1
|
Huang S, Feigs JT, Holzhauer SIJ, Kramp K, Brunet J, Decocq G, De Frenne P, Diekmann M, Liira J, Spicher F, Vangansbeke P, Vanneste T, Verheyen K, Naaf T. Limited effects of population age on the genetic structure of spatially isolated forest herb populations in temperate Europe. Ecol Evol 2024; 14:e10971. [PMID: 38414568 PMCID: PMC10897356 DOI: 10.1002/ece3.10971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Due to multiple land-cover changes, forest herb populations residing in forest patches embedded in agricultural landscapes display different ages and, thus, experience differences in genetic exchange, mutation accumulation and genetic drift. The extent of divergence in present-day population genetic structure among these populations of different ages remains unclear, considering their diverse breeding systems and associated pollinators. Answering this question is essential to understand these species' persistence, maintenance of evolutionary potential and adaptability to changing environments. We applied a multi-landscape setup to compare the genetic structure of forest herb populations across forest patches of different ages (18-338 years). We studied the impact on three common slow-colonizer herb species with distinct breeding systems and associated pollinators: Polygonatum multiflorum (outcrossing, long-distance pollinators), Anemone nemorosa (outcrossing, short-distance pollinators) and Oxalis acetosella (mixed breeding). We aimed to assess if in general older populations displayed higher genetic diversity and lower differentiation than younger ones. We also anticipated that P. multiflorum would show the smallest while O. acetosella the largest difference, between old and young populations. We found that older populations had a higher observed heterozygosity (H o) but a similar level of allelic richness (A r) and expected heterozygosity (H e) as younger populations, except for A. nemorosa, which exhibited higher A r and H e in younger populations. As populations aged, their pairwise genetic differentiation measured by D PS decreased independent of species identity while the other two genetic differentiation measures showed either comparable levels between old and young populations (G" ST) or inconsistency among three species (cGD). The age difference of the two populations did not explain their genetic differentiation. Synthesis: We found restricted evidence that forest herb populations with different ages differ in their genetic structure, indicating that populations of different ages can reach a similar genetic structure within decades and thus persist in the long term after habitat disturbance. Despite their distinct breeding systems and associated pollinators, the three studied species exhibited partly similar genetic patterns, suggesting that their common characteristics, such as being slow colonizers or their ability to propagate vegetatively, are important in determining their long-term response to land-cover change.
Collapse
Affiliation(s)
- Siyu Huang
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | - Jannis Till Feigs
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | | | - Katja Kramp
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | - Jörg Brunet
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesLommaSweden
| | - Guillaume Decocq
- Research Unit Ecology and Dynamics of Anthropized SystemsUniversity of Picardie Jules VerneAmiens CedexFrance
| | - Pieter De Frenne
- Forest & Nature Lab, Department of EnvironmentGhent UniversityGontrodeBelgium
| | - Martin Diekmann
- Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2University of BremenBremenGermany
| | - Jaan Liira
- Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
| | - Fabien Spicher
- Research Unit Ecology and Dynamics of Anthropized SystemsUniversity of Picardie Jules VerneAmiens CedexFrance
| | - Pieter Vangansbeke
- Forest & Nature Lab, Department of EnvironmentGhent UniversityGontrodeBelgium
| | - Thomas Vanneste
- Forest & Nature Lab, Department of EnvironmentGhent UniversityGontrodeBelgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of EnvironmentGhent UniversityGontrodeBelgium
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| |
Collapse
|
2
|
Kalske A, Kessler A. Herbivory selects for tolerance and constitutive defence across stages of community succession. Proc Biol Sci 2023; 290:20222458. [PMID: 36787795 PMCID: PMC9928524 DOI: 10.1098/rspb.2022.2458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Plants defend themselves from herbivory by either reducing damage (resistance) or minimizing its negative fitness effects with compensatory growth (tolerance). Herbivore pressure can fluctuate from year to year in an early secondary successional community, which can create temporal variation in selection for defence traits. We manipulated insect herbivory and successional age of the community as agents of natural selection in replicated common gardens with the perennial herb Solidago altissima. In these genotypic selection experiments, herbivory consistently selected for better defended plants in both successional communities. Herbivore suppression increased plant survival and the probability of flowering only in mid-succession. Despite these substantial differences in the effects of herbivory between early and mid-succession, the selection on defence traits did not change. Succession affected selection only on aboveground biomass, with positive selection in early but not mid-succession, suggesting an important role of competition in the selective environment. These results demonstrate that changes in the community that affect key life-history traits in an individual species can occur over very short timescales in a dynamic secondary successional environment. The resulting community context-driven variation in natural selection may be an important, yet overlooked, contributor to adaptive mosaics across populations.
Collapse
Affiliation(s)
- Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Evans JP, Meckstroth S, Garai J. The Amelioration of Grazing through Physiological Integration by a Clonal Dune Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040724. [PMID: 36840072 PMCID: PMC9962606 DOI: 10.3390/plants12040724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 05/14/2023]
Abstract
Rhizomatous growth and associated physiological integration can allow a clonal dune species to potentially compensate for the selective removal of leaves associated with herbivory. Hydrocotyle bonariensis is a rhizomatous clonal plant species that is abundant in the coastal dune environments of the southeastern United States that are inhabited by large feral horse populations. H. bonariensis has been shown to integrate resources among ramets within extensive clones as an adaptation to resource heterogeneity in sandy soils. In this study, we hypothesized that clonal integration is a mechanism that promotes H. bonariensis persistence in these communities, despite high levels of herbivory by feral horses. In a field experiment, we used exclosures to test for herbivory in H. bonariensis over a four-month period. We found that feral horses utilized H. bonariensis as a food species, and that while grazing will suppress clonal biomass, H. bonariensis is able to maintain populations in a high grazing regime with and without competition present. We then conducted an experiment in which portions of H. bonariensis clones were clipped to simulate different levels of grazing. Half of the clones were severed to eliminate the possibility of integration. We found that after 12 weeks, the mean number of leaves and ramets increased as the grazing level increased, for integrated clones. Integrated clones had significantly increased biomass production compared to the severed equivalents. Our research suggests that rhizomatous growth and physiological integration are traits that allow clonal plant species to maintain populations and to tolerate grazing in coastal dune environments.
Collapse
Affiliation(s)
- Jonathan P. Evans
- Department of Biology, University of the South, Sewanee, TN 37383, USA
- Correspondence: ; Tel.: +1-(931)-598-1304
| | - Shelby Meckstroth
- Department of Biology, University of the South, Sewanee, TN 37383, USA
| | - Julie Garai
- Department of Mathematics and Computer Science, University of the South, Sewanee, TN 37383, USA
| |
Collapse
|
4
|
Araki KS, Shimatani IK, Ohara M. Genet dynamics and its variation among genets of a clonal plant
Convallaria keiskei. OIKOS 2022. [DOI: 10.1111/oik.09367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kiwako S. Araki
- Dept of Ecosystem Studies, School of Environmental Science, The Univ. of Shiga Prefecture Shiga Japan
- Faculty of Life Science, Ritsumeikan University Kusatsu Shiga Japan
| | | | - Masashi Ohara
- Faculty of Environmental Earth Science, Hokkaido Univ. Sapporo Hokkaido Japan
| |
Collapse
|
5
|
Effects of Clonal Integration on Foraging Behavior of Three Clonal Plants in Heterogeneous Soil Environments. FORESTS 2022. [DOI: 10.3390/f13050696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Environments are ubiquitously heterogeneous in nature, and clonal plants commonly benefit from both clonal integration and foraging responses in heterogeneous environments. While many studies have examined clonal integration and foraging responses separately, few have tested the effect of clonal integration on the foraging response of clonal plants to environmental heterogeneity. We grew offspring ramets of each of three clonal plants (Hydrocotyle vulgaris, Duchesnea indica, and Glechoma longituba) in both homogeneous and heterogenous soil environments and severed their stem connection to a mother ramet (to prevent clonal integration from the mother ramet) or kept it intact (to allow clonal integration). Without clonal integration from the mother ramet, soil heterogeneity had no effect on biomass or number of ramets for any of the three species. With clonal integration, soil heterogeneity also had no effect on biomass or number of ramets of D. indica and G. longituba, but significantly decreased biomass and marginally significantly decreased number of ramets of H. vulgaris. Without clonal integration, offspring ramets did not demonstrate either shoot or root foraging responses in terms of total, shoot and root biomass and ramet number in the heterogeneous soil environment in any of the three species. With integration, offspring ramets of H. vulgaris also did not demonstrate either root or shoot foraging responses, but offspring ramets of G. longituba demonstrated both root and shoot foraging responses, and those of D. indica demonstrated a root foraging response when they grew in the heterogeneous soil environment. We conclude that clonal integration can alter the foraging response of clonal plants, but this effect is species-specific. Our results also suggest that foraging responses of clonal plants in heterogeneous soil environments may not necessarily benefit the growth of clonal plants.
Collapse
|
6
|
Thakur D, Münzbergová Z. Rhizome trait scaling relationships are modulated by growth conditions and are linked to plant fitness. ANNALS OF BOTANY 2022; 129:529-540. [PMID: 35180294 PMCID: PMC9007095 DOI: 10.1093/aob/mcac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Rhizomes are important organs allowing many clonal plants to persist and reproduce under stressful climates with longer rhizomes, indicating enhanced ability of the plants to spread vegetatively. We do not, however, know either how rhizome construction costs change with increasing length or how they vary with environmental conditions. METHODS We analysed the rhizome length vs. mass scaling relationship, the plasticity in the scaling relationships, their genetic basis and how scaling relationships are linked to plant fitness. We used data from 275 genotypes of a clonal grass Festuca rubra originating from 11 localities and cultivated under four contrasting climates. Data were analysed using standard major axis regression, mixed-effect regression models and a structural equation model. KEY RESULTS Rhizome construction costs increased (i.e. lower specific rhizome length) with increasing length. The trait scaling relationships were modulated by cultivation climate, and its effects also interacted with the climate of origin of the experimental plants. With increasing length, increasing moisture led to a greater increase in rhizome construction costs. Plants with lower rhizome construction costs showed significantly higher fitness. CONCLUSIONS This study suggests that rhizome scaling relationships are plastic, but also show genetic differentiation and are linked to plant fitness. Therefore, to persist under variable environments, modulation in scaling relationships could be an important plant strategy.
Collapse
Affiliation(s)
- Dinesh Thakur
- Institute of Botany, Czech Academy of Sciences, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Long EM, Romay MC, Ramstein G, Buckler ES, Robbins KR. Utilizing evolutionary conservation to detect deleterious mutations and improve genomic prediction in cassava. FRONTIERS IN PLANT SCIENCE 2022; 13:1041925. [PMID: 37082510 PMCID: PMC10112518 DOI: 10.3389/fpls.2022.1041925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Abstract
Introduction Cassava (Manihot esculenta) is an annual root crop which provides the major source of calories for over half a billion people around the world. Since its domestication ~10,000 years ago, cassava has been largely clonally propagated through stem cuttings. Minimal sexual recombination has led to an accumulation of deleterious mutations made evident by heavy inbreeding depression. Methods To locate and characterize these deleterious mutations, and to measure selection pressure across the cassava genome, we aligned 52 related Euphorbiaceae and other related species representing millions of years of evolution. With single base-pair resolution of genetic conservation, we used protein structure models, amino acid impact, and evolutionary conservation across the Euphorbiaceae to estimate evolutionary constraint. With known deleterious mutations, we aimed to improve genomic evaluations of plant performance through genomic prediction. We first tested this hypothesis through simulation utilizing multi-kernel GBLUP to predict simulated phenotypes across separate populations of cassava. Results Simulations showed a sizable increase of prediction accuracy when incorporating functional variants in the model when the trait was determined by<100 quantitative trait loci (QTL). Utilizing deleterious mutations and functional weights informed through evolutionary conservation, we saw improvements in genomic prediction accuracy that were dependent on trait and prediction. Conclusion We showed the potential for using evolutionary information to track functional variation across the genome, in order to improve whole genome trait prediction. We anticipate that continued work to improve genotype accuracy and deleterious mutation assessment will lead to improved genomic assessments of cassava clones.
Collapse
Affiliation(s)
- Evan M. Long
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- *Correspondence: Evan M. Long,
| | - M. Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, United States
| | - Guillaume Ramstein
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Edward S. Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, United States
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| | - Kelly R. Robbins
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Munguía-Rosas MA. Artificial selection optimizes clonality in chaya (Cnidoscolus aconitifolius). Sci Rep 2021; 11:21017. [PMID: 34697356 PMCID: PMC8546088 DOI: 10.1038/s41598-021-00592-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
The clonal propagation of crops offers several advantages to growers, such as skipping the juvenile phase, faster growth, and reduced mortality. However, it is not known if the wild ancestors of most clonal crops have a similar ability to reproduce clonally. Therefore, it is unclear whether clonality was an ancestral condition, or if it evolved during domestication in the majority of these crops. Here, I assessed some traits that are relevant to clonal propagation using stem cuttings from chaya (Cnidoscolus aconitifolius) and compared these traits to those of its wild ancestor. Chaya is highly relevant crop to food security in its domestication center (Yucatan Peninsula) and is now cultivated in several countries. Chaya is also an excellent model for assessing the effect of domestication on clonality because wild relatives and selection targets are known. Specifically, I compared resistance to desiccation, water and resource storage, as well as the production of new organs (shoots and leaves) by the stems of wild and domesticated plants. I also compared their performance in root development and clone survival. I found that, relative to their wild ancestors, the stem cuttings of domesticated chaya had 1.1 times greater storage capacity for water and starch. Additionally, the stems of domesticated plants produced 1.25 times more roots, 2.69 times more shoots and 1.94 more leaves, and their clones lived 1.87 times longer than their wild relatives. In conclusion, the results suggest that artificial selection has optimized water and starch storage by stems in chaya. Because these traits also confer greater fitness (i.e. increased fecundity and survival of clones), they can be considered adaptations to clonal propagation in the agroecosystems where this crop is cultivated.
Collapse
Affiliation(s)
- Miguel A Munguía-Rosas
- Laboratorio de Ecología Terrestre, Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), 97310, Mérida, México.
| |
Collapse
|
9
|
Harms NE, Cronin JT, Gaskin JF. Increased ploidy of Butomus umbellatus in introduced populations is not associated with higher phenotypic plasticity to N and P. AOB PLANTS 2021; 13:plab045. [PMID: 34394906 PMCID: PMC8356175 DOI: 10.1093/aobpla/plab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Separate introductions or post-introduction evolution may lead to multiple invader genotypes or cytotypes that differ in growth rates, biomass or chemical profile responses (phenotype) to a range of environments. If the invader has high trait plasticity to a range of resource levels, then sediment N or P enrichment may enhance invasiveness. However, the ways in which ploidy, plasticity, and available N or P interact are unknown for most species despite the potential to explain spread and impacts by invaders with multiple introduced lineages. We conducted a common garden experiment with four triploid and six diploid populations of Butomus umbellatus, collected from across its invasive range in the USA. Plants were grown under different N or P nutrient levels (4, 40, 200, 400 mg L-1 N; 0.4, 4, 40 mg L-1 P) and we measured reaction norms for biomass, clonal reproduction and tissue chemistry. Contrary to our expectation, triploid B. umbellatus plants were less plastic to variation in N or P than diploid B. umbellatus in most measured traits. Diploid plants produced 172 % more reproductive biomass and 57 % more total biomass across levels of N, and 158 % more reproductive biomass and 33 % more total biomass across P than triploid plants. Triploid plants had lower shoot:root ratios and produced 30 % and 150 % more root biomass than diploid plants in response to increases in N and P, respectively. Tissue chemistry differed between cytotypes but plasticity was similar; N was 8 % higher and C:N ratio was 30 % lower in triploid than diploid plants across levels of N and plant parts, and N was 22 % higher and C:N ratio 27 % lower across levels of P and plant parts. Our results highlight differences in nutrient response between cytotypes of a widespread invader, and we call for additional field studies to better understand the interaction of nutrients and ploidy during invasion.
Collapse
Affiliation(s)
- Nathan E Harms
- U.S. Army Engineer Research and Development Center, Aquatic Ecology and Invasive Species Branch, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - James T Cronin
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - John F Gaskin
- U.S. Department of Agriculture, Agricultural Research Service, 1500 N. Central Avenue, Sidney, MT 59270, USA
| |
Collapse
|
10
|
Dierick J, Phan TTH, Luong QD, Triest L. Persistent Clones and Local Seed Recruitment Contribute to the Resilience of Enhalus acoroides Populations Under Disturbance. FRONTIERS IN PLANT SCIENCE 2021; 12:658213. [PMID: 34220884 PMCID: PMC8248806 DOI: 10.3389/fpls.2021.658213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Human-induced land use in coastal areas is one of the main threats for seagrass meadows globally causing eutrophication and sedimentation. These environmental stressors induce sudden ecosystem shifts toward new alternative stable states defined by lower seagrass richness and abundance. Enhalus acoroides, a large-sized tropical seagrass species, appears to be more resistant toward environmental change compared to coexisting seagrass species. We hypothesize that reproductive strategy and the extent of seedling recruitment of E. acoroides are altered under disturbance and contribute to the persistence and resilience of E. acoroides meadows. In this research, we studied eight populations of E. acoroides in four lagoons along the South Central Coast of Vietnam using 11 polymorphic microsatellite loci. We classified land use in 6 classes based on Sentinel-2 L2A images and determined the effect of human-induced land use at different spatial scales on clonal richness and structure, fine-scale genetic structure and genetic diversity. No evidence of population size reductions due to disturbance was found, however, lagoons were strongly differentiated and may act as barriers to gene flow. The proportion and size of clones were significantly higher in populations of surrounding catchments with larger areas of agriculture, urbanization and aquaculture. We postulate that large resistant genets contribute to the resilience of E. acoroides meadows under high levels of disturbance. Although the importance of clonal growth increases with disturbance, sexual reproduction and the subsequent recruitment of seedlings remains an essential strategy for the persistence of populations of E. acoroides and should be prioritized in conservation measures to ensure broad-scale and long-term resilience toward future environmental change.
Collapse
Affiliation(s)
- Jasper Dierick
- Ecology and Biodiversity Research Group, Biology Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Thi Thuy Hang Phan
- Biology Department, University of Sciences, Hue University, Hue, Vietnam
| | - Quang Doc Luong
- Biology Department, University of Sciences, Hue University, Hue, Vietnam
| | - Ludwig Triest
- Ecology and Biodiversity Research Group, Biology Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
11
|
Pazzaglia J, Reusch TBH, Terlizzi A, Marín‐Guirao L, Procaccini G. Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evol Appl 2021; 14:1181-1201. [PMID: 34025759 PMCID: PMC8127715 DOI: 10.1111/eva.13212] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/03/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
Coastal oceans are particularly affected by rapid and extreme environmental changes with dramatic consequences for the entire ecosystem. Seagrasses are key ecosystem engineering or foundation species supporting diverse and productive ecosystems along the coastline that are particularly susceptible to fast environmental changes. In this context, the analysis of phenotypic plasticity could reveal important insights into seagrasses persistence, as it represents an individual property that allows species' phenotypes to accommodate and react to fast environmental changes and stress. Many studies have provided different definitions of plasticity and related processes (acclimation and adaptation) resulting in a variety of associated terminology. Here, we review different ways to define phenotypic plasticity with particular reference to seagrass responses to single and multiple stressors. We relate plasticity to the shape of reaction norms, resulting from genotype by environment interactions, and examine its role in the presence of environmental shifts. The potential role of genetic and epigenetic changes in underlying seagrasses plasticity in face of environmental changes is also discussed. Different approaches aimed to assess local acclimation and adaptation in seagrasses are explored, explaining strengths and weaknesses based on the main results obtained from the most recent literature. We conclude that the implemented experimental approaches, whether performed with controlled or field experiments, provide new insights to explore the basis of plasticity in seagrasses. However, an improvement of molecular analysis and the application of multi-factorial experiments are required to better explore genetic and epigenetic adjustments to rapid environmental shifts. These considerations revealed the potential for selecting the best phenotypes to promote assisted evolution with fundamental implications on restoration and preservation efforts.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - Thorsten B. H. Reusch
- Marine Evolutionary EcologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | - Antonio Terlizzi
- Department of Life SciencesUniversity of TriesteTriesteItaly
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnNaplesItaly
| | - Lázaro Marín‐Guirao
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
- Seagrass Ecology GroupOceanographic Center of MurciaSpanish Institute of OceanographyMurciaSpain
| | - Gabriele Procaccini
- Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
| |
Collapse
|
12
|
The reproductive strategy of the clonal helophyte Leersia oryzoides (L.) Swartz. in response to variable submergence conditions and different harvest times. Evol Ecol 2021. [DOI: 10.1007/s10682-020-10092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Meeus S, Šemberová K, De Storme N, Geelen D, Vallejo-Marín M. Effect of Whole-Genome Duplication on the Evolutionary Rescue of Sterile Hybrid Monkeyflowers. PLANT COMMUNICATIONS 2020; 1:100093. [PMID: 33367262 PMCID: PMC7747968 DOI: 10.1016/j.xplc.2020.100093] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 05/15/2023]
Abstract
Hybridization is a creative evolutionary force, increasing genomic diversity and facilitating adaptation and even speciation. Hybrids often face significant challenges to establishment, including reduced fertility that arises from genomic incompatibilities between their parents. Whole-genome duplication in hybrids (allopolyploidy) can restore fertility, cause immediate phenotypic changes, and generate reproductive isolation. Yet the survival of polyploid lineages is uncertain, and few studies have compared the performance of recently formed allopolyploids and their parents under field conditions. Here, we use natural and synthetically produced hybrid and polyploid monkeyflowers (Mimulus spp.) to study how polyploidy contributes to the fertility, reproductive isolation, phenotype, and performance of hybrids in the field. We find that polyploidization restores fertility and that allopolyploids are reproductively isolated from their parents. The phenotype of allopolyploids displays the classic gigas effect of whole-genome duplication, in which plants have larger organs and are slower to flower. Field experiments indicate that survival of synthetic hybrids before and after polyploidization is intermediate between that of the parents, whereas natural hybrids have higher survival than all other taxa. We conclude that hybridization and polyploidy can act as sources of genomic novelty, but adaptive evolution is key in mediating the establishment of young allopolyploid lineages.
Collapse
Affiliation(s)
- Sofie Meeus
- Department of Biological and Environmental Sciences. University of Stirling, Stirling FK9 4LA, UK
| | - Kristýna Šemberová
- Department of Botany, Charles University, 128 43 Prague 2, Czech Republic
| | - Nico De Storme
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences. University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
14
|
Wen L, Simons AM. Delusions of grandeur: Seed count is not a good fitness proxy under individual variation in phenology. J Evol Biol 2020; 33:1039-1049. [PMID: 32311183 PMCID: PMC7496667 DOI: 10.1111/jeb.13633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
The concept of fitness is central to evolutionary biology, yet it is difficult to define and to measure. In plant biology, fitness is often measured as seed count. However, under an array of circumstances, seed count may be a biased proxy of fitness, for example when individuals vary in allocation to sexual versus asexual reproduction. A more subtle example, but also likely to be important in natural populations, is when interindividual variation in conditions during development results in variation in offspring quality among seed parents. In monocarpic (semelparous) plants, this is expected to result from variation in effective season length experienced among individuals that reach reproductive maturity at different times. Here, we manipulate growing season length to ask whether seed count is an accurate representation of parental fitness in the monocarpic herb Lobelia inflata. Simple seed count suggests a paradoxical fitness advantage under constrained-season length. However, we find that the apparent fitness advantage of a constrained-season length is overridden by low relative per-seed fitness. Furthermore, the fitness deficit in the constrained environment is associated primarily with an accelerating decrease in viability and seedling survival in seeds derived from fruits produced progressively later in the season. In this study, the overall fitness value of a seed under a constrained season is 0.774 of that observed under a long season.
Collapse
Affiliation(s)
- Lina Wen
- Department of BiologyCarleton UniversityOttawaONCanada
| | | |
Collapse
|
15
|
Radosavljević I, Antonić O, Hruševar D, Križan J, Satovic Z, Turković D, Liber Z. The Influence of a Seedling Recruitment Strategy and a Clonal Architecture on a Spatial Genetic Structure of a Salvia brachyodon (Lamiaceae) Population. PLANTS 2020; 9:plants9070828. [PMID: 32630143 PMCID: PMC7412074 DOI: 10.3390/plants9070828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
By performing a high-resolution spatial-genetic analysis of a partially clonal Salvia brachyodon population, we elucidated its clonal architecture and seedling recruitment strategy. The sampling of the entire population was based on a 1 × 1 m grid and each sampled individual was genotyped. Population-genetic statistics were combined with geospatial analyses. On the population level, the presence of both sexual and clonal reproduction and repeated seedling recruitment as the prevailing strategy of new genets establishment were confirmed. On the patch level, a phalanx clonal architecture was detected. A significant negative correlation between patches' sizes and genotypic richness was observed as young plants were not identified within existing patches of large genets but almost exclusively in surrounding areas. The erosion of the genetic variability of older patches is likely caused by the inter-genet competition and resulting selection or by a random die-off of individual genets accompanied by the absence of new seedlings establishment. This study contributes to our understanding of how clonal architecture and seedling recruitment strategies can shape the spatial-genetic structure of a partially clonal population and lays the foundation for the future research of the influence of the population's clonal organization on its sexual reproduction.
Collapse
Affiliation(s)
- Ivan Radosavljević
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, HR 10000 Zagreb, Croatia; (D.H.); (D.T.); (Z.L.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, HR 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-99-8353-230
| | - Oleg Antonić
- Subdepartment of Quantitative Ecology, Department of Biology, Josip Juraj Strossmayer University of Osijek, HR 31000 Osijek, Croatia;
| | - Dario Hruševar
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, HR 10000 Zagreb, Croatia; (D.H.); (D.T.); (Z.L.)
| | | | - Zlatko Satovic
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, HR 10000 Zagreb, Croatia;
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, HR 10000 Zagreb, Croatia
| | - Doroteja Turković
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, HR 10000 Zagreb, Croatia; (D.H.); (D.T.); (Z.L.)
| | - Zlatko Liber
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, HR 10000 Zagreb, Croatia; (D.H.); (D.T.); (Z.L.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, HR 10000 Zagreb, Croatia;
| |
Collapse
|
16
|
Hoppe J, Zhang X, Thomas FM. Belowground inter-ramet water transport capacity in Populus euphratica, a Central Asian desert phreatophyte. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:38-46. [PMID: 31507060 DOI: 10.1111/plb.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Populus euphratica Oliv. is a widespread phreatophytic tree species that forms riparian forests in (hyper-)arid regions of Central Asia. Its recruitment strongly relies on vegetative propagation from 'root suckers' that emerge from underground root spacers. The water transport through the spacers, although decisive for emerging ramets, has only rarely been quantified, but is crucial for the vegetative regeneration of the forests. In root spacers with different diameters collected from a mature poplar forest in northwest China, we calculated the hydraulic conductivity (kc ) from anatomical investigations on the basis of a modified Hagen-Poiseuille equation and measured it (km ) with a perfusion solution in the laboratory. The km values were compared with the water use by young and mature P. euphratica trees determined in previous studies. We obtained a significant correlation between km and kc (which, however, was higher by at least one order of magnitude). Due to the extensive occurrence of tyloses, particularly in older conduits and thicker spacers, and because the conduit area did not increase with spacer diameter, neither kc nor km increased with an increase in spacer diameter. The water supply through the spacers would be sufficient to meet the water demand even of mature trees. Our results provide a mechanistic explanation for the observed occurrence of P. euphratica clones across large areas and, provided that they are also valid for stands with larger distances to the water table, for the sustained growth and vegetative reproduction of P. euphratica stands growing at larger distances from the groundwater.
Collapse
Affiliation(s)
- J Hoppe
- Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany
| | - X Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - F M Thomas
- Geobotany, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany
| |
Collapse
|
17
|
Hewitt A. Genetic and environmental factors in the trade-off between sexual and asexual reproduction of a rare clonal angiosperm. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alison Hewitt
- School of Science and Health; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| |
Collapse
|
18
|
Castilla AR, Godoy JA, Delibes M, Rodriguez-Prieto A, Fedriani JM. Microgeographic variation in recruitment under adult trees: arrival of new genotypes or perpetuation of the existing ones? PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:695-705. [PMID: 30849217 DOI: 10.1111/plb.12982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Investigating spatial variation in the relative importance of sexual reproduction and clonal propagation is critical to obtain more accurate estimates of future effective population sizes and genetic diversity, as well as to identify ecological correlates of clonality. We combined a stratified sampling scheme with microsatellite genetic analyses to estimate variation in the proportion of sexual versus clonal recruits among saplings in five populations of the tree Pyrus bourgaeana. Using a likelihood framework, we identified clones among the genotypes analysed and examined variation among populations regarding the proportion of saplings coming from clonal propagation. We also examined the relationship between the relative abundance of clonal shoots across the studied populations and their herbivory levels. Our results revealed that one third of the saplings examined (N = 225 saplings) had a probability above 0.9 of being clones of nearby (<10 m) trees, with the ratio between clonal propagation and sexual recruitment varying up to eight-fold among populations. A small portion of these putative clonal shoots reached sexual maturity. Relative abundance of clonal shoots did not significantly relate to the herbivory by ungulates. Our results call into question optimistic expectations of previous studies reporting sufficient levels of recruitment under parental trees without animal seed dispersal services. Nevertheless, given that some of these clonal shoots reach sexual maturity, clonal propagation can ultimately facilitate the long-term persistence of populations during adverse periods (e.g. environmental stress, impoverished pollinator communities, seed dispersal limitation).
Collapse
Affiliation(s)
- A R Castilla
- Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, Instituto Superior of Agronomy, University of Lisbon, Lisbon, Portugal
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - J A Godoy
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - M Delibes
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | | | - J M Fedriani
- Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, Instituto Superior of Agronomy, University of Lisbon, Lisbon, Portugal
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- Centro de Investigaciones sobre Desertificación CIDE, CSIC-UVEG-GV, Carretera de Moncada a Náquera, Moncada, Valencia, Spain
| |
Collapse
|
19
|
del Castillo RF, Trujillo‐Argueta S. On the possible role of nonreproductive traits for the evolution of unisexuality: Life-history variation among males, females, and hermaphrodites in Opuntia robusta (Cactaceae). Ecol Evol 2018; 8:6988-7001. [PMID: 30073061 PMCID: PMC6065339 DOI: 10.1002/ece3.4217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
In angiosperms, dioecy has arisen in 871-5,000 independent events, distributed in approximately 43% of the flowering families. The reproductive superiority of unisexuals has been the favorite explanation for the evolution of separate sexes. However, in several instances, the observed reproductive performance of unisexuals, if any, does not seem to compensate for the loss of one of the sex functions. The involvement of fitness components not directly associated with reproduction is a plausible hypothesis that has received little attention. Life-history traits recently recognized as predictors of plant performance were compared among males, females, and hermaphrodites of a rare trioecious Opuntia robusta population in the field, using the cladode as the study unit. Cladode mortality by domestic herbivores was common and higher in females and hermaphrodites than in males. Males, females, or both displayed lower shrinkage and higher rates of survival, growth, and reproductive frequency than hermaphrodites. Unisexuals simultaneously outperformed hermaphrodites in demographic traits known to compete for common limiting resources, such as the acceleration of reproductive maturation (progenesis) and survival. A meta-analysis combining the outcomes of each of the analyzed life-history traits revealed a tendency of males (d++ = 1.03) and females (d++ = 0.93) to outperform hermaphrodites in presumably costly demographic options. Clonality is induced by human or domestic animal plant sectioning; and males and females highly exceeded hermaphrodites in their clonality potential by a factor of 8.3 and 5.3, respectively. The performances of unisexuals in the analyzed life-history traits may enhance their reproductive potential in the long run and their clonality potential and could explain the observed increase of unisexuality in the population. Life-history traits can be crucial for the evolution of unisexuality, but their impact appears to be habitat specific and may involve broad ontogenetic changes.
Collapse
|
20
|
Petrussa E, Boscutti F, Vianello A, Casolo V. 'Last In-First Out': seasonal variations of non-structural carbohydrates, glucose-6-phosphate and ATP in tubers of two Arum species. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:346-356. [PMID: 29181866 DOI: 10.1111/plb.12673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Knowledge on the metabolism of polysaccharide reserves in wild species is still scarce. In natural sites we collected tubers of Arum italicum Mill. and A. maculatum L. - two geophytes with different apparent phenological timing, ecology and chorology - during five stages of the annual cycle in order to understand patterns of reserve accumulation and degradation. Both the entire tuber and its proximal and distal to shoot portion were utilised. Pools of non-structural carbohydrates (glucose, sucrose and starch), glucose-6-phosphate and ATP were analysed as important markers of carbohydrate metabolism. In both species, starch and glucose content of the whole tuber significantly increased from sprouting to the maturation/senescence stages, whereas sucrose showed an opposite trend; ATP and glucose-6-phosphate were almost stable and dropped only at the end of the annual cycle. Considering the two different portions of the tuber, both ATP and glucose-6-phosphate concentrations were higher in proximity to the shoot in all seasonal stages, except the flowering stage. Our findings suggest that seasonal carbon partitioning in the underground organ is driven by phenology and occurs independently of seasonal climate conditions. Moreover, our results show that starch degradation, sustained by elevated ATP and glucose-6-phosphate pools, starts in the peripheral, proximal-to-shoot portion of the tuber, consuming starch accumulated in the previous season, as a 'Last In-First Out' mechanism of carbohydrate storage.
Collapse
Affiliation(s)
- E Petrussa
- Laboratory of Plant Biology, Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, Udine, Italy
| | - F Boscutti
- Laboratory of Plant Biology, Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, Udine, Italy
| | - A Vianello
- Laboratory of Plant Biology, Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, Udine, Italy
| | - V Casolo
- Laboratory of Plant Biology, Department of Agricultural, Food, Animal and Environmental Sciences, University of Udine, Udine, Italy
| |
Collapse
|
21
|
Hu AQ, Gale SW, Kumar P, Saunders RMK, Sun M, Fischer GA. Preponderance of clonality triggers loss of sex in Bulbophyllum bicolor, an obligately outcrossing epiphytic orchid. Mol Ecol 2017; 26:3358-3372. [PMID: 28390097 DOI: 10.1111/mec.14139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/20/2017] [Accepted: 03/24/2017] [Indexed: 12/01/2022]
Abstract
Vegetative propagation (clonal growth) conveys several evolutionary advantages that positively affect life history fitness and is a widespread phenomenon among angiosperms that also reproduce sexually. However, a bias towards clonality can interfere with sexual reproduction and lead to sexual extinction, although a dearth of effective genetic tools and mathematical models for clonal plants has hampered assessment of these impacts. Using the endangered tropical epiphytic or lithophytic orchid Bulbophyllum bicolor as a model, we integrated an examination of breeding system with 12 microsatellite loci and models valid for clonal species to test for the "loss of sex" and infer likely consequences for long-term reproductive dynamics. Bagging experiments and field observations revealed B. bicolor to be self-incompatible and pollinator-dependent, with an absence of fruit-set over 4 years. Challenging the assumptions that clonal populations can be as genotypically diverse as sexually reproducing ones and that clonality does not greatly influence genetic structure, just 22 multilocus genotypes were confirmed among all 15 extant natural populations, 12 of the populations were found to be monoclonal, and all three multiclonal ones exhibited a distinct phalanx clonal architecture. Our results suggest that all B. bicolor populations depend overwhelmingly on clonal growth for persistence, with a concomitant loss of sex due to an absence of pollinators and a lack of mating opportunities at virtually all sites, both of which are further entrenched by habitat fragmentation. Such cryptic life history impacts, potentially contributing to extinction debt, could be widespread among similarly fragmented, outcrossing tropical epiphytes, demanding urgent conservation attention.
Collapse
Affiliation(s)
- Ai-Qun Hu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.,Kadoorie Farm & Botanic Garden, Hong Kong, China
| | | | - Pankaj Kumar
- Kadoorie Farm & Botanic Garden, Hong Kong, China
| | | | - Mei Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
22
|
Li L, Yang X, Wang L, Yan H, Su J, Wang F, Lu BR. Limited ecological risk of insect-resistance transgene flow from cultivated rice to its wild ancestor based on life-cycle fitness assessment. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1152-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Lin C, Miriti MN, Goodell K. Demographic consequences of greater clonal than sexual reproduction in Dicentra canadensis. Ecol Evol 2016; 6:3871-83. [PMID: 27247759 PMCID: PMC4867665 DOI: 10.1002/ece3.2163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 11/24/2022] Open
Abstract
Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter-genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well-forested landscape and two in isolated forest remnants. We constructed stage-based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well-forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade-offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns for resource investment in sexual reproduction at the individual level. However, chronic failure in sexual reproduction may exacerbate the imbalance between sexual and clonal reproduction and eventually lead to irreversible loss of sex in the population.
Collapse
Affiliation(s)
- Chia‐Hua Lin
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State University318 West 12th AvenueColumbusOhio43210
- Present address: Department of EntomologyThe Ohio State University– Ohio Agricultural Research and Development Center1680 Madison AvenueWoosterOhio44691
| | - Maria N. Miriti
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State University318 West 12th AvenueColumbusOhio43210
| | - Karen Goodell
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State University1179 University DriveNewarkOhio43055
| |
Collapse
|
24
|
Reduced tolerance to simulated herbivory on clonal organs in alien genotypes: a multi-species experiment with native and introduced origins. Biol Invasions 2015. [DOI: 10.1007/s10530-015-1027-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Demetrio GR, Coelho FF, Barbosa MEA. Body size and clonality consequences for sexual reproduction in a perennial herb of Brazilian rupestrian grasslands. BRAZ J BIOL 2014; 74:744-9. [PMID: 25296228 DOI: 10.1590/bjb.2014.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/03/2013] [Indexed: 11/21/2022] Open
Abstract
Body size is one of the most important factors regarding herbaceous perennial plants life-histories, and several fitness components of these organisms are related to size. Clonal plants show distinct kinds of reproduction and can develop offspring by sexual or asexual ways. We aimed to understand how body size affects Comanthera nivea (Eriocaulaceae) sexual reproduction and to verify how clonal growth is related to flower head production in this species. We sampled 600 rosettes in rupestrian grasslands and performed linear regression analysis between body size and number of produced flower heads. We also compared the flower head production between isolated rosettes and rosettes within clones. Our results showed that body size was significantly related, but explained only a small part of flower head production. The flower head production was higher in rosettes within clones than in isolated ones. The clones presented a rosette or a small group of rosettes that concentrated the sexual reproduction. Clonality was positively associated with sexual reproduction. Clonality can represent an important way of allowing the persistence of plants by sexual reproduction in markedly seasonal stressful environments. The cases of clonality enhancing the sexual reproduction must be considered and put in focus on reproductive biology research.
Collapse
Affiliation(s)
- G R Demetrio
- Departamento de Biologia, Setor de Ecologia, Universidade Federal de Lavras - UFLA, Campus Universitário, Lavras, MG, Brazil
| | - F F Coelho
- Departamento de Biologia, Setor de Botânica, Universidade Federal de Lavras - UFLA, Campus Universitário, Lavras, MG, Brazil
| | - M E A Barbosa
- Departamento de Biologia, Setor de Ecologia, Universidade Federal de Lavras - UFLA, Campus Universitário, Lavras, MG, Brazil
| |
Collapse
|
26
|
Chong C, Edwards W, Pearson R, Waycott M. Sprouting and genetic structure vary with flood disturbance in the tropical riverine paperbark tree, Melaleuca leucadendra (Myrtaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:2250-2260. [PMID: 24186959 DOI: 10.3732/ajb.1200614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Sprouting in woody plants promotes persistence in the face of disturbance, ultimately influencing population structure. Different disturbance regimes drive variable population responses, but there have been few direct tests of the relative differences in population structure to specific drivers. We measured population structure as genotypic diversity (clonality) as a function of hydrological regime for a riverine tree, Melaleuca leucadendra, a major structural component in flood landscapes in the Australian dry tropics. METHODS We estimated clonality, genotypic richness, and population allelic diversity. The relationship among disturbance, genetic estimates of clonality, and population distinctiveness was compared with flood regime, characterized by return frequencies and hydrological stress at individual river reaches. KEY RESULTS Two contrasting patterns of genotypic structure were detected and corresponded to order-of-magnitude differences in flood regime between sites. At mainstem locations characterized by greatest flood intensity, sprouting generated clonal structure to 17 m (30% ramets clonal). By contrast, clonality was atypical at lower-disturbance tributaries (0% clonal). Population allelic distributions showed extensive genetic exchange among mainstem locations, but strong genetic differentiation between mainstem and tributaries. CONCLUSIONS Population structure and distinctiveness in riverine Melaleuca are determined by differences in sprouting and recruitment responses that depend on localized hydrological regime. Sprouting contributes to population persistence via localized clonal growth. Resprouting following disturbance in M. leucadendra may help explain its numerical dominance in tropical river systems. This study, although preliminary, suggests that flood ecosystems may represent excellent experimental systems to develop a better understanding of whole-organism responses to environmental drivers.
Collapse
Affiliation(s)
- Caroline Chong
- School of Marine and Tropical Biology, James Cook University, Townsville, QLD 4811, Australia
| | | | | | | |
Collapse
|
27
|
Becheler R, Benkara E, Moalic Y, Hily C, Arnaud-Haond S. Scaling of processes shaping the clonal dynamics and genetic mosaic of seagrasses through temporal genetic monitoring. Heredity (Edinb) 2013; 112:114-21. [PMID: 24022498 DOI: 10.1038/hdy.2013.82] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022] Open
Abstract
Theoretically, the dynamics of clonal and genetic diversities of clonal plant populations are strongly influenced by the competition among clones and rate of seedling recruitment, but little empirical assessment has been made of such dynamics through temporal genetic surveys. We aimed to quantify 3 years of evolution in the clonal and genetic composition of Zostera marina meadows, comparing parameters describing clonal architecture and genetic diversity at nine microsatellite markers. Variations in clonal structure revealed a decrease in the evenness of ramet distribution among genets. This illustrates the increasing dominance of some clonal lineages (multilocus lineages, MLLs) in populations. Despite the persistence of these MLLs over time, genetic differentiation was much stronger in time than in space, at the local scale. Contrastingly with the short-term evolution of clonal architecture, the patterns of genetic structure and genetic diversity sensu stricto (that is, heterozygosity and allelic richness) were stable in time. These results suggest the coexistence of (i) a fine grained (at the scale of a 20 × 30 m quadrat) stable core of persistent genets originating from an initial seedling recruitment and developing spatial dominance through clonal elongation; and (ii) a local (at the scale of the meadow) pool of transient genets subjected to annual turnover. This simultaneous occurrence of initial and repeated recruitment strategies highlights the different spatial scales at which distinct evolutionary drivers and mating systems (clonal competition, clonal growth, propagule dispersal and so on) operate to shape the dynamics of populations and the evolution of polymorphism in space and time.
Collapse
Affiliation(s)
- R Becheler
- Institut Français de Recherche sur la MER (IFREMER)-Département 'Etude des Ecosystèmes Profonds'- DEEP, Centre de Brest, Plouzané Cedex, France
| | - E Benkara
- Institut Français de Recherche sur la MER (IFREMER)-Département 'Etude des Ecosystèmes Profonds'- DEEP, Centre de Brest, Plouzané Cedex, France
| | - Y Moalic
- Institut Français de Recherche sur la MER (IFREMER)-Département 'Etude des Ecosystèmes Profonds'- DEEP, Centre de Brest, Plouzané Cedex, France
| | - C Hily
- Institut Universitaire Européen de la MER (IUEM)-Laboratoire des sciences de l'Environnement Marin, Plouzanè, France
| | - S Arnaud-Haond
- Institut Français de Recherche sur la MER (IFREMER)-Département 'Etude des Ecosystèmes Profonds'- DEEP, Centre de Brest, Plouzané Cedex, France
| |
Collapse
|
28
|
Amat ME, Silvertown J, Vargas P. Strong spatial genetic structure reduces reproductive success in the critically endangered plant genus Pseudomisopates. ACTA ACUST UNITED AC 2013; 104:692-703. [PMID: 23885091 DOI: 10.1093/jhered/est042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clonal growth can be a double-edged sword for endangered species, because the short-term insurance against extinction may incur a longer-term hazard of creating small inbred populations with low fecundity. In the present study, we quantify the advantages and disadvantages of clonal growth regarding the fitness of the central Iberian monotypic endangered genus Pseudomisopates. Preliminary studies showed that the species is self-incompatible and exhibits extensive clonal growth with plants flowering profusely. However, seeds at many sites seemed to be unviable, and no seedlings have been observed in the field. A fully replicated nested sampling design (n = 100) was conducted to explore genetic (using seven SSR loci) and environmental factors potentially affecting seed viability, such as: 1) clonal and genetic diversity, 2) spatial genetic structure, and 3) environmental factors (shrub cover and grazing). Generalized Linear Mixed Models were fitted relating genetic and environmental variables to reproductive variables (seed viability and flower display). Our results indicate that the relatively low genotypic diversity of the population (PD = 0.23), as quantified by SSRs, and the strong spatial genetic structure observed are congruent with intense clonal growth. This clonal growth is enhanced by unfavorable environmental conditions, such as canopy closure and grazing. Under these circumstances, both flower display and mate availability decrease, thus hindering sexual reproduction. Indeed, a mixed reproductive system (clonal and sexual) to escape environmental stochasticity is crucial for the survival of Pseudomisopates, a species inhabiting a disturbance-prone ecosystem.
Collapse
Affiliation(s)
- María E Amat
- Real Jardín Botánico de Madrid, CSIC, Plaza de Murillo 2, Madrid, Spain.
| | | | | |
Collapse
|
29
|
Tepedino VJ. Overestimating population sizes of rare clonal plants. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2012; 26:945-947. [PMID: 22830959 DOI: 10.1111/j.1523-1739.2012.01886.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- V J Tepedino
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
30
|
van Molken T, de Caluwe H, Hordijk CA, Leon-Reyes A, Snoeren TAL, van Dam NM, Stuefer JF. Virus infection decreases the attractiveness of white clover plants for a non-vectoring herbivore. Oecologia 2012; 170:433-44. [PMID: 22526939 PMCID: PMC3439618 DOI: 10.1007/s00442-012-2322-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/25/2012] [Indexed: 01/08/2023]
Abstract
Plant pathogens and insect herbivores are prone to share hosts under natural conditions. Consequently, pathogen-induced changes in the host plant can affect herbivory, and vice versa. Even though plant viruses are ubiquitous in the field, little is known about plant-mediated interactions between viruses and non-vectoring herbivores. We investigated the effects of virus infection on subsequent infestation by a non-vectoring herbivore in a natural genotype of Trifolium repens (white clover). We tested whether infection with White clover mosaic virus (WClMV) alters (1) the effects of fungus gnat feeding on plant growth, (2) the attractiveness of white clover for adult fungus gnat females, and (3) the volatile emission of white clover plants. We observed only marginal effects of WClMV infection on the interaction between fungus gnat larvae and white clover. However, adult fungus gnat females clearly preferred non-infected over WClMV-infected plants. Non-infected and virus-infected plants could easily be discriminated based on their volatile blends, suggesting that the preference of fungus gnats for non-infected plants may be mediated by virus-induced changes in volatile emissions. The compound β-caryophyllene was exclusively detected in the headspace of virus-infected plants and may hence be particularly important for the preference of fungus gnat females. Our results demonstrate that WClMV infection can decrease the attractiveness of white clover plants for fungus gnat females. This suggests that virus infections may contribute to protecting their hosts by decreasing herbivore infestation rates. Consequently, it is conceivable that viruses play a more beneficial role in plant-herbivore interactions than generally thought.
Collapse
Affiliation(s)
- Tamara van Molken
- Department of Experimental Plant Ecology, Radboud University, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Song YB, Yu FH, Keser LH, Dawson W, Fischer M, Dong M, van Kleunen M. United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 2012; 171:317-27. [PMID: 22915332 DOI: 10.1007/s00442-012-2430-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
|
32
|
Avolio ML, Beaulieu JM, Smith MD. Genetic diversity of a dominant C4 grass is altered with increased precipitation variability. Oecologia 2012; 171:571-81. [PMID: 22907523 DOI: 10.1007/s00442-012-2427-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
Abstract
Climate change has the potential to alter the genetic diversity of plant populations with consequences for community dynamics and ecosystem processes. Recent research focused on changes in climatic means has found evidence of decreased precipitation amounts reducing genetic diversity. However, increased variability in climatic regimes is also predicted with climate change, but the effects of this aspect of climate change on genetic diversity have yet to be investigated. After 10 years of experimentally increased intra-annual variability in growing season precipitation regimes, we report that the number of genotypes of the dominant C(4) grass, Andropogon gerardii Vitman, has been significantly reduced in native tallgrass prairie compared with unmanipulated prairie. However, individuals showed a different pattern of genomic similarity with increased precipitation variability resulting in greater genome dissimilarity among individuals when compared to unmanipulated prairie. Further, we found that genomic dissimilarity was positively correlated with aboveground productivity in this system. The increased genomic dissimilarity among individuals in the altered treatment alongside evidence for a positive correlation of genomic dissimilarity with phenotypic variation suggests ecological sorting of genotypes may be occurring via niche differentiation. Overall, we found effects of more variable precipitation regimes on population-level genetic diversity were complex, emphasizing the need to look beyond genotype numbers for understanding the impacts of climate change on genetic diversity. Recognition that future climate change may alter aspects of genetic diversity in different ways suggests possible mechanisms by which plant populations may be able to retain a diversity of traits in the face of declining biodiversity.
Collapse
Affiliation(s)
- Meghan L Avolio
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520-8106, USA.
| | | | | |
Collapse
|
33
|
Influence of snowmelt time on species richness, density and production in a late snowbed community. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1016/j.actao.2012.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Gibert A, Volaire F, Barre P, Hazard L. A fungal endophyte reinforces population adaptive differentiation in its host grass species. THE NEW PHYTOLOGIST 2012; 194:561-571. [PMID: 22404479 DOI: 10.1111/j.1469-8137.2012.04073.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hereditary symbioses between fungal endophytes and grasses are relatively recent in the history of plant life. Given < 80 million yr of co-evolution, symbioses are likely to have impacted plant microevolutionary rather than macroevolutionary processes. Therefore, we investigated the microevolutionary role of the fungal endophyte Neotyphodium lolii in the adaptive differentiation of its host species Lolium perenne. Endophyte frequency in 22 natural L. perenne populations was established across a water availability gradient. Adaptive differentiation among five populations, and between symbiotic (S) and nonsymbiotic (NS) plants, was examined in a glasshouse experiment under nonlimiting and limiting water conditions. Genetic differentiation was subsequently assessed among populations, and between S and NS individuals, using 14 simple sequence repeats (SSR). Symbiosis frequencies were positively correlated to water availability. Adaptive population differentiation occurred following a trade-off between biomass production under nonlimiting water conditions and survivorship under water stress. Endophytic symbiosis increased plant survival in xeric populations, and reinforced competitiveness in mesic populations. No genetic difference was detected between S and NS plants within populations. Therefore, we conclude that the endophyte relationship is responsible for these effects. Local adaptation of the host plant, appears to be supported by the fungal endophyte.
Collapse
Affiliation(s)
- Anaïs Gibert
- INRA - UMR 1248 AGIR, BP 52627, F-31326 Castanet-Tolosan Cedex, France
| | - Florence Volaire
- INRA - UMR 5175 CEFE, Route De Mende, F-34293 Montpellier, Cedex 5, France
| | | | - Laurent Hazard
- INRA - UMR 1248 AGIR, BP 52627, F-31326 Castanet-Tolosan Cedex, France
| |
Collapse
|
35
|
Folse HJ, Roughgarden J. DIRECT BENEFITS OF GENETIC MOSAICISM AND INTRAORGANISMAL SELECTION: MODELING COEVOLUTION BETWEEN A LONG-LIVED TREE AND A SHORT-LIVED HERBIVORE. Evolution 2011; 66:1091-113. [DOI: 10.1111/j.1558-5646.2011.01500.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
van Mölken T, Stuefer JF. The potential of plant viruses to promote genotypic diversity via genotype x environment interactions. ANNALS OF BOTANY 2011; 107:1391-7. [PMID: 21515605 PMCID: PMC3101144 DOI: 10.1093/aob/mcr078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/17/2011] [Accepted: 02/25/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Genotype by environment (G × E) interactions are important for the long-term persistence of plant species in heterogeneous environments. It has often been suggested that disease is a key factor for the maintenance of genotypic diversity in plant populations. However, empirical evidence for this contention is scarce. Here virus infection is proposed as a possible candidate for maintaining genotypic diversity in their host plants. METHODS The effects of White clover mosaic virus (WClMV) on the performance and development of different Trifolium repens genotypes were analysed and the G × E interactions were examined with respect to genotype-specific plant responses to WClMV infection. Thus, the environment is defined as the presence or absence of the virus. KEY RESULTS WClMV had a negative effect on plant performance as shown by a decrease in biomass and number of ramets. These effects of virus infection differ greatly among host genotypes, representing a strong G × E interaction. Moreover, the relative fitness and associated ranking of genotypes changed significantly between control and virus treatments. This shift in relative fitness among genotypes suggests the potential for WClMV to provoke differential selection on T. repens genotypes, which may lead to negative frequency-dependent selection in host populations. CONCLUSIONS The apparent G × E interaction and evident repercussions for relative fitness reported in this study stress the importance of viruses for ecological and evolutionary processes and suggest an important role for viruses in shaping population dynamics and micro-evolutionary processes.
Collapse
Affiliation(s)
- Tamara van Mölken
- Experimental Plant Ecology, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands.
| | | |
Collapse
|
37
|
Spatial distribution pattern of a clonal species: effects of differential production of clonal and sexual offspring. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9472-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Avolio ML, Chang CC, Smith MD. Assessing Fine-Scale Genotypic Structure of a Dominant Species in Native Grasslands. AMERICAN MIDLAND NATURALIST 2011. [DOI: 10.1674/0003-0031-165.2.211] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Folse H, Roughgarden J. What is an Individual Organism? A Multilevel Selection Perspective. QUARTERLY REVIEW OF BIOLOGY 2010; 85:447-72. [DOI: 10.1086/656905] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
|
41
|
Zobel M, Moora M, Herben T. Clonal mobility and its implications for spatio-temporal patterns of plant communities: what do we need to know next? OIKOS 2010. [DOI: 10.1111/j.1600-0706.2010.18296.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Hesse E, Rees M, Müller‐Schärer H. Life‐History Variation in Contrasting Habitats: Flowering Decisions in a Clonal Perennial Herb (Veratrum album). Am Nat 2008; 172:196-213. [DOI: 10.1086/591683] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
|
44
|
Reiteration in the Monodominant Tropical Tree Dicymbe corymbosa (Caesalpiniaceae) and its Potential Adaptive Significance. Biotropica 2007. [DOI: 10.1111/j.1744-7429.2007.00348.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
|
46
|
Death without sex—the ‘problem of the small’ and selection for reproductive economy in flowering plants. Evol Ecol 2007. [DOI: 10.1007/s10682-007-9170-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Monro K, Poore AGB, Brooks R. Multivariate selection shapes environment-dependent variation in the clonal morphology of a red seaweed. Evol Ecol 2007. [DOI: 10.1007/s10682-006-9150-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Walls R, Appel H, Cipollini M, Schultz J. Fertility, Root Reserves and the Cost of Inducible Defenses in the Perennial Plant Solanum carolinense. J Chem Ecol 2005; 31:2263-88. [PMID: 16195843 DOI: 10.1007/s10886-005-7101-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 06/13/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
We examined the relationship between internal resources (root reserves), external resources (soil fertility), and allocation to defense vs. growth in the clonal, perennial herb Solanum carolinense. In a short-term (9 d) greenhouse experiment, plants were treated once with jasmonic acid (JA) to determine if polyphenols and glycoalkaloids were inducible by simulated herbivory. In a longer-term (4 wk) greenhouse experiment, we measured the cost, in terms of growth, of treatment with JA every 3 d, to determine if the induced response was due more to carbon limitation or nitrogen limitation. We manipulated the resources available to the plants by varying soil fertility and the size of root cuttings from which plants were grown, and assessed how different resource levels affected the growth and production of polyphenols and alkaloids under JA treatment or control conditions. In the short term, JA increased the concentration of polyphenols in both above- and below-ground plant parts, as well as alkaloid concentrations in the roots. In the long term, the only significant secondary chemistry response to JA was an increased polyphenol concentration in above ground tissues. The total amount of polyphenols produced was the same for JA and control plants, indicating that the higher concentration was a result of the lower biomass of treated plants. In contrast, alkaloid concentrations in plants treated with JA for 4 wk did not differ from controls, but JA-treated plants contained lower total amounts of alkaloids in above ground tissues, as a result of decreased growth. Fertilizer level and root cutting size had effects on growth and the production of secondary compounds and influenced the cost of induction. Plants grown under high fertility had a greater reduction in growth in response to JA than plants grown under low fertility, indicating a greater trade-off between growth and defense for high fertility plants. Plants from larger root cuttings grew bigger without any reduction in the concentration of polyphenols and alkaloids. We demonstrated that the phenotype of S. carolinense was plastic in response to simulated herbivory, fertility level, and root cutting size, and that there was a significant growth cost to induction that varied with the environment and appears to be due in large part to the allocation of limited carbon reserves.
Collapse
Affiliation(s)
- Ramona Walls
- Chemical Ecology Lab, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
49
|
Suvanto LI, Latva-Karjanmaa TB. Clone identification and clonal structure of the European aspen (Populus tremula). Mol Ecol 2005; 14:2851-60. [PMID: 16029483 DOI: 10.1111/j.1365-294x.2005.02634.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The European aspen (Populus tremula) is thought to reproduce mostly asexually. Thus aspen forms clones, in which several ramets belong to one genetically defined genet. We compared the clonal structure of aspen in old-growth and managed forests in southern and northeastern Finland. Clones were identified using morphological characters and nine microsatellite loci originally developed for Populus tremuloides. There were more clones identified by microsatellites than morphotypes both in old-growth and managed forest. The average size of the clones was only 2.3 ramets and most clones (70%) consisted of just one ramet. The size of the clones showed no difference between managed and old-growth forests or between northeastern and southern Finland. The small size of the clones suggests that most of them are relatively young. Therefore, sexual reproduction may be more common than previously thought. There was an aggregated spatial genetic structure as measured by Moran's I (0-10 m) and by co-ancestry (rho(ij), 0-20 m). Low level of co-ancestry can be explained by relatively unrestricted gene flow, the important role of disturbance in reproduction, and/or local selection.
Collapse
Affiliation(s)
- Leena I Suvanto
- Department of Biological and Environmental Sciences, P. O. B. 65, FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
50
|
Thomas RG, Hay MJM. Evidence suggests plagiotropic clonal species have evolved a branching physiology emphasizing regulation by nodal roots. Evol Ecol 2005. [DOI: 10.1007/s10682-004-5137-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|