1
|
da Costa P, Schetinger MRC, Baldissarelli J, Reichert KP, Stefanello N, Bottari NB, Vidal T, da Cruz IBM, Assmann CE, Morsch VMM. Blackcurrant (Ribes nigrum L.) and Its Association with Donepezil Restore Cognitive Impairment, Suppress Oxidative Stress and Pro-inflammatory Responses, and Improve Purinergic Signaling in a Scopolamine-Induced Amnesia Model in Mice. Neurochem Res 2025; 50:79. [PMID: 39800790 DOI: 10.1007/s11064-024-04327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking. This study investigated the effects of BC and its association with Donepezil (DNPZ) on learning and memory, on the modulation of purinergic signaling, pro-inflammatory responses, and oxidative markers in a mouse model of cognitive impairment chronically induced by scopolamine (SCO). Animals were divided into twelve groups and treated with BC (50 or 100 mg/kg), and/or DNPZ (5 mg/kg), and/or SCO (1 mg/kg). Results showed that SCO decreased spatial learning and memory as assessed by the Morris Water Maze test, and treatment with BC and/or DNPZ restored these effects. Furthermore, BC and/or DNPZ treatments also prevented changes in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) and adenosine deaminase (ADA) activities and restored the increased density of P2X7 and A2A receptors in synaptosomes of the cerebral cortex of SCO-induced mice. Moreover, the increased Nod-like receptor protein 3 (NLRP3) and interleukin-1β expression, and the oxidative stress markers levels were reduced by BC and/or DNPZ treatments, compared with the SCO group. Overall, BC and/or DNPZ treatments ameliorated SCO-induced cognitive decline, alleviated oxidative stress and pro-inflammatory responses, and improved purinergic signaling. These findings underscore the potential of BC, especially when in combination with DNPZ, as a therapeutic agent for the prevention of memory deficits associated with aging or neurological diseases.
Collapse
Affiliation(s)
- Pauline da Costa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Jucimara Baldissarelli
- Department of Physiology and Pharmacology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Microbiology and Parasitology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Taís Vidal
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
Chen H, Gu X, Mao Z, Zeng Q, Jin M, Wang W, Martyniuk CJ. Molecular, behavioral, and growth responses of juvenile yellow catfish (Tachysurus fulvidraco) exposed to carbamazepine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106929. [PMID: 38663201 DOI: 10.1016/j.aquatox.2024.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Carbamazepine (CBZ) is an anticonvulsant medication used to treat epilepsy and bipolar disorder. Due to its persistence and low removal rate in wastewater treatment plants, it is frequently detected in the environment, raising concerns regarding its potential adverse effects on aquatic organisms and ecosystems. In this study, we aimed to assess the impact of CBZ on the behavior and growth of juvenile yellow catfish Tachysurus fulvidraco, a native and economically important species in China. Fish were exposed to CBZ at three concentrations of 1, 10, or 100 µg/L for 14 days. The fish exposed to 10 and 100 μg/L of CBZ exhibited decreased feeding, and a significant increase in cannibalistic tendencies was observed in fish exposed to 100 μg/L CBZ. Acetylcholinesterase activity was increased in the brain of fish exposed to 100 μg/L CBZ. CBZ also inhibited the growth of yellow catfish. To better elucidate mechanisms of toxicity, transcriptomics was conducted in both the brain and liver. In the brain, gene networks associated with neurotransmitter dysfunction were altered by CBZ, as well as networks associated with mitochondrial dysfunction and metabolism. In the liver, gene networks associated with the immune system were altered by CBZ. The current study improves comprehension of the sub-lethal effects of CBZ and reveals novel insight into molecular and biochemical pathways disrupted by CBZ, identifying putative key events associated with reduced growth and altered behavior. This study emphasizes the necessity for improved comprehension of the effects of pharmaceutical contaminants on fish at environmentally relevant levels.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Organismal Biology, Uppsala University, Uppsala 75236, Sweden
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenxia Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Linyi University, Linyi 276000, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 United States
| |
Collapse
|
3
|
Adebayo AA, Ademosun AO, Oboh G. Date ( Phoenix dactylifera L. Mill) fruit enhances sexual performance via modulation of oxido-inflammatory mediators and purinergic signaling in hypertensive male rats. Biomarkers 2024; 29:143-153. [PMID: 38483941 DOI: 10.1080/1354750x.2024.2331502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION The present study aimed at investigating the effect of dietary supplementation of Phoenix dactylifera, an important component of aphrodisiac supplements, on sexual performance, oxido-inflammatory mediators and purinergic signaling system in hypertensive rats. MATERIAL AND METHODS Hypertension was induced via oral administration of 40 mg/kg L-NAME. Thereafter, the sexual performance of the experimental animals was determined and the hypertensive rats with impaired sexual activities were placed on P. dactylifera-supplemented diet for 21 days, and the effects of the treatment on the overall sexual behavior, antioxidant status, oxido-inflammatory biomarkers, and enzyme activity of the purinergic system were assessed. RESULTS Hypertensive rats showed a significant (p < 0.05) decrease in sexual performance, elevated level of oxido-inflammatory mediators, and altered purinergic enzymes activity when compared with the control. However, sub-chronic feeding with P. dactylifera-supplemented diet improved sexual performance, significantly lowered oxido-inflammatory biomarkers, and enhanced the activity of purinergic enzymes in hypertensive rats. CONCLUSION Findings presented in this study suggest that dietary inclusion of P. dactylifera could be useful in managing erectile dysfunction (ED) commonly observed in subjects with hypertension. Findings highlighted in this study thus provide the scientific basis supporting the folkloric use of P. dactylifera as a key ingredient in aphrodisiac supplements.
Collapse
Affiliation(s)
- Adeniyi A Adebayo
- Department of Biochemistry, Joseph Ayo Babalola University, Ikeji Arakeji, Nigeria
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
4
|
Vera Castro MF, Assmann CE, Reichert KP, Coppetti PM, Stefanello N, da Silva AD, Mostardeiro VB, de Jesus LB, da Silveira MV, Schirmann AA, Fracasso M, Maciel RM, Morsch VMM, Schetinger MRC. Vitamin D3 mitigates type 2 diabetes induced by a high carbohydrate-high fat diet in rats: Role of the purinergic system. J Nutr Biochem 2024; 127:109602. [PMID: 38373509 DOI: 10.1016/j.jnutbio.2024.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1β, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| | - Charles Elias Assmann
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Priscila Marquezan Coppetti
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Loren Borba de Jesus
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Marcylene Vieira da Silveira
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Adriel Antonio Schirmann
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Mateus Fracasso
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Roberto Marinho Maciel
- Department of Pathology, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Pereira ADS, Bottari NB, Nauderer JN, Assmann CE, Copetti PM, Reichert KP, Mostardeiro VB, da Silveira MV, Morsch VMM, Schetinger MRC. Purinergic signaling influences the neuroinflammatory outcomes of a testosterone-derived synthetic in female rats: Resistance training protective effects on brain health. Steroids 2024; 203:109352. [PMID: 38128896 DOI: 10.1016/j.steroids.2023.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Physical exercise is recognized as a non-pharmacological approach to treat and protect against several neuroinflammatory conditions and thus to prevent brain disorders. However, the interest in ergogenic resources by athletes and bodybuilding practitioners is widespread and on the rise. These substances shorten the process of performance gain and improve aesthetics, having led to the prominent use and abuse of hormones in the past years. Recent evidence has shown that the purinergic system, composed of adenine nucleotides, nucleosides, enzymes, and receptors, participates in a wide range of processes within the brain, such as neuroinflammation, neuromodulation, and cellular communication. Here, we investigated the effects of the anabolic androgenic steroid (AAS) testosterone (TES) at a dose of 70 mg/kg/week in female rats and the neuroprotective effect of resistance exercise related to the purinergic system and oxidative stress parameters. Our findings showed a decrease in ATP and ADO hydrolysis in treated and trained animals. Furthermore, there was an increase in the density of purinoceptors (P2X7 and A2A) and inflammatory markers (IBA-1, NRLP3, CASP-1, IL-1β, and IL-6) in the cerebral cortex of animals that received AAS. On the other hand, exercise reversed neuroinflammatory parameters such as IBA-1, NLRP3, CASP-1, and IL-1β and improved antioxidant response and anti-inflammatory IL-10 cytokine levels. Overall, this study shows that the use of TES without indication or prescription disrupts brain homeostasis, as demonstrated by the increase in neuroinflammation, and that the practice of exercise can protect brain health.
Collapse
Affiliation(s)
- Aline da Silva Pereira
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Nathieli Bianchin Bottari
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jelson Norberto Nauderer
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Priscila Marquezan Copetti
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcylene Vieira da Silveira
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Miron VV, Assmann CE, Mostardeiro VB, Bottari NB, Baldissarelli J, Reichert KP, da Silva AD, Castro MFV, de Jesus LB, da Silveira MV, Palma TV, Morsch VM, Cardoso AM, Schetinger MRC. Resistance physical exercise alleviates lipopolysaccharide-triggered neuroinflammation in cortex and hippocampus of rats via purinergic signaling. Neurotoxicology 2023; 99:217-225. [PMID: 37890558 DOI: 10.1016/j.neuro.2023.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Resistance physical exercise has neuroprotective and anti-inflammatory effects on many known diseases and, therefore, it has been increasingly explored. The way in which this type of exercise exerts these actions is still under investigation. In this study, we aimed to analyze the enzymes and components of the purinergic system involved in the inflammatory process triggered by the P2X7R. Rats were divided into four groups: control, exercise (EX), lipopolysaccharide (LPS), and EX + LPS. The animals in the exercise groups were subjected to a 12-week ladder-climbing resistance physical exercise and received LPS after the last session for sepsis induction. Enzymes activities (NTPDase, 5'-nucleotidase, and adenosine deaminase), purinoceptors' density (P2X7R, A1, and A2A), and the levels of inflammatory indicators (pyrin domain-containing protein 3 (NLRP3), Caspase-1, interleukin (IL)- 6, IL-1B, and tumor necrosis factor (TNF) -α) were measured in the cortex and hippocampus of the animals. The results show that exercise prevented (in the both structures) the increase of: 1) nucleoside-triphosphatase (NTPDase) and 5'-nucleotidase activities; 2) P2X7R density; 3) NLRP3 and Caspase-1; and 4) IL-6, IL-1β, and TNF-α It is suggested that the purinergic system and the inflammatory pathway of P2X7R are of fundamental importance and influence the effects of resistance physical exercise on LPS-induced inflammation. Thus, the modulation of the P2X7R by resistance physical exercise offers new avenues for the management of inflammatory-related illnesses.
Collapse
Affiliation(s)
- Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vitor Bastianello Mostardeiro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Institute of Biology, Department of Microbiology and Parasitology, Federal University of Pelotas (UFPEL), Brazil
| | - Jucimara Baldissarelli
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aniélen Dutra da Silva
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Milagros Fanny Vera Castro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Loren Borba de Jesus
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Marcylene Vieira da Silveira
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tais Vidal Palma
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vera Maria Morsch
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Andréia Machado Cardoso
- Undergraduate Program in Biomedical Sciences, Medical School, Federal University of Fronteira Sul, Campus Chapecó, Chapecó, Santa Catarina, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Hussain R, Rahim F, Rehman W, Khan S, Rasheed L, Maalik A, Taha M, Alanazi MM, Alanazi AS, Khan I, Shah SAA. Synthesis, in vitro analysis and molecular docking study of novel benzoxazole-based oxazole derivatives for the treatment of Alzheimer’s disease. ARAB J CHEM 2023; 16:105244. [DOI: 10.1016/j.arabjc.2023.105244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
8
|
Hussain R, Rahim F, Ullah H, Khan S, Sarfraz M, Iqbal R, Suleman F, Al-Sadoon MK. Design, Synthesis, In Vitro Biological Evaluation and In Silico Molecular Docking Study of Benzimidazole-Based Oxazole Analogues: A Promising Acetylcholinesterase and Butyrylcholinesterase Inhibitors. Molecules 2023; 28:7015. [PMID: 37894494 PMCID: PMC10609608 DOI: 10.3390/molecules28207015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that severely affects the elderly and is clinically recognised by a decrease in cognition and memory. The treatment of this disease has drawn considerable attention and sparked increased interest among the researchers in this field as a result of a number of factors, including an increase in the population of patients over time, a significant decline in patient quality of life, and the high cost of treatment and care. The current work was carried out for the synthesis of benzimidazole-oxazole hybrid derivatives as efficient Alzheimer's inhibitors and as a springboard for investigating novel anti-chemical Alzheimer's prototypes. The inhibition profiles of each synthesised analogue against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were assessed. All the synthesized benzimidazole-based oxazole analogues displayed a diverse spectrum of inhibitory potentials against targeted AChE and BuChE enzymes when compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 M and 4.50 ± 0.11 µM, respectively). The most active AChE and BuChE analogues were discovered to be analogues 9 and 14, with IC50 values of 0.10 ± 0.050 and 0.20 ± 0.050 µM (against AChE) and 0.20 ± 0.050 and 0.30 ± 0.050 µM (against BuChE), respectively. The nature, number, position, and electron-donating and -withdrawing effects on the phenyl ring were taken into consideration when analysing the structure-activity relationship (SAR). Molecular docking studies were also carried out on the active analogues to find out how amino acids bind to the active sites of the AChE and BuChE enzymes that were being studied.
Collapse
Affiliation(s)
- Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara 56130, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad 22500, Pakistan
| | - Maliha Sarfraz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Sub Campus Toba Tek Singh, Faisalabad 36050, Pakistan
| | - Rashid Iqbal
- Department of Agroecology-Climate and Water, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Faiza Suleman
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Mohammad Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Pereira ADS, Miron VV, Castro MFV, Bottari NB, Assmann CE, Nauderer JN, Bissacotti BF, Mostardeiro VB, Stefanello N, Baldissarelli J, Palma TV, Morsch VMM, Schetinger MRC. Neuromodulatory effect of the combination of metformin and vitamin D 3 triggered by purinergic signaling in type 1 diabetes induced-rats. Mol Cell Endocrinol 2023; 563:111852. [PMID: 36657632 DOI: 10.1016/j.mce.2023.111852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Several studies have indicated the vitamin D deficiency in the development of macro- and microvascular complications of diabetes mellitus (DM) including DM-related cognitive dysfunction. The purinergic system plays an important role in the modulation of a variety of mechanisms, including neuroinflammation, plasticity, and cell-cell communication. In addition, purines, their receptors, and enzymes can regulate the purinergic axis at different levels in type 1 DM (T1DM). This study evaluated the effects of vitamin D3 alone or in combination with metformin in the behavioral performance of streptozotocin-induced T1DM rats. The effects of this combination on the metabolism of ATP and ADP were also studied by NTPDase (CD39), AMP by 5'-nucleotidase (CD73), and adenosine by adenosine deaminase (E-ADA) in the brain and peripheral lymphocytes of type 1 diabetic STZ-induced rats. The results showed that anxiety and memory loss from the DM condition reverted after 30 days of vitamin D3 treatment. Furthermore, the DM state affected systemic enzymes, with no effect on the central enzymes hydrolyzing extracellular nucleotides and nucleosides. Vitamin D3 treatment positively regulated ectonucleotidase (NTPDase and 5'-nucleotidase) activity, E-ADA, and the purinergic receptors as a mechanism to prevent oxidative damage in the cerebral cortex of T1DM rats. A neuroprotector effect of vitamin D3 through adenosine signaling was also observed, by regulating A1 and A2A receptors proteins levels. The present findings suggest that purinergic signaling through vitamin D3 modulation may be a novel alternative strategy for T1DM treatment, and may compensate for the negative changes in the central nervous system.
Collapse
Affiliation(s)
- Aline da Silva Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Vanessa Valéria Miron
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Milagros Fanny Vera Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jelson Norberto Nauderer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bianca Fagan Bissacotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Taís Vidal Palma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
10
|
Castro MFV, Assmann CE, Stefanello N, Reichert KP, Palma TV, da Silva AD, Miron VV, Mostardeiro VB, Morsch VMM, Schetinger MRC. Caffeic acid attenuates neuroinflammation and cognitive impairment in streptozotocin-induced diabetic rats: Pivotal role of the cholinergic and purinergic signaling pathways. J Nutr Biochem 2023; 115:109280. [PMID: 36796549 DOI: 10.1016/j.jnutbio.2023.109280] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
The present study evaluated the effect of caffeic acid (CA) on behavioral learning and memory tasks in the diabetic state. We also evaluated the effect of this phenolic acid on the enzymatic activities of acetylcholinesterase, ecto-nucleoside triphosphate diphosphohydrolase, ecto-5-nucleotidase and adenosine deaminase as well as on the density of M1R, α7nAChR, P2×7R, A1R, A2AR, and inflammatory parameters in the cortex and hippocampus of diabetic rats. Diabetes was induced by a single intraperitoneal dose of streptozotocin (55 mg/kg). The animals were divided into six groups: control/vehicle; control/CA 10 and 50 mg/kg; diabetic/vehicle; diabetic/CA 10 and 50 mg/kg, treated by gavage. The results showed that CA improved learning and memory deficits in diabetic rats. Also, CA reversed the increase in acetylcholinesterase and adenosine deaminase activities and reduced ATP and ADP hydrolysis. Moreover, CA increased the density of M1R, α7nAChR, and A1R receptors and reversed the increase in P2×7R and A2AR density in both evaluated structures. In addition, CA treatment attenuated the increase in NLRP3, caspase 1, and interleukin 1β density in the diabetic state; moreover, it increased the density of interleukin-10 in the diabetic/CA 10 mg/kg group. The results indicated that CA treatment positively modified the activities of cholinergic and purinergic enzymes and the density of receptors, and improved the inflammatory parameters of diabetic animals. Thus, the outcomes suggest that this phenolic acid could improve the cognitive deficit linked to cholinergic and purinergic signaling in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| | - Charles Elias Assmann
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Taís Vidal Palma
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vanessa Valéria Miron
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Rossato Viana A, Bianchin Bottari N, Santos D, Bolson Serafin M, Garlet Rossato B, Moresco RN, Wolf K, Ourique A, Hörner R, de Moraes Flores ÉM, Chitolina Schetinger MR, Stefanello Vizzotto B, Maria Fontanari Krause L. Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:972-987. [PMID: 36208226 DOI: 10.1080/15287394.2022.2130844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer and infectious diseases are among the leading causes of death in the world. Despite the diverse array of treatments available, challenges posed by resistance, side effects, high costs, and inaccessibility persist. In the Solanaceae plant family, few studies with Vassobia breviflora species relating to biological activity are known, but promising results have emerged. The phytochemicals present in the ethyl acetate fraction were obtained using ESI-MS-QTOF, and the antioxidants assays 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical capture (ABTS), plasma ferric reduction capacity (FRAP), and total antioxidant capacity (TAC). Cytotoxic activity was evaluated by MTT, Neutral Red, and lactate dehydrogenase (LDH) released. The production of reactive oxygen species, nitric oxide, and purinergic enzymes was also investigated. Antibacterial activity was measured through minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm activity, in addition to genotoxicity in plasmid DNA. Five major masses were identified D-glucopyranose II, allyl disulfide, γ-lactones, pharbilignoside, and one mass was not identified. V. breviflora exhibited relevant antioxidant and cytotoxic activity against the HeLa cell line and enhanced expression effect in modulation of purinergic signaling. Antibacterial activities in the assays in 7 ATCC strains and 8 multidrug-resistant clinical isolates were found. V. breviflora blocked biofilm formation in producing bacteria at the highest concentrations tested. However, there was no plasmid DNA cleavage at the concentrations tested. Data demonstrated that V. breviflora exhibited an antioxidant effect through several methods and proved to be a promising therapeutic alternative for use against tumor cells via purinergic signaling and multidrug-resistant microorganisms, presenting an anti-biofilm effect.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Daniel Santos
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Marissa Bolson Serafin
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Bruna Garlet Rossato
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Rafael Noal Moresco
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Katianne Wolf
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Aline Ourique
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Rosmari Hörner
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | | | | | | | | |
Collapse
|
12
|
Adefegha SA, Oboh G, Adedipe AO. Aqueous extract of
Massularia acuminata
exerts erectogenic effect by modulating critical enzymes and hormones in streptozotocin‐induced erectile dysfunction in rats. Andrologia 2022; 54:e14629. [DOI: 10.1111/and.14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry Federal University of Technology, Akure (FUTA) Akure Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry Federal University of Technology, Akure (FUTA) Akure Nigeria
| | - Abraham Olanrewaju Adedipe
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry Federal University of Technology, Akure (FUTA) Akure Nigeria
| |
Collapse
|
13
|
Ademosun AO, Popoola TV, Oboh G, Fasakin OW. Parquetina nigrescens and Spondias mombin protects against neurochemical alterations in the scopolamine model of cognitive dysfunction. J Food Biochem 2022; 46:e14213. [PMID: 35475510 DOI: 10.1111/jfbc.14213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 12/29/2022]
Abstract
Natural plants which are effective in Alzheimer's disease (AD) management are of pharmacological importance, though there is little or no scientific proof for most of their claims. This study sought to evaluate the effect of Hog plum (Spondias mombin) and Ogbo (Parquetina nigrescens) leaves extracts on antioxidant levels and activities of key enzymes linked to cognitive function in scopolamine-induced cognitive dysfunctioned rats. Rats were pretreated with S. mombin (SM) and P. nigrescens (PN) leaves extracts (50 and 100 mg/kg), donepezil (5 mg/kg) for 2 weeks via oral administration before induction of memory impairment via single i.p. administration of scopolamine (3 mg/kg body weight). Experimental rats were subjected to behavioral tests to check for cognitive performance before experiment termination. The activities of hippocampal key enzymes linked to cognitive function were determined. Results showed that pretreatment with SM and PN prevented the cognitive impairment induced by scopolamine. Furthermore, increased cholinesterases, adenosine deaminase (ADA), ATP hydrolysis, monoamine oxidase (MAO), and arginase activities induced by scopolamine were significantly reduced in rats treated with SM and PN leaves extract. Additionally, elevated malondialdehyde (MDA) and reactive oxygen species (ROS) levels observed in scopolamine-induced rats were reduced significantly in SM- and PN- pretreated rats. Decreased AMP hydrolysis, and nitric oxide and antioxidant level induced by scopolamine were prevented in pretreated rats. This study concluded that SM and PN leave extract effectiveness in cognitive management may be due to their high antioxidant activities and neuromodulatory effects on key enzymes linked to AD. PRACTICAL APPLICATIONS: The use of natural products in the treatment and management of neurodegenerative diseases in Africa is becoming pertinent as the continent is blessed with medicinal plants while the price of synthetic drugs has been observed to be an economic burden on the continent. Parquetina nigrescens and Spondias mombin are examples of such medicinal plants that have been explored in folklore for the management of neurodegenerative diseases but there is a dearth of scientific validation for their use while there is no present data to evaluate possible mechanisms of action employed by these medicinal plants to mediate the therapeutic potential observed in folklore. Therefore, the present study seeks to validate the therapeutic use of P. nigrescens and S. mombin as observed in folklore as well as explore the possible mechanism of actions the plants may employ in mediating the proposed therapeutic potentials in neurodegenerative disease conditions while considering its toxicological effects in experimental animals.
Collapse
Affiliation(s)
- Ayokunle O Ademosun
- Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Temitope V Popoola
- Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Olamide W Fasakin
- Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
14
|
Begum F, Rehman NU, Khan A, Iqbal S, Paracha RZ, Uddin J, Al-Harrasi A, Lodhi MA. 2-Mercaptobenzimidazole clubbed hydrazone for Alzheimer’s therapy: In vitro, kinetic, in silico, and in vivo potentials. Front Pharmacol 2022; 13:946134. [PMID: 36059999 PMCID: PMC9428891 DOI: 10.3389/fphar.2022.946134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s is a type of dementia that affects the affected person’s thinking, memory, and behavior. It is a multifactorial disease, developed by the breakdown of the neurotransmitter acetylcholine via acetylcholinesterase (AChE). The present study was designed to evaluate potential inhibitors of acetylcholinesterase that could be used as a therapeutic agent against Alzheimer’s disease (AD). For this course, synthetic compounds of the Schiff bases class of 2-mercaptobenzimidazole hydrazone derivatives (9–14) were determined to be potent acetylcholinesterase inhibitors with IC50 values varying between 37.64 ± 0.2 and 74.76 ± 0.3 μM. The kinetic studies showed that these are non-competitive inhibitors of AChE. Molecular docking studies revealed that all compounds accommodate well in the active site and are stabilized by hydrophobic interactions and hydrogen bonding. Molecular dynamics (MD) simulations of selected potent inhibitors confirm their stability in the active site of the enzyme. Moreover, all compounds showed antispasmodic and Ca2+ antagonistic activities. Among the selected compounds of 2-mercaptobenzimidazole hydrazone derivatives, compound 11 exhibited the highest activity on spontaneous and K+-induced contractions, followed by compound 13. Therefore, the Ca2+ antagonistic, AChE inhibition potential, and safety profile of these compounds in the human neutrophil viability assay make them potential drug candidates against AD in the future.
Collapse
Affiliation(s)
- Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Birkat-ul-Mouz, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Birkat-ul-Mouz, Oman
- *Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi, ; Muhammad Arif Lodhi,
| | - Sajid Iqbal
- Department of Industrial Biotechnology, Atta-ur-Raman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Birkat-ul-Mouz, Oman
- *Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi, ; Muhammad Arif Lodhi,
| | - Muhammad Arif Lodhi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
- *Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi, ; Muhammad Arif Lodhi,
| |
Collapse
|
15
|
Khan Y, Rehman W, Hussain R, Khan S, Malik A, Khan M, Liaqat A, Rasheed L, begum F, Fazil S, Khan I, Abdellatif MH. New biologically potent benzimidazole‐based‐triazole derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors along with molecular docking study. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yousaf Khan
- Department of Chemistry COMSATS University Islamabad Islamabad Pakistan
| | - Wajid Rehman
- Department of Chemistry Hazara University Mansehra Pakistan
| | | | - Shoaib Khan
- Department of Chemistry Hazara University Mansehra Pakistan
| | - Aneela Malik
- Department of Chemistry COMSATS University Islamabad Islamabad Pakistan
| | - Marwa Khan
- Department of Chemistry Hazara University Mansehra Pakistan
| | - Anjum Liaqat
- Department of Chemistry Hazara University Mansehra Pakistan
| | - Liaqat Rasheed
- Department of Chemistry Hazara University Mansehra Pakistan
| | - Faiza begum
- Department of Chemistry Hazara University Mansehra Pakistan
| | - Srosh Fazil
- Department of Chemistry University of Poonch Rawalakot Azad Jammu and Kashmir Pakistan
| | - Imran Khan
- Department of Chemistry Hazara University Mansehra Pakistan
| | - Magda H. Abdellatif
- Department of Chemistry College of Sciences, Taif University, P. O Box 11099 Taif Saudi Arabia
| |
Collapse
|
16
|
A New Perspective on the Treatment of Alzheimer's Disease and Sleep Deprivation-Related Consequences: Can Curcumin Help? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6168199. [PMID: 35069976 PMCID: PMC8769857 DOI: 10.1155/2022/6168199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Sleep disturbances, as well as sleep-wake rhythm disorders, are characteristic symptoms of Alzheimer's disease (AD) that may head the other clinical signs of this neurodegenerative disease. Age-related structural and physiological changes in the brain lead to changes in sleep patterns. Conditions such as AD affect the cerebral cortex, basal forebrain, locus coeruleus, and the hypothalamus, thus changing the sleep-wake cycle. Sleep disorders likewise adversely affect the course of the disease. Since the sleep quality is important for the proper functioning of the memory, impaired sleep is associated with problems in the related areas of the brain that play a key role in learning and memory functions. In addition to synthetic drugs, utilization of medicinal plants has become popular in the treatment of neurological diseases. Curcuminoids, which are in a diarylheptanoid structure, are the main components of turmeric. Amongst them, curcumin has multiple applications in treatment regimens of various diseases such as cardiovascular diseases, obesity, cancer, inflammatory diseases, and aging. Besides, curcumin has been reported to be effective in different types of neurodegenerative diseases. Scientific studies exclusively showed that curcumin leads significant improvements in the pathological process of AD. Yet, its low solubility hence low bioavailability is the main therapeutic limitation of curcumin. Although previous studies have focused different types of advanced nanoformulations of curcumin, new approaches are needed to solve the solubility problem. This review summarizes the available scientific data, as reported by the most recent studies describing the utilization of curcumin in the treatment of AD and sleep deprivation-related consequences.
Collapse
|
17
|
Mittersteiner M, Bonacorso HG, Martins MAP, Zanatta N. Haloacetylated Enol Ethers: a Way Out for the Regioselective Synthesis of Biologically Active Heterocycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| |
Collapse
|
18
|
Olabiyi AA, AlliSmith YR, Ukwenya VO. Quercetin enhances sexual behavior and improves ectonucleotidases activity in the hypothalamus of rats treated with cyclosporine. J Food Biochem 2021; 45:e13864. [PMID: 34263471 DOI: 10.1111/jfbc.13864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023]
Abstract
In order to confirm the erectile potential of Quercetin (Q) in cyclosporine-induced hypertensive rats, this research assesses the influence of Q on the ectonucleotidases and adenosine deaminase (ADA) in the brains of rats. Male Wistar rats (200 g-250 g) were divided into five groups at random: Normal control (CTRL), cyclosporine-induced hypertensive rats (25 mg kg day-1 ) (HT) group, positive control (Sildenafil [SIL], 5 mg kg day-1 ), Quercetin 25 mg kg day-1 (25 Q), and Quercetin 50 mg kg day-1 (50 Q). Aside from standard diet-fed male rats; cyclosporine was given i.p for the period of 30 days as well as Q orally while the female rats were only given a standard diet. The animals were subjected to sexual activity (copulation) after which the male rat hypothalamus was dissected for biochemical examination (E-NTPDase activities, ecto-5'-nucleotidase as well as ADA and also levels of nitric oxide [NO]). We observed that Q enhanced copulatory behavior as evident in mounting, intromission, ejaculation numbers, and latencies. A substantial (p < .05) increase in the activity of E-NTPDase (ATP and ADP as substrate) without any notable difference in the action of ecto-5' nucleotidase was facilitated by cyclosporine-induction when compared to the CTRL. The 50 mg/kg, however, had the highest reversal effect in accordance with dose manner. Also, cyclosporine increased ADA activity with a concomitant reduction of NO level while both doses of Q down-regulated ADA activity and, increased NO levels. Enhanced sexual behavior, modulation of ectonucleotidases as well as ADA activity and increased NO levels suggest that Q-rich plant foods may be promising sources of dietary phytonutrients for erectile dysfunction (ED) management. PRACTICAL APPLICATIONS: Behavioral and biochemical assays evaluated showed that Q significantly enhanced sexual behavior as well as improved ATP bioavailability in cyclosporine-induced erectile dysfunctional rats. The modulatory effects of Q on ectonucleotidases, along with its ability to minimize adenosine deaminase activity and increase nitric oxide levels, indicate that Q-rich plants and/or plant foods may be promising sources of dietary phytonutrients for erectile dysfunction management.
Collapse
Affiliation(s)
- Ayodeji Augustine Olabiyi
- Functional Food and Nutraceutical Unit, Medical Biochemistry Department, Afe Babalola University, Ado Ekiti, Nigeria
| | | | - Victor Okoliko Ukwenya
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
19
|
Olabiyi AA, Afolabi BA, Reichert KP, Palma TV, Morsch VM, Oboh G, Schetinger MRC. Assessment of sexual behavior and neuromodulation of Cyperus esculentus L. and Tetracarpidium conophorum Müll. Arg dietary supplementation regulating the purinergic system in the cerebral cortex of L-NAME-challenged rats. J Food Biochem 2021; 45:e13862. [PMID: 34245033 DOI: 10.1111/jfbc.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/13/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
This study examined the behavioral responses, purinergic receptor densities, ectonucleotidases (E-NTPDase), adenosine deaminase (ADA) activity, and nitric oxide (NO) levels along with the parameters of oxidative stress-related to erectile function in the cerebral cortex (CC) of L-NAME-challenged rats pretreated with tigernut (TN) and walnut (WN) dietary supplementation. Wistar rats (male) of 70 total animals (250-300 g) were used in this research and hence separated into seven groups (n = 10): Group I: normal control-fed basal diet; Group II: positive control-fed basal diet/L-NAME/Sildenafil citrate (5 mg kg-1 day-1 ); Group III: ED-induced (placed on a basal diet/L-NAME); Group IV: diet supplemented with processed TN (20%)/L-NAME; Group V: diet supplemented with raw TN (20%)/L-NAME; Group VI: diet supplemented with processed WN (20%)/L-NAME; and Group VII placed on a diet supplemented with raw WN (20%)/L-NAME. The rats were pretreated for 2 weeks before the L-NAME (40 mg kg-1 day-1 ) challenge on their respective diet. L-NAME brought about a decrease in the sexual behaviors evaluated while the effect was significantly reversed by supplemented diets containing TN and WN. L-NAME increased the levels of reactive oxygen species and malondialdehyde, E-NTPDase as well as ADA activities, and caused the level of NO in the CC as well as the purinoreceptor densities to be downregulated. Treatments with enriched diets, however, greatly reverse these effects. The behavioral responses and neuromodulatory capacity of the nuts displayed on the CC can, therefore, further support their aphrodisiac property. PRACTICAL APPLICATIONS: The results revealed the ability of tigernut (TN; Cyperus esculentus L.) and walnut (WN; Tetracarpidium conophorum Müll. Arg.) to enhance behavioral responses; modulate purinergic receptor densities, E-NTPDase, and ADA activities; increase NO levels; and prevent oxidative stress related to erectile function in the CC of L-NAME-challenged Wistar rats. The results show that these nuts are useful feeds for both animal and human nutrition.
Collapse
Affiliation(s)
- Ayodeji Augustine Olabiyi
- Department of Medical Biochemistry, Afe Babalola University, Ado-Ekiti, Nigeria
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
- Programa de Pós Graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Blessing Ariyo Afolabi
- Programa de Pós Graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Karine Paula Reichert
- Programa de Pós Graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tais Vidal Palma
- Programa de Pós Graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Vera Maria Morsch
- Programa de Pós Graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós Graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
20
|
Chen H, Liang X, Gu X, Zeng Q, Mao Z, Martyniuk CJ. Environmentally relevant concentrations of sertraline disrupts behavior and the brain and liver transcriptome of juvenile yellow catfish (Tachysurus fulvidraco): Implications for the feeding and growth axis. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124974. [PMID: 33450510 DOI: 10.1016/j.jhazmat.2020.124974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Sertraline (SER) is one of the most prevalent antidepressants detected in aquatic environments, but its impact on fish behavior and growth remain poorly understood. As such, behavior and growth were assessed in yellow catfish (Tachysurus fulvidraco) following SER exposure. SER induced shoaling, reduced food consumption and growth, and increased cannibalism at environmentally relevant concentrations. To ascertain toxicity mechanisms, acetylcholinesterase (AChE) activity and transcripts related to growth and feeding were measured. AChE activity was increased in fish exposed to 10 and 100 μg/L SER. Transcript levels of neuropeptide Y, somatostatin, growth hormone, and insulin growth factor 1 were reduced in the brain following SER exposure. RNA-seq conducted in brain and liver revealed that gene networks associated with feeding and growth (i.e. leptin expression networks in the brain and insulin signaling pathways in the liver) were altered, proposed to be associated with the decreased food intake and growth. The brain also accumulated SER, which may relate to neurobehavioral responses. Lastly, the main metabolite of SER, norsertraline, was detected in the liver, and may also relate to toxicity. This study uncovers mechanisms and key events proposed to lead to impaired behavior and growth after exposure to some antidepressants.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Aluminum-Induced Alterations in Purinergic System Parameters of BV-2 Brain Microglial Cells. J Immunol Res 2021; 2021:2695490. [PMID: 33532505 PMCID: PMC7837790 DOI: 10.1155/2021/2695490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022] Open
Abstract
Aluminum (Al) is ubiquitously present in the environment and known to be a neurotoxin for humans. The trivalent free Al anion (Al3+) can cross the blood-brain barrier (BBB), accumulate in the brain, and elicit harmful effects to the central nervous system (CNS) cells. Thus, evidence has suggested that Al increases the risk of developing neurodegenerative diseases, particularly Alzheimer's disease (AD). Purinergic signaling has been shown to play a role in several neurological conditions as it can modulate the functioning of several cell types, such as microglial cells, the main resident immune cells of the CNS. However, Al effects on microglial cells and the role of the purinergic system remain elusive. Based on this background, this study is aimed at assessing the modulation of Al on purinergic system parameters of microglial cells. An in vitro study was performed using brain microglial cells exposed to Al chloride (AlCl3) and lipopolysaccharide (LPS) for 96 h. The uptake of Al, metabolism of nucleotides (ATP, ADP, and AMP) and nucleoside (adenosine), and the gene expression and protein density of purinoceptors were investigated. The results showed that both Al and LPS increased the breakdown of adenosine, whereas they decreased nucleotide hydrolysis. Furthermore, the findings revealed that both Al and LPS triggered an increase in gene expression and protein density of P2X7R and A2AR receptors, whereas reduced the A1R receptor expression and density. Taken together, the results showed that Al and LPS altered the setup of the purinergic system of microglial cells. Thus, this study provides new insights into the involvement of the purinergic system in the mechanisms underlying Al toxicity in microglial cells.
Collapse
|
22
|
Ademiluyi AO, Oyesomi AA, Ogunsuyi OB, Oyeleye SI, Oboh G. Influence of cooking on the neuroprotective properties of pepper (bird pepper and cayenne pepper) varieties in scopolamine‐induced neurotoxicity in rats. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Adeola A. Oyesomi
- Department of Biochemistry Federal University of Technology Akure Nigeria
| | - Opeyemi B. Ogunsuyi
- Department of Biochemistry Federal University of Technology Akure Nigeria
- Department of Biomedical Technology Federal University of Technology Akure Nigeria
| | - Sunday I. Oyeleye
- Department of Biochemistry Federal University of Technology Akure Nigeria
- Department of Biomedical Technology Federal University of Technology Akure Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry Federal University of Technology Akure Nigeria
| |
Collapse
|
23
|
Chen H, Yang H, Zhao Y, Gu X, Martyniuk CJ. Development and Molecular Investigation into the Effects of Carbamazepine Exposure in the Zebrafish ( Danio rerio). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238882. [PMID: 33260372 PMCID: PMC7731368 DOI: 10.3390/ijerph17238882] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Concerns regarding environmental exposures and the impacts of pharmaceuticals on non-target aquatic organisms continue to increase. The antiepileptic drug carbamazepine (CBZ) is often detected as an aquatic contaminant and can disrupt various behaviors of fishes. However, there are few reports which investigate the mechanism of CBZ action in fish. The aim of the current study was to evaluate the effects of CBZ on embryonic development (i.e., hatching rate, heart rate, and body length) and early spontaneous movement. Moreover, we sought to investigate potential mechanisms by focusing on the gamma-aminobutyric acid (GABA) neurotransmitter system in zebrafish 6 days after of exposure. The results show that CBZ exposure did not cause significant effects on embryo development (hatching rate, heart rate, nor body length) at the test concentrations. However, the early spontaneous movement of embryos was inhibited following 10 μg/L CBZ exposure at 28-29 h post-fertilization (hpf). In addition, acetylcholinesterase (AChE) activity and GABA concentrations were increased with exposure, whereas glutamate (Glu) concentrations were decreased in larval zebrafish. Gene expression analysis revealed that GABA and glutamate metabolic pathways in zebrafish larvae were altered following exposure to CBZ. GABA transaminase (abat) and glutamic acid decarboxylase (gad1b) decreased to 100 µg/L, and glutamate receptor, ionotropic, N-methyl D-aspartate 1b (grin1b) as well as the glutamate receptor, ionotropic, α-amino-3hydroxy-5methylisoxazole-4propionic 2b (gria2b) were down-regulated with exposure to 1 µg/L CBZ. Our study suggests that CBZ, which can act as an agonist of the GABAA receptor in humans, can also induce alterations in the GABAergic system in fish. Overall, this study improves understanding of the neurotoxicity and behavioral toxicity of zebrafish exposed to CBZ and generates data to be used to understand mechanisms of action that may underlie antiepileptic drug exposures.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (H.C.); (H.Y.); (Y.Z.)
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (H.C.); (H.Y.); (Y.Z.)
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (H.C.); (H.Y.); (Y.Z.)
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (H.C.); (H.Y.); (Y.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
- Correspondence:
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
24
|
Ademosun AO, Adebayo AA, Popoola TV, Oboh G. Shaddock (Citrus maxima) peels extract restores cognitive function, cholinergic and purinergic enzyme systems in scopolamine-induced amnesic rats. Drug Chem Toxicol 2020; 45:1073-1080. [DOI: 10.1080/01480545.2020.1808668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ayokunle O. Ademosun
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Adeniyi A. Adebayo
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Chemical Sciences (Biochemistry Unit), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Temitope V. Popoola
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Research Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
25
|
Bottari NB, Reichert KP, Fracasso M, Dutra A, Assmann CE, Ulrich H, Schetinger MRC, Morsch VM, Da Silva AS. Neuroprotective role of resveratrol mediated by purinergic signalling in cerebral cortex of mice infected by Toxoplasma gondii. Parasitol Res 2020; 119:2897-2905. [PMID: 32677001 DOI: 10.1007/s00436-020-06795-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/02/2020] [Indexed: 12/30/2022]
Abstract
The central nervous system of the intermediate host plays a central role in lifelong persistence of Toxoplasma gondii as well as the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised individuals. The purinergic system has been implicated in a wide range of immunological pathways for controlling intracellular responses to pathogens, including T. gondii. In the present study, we investigated the effect of resveratrol (RSV) on ectonucleotidases, adenosine deaminase (ADA), and purinergic receptors during chronic infection by T. gondii. For this study, Swiss mice were divided into control (CTL), resveratrol (RSV), infected (INF), and INF+RSV groups. The animals were orally infected with the VEG strain and treated with RSV (100 mg/kg, orally). Ectonucleotidase activities, P2X7, P2Y1, A1, and A2A purinergic receptor density, ROS, and thiobarbituric acid reactive substances levels were measured in the cerebral cortex of mice. T. gondii infection increased NTPDase and reduced ADA activities. Treatment with RSV also affected enzymes hydrolysing extracellular nucleotides and nucleosides. Finally, RSV affected P1 and P2 purinergic receptor expression during T. gondii infection. Overall, RSV-mediated beneficial changes in purinergic signalling and oxidative stress, possibly improving cerebral cortex homeostasis in T. gondii infection.
Collapse
Affiliation(s)
- Nathieli B Bottari
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Avenida Roraima, n°1000, Camobi District, Santa Maria, RS, 97105-900, Brazil.
| | - Karine Paula Reichert
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Avenida Roraima, n°1000, Camobi District, Santa Maria, RS, 97105-900, Brazil
| | - Mateus Fracasso
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Avenida Roraima, n°1000, Camobi District, Santa Maria, RS, 97105-900, Brazil
| | - Anielen Dutra
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Avenida Roraima, n°1000, Camobi District, Santa Maria, RS, 97105-900, Brazil
| | - Charles Elias Assmann
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Avenida Roraima, n°1000, Camobi District, Santa Maria, RS, 97105-900, Brazil
| | - Henning Ulrich
- Department of Chemistry, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Avenida Roraima, n°1000, Camobi District, Santa Maria, RS, 97105-900, Brazil
| | - Vera M Morsch
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Avenida Roraima, n°1000, Camobi District, Santa Maria, RS, 97105-900, Brazil
| | - Aleksandro Schafer Da Silva
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Avenida Roraima, n°1000, Camobi District, Santa Maria, RS, 97105-900, Brazil. .,Graduate Program in Animal Science, University of Santa Catarina (UDESC), Chapecó, SC, Brazil.
| |
Collapse
|
26
|
Oboh G, Adedayo BC, Adetola MB, Oyeleye IS, Ogunsuyi OB. Characterization and neuroprotective properties of alkaloid extract ofVernonia amygdalinaDelile in experimental models of Alzheimer’s disease. Drug Chem Toxicol 2020; 45:731-740. [DOI: 10.1080/01480545.2020.1773845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Bukola Christiana Adedayo
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Mayowa Blessing Adetola
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Idowu Sunday Oyeleye
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Functional Foods and Nutraceuticals Unit of Biochemistry Department, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
27
|
Adedayo BC, Jesubowale OS, Adebayo AA, Oboh G. Effect of Andrographis paniculata leaves extract on neurobehavioral and biochemical indices in scopolamine-induced amnesic rats. J Food Biochem 2020; 45:e13280. [PMID: 32441354 DOI: 10.1111/jfbc.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Andrographis paniculata is a medicinal herb that is used to treat various disease conditions due to its pharmacological properties. Thus, this study sought to assess the effect of A. paniculata extract on neurobehavioral and some biochemical parameters in scopolamine-induced amnesic rats. Thirty-five male rats were divided into seven groups and treated with aqueous extract of A. paniculata (50 and 500 mg/kg) and donepezil (5 mg/kg) for 14 days before administration of scopolamine. Behavioral studies (Morris water maze and Y-maze) were carried out to evaluate cognitive dysfunction in scopolamine-induced rats. Biochemical assays such as cholinesterases (AChE and BChE), monoamine oxidase (MAO), and purinergic activities were determined. Results revealed the presence of orientin, quercetin, caffeic acid, apigenin, and gallic acid in A. paniculata. Also, findings from this study showed that aqueous extract of A. paniculata had a modulatory effect on scopolamine-induced cognitive impairment and could be used in the management of memory loss. PRACTICAL APPLICATIONS: Aqueous extract of A. paniculata characterized revealed the presence of polyphenols which are antioxidants. The inhibitory activity possessed by A. paniculata on some enzymes linked to neurodegeneration could be due to the antioxidant activity. Given this, we recommend that results gotten from this study could be used to develop treatment therapy for neurodegeneration. However, in-depth studies should be carried out on the toxic effect of A. paniculata to ascertain a safe dose for treatment.
Collapse
Affiliation(s)
- Bukola Christiana Adedayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwapelumi S Jesubowale
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Adeniyi Abiodun Adebayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Chemical Sciences (Biochemistry Option), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
28
|
Adebayo AA, Oboh G, Ademosun AO. Effect of dietary inclusion of almond fruit on sexual behavior, arginase activity, pro-inflammatory, and oxidative stress markers in diabetic male rats. J Food Biochem 2020; 45:e13269. [PMID: 32394504 DOI: 10.1111/jfbc.13269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
This study was designed to examine the effect of almond-included diets on sexual behavior, arginase activity, and pro-inflammatory markers in diabetic male rats. Forty-two male rats were divided into seven groups (n = 6). Diabetes was triggered via a single dose intraperitoneal injection of streptozotocin (50 mg/kg). Diabetes was confirmed 72 hr after STZ induction, and animals with blood glucose ≥ 250 mg/dl were considered diabetic and used for the experiment. The effects of almond-supplemented diets on glucose level, sexual function, NF-κB and TNF-α levels, arginase and purinergic enzyme activities, and levels of oxidative stress markers were assessed. A significant decrease in sexual activities with a simultaneous increase in pro-inflammatory markers, arginase and purinergic enzyme activities as well as TBARS and ROS levels was observed in diabetic rats. Interestingly, treatment with supplemented diets ameliorated the effects. Conclusively, intake of almonds could prevent the risk of erectile dysfunction in diabetic subjects. PRACTICAL APPLICATIONS: Intake of diets rich in fruits, nuts, and vegetables has been reported to reduce the risk of metabolic syndrome. Here, we investigate the effect of dietary inclusion of almond fruit on sexual behavior, arginase activity, oxidative stress, and pro-inflammatory markers in diabetic male rats. Interestingly, data generated from this work reveal that the supplemented diets enhanced sexual activities, and reduced oxidative stress and pro-inflammatory markers in diabetic male rats. Thus, consumption of almond (drupe and seed) could prevent/reduce the erectile dysfunction in individual with diabetes.
Collapse
Affiliation(s)
- Adeniyi A Adebayo
- Biochemistry Department, Federal University of Technology, Akure, Nigeria.,Chemical Sciences Department (Biochemistry Unit), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Ganiyu Oboh
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
29
|
Surface Modification of Magnetic Nanoparticles by Carbon-Coating Can Increase Its Biosafety: Evidences from Biochemical and Neurobehavioral Tests in Zebrafish. Molecules 2020; 25:molecules25092256. [PMID: 32403340 PMCID: PMC7248861 DOI: 10.3390/molecules25092256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, magnetic nanoparticles (MNPs) have gained much attention in the field of biomedical engineering for therapeutic as well as diagnostic purposes. Carbon magnetic nanoparticles (C-MNPs) are a class of MNPs categorized as organic nanoparticles. C-MNPs have been under considerable interest in studying in various applications such as magnetic resonance imaging, photothermal therapy, and intracellular transportof drugs. Research work is still largely in progress for testing the efficacy of C-MNPs on the theranostics platform in cellular studies and animal models. In this study, we evaluated the neurobehavioral toxicity parameters on the adult zebrafish (Danio rerio) at either low (1 ppm) or high (10 ppm) concentration level of C-MNPs over a period of two weeks by waterborne exposure. The physical properties of the synthesized C-MNPs were characterized by transmission electron microscopy, Raman, and XRD spectrum characterization. Multiple behavior tests for the novel tank, mirror biting, predator avoidance, conspecific social interaction, shoaling, and analysis of biochemical markers were also conducted to elucidate the corresponding mechanism. Our data demonstrate the waterborne exposure of C-MNPs is less toxic than the uncoated MNPs since neither low nor high concentration C-MNPs elicit toxicity response in behavioral and biochemical tests in adult zebrafish. The approach combining biochemical and neurobehavioral approaches would be helpful for understanding C-MNPs association affecting the bioavailability, biosafety, interaction, and uptake of these C-MNPs in the living organism.
Collapse
|
30
|
Mehrazar M, Hassankalhori M, Toolabi M, Goli F, Moghimi S, Nadri H, Bukhari SNA, Firoozpour L, Foroumadi A. Design and synthesis of benzodiazepine-1,2,3-triazole hybrid derivatives as selective butyrylcholinesterase inhibitors. Mol Divers 2019; 24:997-1013. [PMID: 31845210 DOI: 10.1007/s11030-019-10008-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023]
Abstract
A new series of compounds based on benzodiazepine-1,2,3-triazole were synthesized and evaluated as cholinesterase inhibitors by Ellman's method. The compounds proved to be selective inhibitors of butyrylcholinesterase (BuChE) over acetylcholinesterase. The most potent compound was 3,3-dimethyl-11-(3-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]diazepin-1-one, identified as a submicromolar inhibitor of BuChE with IC50 value of 0.2 µM. In addition, the amyloid-β self-aggregation evaluation studies for selected compounds showed potent inhibitory effects compared to donepezil. The docking and cell viability studies supported the potential of compound 9b-6 as significant BuChE inhibitor.
Collapse
Affiliation(s)
- Mehrdad Mehrazar
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hassankalhori
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Goli
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka, 2014, Saudi Arabia
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
31
|
Jaguezeski AM, da Silva AS, Gomes TMA, Bottari NB, Lopes TF, Cechin RA, Morsch VM, Schetinger MRC, Giongo JL, de A Vaucher R. Experimental listeriosis: A study of purinergic and cholinergic inflammatory pathway. Vet Microbiol 2019; 241:108528. [PMID: 31882365 DOI: 10.1016/j.vetmic.2019.108528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022]
Abstract
The cholinergic, purinergic and oxidative stress systems were related to nervous system damage in some pathologies, as well as being involved in pro-inflammatory and anti-inflammatory pathways. The objective was to investigate changes in purinergic, cholinergic systems and oxidative stress related to the neuropathology of listeriosis. Gerbils were used as experimental models. The animals were divided in two groups: control and infected. The animals were orally infected with 5 × 108 CFU/animal of the pathogenic strain of Listeria monocytogenes. Collected of material was 6 and 12th days post-infection (PI). Infected animals showed moderate mixed inflammatory infiltrates in the liver. The spleen and brain was used for PCR analyses, confirming infection by L. monocytogenes. Increase in number of total leukocytes because of an increase in lymphocytes in infected (P < 0.001). ATP and ADP hydrolysis by NTPDase was lower at 6 and 12th days PI in infected animals than in the control group. ADA (adenosine deaminase) activity was higher on the 6th day PI (P < 0.05) and decreased on the 12th day PI (P < 0.05) in infected animals. AChE (acetylcholinesterase) activity did not differ between groups on the 6th day PI; however, activity decreased in infected group on the 12th day PI (P < 0.05). On the 12th day PI, an increase of oxygen-reactive species levels and lower catalase and superoxide dismutase activities in the infected group was observed, characterizing a situation of cerebral oxidative stress. The inflammatory and oxidative mechanisms are present in listeriosis in asymptomatic animals, and that ectonucleotidases and cholinesterase's are involved in immunomodulation.
Collapse
Affiliation(s)
- Antonise M Jaguezeski
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil
| | - Aleksandro S da Silva
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil.
| | - Teane M A Gomes
- Laboratory of Veterinary Pathology, Instituto Federal Catarinense - IFC, Concórdia, Santa Catarina, Brazil
| | - Nathieli B Bottari
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Thalisson F Lopes
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renan A Cechin
- Laboratory of Veterinary Pathology, Instituto Federal Catarinense - IFC, Concórdia, Santa Catarina, Brazil
| | - Vera M Morsch
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria R C Schetinger
- Department of Molecular Biology and Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Janice L Giongo
- Pharmacy Laboratory, Faculdade Anhanguera, Pelotas, RS, Brazil
| | | |
Collapse
|
32
|
Impacts of Escherichia coli infection in young breeder chicks on the animal behavior and cerebral activity of purinergic and cholinergic enzymes involved in the regulation of molecules with neurotransmitter and neuromodulator function. Microb Pathog 2019; 138:103787. [PMID: 31604153 DOI: 10.1016/j.micpath.2019.103787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
The objective of this study was to evaluate if infection by Escherichia coli in juvenile breeder chicks alters the activity of enzymes involved in neurotransmission and cerebral immunomodulation, including acetylcholinesterase (AChE), nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (5'NT) and adenosine deaminase (ADA), as well as their effects on the pathogenesis of the disease. We divided 20 growing breeder chicks into two groups (n = 10 per group). One group was experimentally infected with 1 mL of culture medium containing 1 × 108 CFU of E. coli intraperitoneally. The other was the negative control. On the tenth day after infection, the animals were euthanized and brain samples were collected. Macroscopically, pericarditis and hepatic congestion were observed in the birds, but without histopathological lesions in the encephalon although the bacterium was present in the cerebral cortex of all animals in the infected group (i.e., they were PCR-positive). The activity of AChE, NTPDase, 5'-NT and ADA were evaluated in the cerebral homogenates of the birds after 10 days of infection. AChE activity in the cerebral cortex was lower in the infected group than in the control; there was an increase in the activity of NTPDase, 5'-nucleotidase and ADA, possibly indicating greater hydrolysis of ATP (P < 0.001), ADP (P < 0.01) and AMP (P < 0.01), followed by increased adenosine deamination (P < 0.001). Despite these changes, no apparently diseased animals were observed throughout the experimental period. Therefore, such changes in enzymatic activity may affect the functioning of the central nervous system because these enzymes are responsible for extracellular regulation of molecules that act on neurotransmission and immunomodulation such as acetylcholine, ATP and adenosine.
Collapse
|
33
|
Oboh G, Adebayo AA, Ademosun AO, Olowokere OG. Rutin alleviates cadmium-induced neurotoxicity in Wistar rats: involvement of modulation of nucleotide-degrading enzymes and monoamine oxidase. Metab Brain Dis 2019; 34:1181-1190. [PMID: 30972687 DOI: 10.1007/s11011-019-00413-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
Rutin is a flavonoid commonly found in many vegetables, fruits and other plant species. Thus, this study investigated the protective role of rutin on cognitive function and impairment of ectonucleotidase, monoamine oxidase (MAO) and antioxidant enzymes activities in the cortex and hippocampus of cadmium-induced rats. Cognitive impairment was induced by an oral administration of 5 mg/kg Cadmium chloride for 14 consecutive days. Rutin was dissolved in 2% dimethyl sulfoxide (DMSO) and administered orally at the doses of 25 and 50 mg/kg for 14 days. Thereafter, animals were divided into six groups (n = 6) as follows: control, rutin 25 mg/kg, rutin 50 mg/kg, cadmium, cadmium plus rutin 25 mg/kg, cadmium plus rutin 50 mg/kg. After treatment period of 14 days, animals were sacrificed and the brain was dissected into cortex and hippocampus. Results showed that cadmium caused a significant increase in ectonucleotidases, adenosine deaminase (ADA) and MAO activities, with a concomitant decrease in thiol levels and antioxidant enzymes activities. However, treatment with rutin decreased ectonucleotidase, ADA and MAO activities in cadmium-induced rats. In addition, rutin reduced residual level of cadmium ion in the brain of cadmium-induced rats. Conclusively, present findings revealed that rutin could prevent/restored the impairment of the enzymes that regulate the purinergic and monoaminergic extracellular signaling and restore antioxidant status in cognitive impairment caused by prolonged cadmium exposure.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Adeniyi A Adebayo
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| | - Olanike G Olowokere
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| |
Collapse
|
34
|
Mittersteiner M, Andrade VP, Zachow LL, Frizzo CP, Bonacorso HG, Martins MAP, Zanatta N. Synthesis of N-Pyrrolyl(furanyl)-Substituted Piperazines, 1,4-Dizepanes, and 1,4-Diazocanes. J Org Chem 2019; 84:8976-8983. [PMID: 31259554 DOI: 10.1021/acs.joc.9b00867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthetic potential of 5-bromo-1,1,1-trifluoro-4-methoxypent-3-en-2-one toward the catalyst-free synthesis of N-pyrrolyl(furanyl)-piperazines, 1,4-diazepanes, and 1,4-diazocanes through a telescoped protocol is reported. This three-component one-pot method provided 23 examples with high chemo- and regioselectivity at yields up to 96%.
Collapse
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química , Universidade Federal de Santa Maria , 97105-900 Santa Maria , Rio Grande do Sul , Brazil
| | - Valquiria P Andrade
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química , Universidade Federal de Santa Maria , 97105-900 Santa Maria , Rio Grande do Sul , Brazil
| | - Lucimara L Zachow
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química , Universidade Federal de Santa Maria , 97105-900 Santa Maria , Rio Grande do Sul , Brazil
| | - Clarissa P Frizzo
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química , Universidade Federal de Santa Maria , 97105-900 Santa Maria , Rio Grande do Sul , Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química , Universidade Federal de Santa Maria , 97105-900 Santa Maria , Rio Grande do Sul , Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química , Universidade Federal de Santa Maria , 97105-900 Santa Maria , Rio Grande do Sul , Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química , Universidade Federal de Santa Maria , 97105-900 Santa Maria , Rio Grande do Sul , Brazil
| |
Collapse
|
35
|
Ecotoxicity Assessment of Fe 3O 4 Magnetic Nanoparticle Exposure in Adult Zebrafish at an Environmental Pertinent Concentration by Behavioral and Biochemical Testing. NANOMATERIALS 2019; 9:nano9060873. [PMID: 31181856 PMCID: PMC6631370 DOI: 10.3390/nano9060873] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Magnetic Nanoparticles (MNPs) are widely being investigated as novel promising multifunctional agents, specifically in the fields of development for theranostics, electronics, waste water treatment, cosmetics, and energy storage devices. Unique, superior, and indispensable properties of magnetization, heat transfer, and melting temperature make MNPs emerge in the field of therapeutics in future healthcare industries. However, MNPs ecotoxicity as well as behavioral toxicity is still unexplored. Ecotoxicity analysis may assist investigate MNPs uptake mechanism and its influence on bioavailability under a given set of environmental factors, which can be followed to investigate the biomagnification of MNPs in the environment and health risk possessed by them in an ecological food chain. In this study, we attempted to determine the behavioral changes in zebrafishes at low (1 ppm) or high (10 ppm) concentration levels of Fe3O4 MNPs. The synthesized Fe3O4 MNPs sized at 15 nm were characterized by the transmission electron microscope (TEM), the superconducting quantum interference device (SQUID) magnetometer, and the multiple behavior tests for novel tank, mirror biting, conspecific social interaction, shoaling, circadian rhythm, and short-term memory of zebrafish under MNPs chronic exposure were demonstrated. Low concentration MNP exposure did not trigger alteration for majority behavioral and biochemical tests in adult zebrafish. However, tight shoal groups were observed at a high concentration of MNPs exposure along with a modest reduction in fish exploratory behavior and a significant reduction in conspecific social interaction behavior. By using enzyme-linked immunosorbent assays (ELISA), we found a high dose of MNPs exposure significantly elevated cortisol, acetylcholine, and catalase levels while reducing serotonin, acetylcholine esterase, and dopamine levels in the brain. Our data demonstrates chronic MNPs exposure at an environmentally-relevant dose is relatively safe by supporting evidence from an array of behavioral and biochemical tests. This combinational approach using behavioral and biochemical tests would be helpful for understanding the MNPs association with anticipated colloids and particles effecting bioavailability and uptake into cells and organisms.
Collapse
|
36
|
Oboh G, Adebayo AA, Ademosun AO. Hunteria umbellata seed extract administration modulates activities of phosphodiesterase-5 and purinergic enzymes relevant to erection in normal male rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13596-019-00368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Yang HW, Fernando KHN, Oh JY, Li X, Jeon YJ, Ryu B. Anti-Obesity and Anti-Diabetic Effects of Ishige okamurae. Mar Drugs 2019; 17:E202. [PMID: 30934943 PMCID: PMC6520893 DOI: 10.3390/md17040202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
Obesity is associated with several health complications and can lead to the development of metabolic syndrome. Some of its deleterious consequences are related to insulin resistance, which adversely affects blood glucose regulation. At present, there is a growing concern regarding healthy food consumption, owing to awareness about obesity. Seaweeds are well-known for their nutritional benefits. The brown alga Ishige okamurae (IO) has been studied as a dietary supplement and exhibits various biological activities in vitro and in vivo. The bioactive compounds isolated from IO extract are known to possess anti-obesity and anti-diabetic properties, elicited via the regulation of lipid metabolism and glucose homeostasis. This review focuses on IO extract and its bioactive compounds that exhibit therapeutic effects through several cellular mechanisms in obesity and diabetes. The information discussed in the present review may provide evidence to develop nutraceuticals from IO.
Collapse
Affiliation(s)
- Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - K H N Fernando
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Jae-Young Oh
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Xining Li
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
38
|
de Oliveira JS, Abdalla FH, Dornelles GL, Palma TV, Signor C, da Silva Bernardi J, Baldissarelli J, Lenz LS, de Oliveira VA, Chitolina Schetinger MR, Melchiors Morsch VM, Rubin MA, de Andrade CM. Neuroprotective effects of berberine on recognition memory impairment, oxidative stress, and damage to the purinergic system in rats submitted to intracerebroventricular injection of streptozotocin. Psychopharmacology (Berl) 2019; 236:641-655. [PMID: 30377748 DOI: 10.1007/s00213-018-5090-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/21/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. The present study investigated the effects of 50 and 100 mg/kg berberine (BRB) on recognition memory, oxidative stress, and purinergic neurotransmission, in a model of sporadic dementia of the Alzheimer's type induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) in rats. Rats were submitted to ICV-STZ 3 mg/kg or saline, and 3 days later, were started on a treatment of BRB or saline for 21 days. The results demonstrated that BRB was effective in protecting against memory impairment, increased reactive oxygen species, and the subsequent increase in protein and lipid oxidation in the cerebral cortex and hippocampus, as well as δ-aminolevulinate dehydratase inhibition in the cerebral cortex. Moreover, the decrease in total thiols, and the reduced glutathione and glutathione S-transferase activity in the cerebral cortex and hippocampus of ICV-STZ rats, was prevented by BRB treatment. Besides an antioxidant effect, BRB treatment was capable of preventing decreases in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (EC-5'-Nt), and adenosine deaminase (ADA) activities in synaptosomes of the cerebral cortex and hippocampus. Thus, our data suggest that BRB exerts a neuroprotective effect on recognition memory, as well as on oxidative stress and oxidative stress-related damage, such as dysfunction of the purinergic system. This suggests that BRB may act as a promising multipotent agent for the treatment of AD.
Collapse
Affiliation(s)
- Juliana Sorraila de Oliveira
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. .,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Fátima Husein Abdalla
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme Lopes Dornelles
- Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais/Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária/Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Taís Vidal Palma
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane Signor
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Jamile da Silva Bernardi
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luana Suéling Lenz
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vitor Antunes de Oliveira
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maribel Antonello Rubin
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cinthia Melazzo de Andrade
- Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais/Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária/Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Department of Small Animal Clinic, Center of Rural Sciences Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
39
|
Eduardo CRC, Alejandra TIG, Guadalupe DRKJ, Herminia VRG, Lenin P, Enrique BV, Evandro BM, Oscar B, Iván GPM. Modulation of the extraneuronal cholinergic system on main innate response leukocytes. J Neuroimmunol 2019; 327:22-35. [PMID: 30683425 DOI: 10.1016/j.jneuroim.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
The expression of elements of the cholinergic system has been demonstrated in non-neuronal cells, such as immune cells, where acetylcholine modulates innate and adaptive responses. However, the study of the non-neuronal cholinergic system has focused on lymphocyte cholinergic mechanisms, with less attention to its role of innate cells. Considering this background, the aims of this review are 1) to review information regarding the cholinergic components of innate immune system cells; 2) to discuss the effect of cholinergic stimuli on cell functions; 3) and to describe the importance of cholinergic stimuli on host immunocompetence, in order to set the base for the design of intervention strategies in the biomedical field.
Collapse
Affiliation(s)
- Covantes-Rosales Carlos Eduardo
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Toledo-Ibarra Gladys Alejandra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Díaz-Resendiz Karina Janice Guadalupe
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Ventura-Ramón Guadalupe Herminia
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Pavón Lenin
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Becerril-Villanueva Enrique
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Bauer Moisés Evandro
- Pontifícia Universidade Católica do Rio Grande do Sul, Instituto de Pesquisas Biomédicas, Laboratório de Imunologia do Envelhecimento, 90610-000 Porto Alegre, RS, Brazil
| | - Bottaso Oscar
- Universidad Nacional de Rosario-Consejo Nacional de Investigaciones Científicas y Técnicas (UNR-CONICET), Instituto de Inmunología Clínica y Experimental de Rosario, Rosario, Argentina
| | - Girón-Pérez Manuel Iván
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
40
|
Physical exercise prevents memory impairment in an animal model of hypertension through modulation of CD39 and CD73 activities and A2A receptor expression. J Hypertens 2019; 37:135-143. [DOI: 10.1097/hjh.0000000000001845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Reichert KP, Schetinger MRC, Gutierres JM, Pelinson LP, Stefanello N, Dalenogare DP, Baldissarelli J, Lopes TF, Morsch VM. Lingonberry Extract Provides Neuroprotection by Regulating the Purinergic System and Reducing Oxidative Stress in Diabetic Rats. Mol Nutr Food Res 2018; 62:e1800050. [PMID: 29888863 DOI: 10.1002/mnfr.201800050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/15/2018] [Indexed: 11/06/2022]
Abstract
SCOPE Beneficial effects produced by polyphenolic compounds are used in the treatment of various diseases, including diabetes. Thus it is relevant to investigate the protective effect of lingonberry extract (LB) on the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (5'-NT), and adenosine deaminase (ADA); the density of A1, A2A, and P2×7 receptors; production of reactive species (RS); and the levels of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex of streptozotocin-induced diabetic rats. METHODS AND RESULTS Animals were divided into five groups (n = 10): control/saline; control/LB 50 mg kg-1 ; diabetic/saline; diabetic/LB 25 mg kg-1 ; and diabetic/LB 50 mg kg-1 ; and treated for 30 days. Our results demonstrate that the treatment with LB increased NTPDase activity in the diabetic/LB 50 group compared to diabetic/saline group. Western blot analysis showed that LB restored the density of purinergic receptors to the approximate values of the control/saline group. An increase in the levels of RS and TBARS was observed in the diabetic/saline group compared with the control/saline group, and treatment with LB can prevent this increase. CONCLUSION This study showed that LB could reverse the modifications found in the diabetic state, suggesting that lingonberry may be a coadjuvant in the treatment of diabetes.
Collapse
Affiliation(s)
- Karine Paula Reichert
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | - Jessie Martins Gutierres
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Luana Paula Pelinson
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Naiara Stefanello
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Diéssica Padilha Dalenogare
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Jucimara Baldissarelli
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, 96160-000, Brazil
| | - Thauan Faccin Lopes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Vera Maria Morsch
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
42
|
Saliu JA, Olabiyi AA. Aqueous extract of Securidaca longipendunculata Oliv. and Olax subscropioidea inhibits key enzymes (acetylcholinesterase and butyrylcholinesterase) linked with Alzheimer's disease in vitro. PHARMACEUTICAL BIOLOGY 2017; 55:252-257. [PMID: 27927065 PMCID: PMC6130697 DOI: 10.1080/13880209.2016.1258426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/01/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Plants have historically been used to treat neurodegerative diseases which include Alzheimer's disease. OBJECTIVE This study investigated the antioxidant properties and inhibitory effect of aqueous extracts of Securidaca longipendunculata root and Olax subscropioidea leaf on the cholinergic system in rat brain in vitro. MATERIALS AND METHODS Aqueous extracts (1:20 w/v) of S. longipendunculata root and O. subscropioidea leaf was prepared and the ability of the extract to inhibit the activities of acetylcholinesterase and butyrylcholinesterase was evaluated as well as antioxidants as typified by 2,2-azino-bis-(3-ethylbenthiazoline-6-sulphonic acid (ABTS•) radical scavenging ability and Fe chelation spectophotometrically. RESULTS ABTS• radical scavenging ability showed that S. longipendunculata (0.075 Mmol TEAC/100 g) had a higher scavenging ability than O. subscropioidea (0.07 Mmol TEAC/100 g). Also, the Fe2+ chelating ability of both extracts revealed that S. longipendunculata (IC50 = 105.57 g/mL) had a significantly (p < 0.05) higher Fe2+ chelating ability than O. subscropioidea (IC50 = 255.84 g/mL). Extracts of S. longipendunculata and O. subscropioidea inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities. However, S. longipendunculata (IC50 = 108.02 g/mL) has the higher AChE inhibitory activity than O. subscropioidea (IC50 = 110.35 g/mL). Also, both extracts inhibit BChE activity in vitro but S. longipendunculata (IC50 = 82.55 g/mL) had a higher BChE inhibitory activity than O. subscropioidea (IC50 = 108.44 g/mL). DISCUSSION AND CONCLUSIONS The mechanism by which S. longipendunculata root and O. subscropioidea leaf perform their anti-Alzheimer's disease activity may be by their inhibition on the key enzymes linked to this disease.
Collapse
Affiliation(s)
- Jamiu A. Saliu
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Ayodeji A. Olabiyi
- Department of Medical Biochemistry, Afe Babalola University, Ado Ekiti, Nigeria
| |
Collapse
|
43
|
Akıncıoğlu A, Kocaman E, Akıncıoğlu H, Salmas RE, Durdagi S, Gülçin İ, Supuran CT, Göksu S. The synthesis of novel sulfamides derived from β-benzylphenethylamines as acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. Bioorg Chem 2017; 74:238-250. [DOI: 10.1016/j.bioorg.2017.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
|
44
|
Abdallah W, Znati M, Regazzetti A, Dargère D, Laprévote O, Ben Jannet H, Gharbi R. Synthesis of S-mono- and S,O-bis-1,2,3-triazole linked 1,5-benzodiazepine conjugates and evaluation of their cytotoxic, anti-tyrosinase, and anti-cholinesterase activities. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1287704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wejdane Abdallah
- Laboratory of Applied Chemistry and Environment, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11SE39), Team: Medicinal Chemistry and Natural Products and Reactivity, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Mansour Znati
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11SE39), Team: Medicinal Chemistry and Natural Products and Reactivity, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Anne Regazzetti
- Laboratory C-TAC Faculty of Pharmaceutical and Biological Sciences, Paris, France
| | - Delphine Dargère
- Laboratory C-TAC Faculty of Pharmaceutical and Biological Sciences, Paris, France
| | - Olivier Laprévote
- Laboratory C-TAC Faculty of Pharmaceutical and Biological Sciences, Paris, France
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11SE39), Team: Medicinal Chemistry and Natural Products and Reactivity, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Rafik Gharbi
- Laboratory of Applied Chemistry and Environment, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
45
|
The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Bioorg Chem 2017; 72:359-366. [PMID: 28302311 DOI: 10.1016/j.bioorg.2017.03.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 11/23/2022]
Abstract
The first synthesis of (E)-4-(3-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (1), (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (2), and (E)-4-(2,3-dibromo-4,5-dihydroxyphenyl)but-3-en-2-one (3) was realized as natural bromophenols. Derivatives with mono OMe of 2 and 3 were obtained from the reactions of their derivatives with di OMe with AlCl3. These novel 4-phenylbutenone derivatives were effective inhibitors of the cytosolic carbonic anhydrase I and II isoenzymes (hCA I and II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with Ki values in the range of 158.07-404.16pM for hCA I, 107.63-237.40pM for hCA II, 14.81-33.99pM for AChE and 5.64-19.30pM for BChE. The inhibitory effects of the synthesized novel 4-phenylbutenone derivatives were compared to acetazolamide as a clinical hCA I and II isoenzymes inhibitor and tacrine as a clinical AChE and BChE enzymes inhibitor.
Collapse
|
46
|
Kaizer RR, Spanevello RM, Costa E, Morsch VM, Schetinger MRC. Effect of high fat diets on the NTPDase, 5'-nucleotidase and acetylcholinesterase activities in the central nervous system. Int J Dev Neurosci 2017; 64:54-58. [PMID: 28257945 DOI: 10.1016/j.ijdevneu.2017.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
High fat diets are associated with the promotion of neurological diseases, such as Alzheimer disease (AD). This study aim investigate the high fat diets role to promotion of AD using as biochemistry parameter of status of central nervous system through the NTPDase, 5'-nucleotidase and acetylcholinesterase (AChE) activities in brain of young rats. The intake of high fat diets promotes an inhibition of purinergic and cholinergic functions, mainly in the long-term exposure to saturated and saturated/unsaturated diets. The AChE activity was decreased to supernatant and synaptosomes tissues preparations obtained from cerebral cortex in average of 20%, to both groups exposed to saturated and saturated/unsaturated diets, when compared to the control group. Very similar results were found in hippocampus and cerebellum brain areas. At same time, the adenine nucleotides hydrolysis in synaptosomes of cerebral cortex were decreased to ATP, ADP and AMP after the long-term exposure to high fat diets, as saturated and saturated/unsaturated. The inhibition of ATP hydrolysis was of 26% and 39% to saturated and saturated/unsaturated diets, respectively. ADP hydrolysis was decreased in 20% to saturated diet, and AMP hydrolysis was decreased in 25% and 33% to saturated and saturated/unsaturated diets, respectively, all in comparison to the control. Thus, we can suggest that the effects of high diets on the purinergic and cholinergic nervous system may contribute to accelerate the progressive memory loss, to decline in language and other cognitive disruptions, such as AD patients presents.
Collapse
Affiliation(s)
- Rosilene Rodrigues Kaizer
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia ERS 135 km 25, Distrito Engenheiro Luiz Englert, 99170-000, Sertão, RS, Brazil; Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Campus Erechim, Rodovia ERS 135 km 72, n° 200, 99700-970, Erechim, RS, Brazil.
| | - Rosélia Maria Spanevello
- Departamento de Bioquímica, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Av. Roraima, 97105-900. Santa Maria, RS, Brazil
| | - Eduarda Costa
- Departamento de Bioquímica, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Av. Roraima, 97105-900. Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Departamento de Bioquímica, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Av. Roraima, 97105-900. Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Departamento de Bioquímica, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Av. Roraima, 97105-900. Santa Maria, RS, Brazil
| |
Collapse
|
47
|
da Costa P, Gonçalves JF, Baldissarelli J, Mann TR, Abdalla FH, Fiorenza AM, da Rosa MM, Carvalho FB, Gutierres JM, de Andrade CM, Rubin MA, Schetinger MRC, Morsch VM. Curcumin attenuates memory deficits and the impairment of cholinergic and purinergic signaling in rats chronically exposed to cadmium. ENVIRONMENTAL TOXICOLOGY 2017; 32:70-83. [PMID: 26592365 DOI: 10.1002/tox.22213] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/12/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the protective effect of curcumin on memory loss and on the alteration of acetylcholinesterase and ectonucleotidases activities in rats exposed chronically to cadmium (Cd). Rats received Cd (1 mg/kg) and curcumin (30, 60, or 90 mg/kg) by oral gavage 5 days a week for 3 months. The animals were divided into eight groups: vehicle (saline/oil), saline/curcumin 30 mg/kg, saline/curcumin 60 mg/kg, saline/curcumin 90 mg/kg, Cd/oil, Cd/curcumin 30 mg/kg, Cd/curcumin 60 mg/kg, and Cd/curcumin 90 mg/kg. Curcumin prevented the decrease in the step-down latency induced by Cd. In cerebral cortex synaptosomes, Cd-exposed rats showed an increase in acetylcholinesterase and NTPDase (ATP and ADP as substrates) activities and a decrease in the 5'-nucleotidase activity. Curcumin was not able to prevent the effect of Cd on acetylcholinesterase activity, but it prevented the effects caused by Cd on NTPDase (ATP and ADP as substrate) and 5'-nucleotidase activities. Increased acetylcholinesterase activity was observed in different brain structures, whole blood and lymphocytes of the Cd-treated group. In addition, Cd increased lipid peroxidation in different brain structures. Higher doses of curcumin were more effective in preventing these effects. These findings show that curcumin prevented the Cd-mediated memory impairment, demonstrating that this compound has a neuroprotective role and is capable of modulating acetylcholinesterase, NTPDase, and 5'-nucleotidase activities. Finally, it highlights the possibility of using curcumin as an adjuvant against toxicological conditions involving Cd exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 70-83, 2017.
Collapse
Affiliation(s)
- Pauline da Costa
- Departamento De Bioquímica E Biologia Molecular, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Jamile F Gonçalves
- Departamento De Bioquímica E Biologia Molecular, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Jucimara Baldissarelli
- Departamento De Bioquímica E Biologia Molecular, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Thaís R Mann
- Departamento De Clínica De Pequenos Animais, Setor De Patologia Clínica Veterinária, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Fátima H Abdalla
- Departamento De Bioquímica E Biologia Molecular, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Amanda M Fiorenza
- Departamento De Bioquímica E Biologia Molecular, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Michelle M da Rosa
- Departamento De Bioquímica E Biologia Molecular, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Fabiano B Carvalho
- Departamento De Clínica De Pequenos Animais, Setor De Patologia Clínica Veterinária, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Jessié M Gutierres
- Departamento De Clínica De Pequenos Animais, Setor De Patologia Clínica Veterinária, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Cinthia M de Andrade
- Departamento De Clínica De Pequenos Animais, Setor De Patologia Clínica Veterinária, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Maribel A Rubin
- Departamento De Bioquímica E Biologia Molecular, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Maria Rosa C Schetinger
- Departamento De Bioquímica E Biologia Molecular, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| | - Vera M Morsch
- Departamento De Bioquímica E Biologia Molecular, Centro De Ciências Naturais E Exatas, Universidade Federal De Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, 97105-900, Brasil
| |
Collapse
|
48
|
Maciel RM, Carvalho FB, Olabiyi AA, Schmatz R, Gutierres JM, Stefanello N, Zanini D, Rosa MM, Andrade CM, Rubin MA, Schetinger MR, Morsch VM, Danesi CC, Lopes STA. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities. Biomed Pharmacother 2016; 84:559-568. [PMID: 27694000 DOI: 10.1016/j.biopha.2016.09.069] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 11/24/2022] Open
Abstract
The present study investigated the protective effect of quercetin (Querc) on memory, anxiety-like behavior and impairment of ectonucleotidases and acetylcholinesterase (AChE) activities in brain of streptozotocin-induced diabetic rats (STZ-diabetes). The type 1 diabetes mellitus was induced by an intraperitoneal injection of 70mg/kg of streptozotocin (STZ), diluted in 0.1M sodium-citrate buffer (pH 4.5). Querc was dissolved in 25% ethanol and administered by gavage at the doses of 5, 25 and 50mg/kg once a day during 40days. The animals were distributed in eight groups of ten animals as follows: vehicle, Querc 5mg/kg, Querc 25mg/kg, Querc 50mg/kg, diabetes, diabetes plus Querc 5mg/kg, diabetes plus Querc 25mg/kg and diabetes plus Querc 50mg/kg. Querc was able to prevent the impairment of memory and the anxiogenic-like behavior induced by STZ-diabetes. In addition, Querc prevents the decrease in the NTPDase and increase in the adenosine deaminase (ADA) activities in SN from cerebral cortex of STZ-diabetes. STZ-diabetes increased the AChE activity in SN from cerebral cortex and hippocampus. Querc 50mg/kg was more effective to prevent the increase in AChE activity in the brain of STZ-diabetes. Querc also prevented an increase in the malondialdehyde levels in all the brain structures. In conclusion, the present findings showed that Querc could prevent the impairment of the enzymes that regulate the purinergic and cholinergic extracellular signaling and improve the memory and anxiety-like behavior induced by STZ-diabetes.
Collapse
Affiliation(s)
- Roberto M Maciel
- Programa de Pós-Graduação em Medicina Veterinária, Laboratório de Análises Clínicas Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Fabiano B Carvalho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil.
| | - Ayodeji A Olabiyi
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil; Department of Medical Biochemistry, Afe Babalola University, Ado Ekiti, P.M.B 5454. Ado Ekiti, Nigeria
| | - Roberta Schmatz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Jessié M Gutierres
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Daniela Zanini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Michelle M Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Cinthia M Andrade
- Programa de Pós-Graduação em Medicina Veterinária, Laboratório de Análises Clínicas Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Maribel A Rubin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Maria Rosa Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Vera Maria Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Cristiane C Danesi
- Programa de Pós-Graduação em Ciências Odontológicas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sonia T A Lopes
- Programa de Pós-Graduação em Medicina Veterinária, Laboratório de Análises Clínicas Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil.
| |
Collapse
|
49
|
Stefanello N, Schmatz R, Pereira LB, Cardoso AM, Passamonti S, Spanevello RM, Thomé G, de Oliveira GMT, Kist LW, Bogo MR, Morsch VM, Schetinger MRC. Effects of chlorogenic acid, caffeine and coffee on components of the purinergic system of streptozotocin-induced diabetic rats. J Nutr Biochem 2016; 38:145-153. [PMID: 27736734 DOI: 10.1016/j.jnutbio.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/08/2016] [Accepted: 08/20/2016] [Indexed: 12/20/2022]
Abstract
We evaluated the effect of chlorogenic acid (CGA), caffeine (CA) and coffee (CF) on components of the purinergic system from the cerebral cortex and platelets of streptozotocin-induced diabetic rats. Animals were divided into eight groups: control animals treated with (I) water (WT), (II) CGA (5 mg/kg), (III) CA (15 mg/kg) and (IV) CF (0.5 g/kg), and diabetic animals treated with (V) WT, (VI) CGA (5 mg/kg), (VII) CA (15 mg/kg) and (VIII) CF (0.5 g/kg). Our results showed an increase (173%) in adenosine monophosphate (AMP) hydrolysis in the cerebral cortex of diabetic rats. In addition, CF treatment increased adenosine diphosphate (ADP) and AMP hydrolysis in group VIII synaptosomes. Platelets showed an increase in ectonucleotidase activity in group V, and all treatments reduced the increase in adenosine triphosphate and ADP hydrolysis. Furthermore, there was an increase in platelet aggregation of 72% in the diabetic rats, and CGA and CF treatment reduced platelet aggregation by nearly 60% when compared to diabetic rats. In this context, we can suggest that CGA and CF treatment should be considered a therapeutic and scientific target to be investigated in diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Naiara Stefanello
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - Roberta Schmatz
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Luciane Belmonte Pereira
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Andréia Machado Cardoso
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | | | - Gustavo Thomé
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | | | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, PUCRS, 90619-900 Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, PUCRS, 90619-900 Porto Alegre, RS, Brazil
| | - Vera Maria Morsch
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
50
|
Baldissera MD, Souza CF, Grando TH, Sagrillo MR, De Brum GF, Nascimento K, Peres DS, Maciel MF, Silveira SO, Da Luz SCA, Doleski PH, Leal DBR, da Silva AS, Monteiro SG. Memory deficit, toxic effects and activity of Na(+), K(+)-ATPase and NTPDase in brain of Wistar rats submitted to orally treatment with alpha-terpinene. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:1-8. [PMID: 27400424 DOI: 10.1016/j.etap.2016.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/19/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The neurotoxic effects and activity of Na(+), K(+)-ATPase and NTPDase in Wistar rats after treatment with α-terpinene (daily oral administration of 0.5, 0.75 and 1.0mLkg(-1) for 10days) were examined. Results of the inhibitory avoidance task showed a memory deficit (p<0.05) in rats treated with all doses of α-terpinene. The evaluation of DNA damage in brain tissue revealed an increase (p<0.05) on frequency of damage and damage index in all concentrations. According to the cytotoxicity assay, doses of 0.5, 0.75 and 1.0mLkg(-1) increase the lactate dehydrogenase levels, and doses of 1.0mLkg(-1) also decrease (p<0.05) cell viability in brain cells. A decrease (p<0.05) on Na(+), K(+)-ATPase activity in brain tissue and on NTPDase activity in serum were observed in all concentrations of α-terpinene. These results suggest that the α-terpinene was cytotoxic and genotoxic to the brain cells by inducing loss of cell viability and DNA damage, as well as causing alterations in Na(+), K(+)-ATPase and NTPDase activity, what may contribute to the memory deficit of treated animals. Thus, α-terpinene cannot be consumed by the population at the doses studied.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, UFSM, Santa Maria, RS, Brazil
| | - Thirssa H Grando
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Michele R Sagrillo
- Laboratory of Cell Culture, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Gerson F De Brum
- Laboratory of Cell Culture, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Kátia Nascimento
- Laboratory of Cell Culture, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Diulle S Peres
- Laboratory of Cell Culture, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | - Miriãn F Maciel
- Laboratory of Cell Culture, Centro Universitário Franciscano, Santa Maria, RS, Brazil
| | | | - Sonia C A Da Luz
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Pedro H Doleski
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Daniela B R Leal
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|