1
|
He H, Yang X, Zeb A, Liu J, Gu H, Yang J, Xiang W, Shen S. Cloning and Functional Analysis of a Zeaxanthin Epoxidase Gene in Ulva prolifera. BIOLOGY 2024; 13:695. [PMID: 39336122 PMCID: PMC11429058 DOI: 10.3390/biology13090695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The xanthophyll cycle is a photoprotective mechanism in plants and algae, which protects the photosynthetic system from excess light damage under abiotic stress. Zeaxanthin is considered to play a pivotal role in this process. In this study, the relative content of xanthophylls was determined using HPLC-MS/MS in Ulva prolifera exposed to different salinities. The results showed that high-salt stress significantly increased the relative content of xanthophylls and led to the accumulation of zeaxanthin. It was speculated that the accumulated zeaxanthin may contribute to the response of U. prolifera to high-salt stress. Zeaxanthin epoxidase (ZEP) is a key enzyme in the xanthophyll cycle and is also involved in the synthesis of abscisic acid and carotenoids. In order to explore the biological function of ZEP, a ZEP gene was cloned and identified from U. prolifera. The CDS of UpZEP is 1122 bp and encodes 373 amino acids. Phylogenetic analysis showed that UpZEP clusters within a clade of green algae. The results of qRT-PCR showed that high-salt stress induced the expression of UpZEP. In addition, heterologous overexpression of the UpZEP gene in yeast and Chlamydomonas reinhardtii improved the salt tolerance of transgenic organisms. In conclusion, the UpZEP gene may be involved in the response of U. prolifera to high-salt stress and can improve the high-salt tolerance of transgenic organisms.
Collapse
Affiliation(s)
- Hongyan He
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Xiuwen Yang
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Aurang Zeb
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Jiasi Liu
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Huiyue Gu
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Jieru Yang
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Wenyu Xiang
- Suzhou Industrial Park Environmental Law Enforcement Brigade, Suzhou 215021, China;
| | - Songdong Shen
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| |
Collapse
|
2
|
Dong Y, Du L, Zhang Z, Cheng J, Gao Y, Wang X, Wu Y, Wang Y. Molecular cloning and functional characterization in response to saline-alkali stress of the MhZEP gene in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1551-1564. [PMID: 39310706 PMCID: PMC11413312 DOI: 10.1007/s12298-024-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 09/25/2024]
Abstract
Soil salinization is one of the major environmental factors that restrict plant growth and development. Zeaxanthin epoxidase (ZEP) functions in ABA biosynthesis and the xanthophyll cycle and has a vital role in plant responses to various environmental stresses. It was found by quantitative real-time PCR (qRT-PCR) that MhZEP responded to saline-alkali stress and showed the highest expression at 48 h of saline-alkali stress, which was 14.53-fold of 0 h. The MhZEP gene was cloned from the apple rootstock begonia (Malus halliana Koehne) and its protein physicochemical properties were analyzed. Subsequently, the functional characterization of MhZEP (ID: 103403091) was further investigated in Arabidopsis thaliana. The MhZEP contained a complete open reading frame with a length of 1998 bp, and encoded 665 amino acids with an isoelectric point of 7.18. Phylogenetic tree analysis showed that MhZEP was the most homologous and closely related to Glycine max. Compared with wild-type, transgenic plants grew better under saline-alkali stress and the MhZEP-OE line showed higher chlorophyll content, carotenoid content, enzyme activities (POD, SOD, CAT and APX) and K+ content, whereas they had lower chlorosis and Na+ content than the wild type (WT), which indicated that they had strong resistance to stress. The expression levels of saline-alkali stress-related genes in A. thaliana MhZEP-OE were examined by qRT-PCR, and it was found that the MhZEP improved the tolerance of A. thaliana to saline-alkali stress tolerance by regulating the expression of carotenoid synthesis genes (MhPSY, MhZDS, MhLYCB and MhVDE) and ABA biosynthesis genes (MhNCED5, MhABI1 and MhCYP707A2). And the potassium-sodium ratio in the cytoplasm was increased to maintain ionic homeostasis by modulating the expression of Na+ transporter genes (MhCHX15 and MhSOS1) and K+ transporter genes (MhHKT1;1, MhNHX1 and MhSKOR1). Moreover, the expression of H+-ATPase genes (MhAHA2 and MhAHA8) was increased to reduce the oxidative damage caused by saline-alkali stress. In summary, MhZEP acted as an essential role in plant resistance to saline-alkali stress, which lays the foundation for further studies on its function in apple.
Collapse
Affiliation(s)
- Yongjuan Dong
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu China
| | - Lei Du
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu China
| | - Jiao Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu China
| | - Xiaoya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu China
| | - Yuxia Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu China
| |
Collapse
|
3
|
Nakajima T, Yaguchi S, Hirata S, Abdelrahman M, Wada T, Mega R, Shigyo M. Effects of Drought Stress on Abscisic Acid Content and Its Related Transcripts in Allium fistulosum- A. cepa Monosomic Addition Lines. Genes (Basel) 2024; 15:754. [PMID: 38927690 PMCID: PMC11202713 DOI: 10.3390/genes15060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Climate change has resulted in an increased demand for Japanese bunching onions (Allium fistulosum L., genomes FF) with drought resistance. A complete set of alien monosomic addition lines of A. fistulosum with extra chromosomes from shallot (A. cepa L. Aggregatum group, AA), represented as FF + 1A-FF + 8A, displays a variety of phenotypes that significantly differ from those of the recipient species. In this study, we investigated the impact of drought stress on abscisic acid (ABA) and its precursor, β-carotene, utilizing this complete set. In addition, we analyzed the expression levels of genes related to ABA biosynthesis, catabolism, and drought stress signal transduction in FF + 1A and FF + 6A, which show characteristic variations in ABA accumulation. A number of unigenes related to ABA were selected through a database using Allium TDB. Under drought conditions, FF + 1A exhibited significantly higher ABA and β-carotene content compared with FF. Additionally, the expression levels of all ABA-related genes in FF + 1A were higher than those in FF. These results indicate that the addition of chromosome 1A from shallot caused the high expression of ABA biosynthesis genes, leading to increased levels of ABA accumulation. Therefore, it is expected that the introduction of alien genes from the shallot will upwardly modify ABA content, which is directly related to stomatal closure, leading to drought stress tolerance in FF.
Collapse
Affiliation(s)
- Tetsuya Nakajima
- Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan;
| | - Shigenori Yaguchi
- Department of Food Science and Technology, National Fisheries University, 2-7-1 Nagata-Honmachi, Shimonoseki 759-6595, Japan;
| | - Sho Hirata
- Laboratory of Agroecology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA;
| | - Tomomi Wada
- Laboratory of Plant Breeding, Faculty of Agriculture Yamaguchi University, Yamaguchi 753-8515, Japan; (T.W.); (R.M.)
| | - Ryosuke Mega
- Laboratory of Plant Breeding, Faculty of Agriculture Yamaguchi University, Yamaguchi 753-8515, Japan; (T.W.); (R.M.)
- Laboratory of Plant Breeding, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masayoshi Shigyo
- Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan;
| |
Collapse
|
4
|
Li P, Ren M, Chen J, Yue J, Liu S, Zhu Q, Wang Z. Transcriptomic Analysis of Green Leaf Plants and White-Green Leaf Mutants in Haworthia cooperi var. pilifera. Genes (Basel) 2024; 15:608. [PMID: 38790237 PMCID: PMC11121492 DOI: 10.3390/genes15050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Haworthia cooperi var. pilifera is a succulent plant with ornamental value. The white-green leaf mutant (wl) showed a significant difference in leaf color from the wild-type plant (WT). In this study, we integrated the transcriptomes of wl and WT plants to screen differentially expressed genes related to leaf color variation. The results of transcriptome analysis showed that 84,163 unigenes were obtained after de novo assembly and the NR database annotated the largest number of unigenes, which accounted for 57.13%, followed by NT (43.02%), GO (39.84%), Swiss-Prot (39.25%), KEGG (36.06%), and COG (24.88%). Our finding showed that 2586 genes were differentially expressed in the two samples, including 1996 down-regulated genes and 590 up-regulated genes. GO analysis predicted that these differentially expressed genes (DEGs) participate in 12 cellular components, 20 biological processes, and 13 molecular function terms and KEGG analysis showed that metabolic pathways, plant-pathogen interaction, glycerophospholipid metabolism, endocytosis, plant hormone signal transduction, and ether lipid metabolism were enriched among all identified pathways. Through functional enrichment analysis of DEGs, we found that they were involved in chloroplast division and the biosynthesis of plant pigments, including chlorophyll, carotenoids, anthocyanin, and transcription factor families, which might be related to the formation mechanism of leaf color. Taken together, these results present insights into the difference in gene expression characteristics in leaves between WT and wl mutants and provide a new insight for breeding colorful leaf phenotypes in succulent plants.
Collapse
|
5
|
Khassanova G, Oshergina I, Ten E, Jatayev S, Zhanbyrshina N, Gabdola A, Gupta NK, Schramm C, Pupulin A, Philp-Dutton L, Anderson P, Sweetman C, Jenkins CL, Soole KL, Shavrukov Y. Zinc finger knuckle genes are associated with tolerance to drought and dehydration in chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1354413. [PMID: 38766473 PMCID: PMC11099236 DOI: 10.3389/fpls.2024.1354413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Chickpea (Cicer arietinum L.) is a very important food legume and needs improved drought tolerance for higher seed production in dry environments. The aim of this study was to determine diversity and genetic polymorphism in zinc finger knuckle genes with CCHC domains and their functional analysis for practical improvement of chickpea breeding. Two CaZF-CCHC genes, Ca04468 and Ca07571, were identified as potentially important candidates associated with plant responses to drought and dehydration. To study these genes, various methods were used including Sanger sequencing, DArT (Diversity array technology) and molecular markers for plant genotyping, gene expression analysis using RT-qPCR, and associations with seed-related traits in chickpea plants grown in field trials. These genes were studied for genetic polymorphism among a set of chickpea accessions, and one SNP was selected for further study from four identified SNPs between the promoter regions of each of the two genes. Molecular markers were developed for the SNP and verified using the ASQ and CAPS methods. Genotyping of parents and selected breeding lines from two hybrid populations, and SNP positions on chromosomes with haplotype identification, were confirmed using DArT microarray analysis. Differential expression profiles were identified in the parents and the hybrid populations under gradual drought and rapid dehydration. The SNP-based genotypes were differentially associated with seed weight per plant but not with 100 seed weight. The two developed and verified SNP molecular markers for both genes, Ca04468 and Ca07571, respectively, could be used for marker-assisted selection in novel chickpea cultivars with improved tolerance to drought and dehydration.
Collapse
Affiliation(s)
- Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Irina Oshergina
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Nursaule Zhanbyrshina
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Ademi Gabdola
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Narendra K. Gupta
- Department of Plant Physiology, Sri Karan Narendra (SNK) Agricultural University, Jobster, Rajastan, India
| | - Carly Schramm
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Antonio Pupulin
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Lauren Philp-Dutton
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Colin L.D. Jenkins
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| |
Collapse
|
6
|
Lee SY, Jang SJ, Jeong HB, Lee JH, Kim GW, Venkatesh J, Back S, Kwon JK, Choi DM, Kim JI, Kim GJ, Kang BC. Leaky mutations in the zeaxanthin epoxidase in Capsicum annuum result in bright-red fruit containing a high amount of zeaxanthin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:469-487. [PMID: 38180307 DOI: 10.1111/tpj.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Fruit color is one of the most important traits in peppers due to its esthetic value and nutritional benefits and is determined by carotenoid composition, resulting from diverse mutations of carotenoid biosynthetic genes. The EMS204 line, derived from an EMS mutant population, presents bright-red color, compared with the wild type Yuwolcho cultivar. HPLC analysis indicates that EMS204 fruit contains more zeaxanthin and less capsanthin and capsorubin than Yuwolcho. MutMap was used to reveal the color variation of EMS204 using an F3 population derived from a cross of EMS204 and Yuwolcho, and the locus was mapped to a 2.5-Mbp region on chromosome 2. Among the genes in the region, a missense mutation was found in ZEP (zeaxanthin epoxidase) that results in an amino acid sequence alteration (V291 → I). A color complementation experiment with Escherichia coli and ZEP in vitro assay using thylakoid membranes revealed decreased enzymatic activity of EMS204 ZEP. Analysis of endogenous plant hormones revealed a significant reduction in abscisic acid content in EMS204. Germination assays and salinity stress experiments corroborated the lower ABA levels in the seeds. Virus-induced gene silencing showed that ZEP silencing also results in bright-red fruit containing less capsanthin but more zeaxanthin than control. A germplasm survey of red color accessions revealed no similar carotenoid profiles to EMS204. However, a breeding line containing a ZEP mutation showed a very similar carotenoid profile to EMS204. Our results provide a novel breeding strategy to develop red pepper cultivars containing high zeaxanthin contents using ZEP mutations.
Collapse
Affiliation(s)
- Seo-Young Lee
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - So-Jeong Jang
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyo-Bong Jeong
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Geon Woo Kim
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jelli Venkatesh
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seungki Back
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Li Y, Chen Y, Jiang S, Dai H, Xu W, Zhang Q, Zhang J, Dodd IC, Yuan W. ABA is required for differential cell wall acidification associated with root hydrotropic bending in tomato. PLANT, CELL & ENVIRONMENT 2024; 47:38-48. [PMID: 37705239 DOI: 10.1111/pce.14720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
Hydrotropism is an important adaptation of plant roots to the uneven distribution of water, with current research mainly focused on Arabidopsis thaliana. To examine hydrotropism in tomato (Solanum lycopersicum) primary roots, we used RNA sequencing to determine gene expression of root tips (apical 5 mm) on dry and wet sides of hydrostimulated roots grown on agar plates. Hydrostimulation enhances cell division and expansion on the dry side compared with the wet side of the root tip. In hydrostimulated roots, the abscisic acid (ABA) biosynthesis gene ABA4 was induced more on the dry than the wet side of root tips. The ABA biosynthesis inhibitor Fluridone and the ABA-deficient mutant notabilis (not) significantly decreased hydrotropic curvature. Wild-type, but not the ABA biosynthesis mutant not, root tips showed asymmetric H+ efflux, with greater efflux on the dry than on the wet side of root tips. Thus, ABA mediates asymmetric H+ efflux, allowing the root to bend towards the wet side to take up more water.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yadi Chen
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Hui Dai
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| |
Collapse
|
8
|
Wan S, Liang B, Yang L, Hu W, Kuang L, Song J, Xie J, Huang Y, Liu D, Liu Y. The MADS-box family gene PtrANR1 encodes a transcription activator promoting root growth and enhancing plant tolerance to drought stress. PLANT CELL REPORTS 2023; 43:16. [PMID: 38135839 DOI: 10.1007/s00299-023-03121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE PtrANR1 positively regulates plant drought tolerance by increasing proline level and reducing ROS accumulation. PtrANR1 directly activates PtrAUX1 expression to promote root growth and improve plant drought tolerance. Citrus quality and yield are severely declined under drought stress. To date, the effects of MADS-box family transcription factors (TFs) on plant drought resistance have made some progress. However, whether MADS-box family TFs are associated with citrus drought response has remained unclear. The current paper identified a MADS-box family gene PtrANR1 encoding anthocyanidin reductase from trifoliate orange. PtrANR1 exhibits high identities with ANR1 proteins found in various plants. PtrANR1 possesses two conserved domains known as MADS and kertanin-like domains. PtrANR1 is a nuclear protein which has transactivation activity. A significant induction of PtrANR1 transcript was detected in leaves and roots of trifoliate orange treated with PEG6000 and ABA. Under drought stress, Arabidopsis ectopic overexpressing PtrANR1 exhibited obviously elevated contents of proline, ABA and IAA, better developed root, enhanced antioxidant enzyme activities, as well as notably reduced accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) compared with WT plants. However, opposite change trends of these physiological indices were detected in PtrANR1 homolog silencing lemon. Furthermore, transgenic Arabidopsis displayed significantly increased expression levels in genes associated with ABA, IAA and proline production, IAA polar transport, ROS elimination and drought response. However, these genes exhibited noticeably decreased transcript levels in PtrANR1 homolog silencing lemon. Moreover, PtrANR1 could increase IAA content and promote root growth by binding to GArG-box in the promoter of PtrAUX1 to activate its transcript. These findings indicated that PtrANR1 had a beneficial impact on plant drought resistance through promoting root development, increasing proline accumulation and scavenging of ROS.
Collapse
Affiliation(s)
- Shiguo Wan
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Beibei Liang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Hu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liuqing Kuang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Song
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingheng Xie
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingjie Huang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
9
|
He X, Solis CA, Chavan SG, Maier C, Wang Y, Liang W, Klause N, Ghannoum O, Cazzonelli CI, Tissue DT, Chen ZH. Novel transcriptome networks are associated with adaptation of capsicum fruit development to a light-blocking glasshouse film. FRONTIERS IN PLANT SCIENCE 2023; 14:1280314. [PMID: 38023880 PMCID: PMC10658010 DOI: 10.3389/fpls.2023.1280314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Light-blocking films (LBFs) can contribute to significant energy savings for protected cropping via altering light transmitting, such as UVA, photosynthetically active radiation, blue and red spectra affecting photosynthesis, and capsicum yield. Here, we investigated the effects of LBF on orange color capsicum (O06614, Capsicum annuum L.) fruit transcriptome at 35 (mature green) and 65 (mature ripe) days after pollination (DAP) relative to untreated control in a high-technology glasshouse. The results of targeted metabolites showed that LBF significantly promotes the percentage of lutein but decreased the percentage of zeaxanthin and neoxanthin only at 35 DAP. At 35 DAP, fruits were less impacted by LBF treatment (versus control) with a total of 1,192 differentially expressed genes (DEGs) compared with that at 65 DAP with 2,654 DEGs. Response to stress and response to light stimulus in biological process of Gene Ontology were found in 65-DAP fruits under LBF vs. control, and clustering analysis revealed a predominant role of light receptors and phytohormone signaling transduction as well as starch and sucrose metabolism in LBF adaptation. The light-signaling DEGs, UV light receptor UVR8, transcription factors phytochrome-interacting factor 4 (PIF4), and an E3 ubiquitin ligase (COP1) were significantly downregulated at 65 DAP. Moreover, key DEGs in starch and sucrose metabolism (SUS, SUC, and INV), carotenoid synthesis (PSY2 and BCH1), ascorbic acid biosynthesis (VTC2, AAO, and GME), abscisic acid (ABA) signaling (NCED3, ABA2, AO4, and PYL2/4), and phenylpropanoid biosynthesis (PAL and DFR) are important for the adaptation of 65-DAP fruits to LBF. Our results provide new candidate genes for improving quality traits of low-light adaptation of capsicum in protected cropping.
Collapse
Affiliation(s)
- Xin He
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Celymar A. Solis
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Sachin G. Chavan
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Chelsea Maier
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiguang Liang
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Norbert Klause
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Oula Ghannoum
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Christopher I. Cazzonelli
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David T. Tissue
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Richmond, NSW, Australia
| | - Zhong-Hua Chen
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
10
|
Frede K, Winkelmann S, Busse L, Baldermann S. The effect of LED light quality on the carotenoid metabolism and related gene expression in the genus Brassica. BMC PLANT BIOLOGY 2023; 23:328. [PMID: 37340342 DOI: 10.1186/s12870-023-04326-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND New vegetable production systems, such as vertical farming, but also well-established in-door production methods led to the implementation of light emitting diodes (LEDs). LEDs are the most important light sources in modern indoor-production systems and offer the possibility for enhancing growth and specific metabolites in planta. Even though the number of studies investigating the effects of LED lighting on vegetable quality has increased, the knowledge about genus variability is limited. In the present study, the effect of different LED spectra on the metabolic and transcriptional level of the carotenoid metabolism in five different Brassica sprouts was investigated. Cruciferous vegetables are one of the main food crops worldwide. Pak choi (Brassica rapa ssp. chinensis), cauliflower (Brassica oleracea var. botrytis), Chinese cabbage (Brassica rapa ssp. pekinensis), green kale (Brassica oleracea ssp. sabellica) and turnip cabbage (Brassica oleracea spp. gongylodes) sprouts were grown under a combination of blue & white LEDs, red & white LEDs or only white LEDs to elucidate the genus-specific carotenoid metabolism. RESULTS Genus-specific changes in plant weight and on the photosynthetic pigment levels as well as transcript levels have been detected. Interestingly, the transcript levels of the three investigated carotenoid biosynthesis genes phytoene synthase (PSY), β-cyclase (βLCY) and β-carotene hydroxylase (βOHASE1) were increased under the combination of blue & white LEDs in the majority of the Brassica sprouts. However, only in pak choi, the combination of blue & white LEDs enhanced the carotenoid levels by 14% in comparison to only white LEDs and by ~ 19% in comparison to red & white LEDs. CONCLUSIONS The effects of light quality differ within a genus which leads to the conclusion that production strategies have to be developed for individual species and cultivars to fully benefit from LED technology.
Collapse
Affiliation(s)
- Katja Frede
- Leibniz Institute of Vegetable and Ornamental Crops, Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| | - Sara Winkelmann
- Leibniz Institute of Vegetable and Ornamental Crops, Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Linda Busse
- Leibniz Institute of Vegetable and Ornamental Crops, Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
- University of Bayreuth; Faculty of Life Sciences: Food, Nutrition & Health; Professorship for Food Metabolome, Fritz-Hornschuch-Straße 13, 95326, Kulmbach, Germany
| |
Collapse
|
11
|
Liu X, Pei L, Zhang L, Zhang X, Jiang J. Regulation of miR319b-Targeted SlTCP10 during the Tomato Response to Low-Potassium Stress. Int J Mol Sci 2023; 24:7058. [PMID: 37108222 PMCID: PMC10138608 DOI: 10.3390/ijms24087058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Potassium deficiency confines root growth and decreases root-to-shoot ratio, thereby limiting root K+ acquisition. This study aimed to identify the regulation network of microRNA319 involved in low-K+ stress tolerance in tomato (Solanum lycopersicum). SlmiR319b-OE roots demonstrated a smaller root system, a lower number of root hairs and lower K+ content under low-K+ stress. We identified SlTCP10 as the target of miR319b using a modified RLM-RACE procedure from some SlTCPs' predictive complementarity to miR319b. Then, SlTCP10-regulated SlJA2 (an NAC transcription factor) influenced the response to low-K+ stress. CR-SlJA2 (CRISPR-Cas9-SlJA2) lines showed the same root phenotype to SlmiR319-OE compared with WT lines. OE-SlJA2(Overexpression-SlJA2) lines showed higher root biomass, root hair number and K+ concentration in the roots under low-K+ conditions. Furthermore, SlJA2 has been reported to promote abscisic acid (ABA) biosynthesis. Therefore, SlJA2 increases low-K+ tolerance via ABA. In conclusion, enlarging root growth and K+ absorption by the expression of SlmiR319b-regulated SlTCP10, mediating SlJA2 in roots, could provide a new regulation mechanism for increasing K+ acquisition efficiency under low-K+ stress.
Collapse
Affiliation(s)
- Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang 110866, China
| | - Lingling Pei
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Lingling Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xueying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang 110866, China
| |
Collapse
|
12
|
Wang Q. The role of forkhead-associated (FHA)-domain proteins in plant biology. PLANT MOLECULAR BIOLOGY 2023; 111:455-472. [PMID: 36849846 DOI: 10.1007/s11103-023-01338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The forkhead-associated (FHA) domain, a well-characterized small protein module that mediates protein-protein interactions by targeting motifs containing phosphothreonine, is present in many regulatory molecules like protein kinase, phosphatases, transcription factors, and other functional proteins. FHA-domain containing proteins in yeast and human are involved in a large variety of cellular processes such as DNA repair, cell cycle arrest, or pre-mRNA processing. Since the first FHA-domain protein, kinase-associated protein phosphatase (KAPP) was found in plants, the interest in plant FHA-containing proteins has increased dramatically, mainly due to the important role of FHA domain-containing proteins in plant growth and development. In this review, we provide a comprehensive overview of the fundamental properties of FHA domain-containing proteins in plants, and systematically summarized and analyzed the research progress of proteins containing the FHA domain in plants. We also emphasized that AT5G47790 and its homologs may play an important role as the regulatory subunit of protein phosphatase 1 (PP1) in plants.
Collapse
Affiliation(s)
- Qiuling Wang
- Institute of Future Agriculture, State Key Laboratory of Crop Stress Biology for Arid Areas, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
13
|
Xu Y, Qian X, Li K, Zhou T, Tian Y, Yuan L, Wang Z, Yang J. Differential roles of abscisic acid in maize roots in the adaptation to soil drought. Food Energy Secur 2023. [DOI: 10.1002/fes3.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
14
|
Ding F, Wang X, Li Z, Wang M. Jasmonate Positively Regulates Cold Tolerance by Promoting ABA Biosynthesis in Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 12:60. [PMID: 36616188 PMCID: PMC9823970 DOI: 10.3390/plants12010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
As a cold-sensitive species, tomato is frequently challenged by cold stress during vegetative and reproductive growth. Understanding how tomato responds to cold stress is of critical importance for sustainable tomato production. In this work, we demonstrate that jasmonate (JA) plays a crucial role in tomato response to cold stress by promoting abscisic acid (ABA) biosynthesis. It was observed that both JA and ABA levels were substantially increased under cold conditions, whereas the suppression of JA biosynthesis abated ABA accumulation. The ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE2 (NCED2) was subsequently found to be associated with JA-mediated ABA biosynthesis in tomato plants in response to cold stress. NCED2 was rapidly induced by exogenous MeJA and cold treatment. Silencing NCED2 led to a decrease in ABA accumulation that was concurrent with increased cold sensitivity. Moreover, blocking ABA biosynthesis using a chemical inhibitor impaired JA-induced cold tolerance in tomato. Furthermore, MYC2, a core component of the JA signaling pathway, promoted the transcription of NCED2, ABA accumulation and cold tolerance in tomato. Collectively, our results support that JA signaling promotes ABA biosynthesis to confer cold tolerance in tomato.
Collapse
|
15
|
Liang B, Wan S, Ma Q, Yang L, Hu W, Kuang L, Xie J, Huang Y, Liu D, Liu Y. A Novel bHLH Transcription Factor PtrbHLH66 from Trifoliate Orange Positively Regulates Plant Drought Tolerance by Mediating Root Growth and ROS Scavenging. Int J Mol Sci 2022; 23:ijms232315053. [PMID: 36499381 PMCID: PMC9740576 DOI: 10.3390/ijms232315053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Drought limits citrus yield and fruit quality worldwide. The basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in plant response to drought stress. However, few bHLH TFs related to drought response have been functionally characterized in citrus. In this study, a bHLH family gene, named PtrbHLH66, was cloned from trifoliate orange. PtrbHLH66 contained a highly conserved bHLH domain and was clustered closely with bHLH66 homologs from other plant species. PtrbHLH66 was localized to the nucleus and had transcriptional activation activity. The expression of PtrbHLH66 was significantly induced by polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments. Ectopic expression of PtrbHLH66 promoted the seed germination and root growth, increased the proline and ABA contents and the activities of antioxidant enzymes, but reduced the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) under drought stress, resulting in enhanced drought tolerance of transgenic Arabidopsis. In contrast, silencing the PtrbHLH66 homolog in lemon plants showed the opposite effects. Furthermore, under drought stress, the transcript levels of 15 genes involved in ABA biosynthesis, proline biosynthesis, ROS scavenging and drought response were obviously upregulated in PtrbHLH66 ectopic-expressing Arabidopsis but downregulated in PtrbHLH66 homolog silencing lemon. Thus, our results suggested that PtrbHLH66 acted as a positive regulator of plant drought resistance by regulating root growth and ROS scavenging.
Collapse
|
16
|
Frede K, Baldermann S. Accumulation of carotenoids in Brassica rapa ssp. chinensis by a high proportion of blue in the light spectrum. Photochem Photobiol Sci 2022; 21:1947-1959. [PMID: 35895283 DOI: 10.1007/s43630-022-00270-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Carotenoids have the potential to improve the human health which leads to an increasing consumer demand for carotenoid-rich vegetables. The implementation of new, less energy-consuming vegetable production systems using artificial light such as light-emitting diodes (LEDs) is essential. In the present study, pak choi (Brassica rapa ssp. chinensis 'Black Behi') sprouts were grown under a combination of blue and white LEDs, red and white LEDs or only white LEDs for 7 days. Total carotenoid levels of ~ 700 ng/mg DM were measured under white LEDs. The combination of blue and white LEDs increased the carotenoid levels by ~ 15% in comparison to only white LEDs, while red and white LEDs reduced them. The transcript levels of important carotenoid metabolism-related genes were enhanced under blue and white LEDs. Phytoene measurement after Norflurazon-treatment, a phytoene desaturase inhibitor, revealed that phytoene increased by 38% (37.5 µM Norflurazon) and by 56% (50.0 µM Norflurazon) after growth under blue and white LEDs in comparison to only white LEDs suggesting an up-regulation of the upper carotenoid biosynthetic pathway. Thus, the transcript levels and the enhanced phytoene levels correlated well with the higher accumulation of carotenoids under blue and white LEDs. Furthermore, a comparison to sprouts grown under blue LEDs without additional white LEDs showed that blue light alone does not increase the phytoene levels after Norflurazon-treatment. Overall, this study demonstrated a beneficial effect of a higher blue light percentage in growing carotenoid-rich pak choi sprouts, and implies that an increased biosynthesis within the upper carotenoid biosynthetic pathway is responsible for the enhanced carotenoid accumulation.
Collapse
Affiliation(s)
- Katja Frede
- Leibniz Institute of Vegetable and Ornamental Crops, Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
- Faculty of Life Sciences, Food, Nutrition and Health, Professorship for Food Metabolome, University of Bayreuth, Fritz-Hornschuch-Straße 13, 95326, Kulmbach, Germany
| |
Collapse
|
17
|
Ahmadi T, Shabani L, Sabzalian MR. Light emitting diodes improved the metabolism of rosmarinic acid and amino acids at the transcriptional level in two genotypes of Melissa officinalis L. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1055-1069. [PMID: 36043232 DOI: 10.1071/fp21364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we used different LEDs to evaluate their effect on metabolic and transcriptional reprogramming of two genotypes (Ilam and Isfahan) of lemon balm grown under narrow-band LED lighting. Lemon balm plants were grown in four incubators equipped with artificial lighting and subjected to four LED lamps [White, Blue, Red, and mixed RB (Red+Blue) (70%:30%)] and in greenhouse conditions for 7weeks. The results showed significant increases in leaf number, pigment and soluble sugar contents, secondary metabolites, and calcium, magnesium, potassium and amino acid contents achieved in growth under mixed RB LEDs. As observed for the content of total phenolics, rosmarinic acid, and amino acids, the expression of genes involved in their production, including TAT , RAS , and DAHPS were also enhanced due to the mixed RB LED lighting. The best condition for both the plant growth and expression of genes was under the mixture of Red+Blue LED lamps. These observations indicate that the increase in secondary metabolites under mixed Red+Blue lights may be due to the increase in primary metabolites synthesis and the increased expression of genes that play an essential role in the production of secondary metabolites.
Collapse
Affiliation(s)
- Tayebeh Ahmadi
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran; and Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
18
|
Wei H, Xu H, Su C, Wang X, Wang L. Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. PLANT PHYSIOLOGY 2022; 190:1057-1073. [PMID: 35512208 PMCID: PMC9516778 DOI: 10.1093/plphys/kiac196] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/29/2022] [Indexed: 05/06/2023]
Abstract
The circadian clock facilitates the survival and reproduction of crop plants under harsh environmental conditions such as drought and osmotic and salinity stresses, mainly by reprogramming the endogenous transcriptional landscape. Nevertheless, the genome-wide roles of core clock components in rice (Oryza sativa L.) abiotic stress tolerance are largely uncharacterized. Here, we report that CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1), a vital clock component in rice, is required for tolerance to salinity, osmotic, and drought stresses. DNA affinity purification sequencing coupled with transcriptome analysis identified 692 direct transcriptional target genes of OsCCA1. Among them, the genes involved in abscisic acid (ABA) signaling, including group A protein phosphatase 2C genes and basic region and leucine zipper 46 (OsbZIP46), were substantially enriched. Moreover, OsCCA1 could directly bind the promoters of OsPP108 and OsbZIP46 to activate their expression. Consistently, oscca1 null mutants generated via genome editing displayed enhanced sensitivities to ABA signaling. Together, our findings illustrate that OsCCA1 confers multiple abiotic stress tolerance likely by orchestrating ABA signaling, which links the circadian clock with ABA signaling in rice.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Su
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Lehretz GG, Schneider A, Leister D, Sonnewald U. High non-photochemical quenching of VPZ transgenic potato plants limits CO 2 assimilation under high light conditions and reduces tuber yield under fluctuating light. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1821-1832. [PMID: 35763422 DOI: 10.1111/jipb.13320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Under natural conditions, photosynthesis has to be adjusted to fluctuating light intensities. Leaves exposed to high light dissipate excess light energy in form of heat at photosystem II (PSII) by a process called non-photochemical quenching (NPQ). Upon fast transition from light to shade, plants lose light energy by a relatively slow relaxation from photoprotection. Combined overexpression of violaxanthin de-epoxidase (VDE), PSII subunit S (PsbS) and zeaxanthin epoxidase (ZEP) in tobacco accelerates relaxation from photoprotection, and increases photosynthetic productivity. In Arabidopsis, expression of the same three genes (VPZ) resulted in a more rapid photoprotection but growth of the transgenic plants was impaired. Here we report on VPZ expressing potato plants grown under various light regimes. Similar to tobacco and Arabidopsis, induction and relaxation of NPQ was accelerated under all growth conditions tested, but did not cause an overall increased photosynthetic rate or growth of transgenic plants. Tuber yield of VPZ expressing plants was unaltered as compared to control plants under constant light conditions and even decreased under fluctuating light conditions. Under control conditions, levels of the phytohormone abscisic acid (ABA) were found to be elevated, indicating an increased violaxanthin availability in VPZ plants. However, the increased basal ABA levels did not improve drought tolerance of VPZ transgenic potato plants under greenhouse conditions. The failure to benefit from improved photoprotection is most likely caused by a reduced radiation use efficiency under high light conditions resulting from a too strong NPQ induction. Mitigating this negative effect in the future might help to improve photosynthetic performance in VPZ expressing potato plants.
Collapse
Affiliation(s)
- Günter G Lehretz
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Anja Schneider
- Plant Molecular Biology, Faculty of Biology, Ludwig Maximilians University of Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Munich, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig Maximilians University of Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Munich, Germany
| | - Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| |
Collapse
|
20
|
Ptošková K, Szecówka M, Jaworek P, Tarkowská D, Petřík I, Pavlović I, Novák O, Thomas SG, Phillips AL, Hedden P. Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction. BMC PLANT BIOLOGY 2022; 22:284. [PMID: 35676624 PMCID: PMC9178827 DOI: 10.1186/s12870-022-03667-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bread wheat (Triticum aestivum) is a major source of nutrition globally, but yields can be seriously compromised by water limitation. Redistribution of growth between shoots and roots is a common response to drought, promoting plant survival, but reducing yield. Gibberellins (GAs) are necessary for shoot and root elongation, but roots maintain growth at lower GA concentrations compared with shoots, making GA a suitable hormone for mediating this growth redistribution. In this study, the effect of progressive drought on GA content was determined in the base of the 4th leaf and root tips of wheat seedlings, containing the growing regions, as well as in the remaining leaf and root tissues. In addition, the contents of other selected hormones known to be involved in stress responses were determined. Transcriptome analysis was performed on equivalent tissues and drought-associated differential expression was determined for hormone-related genes. RESULTS After 5 days of applying progressive drought to 10-day old seedlings, the length of leaf 4 was reduced by 31% compared with watered seedlings and this was associated with significant decreases in the concentrations of bioactive GA1 and GA4 in the leaf base, as well as of their catabolites and precursors. Root length was unaffected by drought, while GA concentrations were slightly, but significantly higher in the tips of droughted roots compared with watered plants. Transcripts for the GA-inactivating gene TaGA2ox4 were elevated in the droughted leaf, while those for several GA-biosynthesis genes were reduced by drought, but mainly in the non-growing region. In response to drought the concentrations of abscisic acid, cis-zeatin and its riboside increased in all tissues, indole-acetic acid was unchanged, while trans-zeatin and riboside, jasmonate and salicylic acid concentrations were reduced. CONCLUSIONS Reduced leaf elongation and maintained root growth in wheat seedlings subjected to progressive drought were associated with attenuated and increased GA content, respectively, in the growing regions. Despite increased TaGA2ox4 expression, lower GA levels in the leaf base of droughted plants were due to reduced biosynthesis rather than increased catabolism. In contrast to GA, the other hormones analysed responded to drought similarly in the leaf and roots, indicating organ-specific differential regulation of GA metabolism in response to drought.
Collapse
Affiliation(s)
- Klára Ptošková
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Marek Szecówka
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Jaworek
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Stephen G Thomas
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Andrew L Phillips
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic.
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
21
|
Sagervanshi A, Geilfus CM, Kaiser H, Mühling KH. Alkali salt stress causes fast leaf apoplastic alkalinization together with shifts in ion and metabolite composition and transcription of key genes during the early adaptive response of Vicia faba L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111253. [PMID: 35487662 DOI: 10.1016/j.plantsci.2022.111253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The mechanisms by which plants respond to alkali salt stress are still obscure, and the relevance of alkaline pH under combined alkali salt stress. Early stress responses can indicate mechanisms leading to damage and plant resistance. The apoplast contains essential determinants for plant growth, specifically early apoplastic pH fluctuations are induced by many stressors and hypothesized to be involved in stress signalling. Hence, this study aims to identify fast responses specific to alkaline pH and alkali salt stress by exposing the root of hydroponically grown Vicia faba L. plants to 150 min of either 50 mM NaHCO3 (pH 9) treatment or alkaline pH 9 alone. Apoplastic pH was monitored in real-time by ratiometric fluorescence microscopy simultaneously with SWIR transmission-based measurements of leaf water content (LWC). Moreover, we examined the effect of these stresses on apoplastic, symplastic and xylem ion and metabolite composition together with transcriptions of certain stress-responsive genes. Physiological and transcriptional changes were observed in response to NaHCO3 but not to alkaline pH alone. NaHCO3 elicited a transient reduction in LWC, followed by a transient alkalinization of the apoplast and stomatal closure. Simultaneously, organic acids and sugars accumulated. Fast upregulation of stress-responsive genes showed the significance of gene regulation for early plant adaptation to alkali salt stress.
Collapse
Affiliation(s)
- Amit Sagervanshi
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany; Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Germany
| | - Hartmut Kaiser
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany.
| |
Collapse
|
22
|
Naing AH, Campol JR, Kang H, Xu J, Chung MY, Kim CK. Role of Ethylene Biosynthesis Genes in the Regulation of Salt Stress and Drought Stress Tolerance in Petunia. FRONTIERS IN PLANT SCIENCE 2022; 13:844449. [PMID: 35283920 PMCID: PMC8906779 DOI: 10.3389/fpls.2022.844449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 06/12/2023]
Abstract
Ethylene plays a critical signaling role in the abiotic stress tolerance mechanism. However, the role of ethylene in regulating abiotic stress tolerance in petunia has not been well-investigated, and the underlying molecular mechanism by which ethylene regulates abiotic stress tolerance is still unknown. Therefore, we examined the involvement of ethylene in salt and drought stress tolerance of petunia using the petunia wild type cv. "Merage Rose" and the ethylene biosynthesis genes (PhACO1 and PhACO3)-edited mutants (phaco1 and phaco3). Here, we discovered that editing PhACO1 and PhACO3 reduced ethylene production in the mutants, and mutants were more sensitive to salt and drought stress than the wild type (WT). This was proven by the better outcomes of plant growth and physiological parameters and ion homeostasis in WT over the mutants. Molecular analysis revealed that the expression levels of the genes associated with antioxidant, proline synthesis, ABA synthesis and signaling, and ethylene signaling differed significantly between the WT and mutants, indicating the role of ethylene in the transcriptional regulation of the genes associated with abiotic stress tolerance. This study highlights the involvement of ethylene in abiotic stress adaptation and provides a physiological and molecular understanding of the role of ethylene in abiotic stress response in petunia. Furthermore, the finding alerts researchers to consider the negative effects of ethylene reduction on abiotic stress tolerance when editing the ethylene biosynthesis genes to improve the postharvest quality of horticultural crops.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Jova Riza Campol
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Hyunhee Kang
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Junping Xu
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
23
|
Yang S, Liu H, Zhao Y, Su H, Wei X, Wang Z, Zhao X, Zhang XW, Yuan Y. Map-Based Cloning and Characterization of Br-dyp1, a Gene Conferring Dark Yellow Petal Color Trait in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:841328. [PMID: 35251110 PMCID: PMC8891484 DOI: 10.3389/fpls.2022.841328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 05/29/2023]
Abstract
Flower color is an important trait in Brassica species. However, genes responsible for the dark yellow flower trait in Chinese cabbage have not been reported. In this study, we identified a dark-yellow-flowered Chinese cabbage line SD369. Genetic analysis indicated that the dark yellow flower trait in SD369 was controlled by a single recessive locus, Br-dyp1 (dark yellow petal color 1 in Brassica rapa). Using bulked segregant RNA sequencing and kompetitive allele-specific PCR assays, Br-dyp1 was fine-mapped to an interval of 53.6 kb on chromosome A09. Functional annotation analysis, expression analysis, and sequence variation analysis revealed that Bra037130 (BraA09.ZEP), which encodes a zeaxanthin epoxidase, was the most likely candidate gene for Br-dyp1. Carotenoid profile analysis suggested that Bra037130 (BraA09.ZEP) might participate in the epoxidation from zeaxanthin to violaxanthin. The 679 bp insertion in dark yellow petal caused premature stop codon, thus caused the loss-of-function of the enzyme zeaxanthin epoxidase (ZEP), which disturbed the carotenoid metabolism, and caused the increased accumulation of total carotenoid, and finally converted the flower color from yellow to dark yellow. Comparative transcriptome analysis also showed that the "carotenoid biosynthesis" pathway was significantly enriched, and genes involved in carotenoid degradation and abscisic acid biosynthesis and metabolism were significantly downregulated. Furthermore, we developed and validated the functional marker Br-dyp1-InDel for Br-dyp1. Overall, these results provide insight into the molecular basis of carotenoid-based flower coloration in B. rapa and reveal valuable information for marker-assisted selection breeding in Chinese cabbage.
Collapse
Affiliation(s)
- Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Honglei Liu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaobin Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiao-Wei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Ma H, Li P, Liu X, Li C, Zhang S, Wang X, Tao X. Poly-γ-glutamic acid enhanced the drought resistance of maize by improving photosynthesis and affecting the rhizosphere microbial community. BMC PLANT BIOLOGY 2022; 22:11. [PMID: 34979944 PMCID: PMC8722152 DOI: 10.1186/s12870-021-03392-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/09/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. RESULTS In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT-PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. CONCLUSIONS Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community.
Collapse
Affiliation(s)
- Haizhen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Panpan Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Xingwang Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Can Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Shengkui Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Xiaohan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Xia Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
25
|
Lee SU, Mun BG, Bae EK, Kim JY, Kim HH, Shahid M, Choi YI, Hussain A, Yun BW. Drought Stress-Mediated Transcriptome Profile Reveals NCED as a Key Player Modulating Drought Tolerance in Populus davidiana. FRONTIERS IN PLANT SCIENCE 2021; 12:755539. [PMID: 34777433 PMCID: PMC8581814 DOI: 10.3389/fpls.2021.755539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Populus trichocarpa has been studied as a model poplar species through biomolecular approaches and was the first tree species to be genome sequenced. In this study, we employed a high throughput RNA-sequencing (RNA-seq) mediated leaf transcriptome analysis to investigate the response of four different Populus davidiana cultivars to drought stress. Following the RNA-seq, we compared the transcriptome profiles and identified two differentially expressed genes (DEGs) with contrasting expression patterns in the drought-sensitive and tolerant groups, i.e., upregulated in the drought-tolerant P. davidiana groups but downregulated in the sensitive group. Both these genes encode a 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme required for abscisic acid (ABA) biosynthesis. The high-performance liquid chromatography (HPLC) measurements showed a significantly higher ABA accumulation in the cultivars of the drought-tolerant group following dehydration. The Arabidopsis nced3 loss-of-function mutants showed a significantly higher sensitivity to drought stress, ~90% of these plants died after 9 days of drought stress treatment. The real-time PCR analysis of several key genes indicated a strict regulation of drought stress at the transcriptional level in the P. davidiana drought-tolerant cultivars. The transgenic P. davidiana NCED3 overexpressing (OE) plants were significantly more tolerant to drought stress as compared with the NCED knock-down RNA interference (RNAi) lines. Further, the NCED OE plants accumulated a significantly higher quantity of ABA and exhibited strict regulation of drought stress at the transcriptional level. Furthermore, we identified several key differences in the amino acid sequence, predicted structure, and co-factor/ligand binding activity of NCED3 between drought-tolerant and susceptible P. davidiana cultivars. Here, we presented the first evidence of the significant role of NCED genes in regulating ABA-dependent drought stress responses in the forest tree P. davidiana and uncovered the molecular basis of NCED3 evolution associated with increased drought tolerance.
Collapse
Affiliation(s)
- Sang-Uk Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Bong-Gyu Mun
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Eun-Kyung Bae
- Forest Microbiology Division, National Institute of Forest Science, Suwon-si, South Korea
| | - Jae-Young Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Hyun-Ho Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Shahid
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
- Agriculture Research Institute, Mingora, Swat, Pakistan
| | - Young-Im Choi
- Forest Biotechnology Division, National Institute of Forest Science, Suwon-si, South Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
26
|
Koramutla MK, Negi M, Ayele BT. Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes (Basel) 2021; 12:1620. [PMID: 34681014 PMCID: PMC8535772 DOI: 10.3390/genes12101620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Plant growth and development and interactions with the environment are regulated by phytohormones and other signaling molecules. During their evolution, plants have developed strategies for efficient signal perception and for the activation of signal transduction cascades to maintain proper growth and development, in particular under adverse environmental conditions. Abscisic acid (ABA) is one of the phytohormones known to regulate plant developmental events and tolerance to environmental stresses. The role of ABA is mediated by both its accumulated level, which is regulated by its biosynthesis and catabolism, and signaling, all of which are influenced by complex regulatory mechanisms. Under stress conditions, plants employ enzymatic and non-enzymatic antioxidant strategies to scavenge excess reactive oxygen species (ROS) and mitigate the negative effects of oxidative stress. Glutathione (GSH) is one of the main antioxidant molecules playing a critical role in plant survival under stress conditions through the detoxification of excess ROS, maintaining cellular redox homeostasis and regulating protein functions. GSH has recently emerged as an important signaling molecule regulating ABA signal transduction and associated developmental events, and response to stressors. This review highlights the current knowledge on the interplay between ABA and GSH in regulating seed dormancy, germination, stomatal closure and tolerance to drought.
Collapse
Affiliation(s)
| | | | - Belay T. Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.K.K.); (M.N.)
| |
Collapse
|
27
|
Zhao X, Zhang X, Liu J, Li D, Tao Y, Tian Y, Li P, Sun S, Liu D. Identification of key enzymes involved in the accumulation of carotenoids during fruit ripening of
Lycium barbarum
L. by a proteomic approach. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaolu Zhao
- School of Food & Wine Ningxia University Yinchuan 750021 China
| | - Xikang Zhang
- School of Agriculture Ningxia University Yinchuan 750021 China
| | - Jun Liu
- School of Agriculture Ningxia University Yinchuan 750021 China
| | - Dongdong Li
- School of Agriculture Ningxia University Yinchuan 750021 China
| | - Yingmei Tao
- School of Agriculture Ningxia University Yinchuan 750021 China
| | - Yutan Tian
- School of Food & Wine Ningxia University Yinchuan 750021 China
| | - Peipei Li
- School of Food & Wine Ningxia University Yinchuan 750021 China
| | - Shaoyi Sun
- School of Food & Wine Ningxia University Yinchuan 750021 China
| | - Dunhua Liu
- School of Food & Wine Ningxia University Yinchuan 750021 China
- School of Agriculture Ningxia University Yinchuan 750021 China
| |
Collapse
|
28
|
Karanja JK, Aslam MM, Qian Z, Yankey R, Dodd IC, Weifeng X. Abscisic Acid Mediates Drought-Enhanced Rhizosheath Formation in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:658787. [PMID: 34421937 PMCID: PMC8378331 DOI: 10.3389/fpls.2021.658787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
The rhizosheath, commonly defined as soil adhering to the root surface, may confer drought tolerance in various crop species by enhancing access to water and nutrients under drying stress conditions. Since the role of phytohormones in establishing this trait remains largely unexplored, we investigated the role of ABA in rhizosheath formation of wild-type (WT) and ABA-deficient (notabilis, not) tomatoes. Both genotypes had similar rhizosheath weight, root length, and root ABA concentration in well-watered soil. Drying stress treatment decreased root length similarly in both genotypes, but substantially increased root ABA concentration and rhizosheath weight of WT plants, indicating an important role for ABA in rhizosheath formation. Neither genotype nor drying stress treatment affected root hair length, but drying stress treatment decreased root hair density of not. Under drying stress conditions, root hair length was positively correlated with rhizosheath weight in both genotypes, while root hair density was positively correlated with rhizosheath weight in well-watered not plants. Root transcriptome analysis revealed that drought stress increased the expression of ABA-responsive transcription factors, such as AP2-like ER TF, alongside other drought-regulatory genes associated with ABA (ABA 8'-hydroxylase and protein phosphatase 2C). Thus, root ABA status modulated the expression of specific gene expression pathways. Taken together, drought-induced rhizosheath enhancement was ABA-dependent, but independent of root hair length.
Collapse
Affiliation(s)
- Joseph K. Karanja
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mehtab Muhammad Aslam
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhang Qian
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Richard Yankey
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Xu Weifeng
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
29
|
Shimizu T, Kanno Y, Suzuki H, Watanabe S, Seo M. Arabidopsis NPF4.6 and NPF5.1 Control Leaf Stomatal Aperture by Regulating Abscisic Acid Transport. Genes (Basel) 2021; 12:genes12060885. [PMID: 34201150 PMCID: PMC8227765 DOI: 10.3390/genes12060885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
The plant hormone abscisic acid (ABA) is actively synthesized in vascular tissues and transported to guard cells to promote stomatal closure. Although several transmembrane ABA transporters have been identified, how the movement of ABA within plants is regulated is not fully understood. In this study, we determined that Arabidopsis NPF4.6, previously identified as an ABA transporter expressed in vascular tissues, is also present in guard cells and positively regulates stomatal closure in leaves. We also found that mutants defective in NPF5.1 had a higher leaf surface temperature compared to the wild type. Additionally, NPF5.1 mediated cellular ABA uptake when expressed in a heterologous yeast system. Promoter activities of NPF5.1 were detected in several leaf cell types. Taken together, these observations indicate that NPF5.1 negatively regulates stomatal closure by regulating the amount of ABA that can be transported from vascular tissues to guard cells.
Collapse
Affiliation(s)
- Takafumi Shimizu
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
| | - Hiromi Suzuki
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
- Correspondence:
| |
Collapse
|
30
|
Lee SY, Jang SJ, Jeong HB, Lee SY, Venkatesh J, Lee JH, Kwon JK, Kang BC. A mutation in Zeaxanthin epoxidase contributes to orange coloration and alters carotenoid contents in pepper fruit (Capsicum annuum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1692-1707. [PMID: 33825226 DOI: 10.1111/tpj.15264] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 05/28/2023]
Abstract
Phytoene synthase (PSY1), capsanthin-capsorubin synthase (CCS), and pseudo-response regulator 2 (PRR2) are three major genes controlling fruit color in pepper (Capsicum spp.). However, the diversity of fruit color in pepper cannot be completely explained by these three genes. Here, we used an F2 population derived from Capsicum annuum 'SNU-mini Orange' (SO) and C. annuum 'SNU-mini Yellow' (SY), both harboring functional PSY1 and mutated CCS, and observed that yellow color was dominant over orange color. We performed genotyping-by-sequencing and mapped the genetic locus to a 6.8-Mb region on chromosome 2, which we named CaOr. We discovered a splicing mutation in the zeaxanthin epoxidase (ZEP) gene within this region leading to a premature stop codon. HPLC analysis showed that SO contained higher amounts of zeaxanthin and total carotenoids in mature fruits than SY. A color complementation assay using Escherichia coli harboring carotenoid biosynthetic genes showed that the mutant ZEP protein had reduced enzymatic activity. Transmission electron microscopy of plastids revealed that the ZEP mutation affected plastid development with more rod-shaped inner membrane structures in chromoplasts of mature SO fruits. To validate the role of ZEP in fruit color formation, we performed virus-induced gene silencing of ZEP in the yellow-fruit cultivar C. annuum 'Micropep Yellow' (MY). The silencing of ZEP caused significant changes in the ratios of zeaxanthin to its downstream products and increased total carotenoid contents. Thus, we conclude that the ZEP genotype can determine orange or yellow mature fruit color in pepper.
Collapse
Affiliation(s)
- Seo-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So-Jeong Jang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyo-Bong Jeong
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Se-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jelli Venkatesh
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
31
|
Li Y, Jiao M, Li Y, Zhong Y, Li X, Chen Z, Chen S, Wang J. Penicillium chrysogenum polypeptide extract protects tobacco plants from tobacco mosaic virus infection through modulation of ABA biosynthesis and callose priming. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3526-3539. [PMID: 33687058 PMCID: PMC8096601 DOI: 10.1093/jxb/erab102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 03/02/2021] [Indexed: 05/26/2023]
Abstract
The polypeptide extract of the dry mycelium of Penicillium chrysogenum (PDMP) can protect tobacco plants from tobacco mosaic virus (TMV), although the mechanism underlying PDMP-mediated TMV resistance remains unknown. In our study, we analysed a potential mechanism via RNA sequencing (RNA-seq) and found that the abscisic acid (ABA) biosynthetic pathway and β-1,3-glucanase, a callose-degrading enzyme, might play an important role in PDMP-induced priming of resistance to TMV. To test our hypothesis, we successfully generated a Nicotiana benthamiana ABA biosynthesis mutant and evaluated the role of the ABA pathway in PDMP-induced callose deposition during resistance to TMV infection. Our results suggested that PDMP can induce callose priming to defend against TMV movement. PDMP inhibited TMV movement by increasing callose deposition around plasmodesmata, but this phenomenon did not occur in the ABA biosynthesis mutant; moreover, these effects of PDMP on callose deposition could be rescued by treatment with exogenous ABA. Our results suggested that callose deposition around plasmodesmata in wild-type plants is mainly responsible for the restriction of TMV movement during the PDMP-induced defensive response to TMV infection, and that ABA biosynthesis apparently plays a crucial role in PDMP-induced callose priming for enhancing defence against TMV.
Collapse
Affiliation(s)
- Yu Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Mengting Jiao
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Yingjuan Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Yu Zhong
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Xiaoqin Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Zhuangzhuang Chen
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Jianguang Wang
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| |
Collapse
|
32
|
Geilfus CM, Zhang X, Mithöfer A, Burgel L, Bárdos G, Zörb C. Leaf apoplastic alkalization promotes transcription of the ABA-synthesizing enzyme Vp14 and stomatal closure in Zea mays. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2686-2695. [PMID: 33345268 PMCID: PMC8006549 DOI: 10.1093/jxb/eraa589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The chloride component of NaCl salinity causes the leaf apoplast to transiently alkalinize. This transition in pH reduces stomatal aperture. However, whether this apoplastic pH (pHapo) transient initiates stomatal closure by interacting with other chloride stress-induced responses or whether the pH transient alone initiates stomatal closure is unknown. To clarify the problem, the transient alkalinization of the leaf apoplast was mimicked in intact maize (Zea mays L.) by infiltrating near-neutral pH buffers into the leaf apoplast. Effects of the pHapo transient could thus be investigated independently from other chloride stress-derived effects. Microscopy-based ratiometric live pHapo imaging was used to monitor pHapoin planta. LC-MS/MS and real-time quantitative reverse transcription-PCR leaf analyses showed that the artificially induced pHapo transient led to an increase in the concentrations of the stomata-regulating plant hormone abscisic acid (ABA) and in transcripts of the key ABA-synthesizing gene ZmVp14 in the leaf. Since stomatal aperture and stomatal conductance decreased according to pHapo, we conclude that the pHapo transient alone initiates stomatal closure. Therefore, the functionality does not depend on interactions with other compounds induced by chloride stress. Overall, our data indicate that the pH of the leaf apoplast links chloride salinity with the control of stomatal aperture via effects exerted on the transcription of ABA.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg, Berlin, Germany
| | - Xudong Zhang
- Institute of Crop Science, Quality of Plant Products, University Hohenheim, Schloss, Westhof-West, Stuttgart, Germany
| | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, Hans-Knöll-Straße, Jena, Germany
| | - Lisa Burgel
- Institute of Crop Science, Quality of Plant Products, University Hohenheim, Schloss, Westhof-West, Stuttgart, Germany
| | - Gyöngyi Bárdos
- Institute of Crop Science, Quality of Plant Products, University Hohenheim, Schloss, Westhof-West, Stuttgart, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University Hohenheim, Schloss, Westhof-West, Stuttgart, Germany
| |
Collapse
|
33
|
De Ollas C, González-Guzmán M, Pitarch Z, Matus JT, Candela H, Rambla JL, Granell A, Gómez-Cadenas A, Arbona V. Identification of ABA-Mediated Genetic and Metabolic Responses to Soil Flooding in Tomato ( Solanum lycopersicum L. Mill). FRONTIERS IN PLANT SCIENCE 2021; 12:613059. [PMID: 33746996 PMCID: PMC7973378 DOI: 10.3389/fpls.2021.613059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 05/25/2023]
Abstract
Soil flooding is a compound abiotic stress that alters soil properties and limits atmospheric gas diffusion (O2 and CO2) to the roots. The involvement of abscisic acid (ABA) in the regulation of soil flooding-specific genetic and metabolic responses has been scarcely studied despite its key importance as regulator in other abiotic stress conditions. To attain this objective, wild type and ABA-deficient tomatoes were subjected to short-term (24 h) soil waterlogging. After this period, gas exchange parameters were reduced in the wild type but not in ABA-deficient plants that always had higher E and g s . Transcript and metabolite alterations were more intense in waterlogged tissues, with genotype-specific variations. Waterlogging reduced the ABA levels in the roots while inducing PYR/PYL/RCAR ABA receptors and ABA-dependent transcription factor transcripts, of which induction was less pronounced in the ABA-deficient genotype. Ethylene/O2-dependent genetic responses (ERFVIIs, plant anoxia survival responses, and genes involved in the N-degron pathway) were induced in hypoxic tissues independently of the genotype. Interestingly, genes encoding a nitrate reductase and a phytoglobin involved in NO biosynthesis and scavenging and ERFVII stability were induced in waterlogged tissues, but to a lower extent in ABA-deficient tomato. At the metabolic level, flooding-induced accumulation of Ala was enhanced in ABA-deficient lines following a differential accumulation of Glu and Asp in both hypoxic and aerated tissues, supporting their involvement as sources of oxalacetate to feed the tricarboxylic acid cycle in waterlogged tissues and constituting a potential advantage upon long periods of soil waterlogging. The promoter analysis of upregulated genes indicated that the production of oxalacetate from Asp via Asp oxidase, energy processes such as acetyl-CoA, ATP, and starch biosynthesis, and the lignification process were likely subjected to ABA regulation. Taken together, these data indicate that ABA depletion in waterlogged tissues acts as a positive signal, inducing several specific genetic and metabolic responses to soil flooding.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Miguel González-Guzmán
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Zara Pitarch
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology, Universitat de València – Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - José Luis Rambla
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, València, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
34
|
Huang HE, Ho MH, Chang H, Chao HY, Ger MJ. Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:136-146. [PMID: 32750653 DOI: 10.1016/j.plaphy.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 05/02/2023]
Abstract
High-salinity stress is one of the major limiting factors on crop productivity. Physiological strategies against high-salinity stress include generation of reactive oxygen species (ROS), induction of stress-related genes expression, accumulation of abscisic acid (ABA) and up-regulation of antiporters. ROS are metabolism by-products and involved in signal transduction pathway. Constitutive expression of plant ferrodoxin-like protein (PFLP) gene enhances pathogen-resistance activities and root-hair growth through promoting ROS generation. However, the function of PFLP in abiotic stress responses is unclear. In this study, PFLP-1 and PFLP-2-transgenic rice plants were generated to elucidate the role of PFLP under salinity stress. PFLP overexpression significantly increased salt tolerance in PFLP-transgenic rice plants compared with non-transgenic plants (Oryza sativa japonica cv. Tainung 67, designated as TNG67). In high-salinity conditions, PFLP-transgenic plants exhibited earlier ROS production, higher antioxidant enzyme activities, higher ABA accumulation, up-regulated expression of stress-related genes (OsRBOHa, Cu/Zn SOD, OsAPX, OsNCED2, OsSOS1, OsCIPK24, OsCBL4, and OsNHX2), and leaf sodium ion content was lower compared with TNG67 plant. In addition, transgenic lines maintained electron transport rates and contained lower malondialdhyde (MDA) content than TNG67 plant did under salt-stress conditions. Overall results indicated salinity tolerance was improved by PFLP overexpression in transgenic rice plant. The PFLP gene is a potential candidate for improving salinity tolerance for valuable agricultural crops.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan.
| | - Mei-Hsuan Ho
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsien-Yu Chao
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
35
|
Arbona V, Ximénez-Embún MG, Echavarri-Muñoz A, Martin-Sánchez M, Gómez-Cadenas A, Ortego F, González-Guzmán M. Early Molecular Responses of Tomato to Combined Moderate Water Stress and Tomato Red Spider Mite Tetranychus evansi Attack. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091131. [PMID: 32878349 PMCID: PMC7570366 DOI: 10.3390/plants9091131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 05/25/2023]
Abstract
Interaction between plants and their environment is changing as a consequence of the climate change and global warming, increasing the performance and dispersal of some pest species which become invasive species. Tetranychus evansi also known as the tomato red spider mite, is an invasive species which has been reported to increase its performance when feeding in the tomato cultivar Moneymaker (MM) under water deficit conditions. In order to clarify the underlying molecular events involved, we examined early plant molecular changes occurring on MM during T. evansi infestation alone or in combination with moderate drought stress. Hormonal profiling of MM plants showed an increase in abscisic acid (ABA) levels in drought-stressed plants while salicylic acid (SA) levels were higher in drought-stressed plants infested with T. evansi, indicating that SA is involved in the regulation of plant responses to this stress combination. Changes in the expression of ABA-dependent DREB2, NCED1, and RAB18 genes confirmed the presence of drought-dependent molecular responses in tomato plants and indicated that these responses could be modulated by the tomato red spider mite. Tomato metabolic profiling identified 42 differentially altered compounds produced by T. evansi attack, moderate drought stress, and/or their combination, reinforcing the idea of putative manipulation of tomato plant responses by tomato red spider mite. Altogether, these results indicate that the tomato red spider mite acts modulating plant responses to moderate drought stress by interfering with the ABA and SA hormonal responses, providing new insights into the early events occurring on plant biotic and abiotic stress interaction.
Collapse
Affiliation(s)
- Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castelló de la Plana, Spain; (V.A.); (A.G.-C.)
| | - Miguel G. Ximénez-Embún
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| | - Alberto Echavarri-Muñoz
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| | - Marcos Martin-Sánchez
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castelló de la Plana, Spain; (V.A.); (A.G.-C.)
| | - Félix Ortego
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| | - Miguel González-Guzmán
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castelló de la Plana, Spain; (V.A.); (A.G.-C.)
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.G.X.-E.); (A.E.-M.); (M.M.-S.); (F.O.)
| |
Collapse
|
36
|
Molinari MDC, Fuganti-Pagliarini R, Marin SRR, Ferreira LC, Barbosa DDA, Marcolino-Gomes J, Oliveira MCND, Mertz-Henning LM, Kanamori N, Takasaki H, Urano K, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL. Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genet Mol Biol 2020; 43:e20190292. [PMID: 32511664 PMCID: PMC7278712 DOI: 10.1590/1678-4685-gmb-2019-0292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/06/2020] [Indexed: 01/13/2023] Open
Abstract
Water deficit is an important climatic problem that can impair agriculture yield and economy. Genetically modified soybean plants containing the AtNCED3 gene were obtained aiming drought-tolerance improvement. The NCED3 gene encodes a 9-cis-epoxycarotenoid dioxygenase (NCED, EC 1.13.11.51), an important enzyme in abscisic acid biosynthesis. ABA activates the expression of drought-responsive genes, in water-deficit conditions, targeting defense mechanisms and enabling plants to survive under low water availability. Results from greenhouse experiments showed that the transgene AtNCED3 and the endogenous genes GmAREB1, GmPP2C, GmSnRK2 and GmAAO3 presented higher expression under water deficit (WD) in the event 2Ha11 than in WT-plants. No significant correlation was observed between the plant materials and WD conditions for growth parameters; however, gas exchange measurements decreased in the GM event, which also showed 80% higher intrinsic water use when compared to WT plants. In crop season 2015/16, event 2Ha11 showed higher total number of pods, higher number of pods with seeds and yield than WT plants. ABA concentration was also higher in GM plants under WD. These results obtained in field screenings suggest that AtNCED3 soybean plants might outperform under drought, reducing economic and yield losses, thus being a good candidate line to be incorporated in the soybean-breeding program to develop drought-tolerant cultivars.
Collapse
Affiliation(s)
- Mayla Daiane Correa Molinari
- Universidade Estadual de Londrina, Departamento Geral de Biologia, Londrina, PR, Brazil.,Embrapa Soja, Londrina, PR, Brazil
| | | | | | | | - Daniel de Amorim Barbosa
- Universidade Estadual de Londrina, Departamento Geral de Biologia, Londrina, PR, Brazil.,Embrapa Soja, Londrina, PR, Brazil
| | | | | | | | - Norihito Kanamori
- Japan International Research Center for Agricultural Sciences, Biological Resources and Post-harvest Division, Tsukuba, Ibaraki, Japan
| | - Hironori Takasaki
- RIKEN Center for Sustainable Resource Science, Gene Discovery Research Group, Tsukuba, Ibaraki, Japan
| | - Kaoru Urano
- RIKEN Center for Sustainable Resource Science, Gene Discovery Research Group, Tsukuba, Ibaraki, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Gene Discovery Research Group, Tsukuba, Ibaraki, Japan
| | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences, Biological Resources and Post-harvest Division, Tsukuba, Ibaraki, Japan
| | - Kazuko Yamaguchi-Shinozaki
- The University of Tokyo, Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
37
|
Martínez-Andújar C, Martínez-Pérez A, Ferrández-Ayela A, Albacete A, Martínez-Melgarejo PA, Dodd IC, Thompson AJ, Pérez-Pérez JM, Pérez-Alfocea F. Impact of overexpression of 9-cis-epoxycarotenoid dioxygenase on growth and gene expression under salinity stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110268. [PMID: 32534608 DOI: 10.1016/j.plantsci.2019.110268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 06/11/2023]
Abstract
To better understand abscisic acid (ABA)'s role in the salinity response of tomato (Solanum lycopersicum L.), two independent transgenic lines, sp5 and sp12, constitutively overexpressing the LeNCED1 gene (encoding 9-cis-epoxycarotenoid dioxygenase, a key enzyme in ABA biosynthesis) and the wild type (WT) cv. Ailsa Craig, were cultivated hydroponically with or without the addition of 100 mM NaCl. Independent of salinity, LeNCED1 overexpression (OE) increased ABA concentration in leaves and xylem sap, and salinity interacted with the LeNCED1 transgene to enhance ABA accumulation in xylem sap and roots. Under control conditions, LeNCED1 OE limited root and shoot biomass accumulation, which was correlated with decreased leaf gas exchange. In salinized plants, LeNCED1 OE reduced the percentage loss in shoot and root biomass accumulation, leading to a greater total root length than WT. Root qPCR analysis of the sp12 line under control conditions revealed upregulated genes related to ABA, jasmonic acid and ethylene synthesis and signalling, gibberellin and auxin homeostasis and osmoregulation processes. Under salinity, LeNCED1 OE prevented the induction of genes involved in ABA metabolism and GA and auxin deactivation that occurred in WT, but the induction of ABA signalling and stress-adaptive genes was maintained. Thus, complex changes in phytohormone and stress-related gene expression are associated with constitutive upregulation of a single ABA biosynthesis gene, alleviating salinity-dependent growth limitation.
Collapse
Affiliation(s)
| | | | | | | | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | | |
Collapse
|
38
|
Kumar R, Janila P, Vishwakarma MK, Khan AW, Manohar SS, Gangurde SS, Variath MT, Shasidhar Y, Pandey MK, Varshney RK. Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:992-1003. [PMID: 31553830 PMCID: PMC7061874 DOI: 10.1111/pbi.13266] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/28/2019] [Accepted: 09/22/2019] [Indexed: 05/11/2023]
Abstract
The subspecies fastigiata of cultivated groundnut lost fresh seed dormancy (FSD) during domestication and human-made selection. Groundnut varieties lacking FSD experience precocious seed germination during harvest imposing severe losses. Development of easy-to-use genetic markers enables early-generation selection in different molecular breeding approaches. In this context, one recombinant inbred lines (RIL) population (ICGV 00350 × ICGV 97045) segregating for FSD was used for deploying QTL-seq approach for identification of key genomic regions and candidate genes. Whole-genome sequencing (WGS) data (87.93 Gbp) were generated and analysed for the dormant parent (ICGV 97045) and two DNA pools (dormant and nondormant). After analysis of resequenced data from the pooled samples with dormant parent (reference genome), we calculated delta-SNP index and identified a total of 10,759 genomewide high-confidence SNPs. Two candidate genomic regions spanning 2.4 Mb and 0.74 Mb on the B05 and A09 pseudomolecules, respectively, were identified controlling FSD. Two candidate genes-RING-H2 finger protein and zeaxanthin epoxidase-were identified in these two regions, which significantly express during seed development and control abscisic acid (ABA) accumulation. QTL-seq study presented here laid out development of a marker, GMFSD1, which was validated on a diverse panel and could be used in molecular breeding to improve dormancy in groundnut.
Collapse
Affiliation(s)
- Rakesh Kumar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Aamir W. Khan
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Surendra S. Manohar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Murali T. Variath
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Yaduru Shasidhar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Manish K. Pandey
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| |
Collapse
|
39
|
Chen TT, Liu FF, Xiao DW, Jiang XY, Li P, Zhao SM, Hou BK, Li YJ. The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses. PLANT MOLECULAR BIOLOGY 2020; 102:389-401. [PMID: 31894456 DOI: 10.1007/s11103-019-00953-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/20/2019] [Indexed: 05/03/2023]
Abstract
This study revealed that the Arabidopsis UGT75B1 plays an important role in modulating ABA activity by glycosylation when confronting stress environments. The cellular ABA content and activity can be tightly controlled in several ways, one of which is glycosylation by family 1 UDP-glycosyltransferases (UGTs). Previous analysis has shown UGT75B1 activity towards ABA in vitro. However, the biological role of UGT75B1 remains to be elucidated. Here, we characterized the function of UGT75B1 in abiotic stress responses via ABA glycosylation. GUS assay and qRT-PCR indicated that UGT75B1 is significantly upregulated by adverse conditions, such as osmotic stress, salinity and ABA. Overexpression of UGT75B1 in Arabidopsis leads to higher seed germination rates and seedling greening rates upon exposure to salt and osmotic stresses. In contrast, the big UGT75B1 overexpression plants are more sensitive under salt and osmotic stresses. Additionally, the UGT75B1 overexpression plants showed larger stomatal aperture and more water loss under drought condition, which can be explained by lower ABA levels examined in UGT75B1 OE plants in response to water deficit conditions. Consistently, UGT75B1 ectopic expression leads to downregulation of many ABA-responsive genes under stress conditions, including ABI3, ABI5 newly germinated seedlings and RD29A, KIN1, AIL1 in big plants. In summary, our results revealed that the Arabidopsis UGT75B1 plays an important role in coping with abiotic stresses via glycosylation of ABA.
Collapse
Affiliation(s)
- Ting-Ting Chen
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Fang-Fei Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Dong-Wang Xiao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiao-Yi Jiang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Pan Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
- College of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Shu-Man Zhao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Bing-Kai Hou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yan-Jie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
40
|
Teixeira A, Martins V, Frusciante S, Cruz T, Noronha H, Diretto G, Gerós H. Flavescence Dorée-Derived Leaf Yellowing in Grapevine ( Vitis vinifera L.) Is Associated to a General Repression of Isoprenoid Biosynthetic Pathways. FRONTIERS IN PLANT SCIENCE 2020; 11:896. [PMID: 32625230 PMCID: PMC7311760 DOI: 10.3389/fpls.2020.00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Flavescence dorée (FD), caused by the phytoplasma Candidatus Phytoplasma vitis, is a major threat to vineyard survival in different European grape-growing areas. It has been recorded in French vineyards since the mid-1950s, and rapidly spread to other countries. In Portugal, the phytoplasma was first detected in the DOC region of 'Vinhos Verdes' in 2006, and reached the central region of the country in 2009. The infection causes strong accumulation of carbohydrates and phenolics in the mesophyll cells and a simultaneous decrease of chlorophylls, events accompanied by a down regulation of genes and proteins involved in the dark and light-dependent reactions and stabilization of the photosystem II (PSII). In the present study, to better elucidate the basis of the leaf chlorosis in infected grapevine cv. Loureiro, we studied the isoprenoid transcript-metabolite correlation in leaves from healthy and FD-infected vines. Specifically, targeted metabolome revealed that twenty-one compounds (out of thirty-two), including chlorophylls, carotenoids, quinones and tocopherols, were reduced in response to FD-infection. Thereafter, and consistently with the biochemical data, qPCR analysis highlighted a severe FD-mediated repression in key genes involved in isoprenoid biosynthetic pathways. A more diverse set of changes, on the contrary, was observed in the case of ABA metabolism. Principal component analysis (PCA) of all identified metabolites clearly separated healthy from FD-infected vines, therefore confirming that the infection strongly alters the biosynthesis of grapevine isoprenoids; additionally, forty-four genes and metabolites were identified as the components mostly explaining the variance between healthy and infected samples. Finally, transcript-metabolite network correlation analyses were exploited to display the main hubs of the infection process, which highlighted a strong role of VvCHLG, VvVTE and VvZEP genes and the chlorophylls intermediates aminolevulunic acid and porphobilinogen in response to FD infection. Overall, results indicated that the FD infection impairs the synthesis of isoprenoids, through the repression of key genes involved in the biosynthesis of chlorophylls, carotenoids, quinones and tocopherols.
Collapse
Affiliation(s)
- António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira,
| | - Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Sarah Frusciante
- Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Telmo Cruz
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Gianfranco Diretto
- Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
41
|
Wilmowicz E, Kućko A, Burchardt S, Przywieczerski T. Molecular and Hormonal Aspects of Drought-Triggered Flower Shedding in Yellow Lupine. Int J Mol Sci 2019; 20:E3731. [PMID: 31370140 PMCID: PMC6695997 DOI: 10.3390/ijms20153731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/01/2023] Open
Abstract
The drought is a crucial environmental factor that determines yielding of many crop species, e.g., Fabaceae, which are a source of valuable proteins for food and feed. Herein, we focused on the events accompanying drought-induced activation of flower abscission zone (AZ)-the structure responsible for flower detachment and, consequently, determining seed production in Lupinus luteus. Therefore, detection of molecular markers regulating this process is an excellent tool in the development of improved drought-resistant cultivars to minimize yield loss. We applied physiological, molecular, biochemical, immunocytochemical, and chromatography methods for a comprehensive examination of changes evoked by drought in the AZ cells. This factor led to significant cellular changes and activated AZ, which consequently increased the flower abortion rate. Simultaneously, drought caused an accumulation of mRNA of genes inflorescence deficient in abscission-like (LlIDL), receptor-like protein kinase HSL (LlHSL), and mitogen-activated protein kinase6 (LlMPK6), encoding succeeding elements of AZ activation pathway. The content of hydrogen peroxide (H2O2), catalase activity, and localization significantly changed which confirmed the appearance of stressful conditions and indicated modifications in the redox balance. Loss of water enhanced transcriptional activity of the abscisic acid (ABA) and ethylene (ET) biosynthesis pathways, which was manifested by elevated expression of zeaxanthin epoxidase (LlZEP), aminocyclopropane-1-carboxylic acid synthase (LlACS), and aminocyclopropane-1-carboxylic acid oxidase (LlACO) genes. Accordingly, both ABA and ET precursors were highly abundant in AZ cells. Our study provides information about several new potential markers of early response on water loss, which can help to elucidate the mechanisms that control plant response to drought, and gives a useful basis for breeders and agronomists to enhance tolerance of crops against the stress.
Collapse
Affiliation(s)
- Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland.
| | - Agata Kućko
- Department of Plant Physiology Warsaw, University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland
| | - Sebastian Burchardt
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland
| | - Tomasz Przywieczerski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland
| |
Collapse
|
42
|
Applications of Abscisic Acid and Increasing Concentrations of Calcium Affect the Partitioning of Mineral Nutrients between Tomato Leaf and Fruit Tissue. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5030049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined how abscisic acid (ABA) and calcium (Ca) concentrations in nutrient solution affect concentrations of mineral nutrients in tomato leaves and fruit. Tomato plants were grown in a greenhouse at 25/20 °C (day/night) under a 16 h photoperiod. Plants were treated with different concentrations of ABA and Ca. Calcium was applied via the irrigation lines at 60, 90, or 180 mg·L−1. ABA was applied as a combination of foliar sprays and root applications. For foliar ABA applications, treatments consisted of deionized (DI) water control (0.0 mg·L−1 ABA) or 500 mg·L−1 ABA. For ABA root applications, treatments consisted of no ABA control (0.0 mg·L−1 ABA) or 50 mg·L−1 ABA applied via the irrigation lines. Results indicate that mineral nutrient concentrations in tomato leaf and fruit tissue varied in connection with each exogenous application of ABA. Variability in mineral nutrient concentration depended on if ABA was applied to the leaf or root tissue. Additionally, increasing Ca treatment concentrations either decreased or did not change mineral nutrients in tomato and fruit tissue. Thus, tomato plants react to acquiring mineral nutrients in numerous mechanisms and, depending on how the applications of exogenous ABA are applied, can have varying effects on these mechanisms.
Collapse
|
43
|
Pashkovskiy PP, Vankova R, Zlobin IE, Dobrev P, Ivanov YV, Kartashov AV, Kuznetsov VV. Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:105-112. [PMID: 31091491 DOI: 10.1016/j.plaphy.2019.04.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Abscisic acid (ABA) is one of the main participants in the regulation of plant responses to water deficiency. Knowledge of the ABA signal transduction pathways in gymnosperms is rather limited, especially in comparison with those in angiosperms. Seedlings of Scots pine and Norway spruce are known for their contrasting behaviour strategies under water deficit. To characterize the possible role of ABA in these differences, ABA dynamics were investigated under conditions of water deficit in seedlings of these two species. The content of ABA and its catabolites was followed in the roots and needles of seedlings of Pinus sylvestris and Picea abies under conditions of polyethylene glycol (PEG)-induced water deficiency (-0.15 and -0.5 MPa) for 10 days. The expression of the main genes for ABA-biosynthetic enzymes was also analysed. ABA showed more pronounced stress-dependent dynamics in pine roots than in spruce roots, whereas in needles, the response was greater for spruce than pine. The ABA increase during drought was mainly due to de novo synthesis and the shift in the balance between ABA synthesis and catabolism towards synthesis. The ABA-glucosyl ester did not serve as a reserve for the release of free ABA under water deficiency. The expression levels of the main ABA biosynthetic genes showed a weak or no correlation with changes in ABA content under water stress, i.e., the ABA content in the seedlings of both species was not directly linked to the transcript levels of the main ABA biosynthetic genes. Less-pronounced stress-induced changes in ABA in pine needles than in spruce needles may be related to pine seedlings having a less conservative strategy of growth and maintenance of water balance under water deficit.
Collapse
Affiliation(s)
- Pavel P Pashkovskiy
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Ilya E Zlobin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia.
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Yury V Ivanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - Alexander V Kartashov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - Vladimir V Kuznetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| |
Collapse
|
44
|
Khadka VS, Vaughn K, Xie J, Swaminathan P, Ma Q, Cramer GR, Fennell AY. Transcriptomic response is more sensitive to water deficit in shoots than roots of Vitis riparia (Michx.). BMC PLANT BIOLOGY 2019; 19:72. [PMID: 30760212 PMCID: PMC6375209 DOI: 10.1186/s12870-019-1664-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 01/28/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Drought is an important constraint on grapevine sustainability. Vitis riparia, widely used in rootstock and scion breeding, has been studied in isolated leaf drying response studies; however, it is essential to identify key root and shoot water deficit signaling traits in intact plants. This information will aid improved scion and rootstock selection and management practices in grapevine. RNAseq data were generated from V. riparia roots and shoots under water deficit and well-watered conditions to determine root signaling and shoot responses to water deficit. RESULTS Shoot elongation, photosynthetic rate, and stomatal conductance were significantly reduced in water deficit (WD) treated than in well-watered grapevines. RNAseq analysis indicated greater transcriptional differences in shoots than in roots under WD, with 6925 and 1395 genes differentially expressed, respectively (q-value < 0.05). There were 50 and 25 VitisNet pathways significantly enriched in WD relative to well-watered treatments in grapevine shoots and roots, respectively. The ABA biosynthesis genes beta-carotene hydroxylase, zeaxanthin epoxidase, and 9-cis-epoxycarotenoid dioxygenases were up-regulated in WD root and WD shoot. A positive enrichment of ABA biosynthesis genes and signaling pathways in WD grapevine roots indicated enhanced root signaling to the shoot. An increased frequency of differentially expressed reactive oxygen species scavenging (ROS) genes were found in the WD shoot. Analyses of hormone signaling genes indicated a strong ABA, auxin, and ethylene network and an ABA, cytokinin, and circadian rhythm network in both WD shoot and WD root. CONCLUSIONS This work supports previous findings in detached leaf studies suggesting ABA-responsive binding factor 2 (ABF2) is a central regulator in ABA signaling in the WD shoot. Likewise, ABF2 may have a key role in V. riparia WD shoot and WD root. A role for ABF3 was indicated only in WD root. WD shoot and WD root hormone expression analysis identified strong ABA, auxin, ethylene, cytokinin, and circadian rhythm signaling networks. These results present the first ABA, cytokinin, and circadian rhythm signaling network in roots under water deficit. These networks point to organ specific regulators that should be explored to further define the communication network from soil to shoot.
Collapse
Affiliation(s)
- Vedbar Singh Khadka
- McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, South Dakota State University, Brookings, SD 57006 USA
- JABSOM Bioinformatics Core, Department of Complementary & Integrative Medicine, University of Hawaii, Honolulu, HI USA
| | - Kimberley Vaughn
- McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, South Dakota State University, Brookings, SD 57006 USA
| | - Juan Xie
- McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, South Dakota State University, Brookings, SD 57006 USA
- South Dakota State University, Brookings, SD 57006 USA
| | - Padmapriya Swaminathan
- McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, South Dakota State University, Brookings, SD 57006 USA
- South Dakota State University, Brookings, SD 57006 USA
| | - Qin Ma
- McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, South Dakota State University, Brookings, SD 57006 USA
- South Dakota State University, Brookings, SD 57006 USA
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV USA
| | - Anne Y. Fennell
- McFadden BioStress Laboratory, Agronomy, Horticulture, and Plant Science Department, South Dakota State University, Brookings, SD 57006 USA
- South Dakota State University, Brookings, SD 57006 USA
| |
Collapse
|
45
|
Loss of Function in Zeaxanthin Epoxidase of Dunaliella tertiolecta Caused by a Single Amino Acid Mutation within the Substrate-Binding Site. Mar Drugs 2018; 16:md16110418. [PMID: 30388729 PMCID: PMC6266236 DOI: 10.3390/md16110418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
The zea1 mutant of marine microalga Dunaliella tertiolecta accumulates zeaxanthin under normal growth conditions, and its phenotype has been speculated to be related to zeaxanthin epoxidase (ZEP). In this study, we isolated the ZEP gene from both wild-type D. tertiolecta and the mutant. We found that the zea1 mutant has a point mutation of the 1337th nucleotide of the ZEP sequence (a change from guanine to adenine), resulting in a change of glycine to aspartate in a highly conserved region in the catalytic domain. Similar expression levels of ZEP mRNA and protein in both wild-type and zea1 were confirmed by using qRT-PCR and western blot analysis, respectively. Additionally, the enzyme activity analysis of ZEPs in the presence of cofactors showed that the inactivation of ZEP in zea1 was not caused by deficiency in the levels of cofactors. From the predicted three-dimensional ZEP structure of zea1, we observed a conformational change on the substrate-binding site in the ZEP. A comparative analysis of the ZEP structures suggested that the conformational change induced by a single amino acid mutation might impact the interaction between the substrate and substrate-binding site, resulting in loss of zeaxanthin epoxidase function.
Collapse
|
46
|
Adams S, Grundy J, Veflingstad SR, Dyer NP, Hannah MA, Ott S, Carré IA. Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. THE NEW PHYTOLOGIST 2018; 220:893-907. [PMID: 30191576 DOI: 10.1111/nph.15415] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 05/02/2023]
Abstract
The LATE ELONGATED HYPOCOTYL (LHY) transcription factor functions as part of the oscillatory mechanism of the Arabidopsis circadian clock. This paper reports the genome-wide analysis of its binding targets and reveals a role in the control of abscisic acid (ABA) biosynthesis and downstream responses. LHY directly repressed expression of 9-cis-epoxycarotenoid dioxygenase enzymes, which catalyse the rate-limiting step of ABA biosynthesis. This suggested a mechanism for the circadian control of ABA accumulation in wild-type plants. Consistent with this hypothesis, ABA accumulated rhythmically in wild-type plants, peaking in the evening. LHY-overexpressing plants had reduced levels of ABA under drought stress, whereas loss-of-function mutants exhibited an altered rhythm of ABA accumulation. LHY also bound the promoter of multiple components of ABA signalling pathways, suggesting that it may also act to regulate responses downstream of the hormone. LHY promoted expression of ABA-responsive genes responsible for increased tolerance to drought and osmotic stress but alleviated the inhibitory effect of ABA on seed germination and plant growth. This study reveals a complex interaction between the circadian clock and ABA pathways, which is likely to make an important contribution to plant performance under drought and osmotic stress conditions.
Collapse
Affiliation(s)
- Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jack Grundy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Bayer CropScience NV, Technologiepark 38, 9052, Ghent, Belgium
| | - Siren R Veflingstad
- Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
- Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
| | - Nigel P Dyer
- Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Sascha Ott
- Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Isabelle A Carré
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
47
|
Frede K, Schreiner M, Zrenner R, Graefe J, Baldermann S. Carotenoid biosynthesis of pak choi (Brassica rapa ssp. chinensis) sprouts grown under different light-emitting diodes during the diurnal course. Photochem Photobiol Sci 2018; 17:1289-1300. [PMID: 30065986 DOI: 10.1039/c8pp00136g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-emitting diodes (LEDs) are considered the future of greenhouse lighting. This study investigates the carotenoid concentrations of pak choi sprouts after growth under blue, red and white LEDs at six different time points. Furthermore, the diurnal changes of RNA transcripts of key genes of the carotenoid biosynthesis pathway as well as of the carotenoid cleavage dioxygenase 4 (CCD4) gene and of the transcription factor genes elongated hypocotyl 5 (HY5) and circadian clock associated 1 (CCA1) were investigated. The carotenoid concentrations were steady throughout the day, but showed a small maximum in the afternoon. An average total carotenoid concentration of 536 ± 29 ng mg-1 DM produced under white LEDs was measured, which is comparable to previously described field-grown levels. The carotenoid concentrations were slightly lower under blue or red LEDs. Moreover, the diurnal RNA transcript rhythms of most of the carotenoid biosynthesis genes showed an increase during the light period, which can be correlated to the carotenoid maxima in the afternoon. Blue LEDs caused the highest transcriptional induction of biosynthetic genes as well as of CCD4, thereby indicating an increased flux through the pathway. In addition, the highest levels of HY5 transcripts and CCA1 transcripts were determined under blue LEDs.
Collapse
Affiliation(s)
- K Frede
- Leibniz Institute of Vegetable and Ornamental Crops, Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | | | | | | | | |
Collapse
|
48
|
Zotova L, Kurishbayev A, Jatayev S, Khassanova G, Zhubatkanov A, Serikbay D, Sereda S, Sereda T, Shvidchenko V, Lopato S, Jenkins C, Soole K, Langridge P, Shavrukov Y. Genes Encoding Transcription Factors TaDREB5 and TaNFYC-A7 Are Differentially Expressed in Leaves of Bread Wheat in Response to Drought, Dehydration and ABA. FRONTIERS IN PLANT SCIENCE 2018; 9:1441. [PMID: 30319682 PMCID: PMC6171087 DOI: 10.3389/fpls.2018.01441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/10/2018] [Indexed: 05/18/2023]
Abstract
Two groups of six spring bread wheat varieties with either high or low grain yield under the dry conditions of Central and Northern Kazakhstan were selected for analysis. Experiments were set up with the selected wheat varieties in controlled environments as follows: (1) slowly progressing drought imposed on plants in soil, (2) rapid dehydration of whole plants grown in hydroponics, (3) dehydration of detached leaves, and (4) ABA treatment of whole plants grown in hydroponics. Representatives of two different families of transcription factors (TFs), TaDREB5 and TaNFYC-A7, were found to be linked to yield-under-drought using polymorphic Amplifluor-like SNP marker assays. qRT-PCR revealed differing patterns of expression of these genes in the leaves of plants subjected to the above treatments. Under drought, TaDREB5 was significantly up-regulated in leaves of all high-yielding varieties tested and down-regulated in all low-yielding varieties, and the level of expression was independent of treatment type. In contrast, TaNFYC-A7 expression levels showed different responses in the high- and low-yield groups of wheat varieties. TaNFYC-A7 expression under dehydration (treatments 2 and 3) was higher than under drought (treatment 1) in all high-yielding varieties tested, while in all low-yielding varieties the opposite pattern was observed: the expression levels of this gene under drought were higher than under dehydration. Rapid dehydration of detached leaves and intact wheat plants grown in hydroponics produced similar changes in gene expression. ABA treatment of whole plants caused rapid stomatal closure and a rise in the transcript level of both genes during the first 30 min, which decreased 6 h after treatment. At this time-point, expression of TaNFYC-A7 was again significantly up-regulated compared to untreated controls, while TaDREB5 returned to its initial level of expression. These findings reveal significant differences in the transcriptional regulation of two drought-responsive and ABA-dependent TFs under slowly developing drought and rapid dehydration of wheat plants. The results obtained suggest that correlation between grain yield in dry conditions and TaNFYC-A7 expression levels in the examined wheat varieties is dependent on the length of drought development and/or strength of drought; while in the case of TaDREB5, no such dependence is observed.
Collapse
Affiliation(s)
- Lyudmila Zotova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Askar Zhubatkanov
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Dauren Serikbay
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Sergey Sereda
- Karaganda Research Institute of Plant Industry and Breeding, Karaganda, Kazakhstan
| | - Tatiana Sereda
- Karaganda Research Institute of Plant Industry and Breeding, Karaganda, Kazakhstan
| | - Vladimir Shvidchenko
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Sergiy Lopato
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Colin Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Kathleen Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
49
|
Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, Stange C. Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4113-4126. [PMID: 29860511 PMCID: PMC6054239 DOI: 10.1093/jxb/ery207] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/21/2018] [Indexed: 05/09/2023]
Abstract
Phytoene synthase (PSY) is the first committed enzyme of the carotenoid biosynthesis pathway and the most important point of regulation. Carotenoids are precursors of abscisic acid (ABA), which mediates abiotic stress tolerance responses in plants. ABA activates the synthesis of its own precursors through induction of PSY expression. Carrot, a species that accumulates very high amounts of carotenoids in its reserve root, has two PSY paralog genes that are expressed differentially in the root. Here, we determined that DcPSY2 expression is induced by salt stress and ABA. A DcPSY2 promoter fragment was obtained and characterized. Bioinformatic analysis showed the presence of three ABA responsive elements (ABREs). Through overexpressing pPSY2:GFP in Nicotiana tabacum we determined that all three ABREs are necessary for the ABA response. In the carrot transcriptome, we identified three ABRE binding protein (DcAREB) transcription factor candidates that localized in the nucleus, but only one, DcAREB3, was induced under ABA treatment in carrot roots. We found that AREB transcription factors bind to the carrot DcPSY2 promoter and transactivate the expression of reporter genes. We conclude that DcPSY2 is involved in ABA-mediated salt stress tolerance in carrot through the binding of AREB transcription factors to its promoter.
Collapse
Affiliation(s)
- Kevin Simpson
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Paulina Fuentes
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Luis Felipe Quiroz-Iturra
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Carlos Flores-Ortiz
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Rodrigo Contreras
- Laboratorio de Fisiología y Biotecnología Vegetal, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Michael Handford
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Claudia Stange
- Laboratorio de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
- Correspondence:
| |
Collapse
|
50
|
Fidler J, Grabowska A, Prabucka B, Więsyk A, Góra-Sochacka A, Bielawski W, Pojmaj M, Zdunek-Zastocka E. The varied ability of grains to synthesize and catabolize ABA is one of the factors affecting dormancy and its release by after-ripening in imbibed triticale grains of cultivars with different pre-harvest sprouting susceptibilities. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:48-55. [PMID: 29698912 DOI: 10.1016/j.jplph.2018.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Abscisic acid (ABA) is a phytohormone involved in the acquisition of primary dormancy during seeds maturation as well as dormancy maintenance in imbibed seeds. After imbibition, the ABA content decreased to a much lower level in embryos of freshly harvested triticale grains of the Leontino cultivar, which is more susceptible to pre-harvest sprouting (PHS) than embryos of the Fredro cultivar. Lower ABA content in the Leontino cultivar resulted from increased expression of TsABA8'OH1 and TsABA8'OH2, which encode ABA 8'-hydroxylase and are involved in ABA catabolism. Higher ABA content and maintenance of dormancy in Fredro grains were correlated with intensified ABA biosynthesis, which resulted from higher expression of TsNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase. These results suggest that grains of triticale cultivars with different resistance to PHS vary in their ability to metabolize ABA after imbibition. After-ripening did not affect the ABA content in embryos of dry grains of either triticale cultivar. However, after-ripening caused dormancy release in Fredro grains and significantly affected the ABA content and the rate of its metabolism after imbibition. A more rapid decline in ABA content in imbibed Fredro grains was accompanied by decreased transcript levels of TsNCED1 as well as increased expression of TsABA8'OH1 and TsABA8'OH2. Thus, after-ripening may affect dormancy of grains through reduction of the ABA biosynthesis rate and intensified ABA catabolism. Overexpression of TsNCED1 in tobacco increases ABA content and delays germination, while overexpression of TsABA8'OH2 decreases ABA content, accelerates germination, and reduces the sensitivity to ABA of transgenic seeds compared to seeds of wild-type plants. Therefore, these genes might play an important role in the regulation of triticale grain dormancy, thus affecting susceptibility to PHS.
Collapse
Affiliation(s)
- Justyna Fidler
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Grabowska
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Beata Prabucka
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aneta Więsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Wiesław Bielawski
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | | | - Edyta Zdunek-Zastocka
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|