in ODD at 5-18 weeks (eg, at 16 weeks with 1.0 microM arsenite, 1138% of control, 95% confidence interval [CI] = 797% to 1481%), whereas exposure of methylation-deficient RWPE-1 cells to up to 5.0 microM arsenite did not increase ODD for a 30-week period. Inhibition of arsenic biomethylation with sodium selenite abolished arsenic-induced ODD and invasiveness, colony formation, and MMP-2 and -9 hypersecretion in TRL1215 cells. Arsenic induced ODD in methylation-competent UROtsa/F35 cells (eg, at 16 weeks, with 1.0 microM arsenite 225% of control, 95% CI = 188% to 262%) but not in arsenic methylation-deficient UROtsa cells, and ODD levels corresponded to the levels of increased invasiveness, colony formation, and hypersecretion of active MMP-2 and -9 seen after transformation to an in vitro cancer phenotype. CONCLUSION Arsenic biomethylation appears to be obligatory for arsenic-induced ODD and appears linked in some cells with the accelerated transition to an in vitro cancer phenotype.
Collapse
Affiliation(s)
- Chikara Kojima
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bastús NG, Casals E, Vázquez-Campos S, Puntes V. Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxicology 2009. [DOI: 10.1080/17435390802217830] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Rahman MM, Ng JC, Naidu R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2009; 31 Suppl 1:189-200. [PMID: 19190988 DOI: 10.1007/s10653-008-9235-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 05/06/2023]
Abstract
Worldwide chronic arsenic (As) toxicity has become a human health threat. Arsenic exposure to humans mainly occurs from the ingestion of As contaminated water and food. This communication presents a review of current research conducted on the adverse health effects on humans exposed to As-contaminated water. Chronic exposure of As via drinking water causes various types of skin lesions such as melanosis, leucomelanosis, and keratosis. Other manifestations include neurological effects, obstetric problems, high blood pressure, diabetes mellitus, diseases of the respiratory system and of blood vessels including cardiovascular, and cancers typically involving the skin, lung, and bladder. The skin seems to be quite susceptible to the effects of As. Arsenic-induced skin lesions seem to be the most common and initial symptoms of arsenicosis. More systematic studies are needed to determine the link between As exposure and its related cancer and noncancer end points.
Collapse
Affiliation(s)
- Mohammad Mahmudur Rahman
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia
| | | | | |
Collapse
|
21
|
Arsenic trioxide inhibits hepatitis C virus RNA replication through modulation of the glutathione redox system and oxidative stress. J Virol 2008; 83:2338-48. [PMID: 19109388 DOI: 10.1128/jvi.01840-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arsenic trioxide (ATO), a therapeutic reagent used for the treatment of acute promyelocytic leukemia, has recently been reported to increase human immunodeficiency virus type 1 infectivity. However, in this study, we have demonstrated that replication of genome-length hepatitis C virus (HCV) RNA (O strain of genotype 1b) was notably inhibited by ATO at submicromolar concentrations without cell toxicity. RNA replication of HCV-JFH1 (genotype 2a) and the release of core protein into the culture supernatants were also inhibited by ATO after the HCV infection. To clarify the mechanism of the anti-HCV activity of ATO, we examined whether or not PML is associated with this anti-HCV activity, since PML is known to be a target of ATO. Interestingly, we observed the cytoplasmic translocation of PML after treatment with ATO. However, ATO still inhibited the HCV RNA replication even in the PML knockdown cells, suggesting that PML is dispensable for the anti-HCV activity of ATO. In contrast, we found that N-acetyl-cysteine, an antioxidant and glutathione precursor, completely and partially eliminated the anti-HCV activity of ATO after 24 h and 72 h of treatment, respectively. In this context, it is worth noting that we found an elevation of intracellular superoxide anion radical, but not hydrogen peroxide, and the depletion of intracellular glutathione in the ATO-treated cells. Taken together, these findings suggest that ATO inhibits the HCV RNA replication through modulation of the glutathione redox system and oxidative stress.
Collapse
|
22
|
Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated Arsenicals: The Implications of Metabolism and Carcinogenicity Studies in Rodents to Human Risk Assessment. Crit Rev Toxicol 2008; 36:99-133. [PMID: 16736939 DOI: 10.1080/10408440500534230] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) are active ingredients in pesticidal products used mainly for weed control. MMA(V) and DMA(V) are also metabolites of inorganic arsenic, formed intracellularly, primarily in liver cells in a metabolic process of repeated reductions and oxidative methylations. Inorganic arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder, and lung. However, a good animal model has not yet been found. Although the metabolic process of inorganic arsenic appears to enhance the excretion of arsenic from the body, it also involves formation of methylated compounds of trivalent arsenic as intermediates. Trivalent arsenicals (whether inorganic or organic) are highly reactive compounds that can cause cytotoxicity and indirect genotoxicity in vitro. DMA(V) was found to be a bladder carcinogen only in rats and only when administered in the diet or drinking water at high doses. It was negative in a two-year bioassay in mice. MMA(V) was negative in 2-year bioassays in rats and mice. The mode of action for DMA(V)-induced bladder cancer in rats appears to not involve DNA reactivity, but rather involves cytotoxicity with consequent regenerative proliferation, ultimately leading to the formation of carcinoma. This critical review responds to the question of whether DMA(V)-induced bladder cancer in rats can be extrapolated to humans, based on detailed comparisons between inorganic and organic arsenicals, including their metabolism and disposition in various animal species. The further metabolism and disposition of MMA(V) and DMA(V) formed endogenously during the metabolism of inorganic arsenic is different from the metabolism and disposition of MMA(V) and DMA(V) from exogenous exposure. The trivalent arsenicals that are cytotoxic and indirectly genotoxic in vitro are hardly formed in an organism exposed to MMA(V) or DMA(V) because of poor cellular uptake and limited metabolism of the ingested compounds. Furthermore, the evidence strongly supports a nonlinear dose-response relationship for the biologic processes involved in the carcinogenicity of arsenicals. Based on an overall review of the evidence, using a margin-of-exposure approach for MMA(V) and DMA(V) risk assessment is appropriate. At anticipated environmental exposures to MMA(V) and DMA(V), there is not likely to be a carcinogenic risk to humans.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology and Microbiology and Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA.
| | | | | | | | | |
Collapse
|
23
|
Arkusz J, Stańczyk M, Lewińiska D, Stepnik M. Modulation of Murine Peritoneal Macrophage Function by Chronic Exposure to Arsenate in Drinking Water. Immunopharmacol Immunotoxicol 2008; 27:315-30. [PMID: 16114513 DOI: 10.1081/iph-200067947] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure of humans to arsenic is associated with various adverse health effects including immunotoxicity and elevated risk of cancer development. Specific mechanisms of these effects are not well understood. In the present study we investigated some functional parameters of peritoneal macrophages isolated from mice exposed for 12 weeks to sodium arsenate in drinking water at 0.5, 5, and 50 mgAs/l. The experimental conditions were matched with the environmental conditions of arsenic exposure in humans. To characterize function of the macrophages, we assessed their ability to release nitric oxide (NO), reactive oxygen species (ROS), and tumor necrosis factor-alpha (TNF-alpha) in response to common stimulants. To this end the isolated cells were stimulated with lipopolysaccharide (1 microg/ml) to assess NO and TNF-alpha production (the WEHI-164 bioassay) or with phorbol myristate acetate (5 microg/ml) to assess superoxide production (NBT reduction test). As a result, in mice exposed to 0.5, 5, and 50 mgAs/l we observed decreased production of NO (9 +/- 2, 8 +/- 2, 11 +/- 5 microM NO2-, respectively, versus 27 +/- 7 microM in control) and superoxide (41.3 +/- 18.2%, 52.8 +/- 15.1% and 55.9 +/- 12.9%, respectively, less than in control). Despite reduced NO production, expression of iNOS mRNA in RT-PCR, showed similar levels in exposed and control animals. We did not see any significant influence of the exposure on TNF-alpha release and mRNA expression. The potential consequences of decreased production of NO and superoxide by peritoneal macrophages as observed in exposed mice may suggest impaired response of the cells against infection or developing tumor cells.
Collapse
Affiliation(s)
- Joanna Arkusz
- Nofer Institute of Occupational Medicine, Lódź, Poland
| | | | | | | |
Collapse
|
24
|
Kim CY, Han KH, Heo JD, Han E, Yum Y, Lee JY, Park K, Im R, Choi SJ, Park JD. Toxicity Screening of Single Dose of Inorganic and Organic Arsenics on Hematological and Serum Biochemical Parameters in Male Cynomolgus Monkeys. Toxicol Res 2008; 24:219-225. [PMID: 32038799 PMCID: PMC7006248 DOI: 10.5487/tr.2008.24.3.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 11/20/2022] Open
Affiliation(s)
- Choong-Yong Kim
- Korea Institute of Toxicology, KRICT, P.O. Box 123, Yuseong, Daejeon, Korea
| | - Kang-Hyun Han
- Korea Institute of Toxicology, KRICT, P.O. Box 123, Yuseong, Daejeon, Korea
| | - Jeong-Doo Heo
- Korea Institute of Toxicology, KRICT, P.O. Box 123, Yuseong, Daejeon, Korea
| | - EuiSik Han
- National Institute of Toxicological Research, Korea
| | - YoungNa Yum
- National Institute of Toxicological Research, Korea
| | | | - KyungSu Park
- Advanced Analysis Center, Korea Institute of Science and Technology, Korea
| | - Ruth Im
- Dept. Preventive Medicine, College of Medicine, Chung-Ang University, 221 Huksukdong, Dongjakgu, Seoul, 156-756 Korea
| | - Seong-Jin Choi
- Dept. Preventive Medicine, College of Medicine, Chung-Ang University, 221 Huksukdong, Dongjakgu, Seoul, 156-756 Korea
| | - Jung-Duck Park
- Dept. Preventive Medicine, College of Medicine, Chung-Ang University, 221 Huksukdong, Dongjakgu, Seoul, 156-756 Korea
| |
Collapse
|
25
|
Casals E, Vázquez-Campos S, Bastús NG, Puntes V. Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2008.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Palmieri MA, Tasat DR, Molinari BL. Oxidative metabolism of lung macrophages exposed to sodium arsenite. Toxicol In Vitro 2007; 21:1603-9. [PMID: 17716856 DOI: 10.1016/j.tiv.2007.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 05/08/2007] [Accepted: 06/03/2007] [Indexed: 11/22/2022]
Abstract
Arsenic pollution has become increasingly severe. It occurs as the result of geological processes and different human activities. Arsenic toxicity at the respiratory level occurs mainly by inhalation of products of coal combustion. The aim of this study was to evaluate sodium arsenite (As(3+)) toxicity in murine alveolar macrophages (AMs) in vitro and its association with the alterations in cell metabolism. No changes in viability, apoptosis or cell area were detected in AMs treated with As(3+) concentrations up to 2 microM for 24-96 h. A marked decrease in these end-points was observed for As(3+) concentrations ranging from 2.5 microM to 10 microM. Regarding the dynamics of the endo-exocytic process triggered by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell incorporation, no variations were detected for As(3+) concentrations lower than 2 microM while higher concentrations markedly modified this response. MTT specific activity, as a measure of cell metabolic activity, was not modified irrespective of the As(3+) concentration assayed. However, nitroblue tetrazolium (NBT) specific activity, as a measure of superoxide anion generation, is responsive but only to low As(3+) doses. Although this study focuses on lung macrophages, the effects of As(3+) described herein may also apply to the response of macrophages residing in other organs. Arsenite modifies the metabolic and the oxidative status of AMs in vitro. When macrophages are in an As(3+) rich medium, they exhibit a reduction in respiratory burst levels and lose their intrinsic capacity to respond to toxicants.
Collapse
Affiliation(s)
- Mónica A Palmieri
- Biodiversity and Experimental Biology Department, F.C.E.y N., National University of Buenos Aires, Argentina
| | | | | |
Collapse
|
27
|
Islam LN, Nabi AHMN, Rahman MM, Zahid MSH. Association of respiratory complications and elevated serum immunoglobulins with drinking water arsenic toxicity in human. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2007; 42:1807-14. [PMID: 17952781 DOI: 10.1080/10934520701566777] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We assessed the relationship between chronic arsenic exposure through drinking water with respiratory complications and humoral immune response by measuring serum immunoglobulin profiles in the affected subjects (arsenicosis patients) living in the arsenic endemic rural villages of Bangladesh. The duration of exposure was determined through detailed history of the patients (n=125) and the levels of arsenic in the drinking water and urine samples were determined. The mean duration of exposure in the patients was 7.4+/-5.3 y, and the levels of arsenic in the drinking water and urine samples were 216+/-211 and 223+/-302 micro g/L, respectively, compared to 11+/-20 and 29+/-19 microg/L, respectively, in the unexposed subjects. There was high prevalence of respiratory complications like breathing problems including chest sound, asthma, bronchitis and cough associated with drinking water arsenic toxicity. Arsenicosis patients had significantly elevated levels of IgG (P<0.001) and IgE (P<0.001) while the levels of IgA were also significantly higher (P<0.005) but IgM were similar to that of the control subjects. Analysis of the clinical symptoms based on skin manifestations showed the levels of both IgG and IgE were significantly elevated during the initial stages while IgE were further elevated with the duration of arsenic exposure. Arsenicosis patients with respiratory complications had mean serum IgE levels of 706+/-211 IU/mL compared to 542+/-241 IU/mL in patients without apparent involvement with the respiratory system (P<0.01). The eosinophil counts in the patients did not differ significantly from the unexposed subjects indicating that elevated levels of serum IgE might not be due to allergic diseases, rather it could be due to direct effects of arsenic. We found significant linear relationships between the levels of serum IgE and inorganic phosphorus (P<0.05), and serum IgA levels with urinary excretion of arsenic (P<0.001). These observations suggested that arsenic toxicity caused respiratory complications, induced changes in the humoral as well as mucosal immune responses.
Collapse
Affiliation(s)
- Laila N Islam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh.
| | | | | | | |
Collapse
|
28
|
Sarin SK, Kumar A, Chawla YK, Baijal SS, Dhiman RK, Jafri W, Lesmana LA, Guha Mazumder D, Omata M, Qureshi H, Raza RM, Sahni P, Sakhuja P, Salih M, Santra A, Sharma BC, Sharma P, Shiha G, Sollano J. Noncirrhotic portal fibrosis/idiopathic portal hypertension: APASL recommendations for diagnosis and treatment. Hepatol Int 2007; 1:398-413. [PMID: 19669336 PMCID: PMC2716836 DOI: 10.1007/s12072-007-9010-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/06/2007] [Indexed: 12/23/2022]
Abstract
The Asian Pacific Association for the Study of the Liver (APASL) Working Party on Portal Hypertension has developed consensus guidelines on the disease profile, diagnosis, and management of noncirrhotic portal fibrosis and idiopathic portal hypertension. The consensus statements, prepared and deliberated at length by the experts in this field, were presented at the annual meeting of the APASL at Kyoto in March 2007. This article includes the statements approved by the APASL along with brief backgrounds of various aspects of the disease.
Collapse
Affiliation(s)
- Shiv Kumar Sarin
- Department of Gastroenterology, G B Pant Hospital, University of Delhi, Room 201, Academic Block, New Delhi, 110 002, India,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ota E, Nagashima Y, Shiomi K, Sakurai T, Kojima C, Waalkes MP, Himeno S. Caspase-independent apoptosis induced in rat liver cells by plancitoxin I, the major lethal factor from the crown-of-thorns starfish Acanthaster planci venom. Toxicon 2006; 48:1002-10. [PMID: 16973201 DOI: 10.1016/j.toxicon.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 08/08/2006] [Accepted: 08/08/2006] [Indexed: 11/21/2022]
Abstract
Plancitoxin I, the major lethal factor from the crown-of-thorns starfish Acanthaster planci venom, is quite unique not only in exhibiting potent hepatotoxicity but also in sharing high sequence homology with mammalian deoxyribonulease II. In this study, morphological and biochemical changes in rat liver epithelial cells (TRL 1215 cells) treated with the toxin were examined to understand the mechanism by which plancitoxin I displays hepatotoxicity. AlamarBlue assay established that plancitoxin I is cytolethal to TRL 1215 cells. This cytolethalithy was ascribable to apoptotic cell death. Nuclear fragmentation evidenced by either Diff-Quick or Hoechst 33258 staining, DNA fragmentation by TUNEL assay and electrophoretic analysis on agarose gel and phosphatidylserine externalization by flow cytometric analysis of annexin V-FITC stained cells were all characteristics of apoptosis. The observed apoptosis was shown to be independent of the caspase 3 cascade that is generally accepted as the effector of the apoptotic process. Very interestingly, experiments using FITC-labeled plancitoxin I proved that the toxin can enter the nucleus of TRL 1215 cells. Our results suggested that plancitoxin I induces apoptosis of TRL 1215 cells through the following procedure: binding to a specific receptor in the cytoplasmic membrane, entering the cell, entering the nucleus and degrading DNA.
Collapse
Affiliation(s)
- Eiji Ota
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Sakurai T, Kojima C, Kobayashi Y, Hirano S, Sakurai MH, Waalkes MP, Himeno S. Toxicity of a trivalent organic arsenic compound, dimethylarsinous glutathione in a rat liver cell line (TRL 1215). Br J Pharmacol 2006; 149:888-97. [PMID: 17043674 PMCID: PMC2014694 DOI: 10.1038/sj.bjp.0706899] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Although inorganic arsenite (As(III)) is toxic in humans, it has recently emerged as an effective chemotherapeutic agent for acute promyelocytic leukemia (APL). In humans and most animals, As(III) is enzymatically methylated in the liver to weakly toxic dimethylarsinic acid (DMAs(V)) that is a major pentavalent methylarsenic metabolite. Recent reports have indicated that trivalent methylarsenicals are produced through methylation of As(III) and participate in arsenic poisoning. Trivalent methylarsenicals may be generated as arsenical-glutathione conjugates, such as dimethylarsinous glutathione (DMAs(III)G), during the methylation process. However, less information is available on the cytotoxicity of DMAs(III)G. EXPERIMENTAL APPROACH We synthesized and purified DMAs(III)G using high performance TLC (HPTLC) methods and measured its cytotoxicity in rat liver cell line (TRL 1215 cells). KEY RESULTS DMAs(III)G was highly cytotoxic in TRL 1215 cells with a LC(50) of 160 nM. We also found that DMAs(III)G molecule itself was not transported efficiently into the cells and was not cytotoxic; however it readily became strongly cytotoxic by dissociating into trivalent dimethylarsenicals and glutathione (GSH). The addition of GSH in micromolar physiological concentrations prevented the breakdown of DMAs(III)G, and the DMAs(III)G-induced cytotoxicity. Physiological concentrations of normal human serum (HS), human serum albumin (HSA), and human red blood cells (HRBC) also reduced both the cytotoxicity and cellular arsenic uptake induced by exposure to DMAs(III)G. CONCLUSIONS AND IMPLICATIONS These findings suggest that the significant cytotoxicity induced by DMAs(III)G may not be seen in healthy humans, even if DMAs(III)G is formed in the body from As(III).
Collapse
Affiliation(s)
- T Sakurai
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Sakurai T, Kojima C, Waalkes MP, Himeno S. Effects of exogenous cysteine on inorganic and organic arsenicals-induced cytolethality. Appl Organomet Chem 2006. [DOI: 10.1002/aoc.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Lu WJ, Tamai I, Nezu JI, Lai ML, Huang JD. Organic anion transporting polypeptide-C mediates arsenic uptake in HEK-293 cells. J Biomed Sci 2006; 13:525-33. [PMID: 16479312 DOI: 10.1007/s11373-006-9071-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 01/09/2006] [Indexed: 11/27/2022] Open
Abstract
Arsenic is an established human carcinogen. The role of aquaglyroporins (AQPs) in arsenic disposition was recently identified. In order to examine whether organic anion transporting polypeptide-C (OATP-C) also plays a role in arsenic transport, OATP-C cDNA was transfected into cells of a human embryonic kidney cell line (HEK-293). Transfection increased uptake of the model OATP-C substrate, estradiol-17beta-D-glucuronide, by 10-fold. In addition, we measured uptake and cytotoxicity of arsenate, arsenite, monomethylarsonate(MMA(V)), and dimethylarsinate (DMA(V)). Transfection of OATP-C increased uptake and cytotoxicity of arsenate and arsenite, but not of MMA(V) or DMA(V). Rifampin and taurocholic acid (a substrate of OATP-C) reversed the increased toxicity of arsenate and arsenite seen in OATP-C-transfected cells. The increase in uptake of inorganic arsenic was not as great as that of estradiol-17beta-D-glucuronide. Our results suggest that OATP-C can transport inorganic arsenic in a (GSH)-dependent manner. However, this may not be the major pathway for arsenic transport.
Collapse
Affiliation(s)
- Wen-Jen Lu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Kojima C, Sakurai T, Waalkes MP, Himeno S. Cytolethality of glutathione conjugates with monomethylarsenic or dimethylarsenic compounds. Biol Pharm Bull 2006; 28:1827-32. [PMID: 16204930 DOI: 10.1248/bpb.28.1827] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arsenicals are known to be toxic and carcinogenic in humans. Inorganic arsenicals are enzymatically methylated to monomethylarsonic acid (MMAsV) and dimethylarsinic acid (DMAsV), which are the major pentavalent methyl arsenic metabolites. Recent reports indicate that trivalent methyl arsenicals are produced through methylation of inorganic arsenicals and participate in arsenic poisoning. Trivalent methyl arsenicals may be generated as arsenical-glutathione conjugates, such as monomethylarsonous diglutathione (MMAsIIIDG) and dimethylarsinous glutathione (DMAsIIIG), during the methylation process. It has been well known that reduced glutathione (GSH) reduces MMAsV and DMAsV in vitro, and produces MMAsIIIDG and DMAsIIIG. Some studies have shown that exogenous GSH increased cytolethality of MMAsV and DMAsV in vitro, while other studies have suggested that exogenous GSH decreased them. In this study, we examined the true effects of exogenous GSH on the cytolethality of MMAsV and DMAsV by investigating reactions between various concentrations of MMAsV or DMAsV and GSH. GSH significantly increased the cytolethality and cellular uptake of pentavalent methyl arsenicals when GSH over 25 mM was pre-incubated with mM levels of arsenicals, and this cytolethality might have been caused by arsenical-GSH conjugate generation. However, GSH at less than 25 mM did not affect the cytolethality and cellular uptake of pentavalent methyl arsenicals. These findings suggest that high concentrations of arsenicals and GSH are needed to form arsenical-GSH conjugates and to show significant cytolethality. Furthermore, we speculated that MMAsIIIDG and DMAsIIIG may separate into trivalent methyl arsenicals and glutathione, which are then transported into cells where they show significant cytolethality.
Collapse
Affiliation(s)
- Chikara Kojima
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University; Tokushima 770-8514, Japan
| | | | | | | |
Collapse
|
34
|
Sakurai T, Ohta T, Tomita N, Kojima C, Hariya Y, Mizukami A, Fujiwara K. Evaluation of immunotoxic and immunodisruptive effects of inorganic arsenite on human monocytes/macrophages. Int Immunopharmacol 2006; 6:304-15. [PMID: 16459422 DOI: 10.1016/j.intimp.2005.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A trivalent inorganic arsenic, arsenite, has been causing chronic inflammation in humans through the consumption of contaminated well water. The total peripheral blood arsenic concentrations of chronic arsenic-exposed patients, who had inflammatory-like immune responses, are less than 1 microM, thus, nM concentrations may be very important regarding the chronic inflammatory effects by arsenite. However, there are few reports about the biological effects of low concentrations of arsenite in mammalian cells, especially in normal immune effector cells. In this study, we examined whether arsenite has any biological and/or toxicological effects on the differentiation of human peripheral blood monocytes into macrophages using the colony-stimulating factor (CSF) in vitro compared with that of other metallic compounds, and found that arsenite sensitively inhibited the CSF-induced in vitro maturation of monocytes into macrophages at nM levels, and it also induced small, nonadhesive and CD14-positive abnormal macrophage generation from monocytes with granulocyte-macrophage CSF (GM-CSF) at 50-500 nM without cell death. The addition of other metallic compounds, including chromium, selenium, mercury, cadmium, nickel, copper, zinc, cobalt, manganese and other human pentavalent arsenic metabolites, such as inorganic arsenate, monomethylarsonic acid and dimethylarsinic acid, could not induce the same abnormal cell generation from monocytes with CSFs at any concentration and any additional time schedules; they showed only simple cytolethality in monocytes and macrophages at any concentration and any additional time schedules; they showed only simple cytolethality in monocytes and macrophages at n-mM levels accompanied by cell death. This work may have implications in the arsenic-induced chronic inflammation in humans.
Collapse
Affiliation(s)
- Teruaki Sakurai
- Laboratory of Environmental Chemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kojima C, Qu W, Waalkes MP, Himeno S, Sakurai T. Chronic Exposure to Methylated Arsenicals Stimulates Arsenic Excretion Pathways and Induces Arsenic Tolerance in Rat Liver Cells. Toxicol Sci 2006; 91:70-81. [PMID: 16436460 DOI: 10.1093/toxsci/kfj117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although inorganic arsenicals are toxic and carcinogenic in humans, inorganic arsenite has recently emerged as a highly effective chemotherapeutic agent for acute promyelocytic leukemia (APL). Inorganic arsenicals are enzymatically methylated to monomethylarsonic acid (MMAs(V)), dimethylarsinic acid (DMAs(V)), and trimethylarsine oxide (TMAs(V)O) in mammals. We examined the effects of chronic exposure to methylated arsenicals on arsenic tolerance by using rat normal liver TRL 1215 cells. TRL 1215 cells were exposed for 20 weeks to MMAs(V), DMAs(V), or TMAs(V)O at levels that produced submicromolar cellular concentrations of arsenic. On chronic exposure to these methylated arsenicals, the cells acquired tolerance to acute arsenic cytolethality. Cellular arsenic uptake was reduced in these cells compared to passage-matched control cells. The long-term arsenic exposure increased glutathione S-transferase (GST) activity and cellular glutathione (GSH) levels. Glutathione S-transferase, multidrug resistance-associated proteins (Mrps; efflux transporters encoded by Mrp genes), and P-glycoprotein [P-gp; efflux transporter encoded by multidrug resistance gene (MDR)] had also increased in these cells at the transcript and protein levels. The depletion of cellular GSH and the inhibition of Mrps and P-gp functions increased cellular arsenic uptake and reduced arsenic tolerance in these cells. These results indicate that chronic exposure to methylated arsenicals induces a generalized arsenic tolerance that is caused by increased arsenic excretion. Because accumulation of methylated arsenicals may occur in patients with chronic arsenic poisoning and arsenic-treated APL patients, this study may provide important information regarding chronic arsenic poisoning and the latent risk of developing multidrug resistance in APL therapy using inorganic arsenite.
Collapse
Affiliation(s)
- Chikara Kojima
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | | | | | | | | |
Collapse
|
36
|
Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:10644-54. [PMID: 16262332 DOI: 10.1021/la0513712] [Citation(s) in RCA: 1049] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Macrophages are one of the principal immune effector cells that play essential roles as secretory, phagocytic, and antigen-presenting cells in the immune system. In this study, we address the issue of cytotoxicity and immunogenic effects of gold nanoparticles on RAW264.7 macrophage cells. The cytotoxicity of gold nanoparticles has been correlated with a detailed study of their endocytotic uptake using various microscopy tools such as atomic force microscopy (AFM), confocal-laser-scanning microscopy (CFLSM), and transmission electron microscopy (TEM). Our findings suggest that Au(0) nanoparticles are not cytotoxic, reduce the production of reactive oxygen and nitrite species, and do not elicit secretion of proinflammatory cytokines TNF-alpha and IL1-beta, making them suitable candidates for nanomedicine. AFM measurements suggest that gold nanoparticles are internalized inside the cell via a mechanism involving pinocytosis, while CFLSM and TEM studies indicate their internalization in lysosomal bodies arranged in perinuclear fashion. Our studies thus underline the noncytotoxic, nonimmunogenic, and biocompatible properties of gold nanoparticles with the potential for application in nanoimmunology, nanomedicine, and nanobiotechnology.
Collapse
Affiliation(s)
- Ravi Shukla
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | | | | | | |
Collapse
|
37
|
Sakurai T, Ohta T, Tomita N, Kojima C, Hariya Y, Mizukami A, Fujiwara K. Evaluation of immunotoxic and immunodisruptive effects of inorganic arsenite on human monocytes/macrophages. Int Immunopharmacol 2005; 4:1661-73. [PMID: 15454118 DOI: 10.1016/j.intimp.2004.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 06/23/2004] [Accepted: 07/26/2004] [Indexed: 10/26/2022]
Abstract
A trivalent inorganic arsenic, arsenite, has been causing chronic inflammation in humans through the consumption of contaminated well water. The total peripheral blood arsenic concentrations of chronic arsenic-exposed patients, who had inflammatory-like immune responses, are less than 1 microM, thus, nM concentrations may be very important regarding the chronic inflammatory effects by arsenite. However, there are few reports about the biological effects of low concentrations of arsenite in mammalian cells, especially in normal immune effector cells. In this study, we examined whether arsenite has any biological and/or toxicological effects on the differentiation of human peripheral blood monocytes into macrophages using the colony-stimulating factor (CSF) in vitro compared with that of other metallic compounds, and found that arsenite sensitively inhibited the CSF-induced in vitro maturation of monocytes into macrophages at nM levels, and it also induced small, nonadhesive and CD14-positive abnormal macrophage generation from monocytes with granulocyte-macrophage CSF (GM-CSF) at 50-500 nM without cell death. The addition of other metallic compounds, including chromium, selenium, mercury, cadmium, nickel, copper, zinc, cobalt, manganese and other human pentavalent arsenic metabolites, such as inorganic arsenate, monomethylarsonic acid and dimethylarsinic acid, could not induce the same abnormal cell generation from monocytes with CSFs at any concentration and any additional time schedules; they showed only simple cytolethality in monocytes and macrophages at n-mM levels accompanied by cell death. This work may have implications in the arsenic-induced chronic inflammation in humans.
Collapse
Affiliation(s)
- Teruaki Sakurai
- Laboratory of Environmental Chemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Sakurai T, Ochiai M, Kojima C, Ohta T, Sakurai MH, Takada NO, Qu W, Waalkes MP, Himeno S, Fujiwara K. Preventive mechanism of cellular glutathione in monomethylarsonic acid-induced cytolethality. Toxicol Appl Pharmacol 2005; 206:54-65. [PMID: 15963344 DOI: 10.1016/j.taap.2004.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/22/2004] [Accepted: 11/08/2004] [Indexed: 11/22/2022]
Abstract
Human pentavalent arsenic metabolic intermediate, monomethylarsonic acid (MMAs(V)), is a major arsenic type found in the blood in chronic arsenic poisoning patients, but little information is available on its toxicity potential or mechanisms of action. In this study, we investigated the molecular mechanisms of in vitro cytolethality of MMAs(V) using rat liver TRL 1215 cells. Cellular arsenic concentrations reached the nanomolar range in TRL 1215 cells when cells were exposed to millimolar levels of MMAs(V), and most of the MMAs(V) was not metabolized during the 48-h incubation. Under these conditions, MMAs(V) showed significant cytolethality when cellular reserves of reduced glutathione (GSH) were depleted. Morphological and biochemical evidence confirmed that MMAs(V) induced both necrosis and apoptosis in the cellular GSH-depleted cells. MMAs(V) significantly enhanced cellular caspase 3 activity in the cellular GSH-depleted cells, and a caspase 3 inhibitor blocked MMAs(V)-induced apoptosis. MMAs(V) also enhanced the production of cellular reactive oxygen species (ROS) in the cellular GSH-depleted cells, and addition of a membrane-permeable radical trapping reagent completely prevented both MMAs(V)-induced cellular caspase 3 activation and cytolethality in these cells. These observations suggest that MMAs(V) typically generates harmful ROS in cells, and cellular GSH prevents cytolethality by scavenging these toxic ROS. However, when cellular GSH levels are decreased, MMAs(V) induces oxidative stress in the cells, and this leads to apoptosis and/or necrosis depending on the cellular ROS/GSH ratio.
Collapse
Affiliation(s)
- Teruaki Sakurai
- Laboratory of Environmental Chemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sakurai T, Ohta T, Fujiwara K. Inorganic arsenite alters macrophage generation from human peripheral blood monocytes. Toxicol Appl Pharmacol 2005; 203:145-53. [PMID: 15710175 DOI: 10.1016/j.taap.2004.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
Inorganic arsenite has caused severe inflammatory chronic poisoning in humans through the consumption of contaminated well water. In this study, we examined the effects of arsenite at nanomolar concentrations on the in vitro differentiation of human macrophages from peripheral blood monocytes. While arsenite was found to induce cell death in a culture system containing macrophage colony stimulating factor (M-CSF), macrophages induced by granulocyte-macrophage CSF (GM-CSF) survived the treatment, but were morphologically, phenotypically, and functionally altered. In particular, arsenite-induced cells expressed higher levels of a major histocompatibility complex (MHC) class II antigen, HLA-DR, and CD14. They were more effective at inducing allogeneic or autologous T cell responses and responded more strongly to bacterial lipopolysaccharide (LPS) by inflammatory cytokine release as compared to cells induced by GM-CSF alone. On the other hand, arsenite-induced cells expressed lower levels of CD11b and CD54 and phagocytosed latex beads or zymosan particles less efficiently. We also demonstrated that the optimum amount of cellular reactive oxygen species (ROS) induced by nM arsenite might play an important role in this abnormal monocyte differentiation. This work may have implications in chronic arsenic poisoning because the total peripheral blood arsenic concentrations of these patients are at nM levels.
Collapse
Affiliation(s)
- Teruaki Sakurai
- Laboratory of Environmental Chemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | |
Collapse
|
40
|
Sakurai T, Ochiai M, Kojima C, Ohta T, Fujiwara K. Evaluation ofin vivo acute immunotoxicity of arsenocholine, a trimethyl arsenic compound in seafood. Appl Organomet Chem 2005. [DOI: 10.1002/aoc.695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Stepnik M, Stańczyk M, Arkusz J, Lewińska D. Assessment of apoptosis in thymocytes and splenocytes from mice exposed to arsenate in drinking water: cytotoxic effects of arsenate on the cells in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2005; 40:369-84. [PMID: 15717782 DOI: 10.1081/ese-200045629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study provides an assessment of the level of apoptosis in thymocytes and splenocytes from mice exposed to arsenate in drinking water. To simulate the naturally occurring exposure conditions of humans, the animals were exposed to arsenate at the concentrations of 0.5, 5, and 50 mgAs/L. TUNEL method for staining of thymocytes and splenocytes isolated from the mice after 8 and 12 weeks revealed increased percentage of apoptotic cells in the exposed groups. Although statistically significant increases were observed only for the highest concentration of arsenate, the increases showed linear trend as a function of arsenate concentration in drinking water. In vitro experiments performed on isolated cells incubated for 24 hours with arsenate at 6.7-2000 microM showed very similar concentration-viability relationships for both cell populations (IC50 was 442+/-15 microM and 427+/-18 microM for thymocytes and splenocytes, respectively). Arsenate induced a concentration-dependent increase in the percentage of the cells undergoing apoptosis. At higher concentrations, apoptosis was the predominant mode of cell death. It can be speculated that proapoptotic effects of arsenate as observed in our in vivo study may contribute to some immunotoxic symptoms observed in people chronically exposed to arsenic in drinking water.
Collapse
Affiliation(s)
- Maciej Stepnik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lódź, Poland.
| | | | | | | |
Collapse
|
42
|
Islam LN, Nabi AHMN, Rahman MM, Khan MA, Kazi AI. Association of Clinical Complications with Nutritional Status and the Prevalence of Leukopenia among Arsenic Patients in Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2004; 1:74-82. [PMID: 16696181 DOI: 10.3390/ijerph2004020074] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study conducted in Bangladesh reports the relationship of clinical complications with nutritional status and the prevalence of leukopenia among arsenic exposed patients living in the rural villages. A total of 115 exposed individuals diagnosed as arsenicosis patients were randomly selected from four known arsenic endemic villages, and age-matched 120 unexposed subjects were enrolled in the study program. The duration of arsenic exposure in about 37% of the patients was at least 10 yrs, while the population mean and range were 7.6 +/- 5.2 yrs, and 1 - 25 yrs, respectively. The mean arsenic concentrations in the drinking water for the exposed and unexposed (control) population were 218.1 microg/L and 11.3 microg/L, respectively. The spot urine sample of the arsenicosis patients contained an average of 234.6 microg/L arsenic. Although very few patients showed elevated WBC count, 16% had leukopenia (below normal count), and the whole population had significantly low WBC count than the control subjects. Prevalences of neutropenia and lymphocytosis were observed in patients with chronic exposure to high levels of arsenic in water. The body mass index was found to be lower than 18.5, the cut-off point for malnutrition (underweight), in about 28% of the arsenicosis cases compared to 15% of the controls. The monthly income and total calorie consumption per day showed the patients were underprivileged than the controls. Arsenical symptoms and complications were more severe in the nutritionally vulnerable (underweight) patients than the overweight ones. Also, the incidences of leukopenia and anaemia were more common in the female patients who were underweight. The findings of this research demonstrate that the poor nutritional status of patients increases the complications of chronic arsenic toxicity; suggest the possibility of other sources of arsenic contamination different from drinking water in the study area; and establish a higher prevalence of leukopenia and lymphocytosis in arsenicosis patients.
Collapse
Affiliation(s)
- Laila N Islam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh.
| | | | | | | | | |
Collapse
|
43
|
Dopp E, Hartmann LM, Florea AM, Rettenmeier AW, Hirner AV. Environmental distribution, analysis, and toxicity of organometal(loid) compounds. Crit Rev Toxicol 2004; 34:301-33. [PMID: 15239389 DOI: 10.1080/10408440490270160] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The biochemical modification of the metals and metalloids mercury, tin, arsenic, antimony, bismuth, selenium, and tellurium via formation of volatile metal hydrides and alkylated species (volatile and involatile) performs a fundamental role in determining the environmental processing of these elements. In most instances, the formation of such species increases the environmental mobility of the element, and can result in bioaccumulation in lipophilic environments. While inorganic forms of most of these compounds are well characterized (e.g., arsenic, mercury) and some of them exhibit low toxicity (e.g., tin, bismuth), the more lipid-soluble organometals can be highly toxic. Methylmercury poisoning (e.g., Minamata disease) and tumor development in rats after exposure to dimethylarsinic acid or tributyltin oxide are just some examples. Data on the genotoxicity (and the neurotoxicity) as well as the mechanisms of cellular action of organometal(loid) compounds are, however, scarce. Many studies have shown that the production of such organometal(loid) species is possible and likely whenever anaerobic conditions (at least on a microscale) are combined with available metal(loid)s and methyl donors in the presence of suitable organisms. Such anaerobic conditions can exist within natural environments (e.g., wetlands, pond sediments) as well as within anthropogenic environmental systems (e.g., waste disposal sites and sewage treatments plants). Some methylation can also take place under aerobic conditions. This article gives an overview about the environmental distribution of organometal(loid) compounds and the potential hazardous effects on animal and human health. Genotoxic effects in vivo and in vitro in particular are discussed.
Collapse
Affiliation(s)
- E Dopp
- Institut für Hygiene und Arbeitsmedizin, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|
44
|
Sakurai T, Kojima C, Ochiai M, Ohta T, Sakurai MH, Waalkes MP, Fujiwara K. Cellular glutathione prevents cytolethality of monomethylarsonic acid. Toxicol Appl Pharmacol 2004; 195:129-41. [PMID: 14998680 DOI: 10.1016/j.taap.2003.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 11/24/2003] [Indexed: 11/20/2022]
Abstract
Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenic often undergoes methylation, forming compounds such as monomethylarsonic acid (MMAs(V)) and dimethylarsinic acid (DMAs(V)). However, much less information is available on the in vitro toxic potential or mechanisms of these methylated arsenicals, especially MMAs(V). We studied the molecular mechanisms of in vitro cytolethality of MMAs(V) using a rat liver epithelial cell line (TRL 1215). MMAs(V) was not cytotoxic in TRL 1215 cells even at concentrations exceeding 10 mM, but it became weakly cytotoxic and induced both necrotic and apoptotic cell death when cellular reduced glutathione (GSH) was depleted with the glutathione synthase inhibitor, l-buthionine-[S,R]-sulfoximine (BSO), or the glutathione reductase inhibitor, carmustine. Similar results were observed in the other mammalian cells, such as human skin TIG-112 cells, chimpanzee skin CRT-1609 cells, and mouse metallothionein (MT) positive and MT negative embryonic cells. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyses GSH-substrate conjugation, also enhanced the cytolethality of MMAs(V), but aminooxyacetic acid (AOAA), an inhibitor of beta-lyase that catalyses the final breakdown of GSH-substrate conjugates, had no effect. Both the cellular GSH levels and the cellular GST activity were increased by the exposure to MMAs(V) in TRL 1215 cells. On the other hand, the addition of exogenous extracellular GSH enhanced the cytolethality of MMAs(V), although cellular GSH levels actually prevented the cytolethality of combined MMAs(V) and exogenous GSH. These findings indicate that human arsenic metabolite MMAs(V) is not a highly toxic compound in mammalian cells, and the level of cellular GSH is critical to its eventual toxic effects.
Collapse
Affiliation(s)
- Teruaki Sakurai
- Laboratory of Environmental Chemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sakurai T, Kojima C, Ochiai M, Ohta T, Fujiwara K. Evaluation of in vivo acute immunotoxicity of a major organic arsenic compound arsenobetaine in seafood. Int Immunopharmacol 2004; 4:179-84. [PMID: 14996409 DOI: 10.1016/j.intimp.2003.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 09/30/2003] [Accepted: 11/17/2003] [Indexed: 11/16/2022]
Abstract
In this study, we observed the in vivo acute immunotoxicity of a trimethyl arsenic compound, arsenobetaine (AsBe), which is present in large quantities in various marine animals that are daily ingested as seafood in many countries. The synthetic pure AsBe was orally administered to CDF(1) mice at a dose of 1.625 g/kg mouse weight once a day on days -6, -4, -2 and 0 (four times, total 6.5 g/kg mouse weight), and its effect on the immune organs and immune effector cells were assessed until day 8. Orally administered AsBe was temporally distributed to the immune organs, such as the spleen and thymus, but was not very toxic both quantitatively and qualitatively on these immune organs and immune effector cells, splenocytes, thymocytes, Peyer's patch lymphocytes and peritoneal macrophages. This finding suggests that the ingestion of AsBe contained in marine animals is relatively safe to the health of people who often consume marine animals in their daily diet.
Collapse
Affiliation(s)
- Teruaki Sakurai
- Laboratory of Environmental Chemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | |
Collapse
|
46
|
Duzkale H, Jilani I, Orsolic N, Zingaro RA, Golemovic M, Giles FJ, Kantarjian H, Albitar M, Freireich EJ, Verstovsek S. In vitro activity of dimethylarsinic acid against human leukemia and multiple myeloma cell lines. Cancer Chemother Pharmacol 2003; 51:427-32. [PMID: 12736761 DOI: 10.1007/s00280-003-0588-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Accepted: 01/15/2003] [Indexed: 11/24/2022]
Abstract
PURPOSE Arsenic trioxide (As(2)O(3)), an inorganic arsenic compound, has recently been approved for the treatment of relapsed or refractory acute promyelocytic leukemia. However, systemic toxicity associated with As(2)O(3) treatment remains a problem. Inorganic arsenic is detoxified in vivo by methylation reactions into organic arsenic compounds that are less toxic. METHODS AND RESULTS We investigated the antiproliferative and cytotoxic activity of dimethylarsinic acid (DMAA), an organic arsenic derivative and major metabolic by-product of As(2)O(3), against a panel of eight leukemia and multiple myeloma cell lines. As(2)O(3) was tested in comparison. In clonogenic assay, the average concentration of DMAA that suppressed cell colony growth by 50% was 0.5-1 m M, while for As(2)O(3) it was on average 1-2 microM. At those concentrations DMAA and As(2)O(3) had significantly less effect on colony growth of normal progenitor cells. Cytotoxic doses of DMAA and As(2)O(3) in 3-day trypan blue dye exclusion assay experiments were similar to doses effective in clonogenic assay. Assessment of apoptosis by annexin V assay revealed a high rate of apoptosis in all cell lines treated with DMAA and As(2)O(3), but significantly less effect on normal progenitor cells. DMAA, unlike As(2)O(3), had no effect on the maturation of leukemic cells. CONCLUSIONS DMAA exerts differential antiproliferative and cytotoxic activity against leukemia and multiple myeloma cells, with no significant effect on normal progenitor cells. However, concentrations of DMAA needed to achieve such efficacy are up to 1000 times those of As(2)O(3). Evaluation of novel organic arsenic that would combine the high efficacy of As(2)O(3) and the low toxicity of DMAA is warranted.
Collapse
Affiliation(s)
- Hatice Duzkale
- Department of Special Medical Education Programs, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Teruaki Sakurai
- Laboratory of Environmental Chemistry, School of Life Science, Tokyo University of Pharmacy and Life Science
| |
Collapse
|
48
|
Chou CJ, Tsai MS, Tsai JL, Lee HH, Lin TJ. The chelating treatment is not useful in human's intoxication with acute herbicidal organic arsenic. Hum Exp Toxicol 2002; 21:631-4. [PMID: 12540032 DOI: 10.1191/0960327102ht306oa] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The clinical manifestations of acute organic arsenic intoxication in humans have seldom been described and the associated treatment has been thought to be the same as that of acute inorganic arsenic intoxication. We have studied a collection of patients from 1996 to 2001 who called the Poison Control Center of Kaohsiung Medical University Hospital asking for information regarding acute organic arsenic intoxication. The 17 patients ranged in age from 23 to 64 years old, with 5 females and 12 males. The cause of arsenic ingestion was attempted suicide. Abdominal pain and vomiting were the main symptoms. There were no differences in results between patients treated with and those treated without chelating agents. We therefore believe that the results of acute organic intoxication are not same as acute inorganic intoxication and it is unnecessary to use chelating agents in such conditions.
Collapse
Affiliation(s)
- C J Chou
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
49
|
Mak NK, Wong RNS, Leung KN, Fung M. Involvement of tumor necrosis factor (TNF-α) in arsenic trioxide induced apoptotic cell death of murine myeloid leukemia cells. Toxicol Lett 2002; 135:79-87. [PMID: 12243866 DOI: 10.1016/s0378-4274(02)00236-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arsenic trioxide (As(2)O(3)) has recently been shown to be effective to inhibit the growth and to induce apoptosis in acute promyelocytic leukemia (APL) but not in acute myeloid leukemia (AML) cells. Recently, we have isolated an As(2)O(3) sensitive subclone JCS-16 from the murine myeloid leukemia WEHI 3B (JCS). At the concentrations of 0.3-3 microM, As(2)O(3) induces a dose-dependent cytotoxicity and growth inhibition on the JCS-16 cells. As(2)O(3) also induces apoptotic cell death, as judged by the presence of apoptotic nuclei, at 6 h after treatment. Morphological differentiation was not observed in As(2)O(3) treated JCS cells. Neutralizing anti-TNF-alpha antibody was found to reduce the As(2)O(3)-mediated apoptotic cell death of JCS-16 cells. Growth inhibitory effect of As(2)O(3) was also reduced after the addition of anti-TNF-alpha. In addition, reverse transcription polymerase chain reaction (RT-PCR) and reverse northern blot analysis demonstrated that the expression of TNF receptor (TNF-R2), IL-4, and IL-4R was down-regulate at 1 h after As(2)O(3) treatment. The expression of TNF-alpha and TNF-R1 was not affected. Our results suggest that the autocrine action of TNF-alpha might play a role in As(2)O(3)-induced apoptotic cell death of JCS-16 leukemia cells.
Collapse
Affiliation(s)
- N K Mak
- Department of Biology, The Hong Kong Baptist University, Hong Kong, PR China.
| | | | | | | |
Collapse
|
50
|
Sakurai T. Review: Biological effects of organic arsenic compounds in seafood. Appl Organomet Chem 2002. [DOI: 10.1002/aoc.325] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|