1
|
Leung CW, Wang X, Hu D. Characteristics and source apportionment of water-soluble organic nitrogen (WSON) in PM 2.5 in Hong Kong: With focus on amines, urea, and nitroaromatic compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133899. [PMID: 38430595 DOI: 10.1016/j.jhazmat.2024.133899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Water-soluble organic nitrogen (WSON) is ubiquitous in fine particulate matter (PM2.5) and poses health and environmental risks. However, there is limited knowledge regarding its comprehensive speciation and source-specific contributions. Here, we conducted chemical characterization and source apportionment of WSON in 65 PM2.5 samples collected in Hong Kong during a 1-yr period. Using various mass-spectrometry-based techniques, we quantified 22 nitrogen-containing organic compounds (NOCs), including 17 nitroaromatics (NACs), four amines, and urea. The most abundant amine and NACs were dimethylamine and 4-nitrocatechol, respectively. Two secondary (i.e., secondary formation and secondary nitrate) and five primary sources (i.e., sea salt, fugitive dust, marine vessels, vehicle exhaust, and biomass burning) of WSON and these three categories of NOCs were identified. Throughout the year, secondary sources dominated WSON formation (69.0%), while primary emissions had significant contributions to NACs (77.1%), amines (75.9%), and urea (83.7%). Fugitive dust was the leading source of amines and urea, while biomass burning was the main source of NACs. Our multi-linear regression analysis revealed the significant role of sulfate, NO3, nitrate, liquid water content, and particle pH on WSON formation, highlighting the importance of nighttime NO3 processing and heterogeneous and aqueous-phase formation of NOCs in the Hong Kong atmosphere.
Collapse
Affiliation(s)
- Chin Wai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Xuemei Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Di Hu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, PR China.
| |
Collapse
|
2
|
Liu D, Xu S, Lang Y, Hou S, Wei L, Pan X, Sun Y, Wang Z, Kawamura K, Fu P. Size distributions of molecular markers for biogenic secondary organic aerosol in urban Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121569. [PMID: 37028792 DOI: 10.1016/j.envpol.2023.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
To understand the source, formation, and seasonality of biogenic secondary organic aerosol (BSOA), a nine-stage cascade impactor was utilized to collect size-segregated particulate samples from April 2017 to January 2018 in Beijing, China. BSOA tracers derived from isoprene, monoterpene, and sesquiterpene were measured with gas chromatography-mass spectrometry. Isoprene and monoterpene SOA tracers exhibited significant seasonal variations, with a summer maximum and a winter minimum. Dominance of 2-methyltetrols (isoprene SOA tracers) with a good correlation with levoglucosan (a biomass burning tracer), which was combined with the detection of methyltartaric acids (possible indicators for aged isoprene) in summer, implies possible biomass burning and long-range transport. In contrast, sesquiterpene SOA tracer (β-caryophyllinic acid) was dominant in winter and was probably associated with the local burning of biomass. Bimodal size distributions were observed for most isoprene SOA tracers, consistent with previous laboratory experiments and field studies showing that they can be formed not only in the aerosol phase but also in the gas phase. Monoterpene SOA tracers cis-pinonic acid and pinic acid showed a coarse-mode peak (5.8-9.0 μm) in four seasons due to their volatile nature. Sesquiterpene SOA tracer β-caryophyllinic acid showed a unimodal pattern with a major fine-mode peak (1.1-2.1 μm), which is linked to local biomass burning. The tracer-yield method was used to quantify the contributions of isoprene, monoterpene, and sesquiterpene to secondary organic carbon (SOC) and SOA. The highest isoprene SOC and SOA concentrations occurred in summer (2.00 μgC m-3 and 4.93 μg m-3, respectively), contributing to 1.61% of OC and 5.22% of PM2.5, respectively. These results suggest that BSOA tracers are promising tracers for understanding the source, formation, and seasonality of BSOA.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Shaofeng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Shengjie Hou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Amarandei C, Olariu RI, Arsene C. Offline analysis of secondary formation markers in ambient organic aerosols by liquid chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A 2023; 1702:464092. [PMID: 37245355 DOI: 10.1016/j.chroma.2023.464092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
The present study provides a comprehensive assessment of the quantitative analysis by high-performance liquid chromatography coupled with dual orthogonal electrospray ionization time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) of pinene markers, biomass-burning related phenols, and other relevant carboxylic acids in atmospheric aerosol samples. Significant insights into the quantitative determination are offered on the basis of systematic experiments targeting the optimization of chromatographic separation, ionization source, and mass spectrometer performance. After testing three analytical columns, the best separation of the compounds of interest was achieved on a Poroshell 120 ECC18 column (4.6 × 50 mm, 2.7 µm) thermostated at 35 °C, operating in gradient elution mode with 0.1% acetic acid in water and acetonitrile at a 0.8 mL min-1 flow rate. Optimal operational conditions for the ESI-TOF-MS instrument were identified as a 350 °C drying gas temperature, 13 L min-1 drying gas flow rate, 60 psig nebulizer pressure, 3000 V for the ion transfer capillary, 60 V for the skimmer, and 150 V for the fragmentor. Additionally, the matrix effect on the ESI efficiency and the spike recovery factors of the compounds were tested. Method quantification limits can go as low as in the 0.88-48.0 μg L - 1 (3.67-200 pg m - 3, at 120 m3 of sampled air) range. The developed method was shown to be reliable for the quantification of the targeted compounds in real atmospheric aerosol samples. The accuracy in the molecular mass determination of less than 5 ppm and the acquisition in the full scan mode were shown to bring additional insights into the organic constituents in atmospheric aerosols.
Collapse
Affiliation(s)
- Cornelia Amarandei
- "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506 Iasi, Romania
| | - Romeo Iulian Olariu
- "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506 Iasi, Romania
| | - Cecilia Arsene
- "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506 Iasi, Romania.
| |
Collapse
|
4
|
Haque MM, Verma SK, Deshmukh DK, Kunwar B, Kawamura K. Seasonal characteristics of biogenic secondary organic aerosol tracers in a deciduous broadleaf forest in northern Japan. CHEMOSPHERE 2023; 311:136785. [PMID: 36257396 DOI: 10.1016/j.chemosphere.2022.136785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
We collected total suspended particulate (TSP) samples from January 2010 to December 2010 at Sapporo deciduous forest to understand the oxidation processes of biogenic volatile organic compounds (BVOCs). The gas chromatography-mass spectrometric technique was applied to determine biogenic secondary organic aerosols (BSOAs) in the TSP samples. We found the predominance of the isoprene SOA (iSOA) tracers (20.6 ng m-3) followed by α/β-pinene SOA (pSOA) tracers (8.25 ng m-3) and β-caryophyllene SOA (cSOA) tracer (1.53 ng m-3) in the forest aerosols. The results showed large isoprene fluxes and relatively high levels of oxidants in the forest atmosphere. The iSOA and pSOA tracers showed a clear seasonal trend with summer and autumn maxima and winter and spring minima. Their seasonal trends were mainly controlled by BVOCs emission from the local broadleaf deciduous forest. Additionally, the regional level of isoprene emissions from the oceanic sources may also be contributed during summertime aerosols. cSOA tracer showed high concentrations in the winter and spring, possibly due to an additional contribution of biomass burning (BB) aerosols from the local or regional BB activities. The biogenic secondary organic carbon (BSOC) was contributed mainly by the oxidation products of isoprene (136 ngC m-3) followed by β-caryophyllene (63.0 ngC m-3) and α/β-pinene (35.9 ngC m-3). The mass concentration ratio (0.92) of pinonic acid + pinic acid and 3-methyl-1,2,3-butanetricarboxylic acid ((PNA + PA)/3-MBTCA) indicates the photochemical transformation of first-generation oxidation products to the higher generation oxidation products. The average ratios of isoprene to α/β-pinene (1.64) and β-caryophyllene (18.6) oxidation products suggested a large difference in the emissions of isoprene and α/β-pinene compared to β-caryophyllene. The cSOA tracers in the forest aerosols are also contributed by BB during the winter and spring. Positive matrix factorization analyses of the BSOA tracers confirmed that organic aerosols of deciduous forests are mostly related to isoprene emissions. This study suggests that isoprene is a more significant precursor for the BSOA than α/β-pinene and β-caryophyllene in a broadleaf deciduous forest.
Collapse
Affiliation(s)
- Md Mozammel Haque
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan.
| | - Santosh Kumar Verma
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan; State Forensic Science Laboratory, Home Department, Government of Chhattisgarh, Raipur, 492-001, India
| | - Dhananjay K Deshmukh
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, 695-002, India; Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Bhagawati Kunwar
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan; Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan.
| |
Collapse
|
5
|
Hu C, Wei Z, Zhan H, Gu W, Liu H, Chen A, Jiang B, Yue F, Zhang R, Fan S, He P, Leung KMY, Wang X, Xie Z. Molecular characteristics, sources and influencing factors of isoprene and monoterpenes secondary organic aerosol tracers in the marine atmosphere over the Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158645. [PMID: 36089018 DOI: 10.1016/j.scitotenv.2022.158645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Biogenic secondary organic aerosols (BSOA) are important components of the remote marine atmosphere. However, the response of BSOA changes to sea ice reduction over the Arctic Ocean remains unclear. Here we investigated isoprene and monoterpenes secondary organic aerosol (SOAI and SOAM) tracers in three years of summer aerosol samples collected from the Arctic Ocean atmosphere. The results indicated that methyltetrols were the most abundant SOAI tracers, while the main oxidation products of monoterpenes varied over the years owing to different aerosol aging. The results of the principal component analysis (PCA)-generalized additive model (GAM) combined with correlation analysis suggested that SOAI tracers were mainly generated by the oxidation of isoprene from marine emissions, while SOAM tracers were probably more influenced by terrestrial transport. Estimation of secondary organic carbon (SOC) indicated that monoterpenes oxidation contributed more than isoprene and that sea ice changes had a relatively small effect on biogenic SOC concentration levels. Our study quantified the contribution of influencing factors to the atmospheric concentration of BSOA tracers in the Arctic Ocean, and showed that there were differences in the sources of precursors for different BSOA. Hence, our findings have contributed to a better understanding of the characteristics, sources and formation of SOA in the atmosphere of the Arctic Ocean.
Collapse
Affiliation(s)
- Chengge Hu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
| | - Zexun Wei
- First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China; Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Shandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China
| | - Haicong Zhan
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Weihua Gu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongwei Liu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Afeng Chen
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Bei Jiang
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
| | - Fange Yue
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Runqi Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Shidong Fan
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Pengzhen He
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
6
|
Rudziński KJ, Sarang K, Nestorowicz K, Asztemborska M, Żyfka-Zagrodzińska E, Skotak K, Szmigielski R. Winter sources of PM 2.5 pollution in Podkowa Leśna, a Central-European garden town (Mazovia, Poland). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84504-84520. [PMID: 35788483 DOI: 10.1007/s11356-022-21673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The paper analyzes PM2.5 aerosol samples collected in Podkowa Leśna, a garden town in Mazovia, Central Poland, for 15 days in winter 2019. We determined the mass concentrations in the air of PM2.5 and PM2.5-bound organic carbon, elemental carbon, levoglucosan, and nine polycyclic aromatic hydrocarbons (PAHs). PM2.5 ranged from 11 to 51 μg m-3 (mean 31 μg m-3) and contained less than 32% organic carbon, 4% elemental carbon, 1% levoglucosan, and 0.12% total PAHs. The analysis based on positive matrix factorization (PMF) indicated two sources of PM2.5 of similar strength - burning vehicle fuels and biomass burning for residential heating. Levoglucosan originated exclusively from biomass burning, while 90% of elemental carbon was from vehicle emissions. About 62% of organic carbon, 85% of benzo(a)anthracene and 55-65% of the remaining PAHs originated from biomass burning. Compared to many worldwide locations, PM2.5, organic carbon, elemental carbon, and levoglucosan in Podkowa were among the lowest. The benzo(a)pyrene concentrations were the highest, while other PAHs were intermediate. However, the mass fractions of PAHs in Podkowa PM2.5 were the highest among the four locations available for comparison. That may indicate the low quality of fuel-burning processes. PAH-related inhalation cancer risk based on PAH carcinogenic potency in Podkowa appeared marginal. This work aims to induce local administrative actions to improve air quality in garden towns.
Collapse
Affiliation(s)
- Krzysztof J Rudziński
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka str. 44/52, Warsaw, Poland.
| | - Kumar Sarang
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka str. 44/52, Warsaw, Poland
| | - Klara Nestorowicz
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka str. 44/52, Warsaw, Poland
- Institute of Organic Chemistry of the Polish Academy of Sciences, Kasprzaka str. 44/52, Warsaw, Poland
| | - Monika Asztemborska
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka str. 44/52, Warsaw, Poland
| | | | - Krzysztof Skotak
- Institute of Environmental Protection, Krucza str. 5/11D, Warsaw, Poland
| | - Rafał Szmigielski
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka str. 44/52, Warsaw, Poland
| |
Collapse
|
7
|
Diurnal Variations of Isoprene, Monoterpenes, and Toluene Oxidation Products in Aerosols at a Rural Site of Guanzhong Plain, Northwest China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, the characteristics and formation mechanism of summertime isoprene, monoterpene, and toluene-derived secondary organic aerosols (SOAs) were investigated in a rural area of Guanzhong Plain, Northwest China. The variations in key indicators of primary sources indicated a significant influence of biomass burning on PM2.5 during the observation period. The concentrations of total measured SOA tracers from isoprene, monoterpene, and toluene were 40.85 ± 17.31, 24.27 ± 7.50, and 10.61 ± 0.33 ng/m3, respectively. The average ratio of cis-pinonic and pinic acids to 3-Methyl-1,2,3-butanetricarboxylic acid (MBTCA)(P/M) were 0.45 and 0.85 by day and by night, respectively. The low ratio in the daytime was mainly due to the stronger photo-degradation and particle-to-gas distribution of semi-volatile cis-pinonic and pinic acids. The monoterpene SOA tracers were significantly correlated with levoglucosan at night (R2 = 0.51, p < 0.01), as were toluene SOA tracers and levoglucosan (R2 > 0.67, p < 0.01), indicating the significant contribution of biomass combustion to these SOAs. The mass concentration of isoprene-, monoterpenes-, and toluene-derived SOC was estimated by using the tracer yield method. The total calculated SOCs by day and by night were 0.25–0.71 (average: 0.46) and 0.26–0.78 (average: 0.42) µgC/m3, accounting for 3.35–10.58% and 3.87–13.51% of OC by day and by night, respectively.
Collapse
|
8
|
Chow WS, Huang XHH, Leung KF, Huang L, Wu X, Yu JZ. Molecular and elemental marker-based source apportionment of fine particulate matter at six sites in Hong Kong, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152652. [PMID: 34954166 DOI: 10.1016/j.scitotenv.2021.152652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Source apportionment of PM2.5 was performed using positive matrix factorization (PMF) based on chemical speciation data from 24-h filters collected throughout 2015 at six sampling sites of varying urban influences in Hong Kong. The input data include major inorganic ions, organic and elemental carbon, elements, and organic tracers. Nine factors were resolved, including (1) secondary sulfate formation process, (2) secondary nitrate formation process, (3) industrial emissions, (4) biomass burning, (5) primary biogenic emissions, (6) vehicle emissions, (7) residual oil combustion, (8) dust, and (9) aged sea salt. The PMF-resolved factor contributions in conjunction with air mass back trajectories showed that the two major sources for PM2.5 mass, secondary sulfate (annual: 41%) and secondary nitrate (annual: 9.9%), were dominantly associated with regional and super-regional pollutant transport. Vehicular emissions are the most important local source, and its contributions exhibit a clear spatial variation pattern, with the highest (6.9 μg/m3, 24% of PM2.5) at a downtown roadside location and the lowest (0.4 μg/m3, 2.0% PM2.5) at two background sites away from city centers. The ability of producing a more reliable source separation and identifying new sources (e.g. primary biogenic source in this study) was a direct advantageous result of including organic tracers in the PMF analysis. PMF analysis conducted on the same dataset in this study but without including the organic tracers failed to separate the biomass burning emissions and industrial/coal combustion emissions. PMF analysis without the organic tracers would also over-apportion the contribution of vehicular emissions to PM2.5, which would bias the evaluation of the effectiveness of vehicle-related control measures. This work demonstrates the importance of organic markers in achieving more comprehensive and less biased source apportionment results.
Collapse
Affiliation(s)
- Wing Sze Chow
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - X H Hilda Huang
- Division of Environment & Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka Fung Leung
- Division of Environment & Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lin Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiangrong Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jian Zhen Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Environment & Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Ma J, Chen Z, Wang J, Wang Y, Li L. Diffusion simulation, health risks, ozone and secondary organic aerosol formation potential of gaseous pollutants from rural comprehensive waste treatment plant. CHEMOSPHERE 2022; 286:131857. [PMID: 34392199 DOI: 10.1016/j.chemosphere.2021.131857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive waste treatment plants (CWTPs) are significant sources of gaseous pollutants such as odors, volatile organic compounds (VOCs) and nitrogen oxides (NOx), polluting the environment and endangering human health. This study conducted on-site investigations on gaseous pollutants emissions from different areas of a CWTP. A total of 10 pollutants were identified of which ammonia (11.32 mg/m³ in average) was the main odorous substance, and benzene (19.51 mg/m³ in average) and toluene (42.07 mg/m³ in average) were the main VOCs. The feeding workshop (FW) was considered the main source of gaseous pollutants. The Gaussian plume model demonstrated that the pollution became more serious after spreading in the southeast downwind direction. Occupational exposure risks of on-site workers were mainly attributed to hydrogen sulfide, ammonia, benzene, and toluene, as their hazard index (HI) and lifetime cancer risk (CR) exceeded the recommended occupational safety limits. The gaseous pollutants diffused from CWTP may still pose a potential health risk to residents within a range of up to 7.5 km. The emulation and quantification of ozone formation potential by methods of Propyl-Equiv and MIR demonstrated that the contribution rate of toluene presented in each stage of CWTP exceed 80 %. Toluene was also the largest contributor to secondary organic aerosol with the contribution rate reached 56.34-85.14 %, followed by benzene (14.72-38.52 %). This research provides a basis for the reduction and control of gaseous pollutants in the treatment and disposal of rural domestic waste.
Collapse
Affiliation(s)
- Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zexiang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| |
Collapse
|
10
|
Li J, Deng S, Li G, Lu Z, Song H, Gao J, Sun Z, Xu K. VOCs characteristics and their ozone and SOA formation potentials in autumn and winter at Weinan, China. ENVIRONMENTAL RESEARCH 2022; 203:111821. [PMID: 34370988 DOI: 10.1016/j.envres.2021.111821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Frequent ozone and fine particulate matter (PM2.5) pollution have been occurring in the Guanzhong Plain in China. To effectively control the tropospheric ozone and PM2.5 pollution, this study performed measurements of 102 VOCs species from Sep.19-25 (autumn) and Nov.27-Dec. 8, 2017 (winter) at Weinan in the central Guanzhong Plain. The total volatile organic compounds (TVOCs) concentrations were 95.8 ± 30.6 ppbv in autumn and 74.4 ± 37.1 ppbv in winter. Alkanes were the most abundant group in both of autumn and winter, accounting for 33.5% and 39.6% of TVOCs concentrations, respectively. The levels of aromatics and oxygenated VOCs were higher in autumn than in winter, mainly due to changes in industrial activities and combustion strength. Photochemical reactivities and ozone formation potentials (OFPs) of VOCs were calculated by applying the OH radical loss rate (LOH) and maximum incremental reactivity (MIR) method, respectively. Results showed that Alkenes and aromatics were the key VOCs in term ozone formation in Weinan, which together contributed 59.6% ̶ 65.3% to the total LOH and OFP. Secondary organic aerosol formation potentials (SOAFP) of the measured VOCs were investigated by employing the fractional aerosol coefficient (FAC) method. Aromatics contributed 94.9% and 96.2% to the total SOAFP in autumn and winter, respectively. The regional transport effects on VOCs and ozone formation were investigated by using trajectory analysis and potential source contribution function (PSCF). Results showed that regional anthropogenic sources from industrial cities (Tongchuan, Xi'an city) and biogenic sources from Qinling Mountain influenced VOCs levels and OFP at Weinan. Future studies need to emphasize on meteorological factors and sources that impact on VOCs concentrations in Weinan.
Collapse
Affiliation(s)
- Jianghao Li
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Shunxi Deng
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China.
| | - Guanghua Li
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Zhenzhen Lu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Hui Song
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; School of Architectural Engineering, Chang'an University, Xi'an, 710064, China
| | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhigang Sun
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Ke Xu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
11
|
Zhang J, He X, Gao Y, Zhu S, Jing S, Wang H, Yu JZ, Ying Q. Estimation of Aromatic Secondary Organic Aerosol Using a Molecular Tracer-A Chemical Transport Model Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12882-12892. [PMID: 34523345 DOI: 10.1021/acs.est.1c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A modified community multiscale air quality model, which can simulate the regional distributions of 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), a marker species for monoaromatic secondary organic aerosol (SOA), was applied to assess the applicability of using the DHOPA to aromatic SOA mass ratio (fSOA) from smog chamber experiments to estimate aromatic SOA during a three-week wintertime air quality campaign in urban Shanghai. The modeled daily DHOPA concentrations based on the chamber-derived mass yields agree well with the organic marker field measurements (R = 0.79; MFB = 0.152; and MFE = 0.440). Two-thirds of the DHOPA are from the oxidation of ARO1 (lumped less-reactive aromatic species; mostly toluene), with the rest from ARO2 (lumped more-reactive aromatic species; mostly xylenes). Modeled DHOPA is mainly in the particle phase under ambient organic aerosol (OA) loading but could exhibit significant gas-particle partitioning when a higher estimation of the DHOPA vapor pressure is used. The modeled fSOA shows a strong dependence on the OA loading when only semivolatile aromatic SOA components are included in the fSOA calculations. However, this OA dependence becomes weaker when non-volatile oligomers and dicarbonyl SOA products are considered. A constant fSOA value of ∼0.002 is determined when all aromatic SOA components are included, which is a factor of 2 smaller than the commonly applied chamber-based fSOA value of 0.004 for toluene. This model-derived fSOA value does not show much spatial variation and is not sensitive to alternative estimates of DHOPA vapor pressures and SOA yields, and thus provides an appropriate scaling factor to assess aromatic SOA from DHOPA measurements. This result helps refine the quantification of SOA attributable to monoaromatic hydrocarbons in urban environments and thereby facilitates the evaluation of control measures targeting these specific precursors.
Collapse
Affiliation(s)
- Jie Zhang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843-3136, United States
| | - Xiao He
- Division of Environment & Sustainability, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yaqin Gao
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200021, China
| | - Shuhui Zhu
- Division of Environment & Sustainability, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200021, China
| | - Shengao Jing
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200021, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200021, China
| | - Jian Zhen Yu
- Division of Environment & Sustainability, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Qi Ying
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843-3136, United States
| |
Collapse
|
12
|
Lyu X, Huo Y, Yang J, Yao D, Li K, Lu H, Zeren Y, Guo H. Real-time molecular characterization of air pollutants in a Hong Kong residence: Implication of indoor source emissions and heterogeneous chemistry. INDOOR AIR 2021; 31:1340-1352. [PMID: 33772878 DOI: 10.1111/ina.12826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Due to the high health risks associated with indoor air pollutants and long-term exposure, indoor air quality has received increasing attention. In this study, we put emphasis on the molecular composition, source emissions, and chemical aging of air pollutants in a residence with designed activities mimicking ordinary Hong Kong homes. More than 150 air pollutants were detected at molecular level, 87 of which were quantified at a time resolution of not less than 1 hour. The indoor-to-outdoor ratios were higher than 1 for most of the primary air pollutants, due to emissions of indoor activities and indoor backgrounds (especially for aldehydes). In contrast, many secondary air pollutants exhibited higher concentrations in outdoor air. Painting ranked first in aldehyde emissions, which also caused great enhancement of aromatics. Incense burning had the highest emissions of particle-phase organics, with vanillic acid and syringic acid as markers. The other noteworthy fingerprints enabled by online measurements included linoleic acid, cholesterol, and oleic acid for cooking, 2,5-dimethylfuran, stigmasterol, iso-/anteiso-alkanes, and fructose isomers for smoking, C28 -C34 even n-alkanes for candle burning, and monoterpenes for the use of air freshener, cleaning agents, and camphor oil. We showed clear evidence of chemical aging of cooking emissions, giving a hint of indoor heterogeneous chemistry. This study highlights the value of organic molecules measured at high time resolutions in enhancing our knowledge on indoor air quality.
Collapse
Affiliation(s)
- Xiaopu Lyu
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yunxi Huo
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jin Yang
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Dawen Yao
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kaimin Li
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Haoxian Lu
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yangzong Zeren
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
13
|
Chemical Composition of Gas and Particle Phase Products of Toluene Photooxidation Reaction under High OH Exposure Condition. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the current study, the photooxidation reaction of toluene (C7H8) was investigated in a Potential Aerosol Mass Oxidation Flow Reactor (PAM OFR). The hydroxyl radical (OH) exposure of toluene in the PAM OFR ranged from 0.4 to 1.4 × 1012 molec cm−3 s, which is equivalent to 3 to 12 days of atmospheric oxidation. A proton transfer reaction-mass spectrometer (PTR-MS) and a scanning mobility particle sizer (SMPS) were used to study the gas-phase products formed and particle number changes of the oxidation reaction in PAM OFR. The secondary organic aerosol (SOA) formed in the PAM OFR was also collected for off-line chemical analysis. Key gas-phase reaction products of toluene, including glyoxal, methyl glyoxal, unsaturated carbonyl compounds, and benzaldehyde, were identified by the PTR-MS. Second generation products, including acetic acid, formaldehyde, formic acid, and acetaldehyde, were also detected. By comparing the mass spectrums obtained under different OH exposures and relative humidity (RH), changes in the two parameters have minimal effects on the composition of gas-phase products formed, expect for the spectrum obtained at OH exposure of 0.4 × 1012 cm−3 s and RH = 17%, which is slightly different from other spectrums. SMPS results showed that particle mass concentration increases with increasing OH exposure, while particle number concentration first increases and then decreases with increasing OH exposure. This result probably suggests the formation of oligomers at high OH exposure conditions. Off-line chemical analysis of the SOA sample was dominated by C4 diacids, including malic acid, citramalic acid, and tartaric acid. The well-known toluene SOA marker 2,3-Dihydroxy-4-oxopentanoic acid, as well as 2,3-dihydroxyglutaric acid, which has not been identified in previous toluene photooxidation experiments, were also detected in the SOA sample. Our results showed good agreements with the results of previous smog chamber studies of toluene photooxidation reaction, and they suggested that using PAM OFR for studies of oxidation reaction of different VOCs can be atmospherically relevant.
Collapse
|
14
|
Secondary Organic Aerosol Formation from Isoprene: Selected Research, Historic Account and State of the Art. ATMOSPHERE 2021. [DOI: 10.3390/atmos12060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review, we cover selected research on secondary organic aerosol (SOA) formation from isoprene, from the beginning of research, about two decades ago, to today. The review begins with the first observations of isoprene SOA markers, i.e., 2-methyltetrols, in ambient fine aerosol and focuses on studies dealing with molecular characterization, speciation, formation mechanisms, and source apportionment. A historic account is given on how research on isoprene SOA has developed. The isoprene SOA system is rather complex, with different pathways being followed in pristine and polluted conditions. For SOA formation from isoprene, acid-catalyzed hydrolysis is necessary, and sulfuric acid enhances SOA by forming additional nonvolatile products such as organosulfates. Certain results reported in early papers have been re-interpreted in the light of recent results; for example, the formation of C5-alkene triols. Attention is given to mass spectrometric and separation techniques, which played a crucial role in molecular characterization. The unambiguous structural characterization of isoprene SOA markers has been achieved, owing to the preparation of reference compounds. Efforts have also been made to use air quality data to estimate the influence of biogenic and pollution aerosol sources. This review examines the use of an organic marker-based method and positive matrix factorization to apportion SOA from different sources, including isoprene SOA.
Collapse
|
15
|
Galvão ES, de Cassia Feroni R, D'Azeredo Orlando MT. A review of the main strategies used in the interpretation of similar chemical profiles yielded by receptor models in the source apportionment of particulate matter. CHEMOSPHERE 2021; 269:128746. [PMID: 33153846 DOI: 10.1016/j.chemosphere.2020.128746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Receptor models have been widely used for the source apportionment of airborne particulate matter. However, in the last 10 years, the use of factor analysis-based models, such as PMF and UNMIX, has increased significantly. The results yielded by these models must be interpreted by users who must know all variables influencing the modeling, and without this knowledge, the probability of incorrect interpretation of the source profiles may increase, especially when two or more sources have similar chemical profiles. Concerning the quality of data, this work shows that a broad characterization of PM composition, including inorganic, organic, and mineralogical species can improve this process, avoiding misinterpretation and the attribution of mixed or unidentified sources. This work aims to provide readers with some answers for a question often risen during source apportionment studies: Which source markers should be used for better separation and interpretation of source profiles? This review shows there is no right answer for this because different strategies can be used for this purpose. Therefore, this review aims to compile and highlight qualitatively the key strategies already used by several experienced receptor models users, combining the use of inorganic, organic, and mineralogical markers of PM for better separation and interpretation of the profiles yielded by receptor models. Also, this work presents a compilation in tables of the main chemical species reported in the literature as markers for interpreting the source profiles.
Collapse
Affiliation(s)
- Elson Silva Galvão
- Universidade Federal Do Espírito Santo, Departamento de Física, Vitória, Brazil.
| | - Rita de Cassia Feroni
- Universidade Federal Do Espírito Santo, Departamento de Engenharias e Tecnologia, São Mateus, ES, Brazil
| | | |
Collapse
|
16
|
Cheng Y, Ma Y, Dong B, Qiu X, Hu D. Pollutants from primary sources dominate the oxidative potential of water-soluble PM 2.5 in Hong Kong in terms of dithiothreitol (DTT) consumption and hydroxyl radical production. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124218. [PMID: 33092883 DOI: 10.1016/j.jhazmat.2020.124218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Increasing scientific findings show that the adverse health effects of PM2.5 are related not only to its mass but also PM2.5 sources and chemical compositions. Here, we conducted a comprehensive characterization and source apportionment of oxidative potential (OP) of water-soluble PM2.5 collected in Hong Kong for one year. Two OP indicators, namely dithiothreitol (DTT) consumption and ∙OH formation, were quantified. Six PM2.5 sources, i.e. secondary sulfate, biomass burning, secondary organic aerosol (SOA), vehicle emissions, marine vessels, and a metal-related factor, were apportioned and identified to be DTT active. The four primary sources accounted for 83.5% of DTT activity of water-soluble PM2.5, with the metal-related factor and marine vessels as the leading contributors. However, only three sources, i.e. metal-related factor, vehicle emissions, and SOA, showed ∙OH generation ability, with a predominant contribution of 96.2% from the two primary sources, especially the metal-related factor (84.5%). Based on the source apportionment results, we further evaluate the intrinsic OP of water-soluble PM2.5 from each source. Marine vessels exhibited the highest intrinsic DTT activity; while metal-related factor was most effective in ∙OH generation.
Collapse
Affiliation(s)
- Yubo Cheng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Yiqiu Ma
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, PR China
| | - Biao Dong
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Di Hu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, PR China.
| |
Collapse
|
17
|
Wu YC, Li JL, Wang J, Zhuang GC, Liu XT, Zhang HH, Yang GP. Occurance, emission and environmental effects of non-methane hydrocarbons in the Yellow Sea and the East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116305. [PMID: 33360599 DOI: 10.1016/j.envpol.2020.116305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The spatial distributions, fluxes, and environmental effects of non-methane hydrocarbons (NMHCs) were investigated in the Yellow Sea (YS) and the East China Sea (ECS) in spring. The average concentrations of ethane, propane, i-/n-butane, ethylene, propylene and isoprene in the seawater were 18.1 ± 6.4, 15.4 ± 4.7, 6.8 ± 2.9, 6.4 ± 3.2, 67.1 ± 26.7, 20.5 ± 8.7 and 17.1 ± 11.1 pmol L-1, respectively. The alkenes in the surface seawater were more abundant than their saturated homologs and NMHCs concentrations (with the exception of isoprene) decreased with carbon number. The spatial variations of isoprene were consistent with the distributions of chlorophyll a (Chl-a) and Chaetoceros, Skeletonema, Nitzschia mainly contributed to the production of isoprene, while the others' distributions might be related to their photochemical production. Observations in atmospheric NMHCs indicated alkanes in the marine atmosphere decreased from inshore to offshore due to influence of the continental emissions, while alkenes were largely derived from the oceanic source. In addition, no apparent diurnal discrepancy of atmospheric NMHCs (except for isoprene) were found between daytime and night. As the main sink of NMHCs in seawater, the average sea-to-air fluxes of ethane, propane, i-/n-butane, ethylene and propylene were 31.70, 29.75, 18.49, 15.89, 239.6, 67.94 and 52.41 nmol m-2 d-1, respectively. The average annual emissions of isoprene accounted for 0.1-1.3% of the global ocean emissions, which indicated that the coastal and shelf areas might be significant sources of isoprene. Furthermore, this study represents the first effort to estimate the environmental effects caused by NMHCs over the YS and the ECS and the results demonstrated contributions of alkanes to ozone and secondary organic aerosol (SOA) formation were lower than those of the alkenes and the largest contributor was isoprene.
Collapse
Affiliation(s)
- Ying-Cui Wu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jian-Long Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; EnvironmentResearch Institute, Shandong University, Qingdao, 266237, China
| | - Jian Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Guang-Chao Zhuang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Department of Marine Sciences, University of Georgia, Athens, 30602, USA
| | - Xi-Ting Liu
- Key Laboratory of Submarine Geosciences and Prospecting Technology, College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China
| | - Hong-Hai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
18
|
Cheng C, Chan CK, Lee BP, Gen M, Li M, Yang S, Hao F, Wu C, Cheng P, Wu D, Li L, Huang Z, Gao W, Fu Z, Zhou Z. Single particle diversity and mixing state of carbonaceous aerosols in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142182. [PMID: 33254891 DOI: 10.1016/j.scitotenv.2020.142182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Many field studies have investigated the formation mechanisms of organic aerosol (OA) based on bulk analysis, yet the source and formation process of individual organic particles may be quite different due to the diversity of chemical composition and mixing state in single particles. Here we present the observation results of chemical composition and mixing state of carbonaceous single particles at an urban site in Guangzhou. The carbonaceous particles accounted for 74.6% of the total detected single particles, and were grouped into four types including elemental carbon-aged (EC-aged), elemental and organic carbon (ECOC), organic carbon-rich (OC-rich) and secondary ions-rich (SEC) particles. The formation of EC-aged particles was closely associated with the absorption of organics onto fresh EC particles from primary sources, and the further enrichment of organics in EC-aged particles resulted in the production of ECOC particles. In the daytime OC-rich and SEC particles were mainly produced from the photochemical reactions, while in the nighttime their sharp increases were found along with the enrichment of nitrate and organic nitrogen fragments, suggesting the heterogeneous formation of nitrate and organic nitrogen in OC-rich and SEC particles. The production rates of carbonaceous particles were also investigated in an episodic event, and the EC-aged particles showed the highest production rate compared to the other carbonaceous particles both in the daytime and nighttime, suggesting a significant role of EC in the formation and aging process of carbonaceous particles. The results from this work have revealed different formation processes and production rates of carbonaceous particles due to their diversity in mixing state, providing further insights into the formation mechanisms of OA in field studies.
Collapse
Affiliation(s)
- Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| | - Berto Paul Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| | - Suxia Yang
- Institute for Environment and Climate Research, Jinan University, Guangzhou 510632, China
| | - Feng Hao
- Environmental Monitoring Center of Inner Mongolia Autonomous Region, Hohhot 010011, China
| | - Cheng Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Peng Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Dui Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Wei Gao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhong Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| |
Collapse
|
19
|
Galmiche M, Delhomme O, François YN, Millet M. Environmental analysis of polar and non-polar Polycyclic Aromatic Compounds in airborne particulate matter, settled dust and soot: Part I: Sampling and sample preparation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Kanellopoulos PG, Chrysochou E, Koukoulakis K, Vasileiadou E, Kizas C, Savvides C, Bakeas E. Secondary organic aerosol tracers and related polar organic compounds between urban and rural areas in the Eastern Mediterranean region: source apportionment and the influence of atmospheric oxidants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2212-2229. [PMID: 32996961 DOI: 10.1039/d0em00238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fine particle samples were collected during summer at an urban (LIM) and a rural/background (AGM) site of Cyprus. They were analyzed for pinene and isoprene secondary organic aerosol (PSOA-ISOA) tracers, linear dicarboxylic acids (DCAs), hydroxyacids (HAs), aromatic acids (AAs), monocarboxylic acids (MCAs) and levoglucosan by GC/MS with prior 3-step derivatization. DCAs, AAs, MCAs and levoglucosan exhibited significantly higher concentrations (p < 0.05) in LIM, PSOAs and ISOAs in AGM (p < 0.05), whereas mixed trends were found for HAs. Among DCAs, succinic was the most abundant in both sites, accounting for 42.5% and 36.5% of the total DCAs in LIM and AGM respectively, followed by adipic in LIM (20.1%) and azelaic in AGM (22.4%). Malic, phthalic and palmitic acids were the dominant HA, AA and MCA, respectively. Regarding PSOAs, significant differences were observed between the two sites, with the first-generation products accounting for 59.8% of the total measured PSOAs in AGM, but were remarkably lowered (10.3%) in LIM indicating that they were highly oxidized. 2-Methylerythritol was the dominant ISOA tracer in both sites; nevertheless the elevated relative abundance of 2-methylglyceric acid in LIM implies the influences of higher NOx levels. The increased O3 levels observed in AGM appear to have a significant impact on SOA formation. Source apportionment tools employed revealed factors related to secondary formation processes including oxidation of unsaturated fatty acids, pinene, isoprene and anthropogenic VOCs and factors associated with primary sources such as biomass burning, plant emissions and/or cooking and motor exhaust, with noteworthy differences observed between the two areas.
Collapse
Affiliation(s)
- Panagiotis Georgios Kanellopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15784, Greece.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lyu X, Guo H, Yao D, Lu H, Huo Y, Xu W, Kreisberg N, Goldstein AH, Jayne J, Worsnop D, Tan Y, Lee SC, Wang T. In Situ Measurements of Molecular Markers Facilitate Understanding of Dynamic Sources of Atmospheric Organic Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11058-11069. [PMID: 32805105 DOI: 10.1021/acs.est.0c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reducing the amount of organic aerosol (OA) is crucial to mitigation of particulate pollution in China. We present time and air-origin dependent variations of OA markers and source contributions at a regionally urban background site in South China. The continental air contained primary OA markers indicative of source categories, such as levoglucosan, fatty acids, and oleic acid. Secondary OA (SOA) markers derived from isoprene and monoterpenes also exhibited higher concentrations in continental air, due to more emissions of their precursors from terrestrial ecosystems and facilitation of anthropogenic sulfate for monoterpenes SOA. The marine air and continental-marine mixed air had more abundant hydroxyl dicarboxylic acids (OHDCA), with anthropogenic unsaturated organics as potential precursors. However, OHDCA formation in continental air was likely attributable to both biogenic and anthropogenic precursors. The production efficiency of OHDCA was highest in marine air, related to the presence of sulfur dioxide and/or organic precursors in ship emissions. Regional biomass burning (BB) was identified as the largest contributor of OA in continental air, with contributions fluctuating from 8% to 74%. In contrast, anthropogenic SOA accounted for the highest fraction of OA in marine (37 ± 4%) and mixed air (31 ± 3%), overriding the contributions from BB. This study demonstrates the utility of molecular markers for discerning OA pollution sources in the offshore marine atmosphere, where continental and marine air pollutants interact and atmospheric oxidative capacity may be enhanced.
Collapse
Affiliation(s)
- Xiaopu Lyu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Dawen Yao
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Haoxian Lu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Yunxi Huo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Wen Xu
- Center for Aerosol and Cloud Chemistry, Aerodyne Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Nathan Kreisberg
- Aerosol Dynamics Incorporated, Berkeley, California 94710, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - John Jayne
- Center for Aerosol and Cloud Chemistry, Aerodyne Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Douglas Worsnop
- Center for Aerosol and Cloud Chemistry, Aerodyne Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Yan Tan
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Shun-Cheng Lee
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Tao Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
22
|
Niu X, Li J, Wang Q, Ho SSH, Sun J, Li L, Cao J, Ho KF. Characteristics of fresh and aged volatile organic compounds from open burning of crop residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138545. [PMID: 32305762 DOI: 10.1016/j.scitotenv.2020.138545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Open burning of crop residues is a major source of volatile organic compounds (VOCs), which contribute substantially to the formation of secondary organic aerosols (SOAs) in the atmosphere. An integrated system of combustion chamber coupled with potential aerosol mass (PAM) reactor was used to demonstrate the emission characteristics of fresh and aged VOCs (corresponding to 2- and 7-day atmospheric aging) from the burning of rice, maize, and wheat straws. The average emission factor (EF) of quantified non-methane VOCs (NMVOCs) emitted from the straw (fresh) was 1.82 ± 0.41 g/kg and wheat straw had the highest EFs. The EF residues of quantified NMVOCs decreased considerably after photo-oxidation in PAM. Stronger oxidation condition (7-day aging) produced a 57.2% decline in NMVOC EFs, compared with 42.3% decline during 2-day atmospheric aging. The largest declines were observed in the alkenes group: 82.6% and 66.2% after 7- and 2-day aging, respectively, which is consistent with their high reactivity toward oxidation with ozone and hydroxyl radical (OH). Aromatic compounds mainly reacted with OH, and their EFs decreased 59.1% on average. Alkanes were much less reactive, and their EFs only decreased an average of 29.8% after the oxidation processes. Considerable SOAs formation was observed in the fine particulate matter (PM2.5) filter samples collected after the oxidation of isoprene, benzene and toluene. The moderate to strong correlations between isoprene and isoprene-derived SOAs, between benzene and toluene with nitrophenols, and between toluene and aromatic acids demonstrate that the VOCs were degraded in the reactions with oxidative radicals, producing active contributors to SOAs formations.
Collapse
Affiliation(s)
- Xinyi Niu
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianjun Li
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Qiyuan Wang
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Steven Sai Hang Ho
- Hong Kong Premium Services and Research Laboratory, Hong Kong, China; Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA
| | - Jian Sun
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Li Li
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Hong Kong, China.
| |
Collapse
|
23
|
Li C, Li Q, Tong D, Wang Q, Wu M, Sun B, Su G, Tan L. Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing. J Environ Sci (China) 2020; 93:1-12. [PMID: 32446444 DOI: 10.1016/j.jes.2019.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/11/2023]
Abstract
Volatile organic compounds (VOCs) are major contributors to air pollution. Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing, the environmental impact and health risk of VOC were assessed. In the winter polluted days, the secondary organic aerosol formation potential (SOAP) of VOC (199.70 ± 15.05 μg/m3) was significantly higher than that on other days. And aromatics were the primary contributor (98.03%) to the SOAP during the observation period. Additionally, the result of the ozone formation potential (OFP) showed that ethylene contributed the most to OFP in winter (26.00% and 27.64% on the normal and polluted days). In summer, however, acetaldehyde was the primary contributor to OFP (22.00% and 21.61% on the normal and polluted days). Simultaneously, study showed that hazard ratios and lifetime cancer risk values of acrolein, chloroform, benzene, 1,2-dichloroethane, acetaldehyde and 1,3-butadiene exceeded the thresholds established by USEPA, thereby presenting a health risk to the residents. Besides, the ratio of toluene-to-benzene indicated that vehicle exhausts were the main source of VOC pollution in Beijing. The ratio of m-/p-xylene-to-ethylbenzene demonstrated that there were more prominent atmospheric photochemical reactions in summer than that in winter. Finally, according to the potential source contribution function (PSCF) results, compared with local pollution sources, the spread of pollution from long-distance VOCs had a greater impact on Beijing.
Collapse
Affiliation(s)
- Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongge Tong
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Tan
- China National Environmental Monitoring Center (CNEMC), Beijing 100012, China.
| |
Collapse
|
24
|
Ma Y, Cheng Y, Gao G, Yu JZ, Hu D. Speciation of carboxylic components in humic-like substances (HULIS) and source apportionment of HULIS in ambient fine aerosols (PM 2.5) collected in Hong Kong. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23172-23180. [PMID: 32333354 DOI: 10.1007/s11356-020-08915-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Humic-like substances (HULIS) are an important mixture of organic compounds, which account for a great part of water-soluble organic compounds in ambient aerosols. In this study, individual carboxylic and hydroxylic species in HULIS extracts of PM2.5 samples collected in Hong Kong during summer were measured by gas chromatography mass spectrometry with prior chemical derivatization. Significantly higher levels of HULIS were observed on days mainly impacted by regional pollution (regional days, 4.11 ± 1.76 μg m-3) than on days under local emission influences (local days, 0.56 ± 0.30 μg m-3). Positive matrix factorization was applied to identify the major sources and apportion their contributions to HULIS. Simultaneous monitoring and analysis data from four different sampling sites showed that sources of HULIS in Hong Kong were mainly regional with small spatial variations. Secondary aerosol formation (both organic and inorganic) had a predominant contribution (52.7%) to HULIS during the whole sampling period. It accounted for 1.88 ± 0.91 μg m-3 of HULIS on regional days, which was about 5 times higher than its contribution (0.39 ± 0.34 μg m-3) on local days. Of the three identified primary sources, biomass burning had the largest contribution on both regional (34.9%) and local days (24.6%). Marine vessels were also a significant contributor, especially on local days (20.3%). Vehicle exhaust, on the other hand, showed a negligible contribution to HULIS (2.1%) in Hong Kong in this study.
Collapse
Affiliation(s)
- Yiqiu Ma
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Yubo Cheng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Gang Gao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Jian Zhen Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, People's Republic of China
| | - Di Hu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China.
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, People's Republic of China.
| |
Collapse
|
25
|
Zaytsev A, Koss AR, Breitenlechner M, Krechmer JE, Nihill KJ, Lim CY, Rowe JC, Cox JL, Moss J, Roscioli JR, Canagaratna MR, Worsnop DR, Kroll JH, Keutsch FN. Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions. ATMOSPHERIC CHEMISTRY AND PHYSICS 2019; 19:15117-15129. [PMID: 32256548 PMCID: PMC7133713 DOI: 10.5194/acp-19-15117-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aromatic hydrocarbons make up a large fraction of anthropogenic volatile organic compounds and contribute significantly to the production of tropospheric ozone and secondary organic aerosol (SOA). Four toluene and four 1,2,4-trimethylbenzene (1,2,4-TMB) photooxidation experiments were performed in an environmental chamber under relevant polluted conditions (NO x ~ 10ppb). An extensive suite of instrumentation including two proton-transfer-reaction mass spectrometers (PTR-MS) and two chemical ionisation mass spectrometers (NH 4 + CIMS and I- CIMS) allowed for quantification of reactive carbon in multiple generations of hydroxyl radical (OH)-initiated oxidation. Oxidation of both species produces ring-retaining products such as cresols, benzaldehydes, and bicyclic intermediate compounds, as well as ring-scission products such as epoxides and dicarbonyls. We show that the oxidation of bicyclic intermediate products leads to the formation of compounds with high oxygen content (an O : C ratio of up to 1.1). These compounds, previously identified as highly oxygenated molecules (HOMs), are produced by more than one pathway with differing numbers of reaction steps with OH, including both auto-oxidation and phenolic pathways. We report the elemental composition of these compounds formed under relevant urban high-NO conditions. We show that ring-retaining products for these two precursors are more diverse and abundant than predicted by current mechanisms. We present the speciated elemental composition of SOA for both precursors and confirm that highly oxygenated products make up a significant fraction of SOA. Ring-scission products are also detected in both the gas and particle phases, and their yields and speciation generally agree with the kinetic model prediction.
Collapse
Affiliation(s)
- Alexander Zaytsev
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138, USA
| | - Abigail R. Koss
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
- now at: TOFWERK USA, Boulder, CO80301, USA
| | - Martin Breitenlechner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138, USA
| | | | - Kevin J. Nihill
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
| | - Christopher Y. Lim
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
| | - James C. Rowe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
| | - Joshua L. Cox
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138, USA
| | - Joshua Moss
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
| | | | | | | | - Jesse H. Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
| | - Frank N. Keutsch
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138, USA
| |
Collapse
|
26
|
Ma Y, Cheng Y, Qiu X, Cao G, Kuang B, Yu JZ, Hu D. Optical properties, source apportionment and redox activity of humic-like substances (HULIS) in airborne fine particulates in Hong Kong. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113087. [PMID: 31541815 DOI: 10.1016/j.envpol.2019.113087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Humic-like substances (HULIS) account for a considerable fraction of water-soluble organic matter (WSOM) in ambient fine particulates (PM2.5) over the world. However, systemic studies regarding the chemical characteristics, sources and redox activity of HULIS are still limited. In this study, the mass concentration, optical properties, and reactive oxygen species (ROS)-generation potential of HULIS were investigated in PM2.5 samples collected in Hong Kong during 2011-2012, and they all showed higher levels on days under regional pollution than on days under long range transport (LRT) pollution and local emissions. Positive matrix factorization (PMF) analysis was conducted regarding the mass concentration and dithiothreitol (DTT) activity of HULIS. Four primary sources (i.e. marine vessels, industrial exhaust, biomass burning, and vehicle emissions), and two secondary sources (i.e. secondary organic aerosol formation and secondary sulfate) were identified. Most sources showed higher contributions to both the mass concentration and DTT activity of HULIS on regional days than on LRT and local days, except that marine vessels had a higher contribution on local days than the other two synoptic conditions. Secondary processes were the major contributor to HULIS (54.9%) throughout the year, followed by biomass burning (27.4%) and industrial exhaust (14.7%). As for the DTT activity of HULIS, biomass burning (62.9%) and secondary processes (25.4%) were found to be the top two contributors. Intrinsic ROS-generation potential of HULIS was also investigated by normalizing the DTT activity by HULIS mass in each source. HULIS from biomass burning were the most DTT-active, followed by marine vessels; while HULIS formed through secondary processes were the least DTT-active. For the optical properties of HULIS, multiple linear regression model was adopted to evaluate the contributions of various sources to the light absorbing ability of HULIS. Biomass burning was found to be the only source significantly associated with the light absorbing property of HULIS.
Collapse
Affiliation(s)
- Yiqiu Ma
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, PR China
| | - Yubo Cheng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Gang Cao
- School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518057, PR China
| | - Binyu Kuang
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | - Jian Zhen Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | - Di Hu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, PR China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, PR China.
| |
Collapse
|
27
|
Ren Y, Wang G, Tao J, Zhang Z, Wu C, Wang J, Li J, Wei J, Li H, Meng F. Seasonal characteristics of biogenic secondary organic aerosols at Mt. Wuyi in Southeastern China: Influence of anthropogenic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:493-500. [PMID: 31163382 DOI: 10.1016/j.envpol.2019.05.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Thirteen secondary organic aerosol (SOA) tracers of isoprene, monoterpenes and sesquiterpenes were measured for PM2.5 aerosols collected at the summit of Mt. Wuyi (1139 m, a.s.l.), to investigate their seasonality and formation mechanism. Concentrations of the isoprene and monoterpene SOA tracers were much higher in summer than those in other seasons. In contrast, β-caryophyllinic acid was found to be the lowest in summer. Concentrations of those BSOA tracers showed a positive correlation with temperature (R2 = 0.52-0.70), and a negative correlation with relative humidity (R2 = 0.43-0.78). Moreover, thermodynamic model (i.e., ISORROPIA-II) calculation results showed that acidity conditions are favorable for BSOA formation. Robust linear correlations between the BSOA tracers and anthropogenic pollutants such as SO2 (R2 = 0.53-0.7) and NO2 (R2 = 0.37-0.54) were observed for all the samples, suggesting that SO2 and NOx can enhance BSOA production in the remote mountain area of southeast China, which is related to an acid-catalyzed heterogeneous chemistry. Moreover, we also found a significant correlation between the concentrations of the BSOA tracers and levoglucosan especially for β-caryophyllinic acid, indicating that biomass burning plumes from the distant lowland regions could influence the production of BSOA in the mountain free troposphere. Our results clearly demonstrated that anthropogenic emissions in China could enhance BSOA formation in the distant mountain regions.
Collapse
Affiliation(s)
- Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Gehui Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Key Lab of Geographic Information Science of Ministry of Education of China, School of Geographic Sciences, East China Normal University, Shanghai, 200142, China.
| | - Jun Tao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Zhisheng Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Can Wu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Key Lab of Geographic Information Science of Ministry of Education of China, School of Geographic Sciences, East China Normal University, Shanghai, 200142, China
| | - Jiayuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Jie Wei
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
28
|
Li L, Zhou Y, Bi X, Deng S, Wang S, Lu M. Determination of the stable carbon isotopic compositions of 2-methyltetrols for four forest areas in Southwest China: The implications for the δ 13C values of atmospheric isoprene and C 3/C 4 vegetation distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:780-792. [PMID: 31085494 DOI: 10.1016/j.scitotenv.2019.04.432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Isoprene is the most abundant non-methane hydrocarbons (NMHCs) in the troposphere and is released predominantly by vegetation. The δ13C values of atmospheric isoprene vary with different plant types (e.g. C3 and C4 plants). In this work, aerosol samples were collected in four forest areas in Sichuan Province, China, i.e., the Baima Spring Scenic Area (BM), the Panzhihua Cycas Nature Reserve (PZ), the Gongga Mountain National Nature Reserve (GG) and the Wolong National Nature Reserve (WL) during the summers of 2010-2012. The stable carbon isotopic compositions of 2-methyltetrols, the stable products of isoprene oxidation by OH, were measured using a GC/C/IRMS (gas chromatography/combustion/isotopic ratio mass spectrometry) with methylboronic acid derivatization. The stable carbon isotopic fractionation coefficient of isoprene oxidized by OH (OHεi) was derived in laboratory. With the δ13C values of 2-methyltetrols, OHεi and meteorological parameters, the δ13C values of atmospheric isoprene were calculated. The results show that forests can remarkably change the δ13C values of isoprene in the regional scales, making significant contributions to isoprene emissions. Moreover, C3/C4 proportions of shrubs and grasses depend on altitudes. The average δ13C values of atmospheric isoprene are -24.18 ± 1.72‰, -25.81 ± 1.36‰, -24.96 ± 0.94‰, -25.89 ± 1.35‰ for BM, PZ, GG and WL, respectively. The average δ13C value of atmospheric isoprene in SW China and the surrounding areas was -25.23 ± 1.44‰. C4 plants emitted 26.9 ± 10.3% of isoprene in the research atmosphere.
Collapse
Affiliation(s)
- Li Li
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, College of Environment, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yi Zhou
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, College of Environment, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shihuai Deng
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, College of Environment, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuxiao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mingming Lu
- Dept. of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati 45221, United States.
| |
Collapse
|
29
|
Gao Y, Wang H, Zhang X, Jing S, Peng Y, Qiao L, Zhou M, Huang DD, Wang Q, Li X, Li L, Feng J, Ma Y, Li Y. Estimating Secondary Organic Aerosol Production from Toluene Photochemistry in a Megacity of China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8664-8671. [PMID: 31265258 DOI: 10.1021/acs.est.9b00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The production of secondary organic aerosols (SOA) from toluene photochemistry in Shanghai, a megacity of China, was estimated by two approaches, the parametrization method and the tracer-based method. The temporal profiles of toluene, together with other fifty-six volatile organic compounds (VOCs), were characterized. Combing with the vapor wall loss corrected SOA yields derived from chamber experiments, the estimated toluene SOA by the parametrization method as embodied in the two-product model contributes up to ∼40% of the total SOA budget during summertime. 2,3-Dihydroxy-4-oxopentanoic acid (DHOPA), a unique product from the OH-initiated oxidation of toluene in the presence of elevated NOx, was used as a tracer to back calculate the toluene SOA concentrations. By taking account for the effect of gas-particle partitioning processes on the fraction of DHOPA in the particle phase, the estimated toluene SOA concentrations agree within ∼33% with the estimates by the parametrization method. The agreement between these two independent approaches highlight the need to update current model frameworks with recent laboratory advances for a more accurate representation of SOA formation in regions with substantial anthropogenic emissions.
Collapse
Affiliation(s)
- Yaqin Gao
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
- Department of Environment Science and Engineering , Fudan University , Shanghai 200433 , China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Xuan Zhang
- Atmospheric Chemistry Observation & Modeling Laboratory (ACOM) , National Center for Atmospheric Research (NCAR) , Boulder , Colorado 80301 , United States
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Yarong Peng
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
- Department of Environment Science and Engineering , Fudan University , Shanghai 200433 , China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Min Zhou
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Qian Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Xiang Li
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
- Department of Environment Science and Engineering , Fudan University , Shanghai 200433 , China
| | - Li Li
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China
| | - Yingge Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Yingjie Li
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| |
Collapse
|
30
|
Xu J, Jia C, He J, Xu H, Tang YT, Ji D, Yu H, Xiao H, Wang C. Biomass burning and fungal spores as sources of fine aerosols in Yangtze River Delta, China - Using multiple organic tracers to understand variability, correlations and origins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:155-165. [PMID: 31078087 DOI: 10.1016/j.envpol.2019.04.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Research is restricted regarding impacts of biomass burning (BB) on fine aerosol (PM2.5), due mainly to lack of specific BB tracers. This study aims to characterize the variability, distributions, and contributions of BB and fungal spores as sources of PM2.5 using a multiple organic tracer approach. PM2.5 samples were collected at four representative sites in Yangtze River Delta (YRD), China every 6 days for one year. In the laboratory, samples were analyzed for three anhydrides (levoglucosan, mannosan, and galactosan), two sugar alcohols (arabitol and mannitol), water-soluble inorganic ions, and elemental/organic carbon (EC/OC). Levoglucosan was the most abundant BB tracer (mean concentration = 81 ng/m3), and fungal spore tracers arabitol and mannitol had similar abundances (5.6 and 5.7 ng/m3, respectively). Anhydrides and sugar alcohols had high within-group correlations, indicating their respective common sources. Concentrations of tracers displayed large temporal variations but small spatial variations, suggesting strong seasonality in BB and fungal spore sources. BB sources were burning of grass, pine needles, hardwood and crop straw, which were originated from transboundary/cross-region transport and local fire spots. PCA analyses revealed that the common sources of fine aerosols in YRD were secondary inorganic aerosols, soil dust, BB and fungal spores.
Collapse
Affiliation(s)
- Jingsha Xu
- International Doctoral Innovation Centre (IDIC), Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
| | - Chunrong Jia
- School of Public Health, University of Memphis, Memphis, TN, 38152, USA
| | - Jun He
- International Doctoral Innovation Centre (IDIC), Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China.
| | - Honghui Xu
- Zhejiang Meteorological Science Institute, Hangzhou, 310051, PR China
| | - Yu-Ting Tang
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo, 315100, PR China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, PR China
| | - Huan Yu
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Hang Xiao
- Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Chengjun Wang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
31
|
Albinet A, Lanzafame GM, Srivastava D, Bonnaire N, Nalin F, Wise SA. Analysis and determination of secondary organic aerosol (SOA) tracers (markers) in particulate matter standard reference material (SRM 1649b, urban dust). Anal Bioanal Chem 2019; 411:5975-5983. [DOI: 10.1007/s00216-019-02015-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
|
32
|
Comparison of Measurement-Based Methodologies to Apportion Secondary Organic Carbon (SOC) in PM2.5: A Review of Recent Studies. ATMOSPHERE 2018. [DOI: 10.3390/atmos9110452] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Secondary organic aerosol (SOA) is known to account for a major fraction of airborne particulate matter, with significant impacts on air quality and climate at the global scale. Despite the substantial amount of research studies achieved during these last decades, the source apportionment of the SOA fraction remains difficult due to the complexity of the physicochemical processes involved. The selection and use of appropriate approaches are a major challenge for the atmospheric science community. Several methodologies are nowadays available to perform quantitative and/or predictive assessments of the SOA amount and composition. This review summarizes the current knowledge on the most commonly used approaches to evaluate secondary organic carbon (SOC) contents: elemental carbon (EC) tracer method, chemical mass balance (CMB), SOA tracer method, radiocarbon (14C) measurement and positive matrix factorization (PMF). The principles, limitations, challenges and good practices of each of these methodologies are discussed in the present article. Based on a comprehensive—although not exhaustive—review of research papers published during the last decade (2006–2016), SOC estimates obtained using these methodologies are also summarized for different regions across the world. Conclusions of some studies which are directly comparing the performances of different methodologies are then specifically discussed. An overall picture of SOC contributions and concentrations obtained worldwide for urban sites under similar conditions (i.e., geographical and seasonal ones) is also proposed here. Finally, further needs to improve SOC apportionment methodologies are also identified and discussed.
Collapse
|
33
|
PAN–Precursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region. ATMOSPHERE 2018. [DOI: 10.3390/atmos9100372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peroxy acetyl nitrate (PAN) is an important photochemical product formed from the reactions between volatile organic compounds (VOCs) and nitrogen oxides (NOx) under sunlight. In this study, a field measurement was conducted at a rural site (the backgarden site, or BGS) of the Pearl River Delta (PRD) region in 2006, with the 10 min maximum PAN mixing ratios of 3.9 ppbv observed. The factors influencing the abundance of PAN at the BGS site was evaluated by the process analysis through the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model. The results suggested that the increase of PAN abundance at the BGS site was mainly controlled by the gas-phase chemistry, followed by vertical transport, while its loss was modulated mainly by dry deposition and horizontal transport. As the dominant important role of gas-phase chemistry, to provide detailed information on the photochemical formation of PAN, a photochemical box model with near-explicit chemical mechanism (i.e., the master chemical mechanism, MCM) was used to explore the relationship of photochemical PAN formation with its precursors based on the measured data at the BGS site. It was found that PAN formation was VOC-limited at the BGS site, with the oxidation of acetaldehyde the most important pathway for photochemical PAN production, followed by the oxidation and photolysis of methylglyoxal (MGLY). Among all the primary VOC precursors, isoprene and xylenes were the main contributors to PAN formation. Overall, our study provides new insights into the PAN photochemical formation and its controlling factors, and highlighted the importance of gas chemistry on the PAN abundance in the PRD region.
Collapse
|
34
|
Yuan Q, Lai S, Song J, Ding X, Zheng L, Wang X, Zhao Y, Zheng J, Yue D, Zhong L, Niu X, Zhang Y. Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: The importance of atmospheric oxidants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:884-893. [PMID: 29793196 DOI: 10.1016/j.envpol.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Thirteen secondary organic aerosol (SOA) tracers of isoprene (SOAI), monoterpenes (SOAM), sesquiterpenes (SOAS) and aromatics (SOAA) in fine particulate matter (PM2.5) were measured at a Pearl River Delta (PRD) regional site for one year. The characteristics including their seasonal cycles and the factors influencing their formation in this region were studied. The seasonal patterns of SOAI, SOAM and SOAS tracers were characterized over three enhancement periods in summer (I), autumn (II) and winter (III), while the elevations of SOAA tracer (i.e., 2,3-dihydroxy-4-oxopentanoic acid, DHOPA) were observed in Periods II and III. We found that SOA formed from different biogenic precursors could be driven by several factors during a one-year seasonal cycle. Isoprene emission controlled SOAI formation throughout the year, while monoterpene and sesquiterpene emissions facilitated SOAM and SOAS formation in summer rather than in other seasons. The influence of atmospheric oxidants (Ox) was found to be an important factor of the formation of SOAM tracers during the enhancement periods in autumn and winter. The formation of SOAS tracer was influenced by the precursor emissions in summer, atmospheric oxidation in autumn and probably also by biomass burning in both summer and winter. In this study, we could not see the strong contribution of biomass burning to DHOPA as suggested by previous studies in this region. Instead, good correlations between observed DHOPA and Ox as well as [NO2][O3] suggest the involvement of both ozone (O3) and nitrogen dioxide (NO2) in the formation of DHOPA. The results showed that regional air pollution may not only increase the emissions of aromatic precursors but also can greatly promote the formation processes.
Collapse
Affiliation(s)
- Qi Yuan
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Senchao Lai
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Junwei Song
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Lishan Zheng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China; Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Junyu Zheng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Liuju Zhong
- Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Xiaojun Niu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yingyi Zhang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China.
| |
Collapse
|
35
|
Ren Y, Wang G, Li J, Wu C, Cao C, Wang J, Zhang L, Meng F, Li H. Seasonal variation and size distribution of biogenic secondary organic aerosols at urban and continental background sites of China. J Environ Sci (China) 2018; 71:32-44. [PMID: 30195688 DOI: 10.1016/j.jes.2017.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 05/12/2023]
Abstract
Size-resolved biogenic secondary organic aerosols (BSOA) derived from isoprene and monoterpene photooxidation in Qinghai Lake, Tibetan Plateau (a continental background site) and five cities of China were measured using gas chromatography/mass spectrometry (GC/MS). Concentrations of the determined BSOA are higher in the cities than in the background and are also higher in summer than in winter. Moreover, strong positive correlations (R2=0.44-0.90) between BSOA and sulfate were found at the six sites, suggesting that anthropogenic pollution (i.e., sulfate) could enhance SOA formation, because sulfate provides a surface favorable for acid-catalyzed formation of BSOA. Size distribution measurements showed that most of the determined SOA tracers are enriched in the fine mode (<3.3μm) except for cis-pinic and cis-pinonic acids, both presented a comparable mass in the fine and coarse (>3.3μm) modes, respectively. Mass ratio of oxidation products derived from isoprene to those from monoterpene in the five urban regions during summer are much less than those in Qinghai Lake region. In addition, in the five urban regions relative abundances of monoterpene oxidation products to SOA are much higher than those of isoprene. Such phenomena suggest that BSOA derived from monoterpenes are more abundant than those from isoprene in Chinese urban areas.
Collapse
Affiliation(s)
- Yanqin Ren
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Gehui Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200041, China; Center of Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Can Wu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
36
|
Zheng L, Yang X, Lai S, Ren H, Yue S, Zhang Y, Huang X, Gao Y, Sun Y, Wang Z, Fu P. Impacts of springtime biomass burning in the northern Southeast Asia on marine organic aerosols over the Gulf of Tonkin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:285-297. [PMID: 29494922 DOI: 10.1016/j.envpol.2018.01.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/22/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
Fine particles (PM2.5) samples, collected at Weizhou Island over the Gulf of Tonkin on a daytime and nighttime basis in the spring of 2015, were analyzed for primary and secondary organic tracers, together with organic carbon (OC), elemental carbon (EC), and stable carbon isotopic composition (δ13C) of total carbon (TC). Five organic compound classes, including saccharides, lignin/resin products, fatty acids, biogenic SOA tracers and phthalic acids, were quantified by gas chromatography/mass spectrometry (GC/MS). Levoglucosan was the most abundant organic species, indicating that the sampling site was under strong influence of biomass burning. Based on the tracer-based methods, the biomass-burning-derived fraction was estimated to be the dominant contributor to aerosol OC, accounting for 15.7% ± 11.1% and 22.2% ± 17.4% of OC in daytime and nighttime samples, respectively. In two episodes E1 and E2, organic aerosols characterized by elevated concentrations of levoglucosan as well as its isomers, sugar compounds, lignin products, high molecular weight (HMW) fatty acids and β-caryophyllinic acid, were attributed to the influence of intensive biomass burning in the northern Southeast Asia (SEA). However, the discrepancies in the ratios of levoglucosan to mannosan (L/M) and OC (L/OC) as well as the δ13C values suggest the type of biomass burning and the sources of organic aerosols in E1 and E2 were different. Hardwood and/or C4 plants were the major burning materials in E1, while burning of softwood and/or C3 plants played important role in E2. Furthermore, more complex sources and enhanced secondary contribution were found to play a part in organic aerosols in E2. This study highlights the significant influence of springtime biomass burning in the northern SEA to the organic molecular compositions of marine aerosols over the Gulf of Tonkin.
Collapse
Affiliation(s)
- Lishan Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaoyang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Senchao Lai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hong Ren
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyao Yue
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingyi Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xin Huang
- State-owned Assets Management Office, Guilin Tourism University, Guilin 541006, China
| | - Yuanguan Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yele Sun
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifa Wang
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingqing Fu
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Wang H, Xiang Z, Wang L, Jing S, Lou S, Tao S, Liu J, Yu M, Li L, Lin L, Chen Y, Wiedensohler A, Chen C. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1300-1309. [PMID: 29054635 DOI: 10.1016/j.scitotenv.2017.10.098] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Cooking emission is one of sources for ambient volatile organic compounds (VOCs), which is deleterious to air quality, climate and human health. These emissions are especially of great interest in large cities of East and Southeast Asia. We conducted a case study in which VOC emissions from kitchen extraction stacks have been sampled in total 57 times in the Megacity Shanghai. To obtain representative data, we sampled VOC emissions from kitchens, including restaurants of seven common cuisine types, canteens, and family kitchens. VOC species profiles and their chemical reactivities have been determined. The results showed that 51.26%±23.87% of alkane and 24.33±11.69% of oxygenated VOCs (O-VOCs) dominate the VOC cooking emissions. Yet, the VOCs with the largest ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) were from the alkene and aromatic categories, accounting for 6.8-97.0% and 73.8-98.0%, respectively. Barbequing has the most potential of harming people's heath due to its significant higher emissions of acetaldehyde, hexanal, and acrolein. Methodologies for calculating VOC emission factors (EF) for restaurants that take into account VOCs emitted per person (EFperson), per kitchen stove (EFkitchen stove) and per hour (EFhour) are developed and discussed. Methodologies for deriving VOC emission inventories (S) from restaurants are further defined and discussed based on two categories: cuisine types (Stype) and restaurant scales (Sscale). The range of Stype and Sscale are 4124.33-7818.04t/year and 1355.11-2402.21t/year, respectively. We also found that Stype and Sscale for 100,000 people are 17.07-32.36t/year and 5.61-9.95t/year, respectively. Based on Environmental Kuznets Curve, the annual total amount of VOCs emissions from catering industry in different provinces in China was estimated, which was 5680.53t/year, 6122.43t/year, and 66,244.59t/year for Shangdong and Guangdong provinces and whole China, respectively. Large and medium-scaled restaurants should be paid more attention with respect to regulation of VOCs.
Collapse
Affiliation(s)
- Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhiyuan Xiang
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical processes, East China University of Science and Technology, Shanghai 200237, China
| | - Lina Wang
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical processes, East China University of Science and Technology, Shanghai 200237, China; Leibniz-Institute for Tropospheric Research, Leipzig, Germany.
| | - Shengao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shikang Tao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jing Liu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Mingzhou Yu
- China Jiliang University, Hangzhou 310018, China
| | - Li Li
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Li Lin
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ying Chen
- Leibniz-Institute for Tropospheric Research, Leipzig, Germany; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Changhong Chen
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
38
|
Han YJ, Feng YJ, Miao SK, Jiang S, Liu YR, Wang CY, Chen J, Wang ZQ, Huang T, Li J, Huang W. Hydration of 3-hydroxy-4,4-dimethylglutaric acid with dimethylamine complex and its atmospheric implications. Phys Chem Chem Phys 2018; 20:25780-25791. [DOI: 10.1039/c8cp04029j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in temperature affects the distribution of isomers, which facilitates the understanding of new particle formation in the atmosphere.
Collapse
|
39
|
Lyu XP, Guo H, Cheng HR, Wang XM, Ding X, Lu HX, Yao DW, Xu C. Observation of SOA tracers at a mountainous site in Hong Kong: Chemical characteristics, origins and implication on particle growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:180-189. [PMID: 28667845 DOI: 10.1016/j.scitotenv.2017.06.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Secondary organic aerosol (SOA) is an important constituent of airborne fine particles. PM2.5 (particles with aerodynamic diameters≤2.5μm) samples were collected at a mountainous site in Hong Kong in autumn of 2010, and analyzed for SOA tracers. Results indicated that the concentrations of isoprene SOA tracers (54.7±22.7ng/m3) and aromatics SOA tracers (2.1±1.6ng/m3) were on relatively high levels in Hong Kong. Secondary organic carbon (SOC) derived from isoprene, monoterpenes, sesquiterpenes and aromatics was estimated with the SOA tracer based approach, which constituted 0.35±0.15μg/m3 (40.6±5.7%), 0.20±0.03μg/m3 (30.4±5.5%), 0.05±0.02μg/m3 (5.6±1.7%) and 0.26±0.20μg/m3 (21.3±8.2%) of the total estimated SOC. Biogenic SOC (0.60±0.18μg/m3) dominated over anthropogenic SOC (0.26±0.20μg/m3) at this site. In addition to the total estimated SOC (17.8±4.6% of organic carbon (OC) in PM2.5), primary organic carbon (POC) emitted from biomass burning also accounted for a considerable proportion of OC (11.6±3.2%). Insight into the OC origins found that regional transport significantly (p<0.05) elevated SOC from 0.37±0.17 to 1.04±0.39μg/m3. Besides, SOC load could also increase significantly if there was influence from local ship emission. Biomass burning related POC in regional air masses (0.81±0.24μg/m3) was also higher (p<0.05) than that in samples affected by local air (0.29±0.35μg/m3). Evidences indicated that SOA formation was closely related to new particle formation and the growth of nucleation mode particles, while biomass burning was responsible for some particle burst events in Hong Kong. This is the first SOA study in afforested areas of Hong Kong.
Collapse
Affiliation(s)
- X P Lyu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - H Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| | - H R Cheng
- Department of Environmental Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, China.
| | - X M Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - X Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - H X Lu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - D W Yao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - C Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
40
|
Contribution from Selected Organic Species to PM2.5 Aerosol during a Summer Field Campaign at K-Puszta, Hungary. ATMOSPHERE 2017. [DOI: 10.3390/atmos8110221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Ding X, Zhang YQ, He QF, Yu QQ, Wang JQ, Shen RQ, Song W, Wang YS, Wang XM. Significant Increase of Aromatics-Derived Secondary Organic Aerosol during Fall to Winter in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7432-7441. [PMID: 28590125 DOI: 10.1021/acs.est.6b06408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human activities release large amounts of anthropogenic pollutants into the air, and thereby produce substantial secondary organic aerosol (SOA). Aromatic hydrocarbons (AHs) that mainly emitted from coal combustion, transportation, solvent use and biofuel/biomass burning, are a major class of anthropogenic SOA precursors. At present, there are few field studies focusing on AH-derived SOA (SOAA) on a continental scale, especially in polluted regions of the world. In this study, a one-year concurrent observation of the SOAA tracer, 2,3-dihydroxy-4-oxopentanoic acid (C5H8O5, DHOPA) was carried out at 12 sites across six regions of China for the first time. The annual averages of DHOPA among the 12 sites ranged from 1.23 to 8.83 ng m-3 with a mean of 3.48 ± 1.96 ng m-3. At all observation sites, the concentrations of DHOPA from fall to spring were significantly higher than those in summertime, and positive correlations were observed between DHOPA and the biomass burning tracer (levoglucosan). This indicated that such a nationwide increase of SOAA during the cold period was highly associated with the enhancement of biomass burning emission. In the northern China, the highest levels of DHOPA were observed in the coldest months during winter, probably due to the enhancement of biofuel and coal consumption for household heating. In the southern China, the highest levels of DHOPA were mostly observed in fall and spring, which were associated with the enhancement of open biomass burning. The apparent increases of DHOPA and levoglucosan levels during the cold period and the negative correlations of visibility with DHOPA and levoglucosan imply that the reduction of SOAA amount and biomass burning emission is an efficient way to reduce haze pollution during fall to winter in China.
Collapse
Affiliation(s)
- Xiang Ding
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Yu-Qing Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Quan-Fu He
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Qing-Qing Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jun-Qi Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ru-Qin Shen
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Yue-Si Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, China
| | - Xin-Ming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, China
| |
Collapse
|
42
|
Zhang Z, Wang H, Chen D, Li Q, Thai P, Gong D, Li Y, Zhang C, Gu Y, Zhou L, Morawska L, Wang B. Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:1162-1174. [PMID: 28189307 DOI: 10.1016/j.scitotenv.2017.01.179] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
A campaign was carried out to measure the emission characteristics of volatile organic compounds (VOCs) in different areas of a petroleum refinery in the Pearl River Delta (PRD) region in China. In the refining area, 2-methylpentane, 2,3-dimethylbutane, methylcyclopentane, 3-methylhexane, and butane accounted for >50% of the total VOCs; in the chemical industry area, 2-methylpentane, p-diethylbenzene, 2,3-dimethylbutane, m-diethylbenzene and 1,2,4-trimethylbenzene were the top five VOCs detected; and in the wastewater treatment area, the five most abundant species were 2-methylpentane, 2,3-dimethylbutane, methylcyclopentane, 3-methylpentane and p-diethylbenzene. The secondary organic aerosol (SOA) formation potential was estimated using the fractional aerosol coefficients (FAC), secondary organic aerosol potential (SOAP), and SOA yield methods. The FAC method suggests that toluene, p-diethylbenzene, and p-diethylbenzene are the largest contributors to the SOA formation in the refining, chemical industry, and wastewater treatment areas, respectively. With the SOAP method, it is estimated that toluene is the largest contributor to the SOA formation in the refining area, but o-ethyltoluene contributes the most both in the chemical industry and wastewater treatment areas. For the SOA yield method, aromatics dominate the yields and account for nearly 100% of the total in the three areas. The SOA concentrations estimated of the refining, chemical industry and wastewater treatment areas are 30, 3835 and 137μgm-3, respectively. Despite the uncertainties and limitations associated with the three methods, the SOA yield method is suggested to be used for the estimation of SOA formation from the petroleum refinery. The results of this study have demonstrated that the control of VOCs, especially aromatics such as toluene, ethyltoluene, benzene and diethylbenzene, should be a focus of future regulatory measures in order to reduce PM pollution in the PRD region.
Collapse
Affiliation(s)
- Zhijuan Zhang
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Dan Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Qinqin Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Yang Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Chunlin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Yinggang Gu
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Lei Zhou
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
43
|
Guo H, Ling ZH, Cheng HR, Simpson IJ, Lyu XP, Wang XM, Shao M, Lu HX, Ayoko G, Zhang YL, Saunders SM, Lam SHM, Wang JL, Blake DR. Tropospheric volatile organic compounds in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1021-1043. [PMID: 27668854 DOI: 10.1016/j.scitotenv.2016.09.116] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Photochemical smog, characterized by high concentrations of ozone (O3) and fine particles (PM2.5) in the atmosphere, has become one of the top environmental concerns in China. Volatile organic compounds (VOCs), one of the key precursors of O3 and secondary organic aerosol (SOA) (an important component of PM2.5), have a critical influence on atmospheric chemistry and subsequently affect regional and global climate. Thus, VOCs have been extensively studied in many cities and regions in China, especially in the North China Plain, the Yangtze River Delta and the Pearl River Delta regions where photochemical smog pollution has become increasingly worse over recent decades. This paper reviews the main studies conducted in China on the characteristics and sources of VOCs, their relationship with O3 and SOA, and their removal technology. This paper also provides an integrated literature review on the formulation and implementation of effective control strategies of VOCs and photochemical smog, as well as suggestions for future directions of VOCs study in China.
Collapse
Affiliation(s)
- H Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China.
| | - Z H Ling
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China
| | - H R Cheng
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - I J Simpson
- Department of Chemistry, University of California, Irvine, CA, USA
| | - X P Lyu
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - X M Wang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - M Shao
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - H X Lu
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - G Ayoko
- Discipline of Chemistry, Faculty of Science and Technology, Queensland University of Technology, Australia
| | - Y L Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - S M Saunders
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Western Australia, Australia
| | - S H M Lam
- Pacific Environment Limited, Perth, Western Australia, Australia
| | - J L Wang
- Department of Chemistry, National Central University, Taiwan
| | - D R Blake
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
44
|
Ma Y, Cheng Y, Qiu X, Lin Y, Cao J, Hu D. A quantitative assessment of source contributions to fine particulate matter (PM 2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:742-749. [PMID: 27461752 DOI: 10.1016/j.envpol.2016.07.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Atmospheric polycyclic aromatic hydrocarbons (PAHs) and their derivatives are of great concern due to their adverse health effects. However, source identification and apportionment of these compounds, particularly their nitrated and hydroxylated derivatives (i.e., NPAHs and OHPAHs), in fine particulate matter (PM2.5) in Hong Kong are still lacking. In this study, we conducted a 1-year observation at an urban site in Hong Kong. PM2.5-bound PAHs and their derivatives were measured, with median concentrations of 4590, 44.4 and 31.6 pg m-3 for ∑21PAHs, ∑13NPAHs, and ∑12OHPAHs, respectively. Higher levels were observed on regional pollution days than on long regional transport (LRT) or local emission days. Based on positive matrix factorization analysis, four sources were determined: marine vessels, vehicle emissions, biomass burning, and a mixed source of coal combustion and NPAHs secondary formation. Coal combustion and biomass burning were the major sources of PAHs, contributing over 85% of PAHs on regional and LRT days. Biomass burning was the predominant source of OHPAHs throughout the year, while NPAHs mainly originated from secondary formation and fuel combustion. For benzo[a]pyrene (BaP)-based PM2.5 toxicity, the mixed source of coal combustion and NPAHs secondary formation was the major contributor, followed by biomass burning and vehicle emissions.
Collapse
Affiliation(s)
- Yiqiu Ma
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, 100871, PR China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China
| | - Yubo Cheng
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, 100871, PR China.
| | - Yan Lin
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, 100871, PR China; Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Jing Cao
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, PR China
| | - Di Hu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, PR China.
| |
Collapse
|
45
|
Jin L, Luo X, Fu P, Li X. Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww079] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractRapid urban and industrial development has resulted in severe air-pollution problems in developing countries such as China, especially in highly industrialized and populous urban clusters. Dissecting the complex mixtures of airborne particulate matter (PM) has been a key scientific focus in the last two decades, leading to significant advances in understanding physicochemical compositions for comprehensive source apportionment. However, identifying causative components with an attributable link to population-based health outcomes remains a huge challenge. The microbiome, an integral dimension of the PM mixture, is an unexplored frontier in terms of identities and functions in atmospheric processes and human health. In this review, we identify the major gaps in addressing these issues, and recommend a holistic framework for evaluating the sources, processes and impacts of atmospheric PM pollution. Such an approach and the knowledge generated will facilitate the formulation of regulatory measures to control PM pollution in China and elsewhere.
Collapse
Affiliation(s)
- Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
46
|
Fu P, Aggarwal SG, Chen J, Li J, Sun Y, Wang Z, Chen H, Liao H, Ding A, Umarji GS, Patil RS, Chen Q, Kawamura K. Molecular Markers of Secondary Organic Aerosol in Mumbai, India. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4659-4667. [PMID: 27045808 DOI: 10.1021/acs.est.6b00372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biogenic secondary organic aerosols (SOA) are generally considered to be more abundant in summer than in winter. Here, polar organic marker compounds in urban background aerosols from Mumbai were measured using gas chromatography-mass spectrometry. Surprisingly, we found that concentrations of biogenic SOA tracers at Mumbai were several times lower in summer (8-14 June 2006; wet season; n = 14) than in winter (13-18 February 2007; dry season; n = 10). Although samples from less than 10% of the season are extrapolated to the full season, such seasonality may be explained by the predominance of the southwest summer monsoon, which brings clean marine air masses to Mumbai. While heavy rains are an important contributor to aerosol removal during the monsoon season, meteorological data (relative humidity and T) suggest no heavy rains occurred during our sampling period. However, in winter, high levels of SOA and their day/night differences suggest significant contributions of continental aerosols through long-range transport together with local sources. The winter/summer pattern of SOA loadings was further supported by results from chemical transport models (NAQPMS and GEOS-Chem). Furthermore, our study suggests that monoterpene- and sesquiterpene-derived secondary organic carbon (SOC) were more significant than those of isoprene- and toluene-SOC at Mumbai.
Collapse
Affiliation(s)
- Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
| | - Shankar G Aggarwal
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
- CSIR-National Physical Laboratory, New Delhi 110012, India
| | - Jing Chen
- SKLEG, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , Beijing 100101, China
| | - Jie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
| | - Huansheng Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
| | - Hong Liao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology , Nanjing 210044, China
| | - Aijun Ding
- Institute for Climate and Global Change Research & School of Atmospheric Sciences, Nanjing University , Nanjing, 210093, China
| | - G S Umarji
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay , Mumbai, 400076, India
| | - R S Patil
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay , Mumbai, 400076, India
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
| |
Collapse
|
47
|
Xie M, Hannigan MP, Barsanti KC. Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2835-2842. [PMID: 24517510 DOI: 10.1021/es405356n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, a medium volume sampler incorporating quartz fiber filters (QFFs) and a polyurethane foam (PUF)/XAD/PUF sandwich (PXP) was used to collect 2-methyltetrols (isoprene tracer) and levoglucosan (biomass burning tracer) in gaseous and particle (PM2.5) phases. The measured gas/particle (G/P) partitioning coefficients (Kp,OMm) of 2-methyltetrols and levoglucosan were calculated and compared to their predicted G/P partitioning coefficients (Kp,OMt) based on an absorptive partitioning theory. The breakthrough experiments showed that gas-phase 2-methyltetrols and levoglucosan could be collected using the PXP or PUF adsorbent alone, with low breakthrough; however, the recoveries of levoglucosan in PXP samples were lower than 70% (average of 51.9–63.3%). The concentration ratios of 2-methyltetrols and levoglucosan in the gas phase to those in the particle phase were often close to or higher than unity in summer, indicating that these polar species are semi-volatile and their G/P partitioning should be considered when applying particle-phase data for source apportionment. The Kp,OMm values of 2-methyltetrols had small variability in summer Denver, which was ascribed to large variations in concentrations of particulate organic matter (5.14 ± 3.29 μg m–3) and small changes in ambient temperature (21.8 ± 4.05 °C). The regression between log Kp,OMm and log Kp,OMt suggested that the absorptive G/P partitioning theory could reasonably predict the measured G/P partitioning of levoglucosan in ambient samples.
Collapse
Affiliation(s)
- Mingjie Xie
- Department of Mechanical Engineering, College of Engineering and Applied Science, University of Colorado , Boulder, Colorado 80309, United States
| | | | | |
Collapse
|
48
|
Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic. Sci Rep 2014; 3:2280. [PMID: 23880782 PMCID: PMC3721125 DOI: 10.1038/srep02280] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/09/2013] [Indexed: 11/24/2022] Open
Abstract
Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m3 in the boundary layer over remote oceans.
Collapse
|
49
|
Zhao X, Wang X, Ding X, He Q, Zhang Z, Liu T, Fu X, Gao B, Wang Y, Zhang Y, Deng X, Wu D. Compositions and sources of organic acids in fine particles (PM2.5) over the Pearl River Delta region, South China. J Environ Sci (China) 2014; 26:110-121. [PMID: 24649696 DOI: 10.1016/s1001-0742(13)60386-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Organic acids as important constituents of organic aerosols not only influence the aerosols' hygroscopic property, but also enhance the formation of new particles and secondary organic aerosols. This study reported organic acids including C14-C32 fatty acids, C4-C9 dicarboxylic acids and aromatic acids in PM2.5 collected during winter 2009 at six typical urban, suburban and rural sites in the Pearl River Delta region. Averaged concentrations of C14-C32 fatty acids, aromatic acids and C4-C9 dicarboxylic acids were 157, 72.5 and 50.7 ng/m3, respectively. They totally accounted for 1.7% of measured organic carbon. C20-C32 fatty acids mainly deriving from higher plant wax showed the highest concentration at the upwind rural site with more vegetation around, while C14-C18 fatty acids were more abundant at urban and suburban sites, and dicarboxylic acids and aromatic acids except 1,4-phthalic acid peaked at the downwind rural site. Succinic and azelaic acid were the most abundant among C4-C9 dicarboxylic acids, and 1,2-phthalic and 1,4-phthalic acid were dominant aromatic acids. Dicarboxylic acids and aromatic acids exhibited significant mutual correlations except for 1,4-phthalic acid, which was probably primarily emitted from combustion of solid wastes containing polyethylene terephthalate plastics. Spatial patterns and correlations with typical source tracers suggested that C14-C32 fatty acids were mainly primary while dicarboxylic and aromatic acids were largely secondary. Principal component analysis resolved six sources including biomass burning, natural higher plant wax, two mixed anthropogenic and two secondary sources; further multiple linear regression revealed their contributions to individual organic acids. It turned out that more than 70% of C14-C18 fatty acids were attributed to anthropogenic sources, about 50%-85% of the C20-C32 fatty acids were attributed to natural sources, 80%-95% of dicarboxylic acids and 1,2-phthalic acid were secondary in contrast with that 81% of 1,4-phthalic acid was primary.
Collapse
|
50
|
Napelenok SL, Simon H, Bhave PV, Pye HOT, Pouliot GA, Sheesley RJ, Schauer JJ. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:464-473. [PMID: 24245475 DOI: 10.1021/es403304w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.
Collapse
Affiliation(s)
- Sergey L Napelenok
- US Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | | | | | | | | | | | | |
Collapse
|