1
|
Krauß J, Meincke G, Geitner M, Kuttenreich AM, Beckmann J, Arnold D, Ballmaier J, Lehmann T, Mayr W, Guntinas-Lichius O, Volk GF. Efficacy of electrical stimulation of the zygomaticus muscle in complete facial paralysis: evidence from facial grading and automated image analysis. Eur J Transl Myol 2024. [PMID: 39555983 DOI: 10.4081/ejtm.2024.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/19/2024] Open
Abstract
Surface Functional Electrical Stimulation (FES) is a well-studied intervention for multiple muscular disorders. However, it is still controversially discussed as a complementary therapy for complete facial paralysis. The aim of this intervention is to test a daily home-based ES concept as a pilot study regarding safety, feasibility, and effects on facial functionality and symmetry. In a prospective single-centre pilot study, 10 patients (median 61 years, denervation 130 d) with complete peripheral facial paralysis performed home-based FES of the affected lateral mouth region Stimulation parameters, facial paralysis scores and standardised photographs were assessed in monthly follow-ups. No serious adverse events appeared. Stimulation parameters could be constantly increased indicating effective muscle training while subjectively perceived functionality of the face improved. Thus, smile angle of the paralysed side improved as well. FES is a safe therapy model for application in facial nerve paralysis patients. A feasible stimulation protocol could be applied, which improved the functionality and symmetry of the stimulated facial region. A future controlled, randomised and double-blind follow-up study is needed to investigate these initial results in a further evolved replicable setting.
Collapse
Affiliation(s)
| | | | - Maren Geitner
- ENT-Department, Jena University Hospital, Jena, Germany; Facial-Nerve-Center, Jena University Hospital, Jena.
| | - Anna-Maria Kuttenreich
- ENT-Department, Jena University Hospital, Jena, Germany; Facial-Nerve-Center, Jena University Hospital, Jena.
| | | | - Dirk Arnold
- ENT-Department, Jena University Hospital, Jena, Germany; Facial-Nerve-Center, Jena University Hospital, Jena.
| | - Jonas Ballmaier
- ENT-Department, Jena University Hospital, Jena, Germany; Facial-Nerve-Center, Jena University Hospital, Jena.
| | - Thomas Lehmann
- Institute for Medical Statistics, Computer Science and Data Science, Jena University Hospital, Jena.
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna.
| | - Orlando Guntinas-Lichius
- ENT-Department, Jena University Hospital, Jena, Germany; Facial-Nerve-Center, Jena University Hospital, Jena, Germany; Center of Rare Diseases, Jena University Hospital, Jena.
| | - Gerd Fabian Volk
- ENT-Department, Jena University Hospital, Jena, Germany; Facial-Nerve-Center, Jena University Hospital, Jena, Germany; Center of Rare Diseases, Jena University Hospital, Jena.
| |
Collapse
|
2
|
Bickel CS, Lein DH, Yuen HK. Optimal neuromuscular electrical stimulation parameters after spinal cord injury. J Spinal Cord Med 2024; 47:968-976. [PMID: 37428446 PMCID: PMC11537308 DOI: 10.1080/10790268.2023.2231674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Neuromuscular electrical stimulation (NMES) is often used to activate muscles impaired after spinal cord injury to elicit functional activities or to facilitate exercise. However, in addition to the cost and availability of NMES and the inherent muscle fatigue that is associated with its use may limit its widespread utilization. Optimizing stimulation parameters during NMES-induced contractions could maximize force production with less fatigue.Purpose: To examine the interrelationship of pulse duration and pulse frequency on torque production and muscle fatigue in both impaired and non-impaired skeletal muscle of men and women.Methods: Individuals with [n = 14 (6 females), 38 ± 13 yr; 175 ± 11 cm; 76 ± 20 kg] and without [n = 14 (6 females), 29 ± 8 yr; 175 ± 9 cm; 74 ± 14 kg] spinal cord injury (SCI) participated. Muscle torque was recorded during a series of NMES-induced isometric muscle contractions using different combinations of pulse durations and frequencies. Additionally, two different muscle fatigue protocols (20 and 50 Hz/200µs) were utilized to elicit repeat isometric muscle contractions (1s on and 1s off × 3 min).Results: There was a statistically significant linear trend for pulse charge (the product of pulse frequency and pulse duration) on isometric torque production in participants without (p < 0.001, η2 = 0.79), and in participants with SCI (p < 0.001, η2 = 0.66), with higher total pulse charge generating higher torque values. Participants with SCI had significantly greater muscle fatigue for both muscle fatigue protocols (p < 0.05).Conclusions: NMES protocols should consider using longer pulse durations with lower frequencies to maximize force production for individuals with SCI. However, because mechanisms of muscle fatigue may be different for impaired muscle when compared to non-impaired muscle, further studies on protocols to offset fatigue are warranted.
Collapse
Affiliation(s)
- C. Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, Alabama, USA
| | - Donald H. Lein
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hon K. Yuen
- Department of Occupational Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Cross-Sectional Area and Inflammatory Signaling. Int J Mol Sci 2024; 25:11095. [PMID: 39456876 PMCID: PMC11507577 DOI: 10.3390/ijms252011095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In individuals with a spinal cord injury (SCI), rapid skeletal muscle atrophy and metabolic dysfunction pose profound rehabilitation challenges, often resulting in substantial loss of muscle mass and function. This study evaluates the effect of combined neuromuscular electrical stimulation (Comb-NMES) on skeletal muscle cross-sectional area (CSA) and inflammatory signaling within the acute phase of SCI. We applied a novel Comb-NMES regimen, integrating both high-frequency resistance and low-frequency aerobic protocols on the vastus lateralis muscle, to participants early post-SCI. Muscle biopsies were analyzed for CSA and inflammatory markers pre- and post-intervention. The results suggest a potential preservation of muscle CSA in the Comb-NMES group compared to a control group. Inflammatory signaling proteins such as TLR4 and Atrogin-1 were downregulated, whereas markers associated with muscle repair and growth were modulated beneficially in the Comb-NMES group. The study's findings suggest that early application of Comb-NMES post-SCI may attenuate inflammatory pathways linked to muscle atrophy and promote muscle repair. However, the small sample size and variability in injury characteristics emphasize the need for further research to corroborate these results across a more diverse and extensive SCI population.
Collapse
Affiliation(s)
- Amal Alharbi
- Department of Physical Therapy, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Erika Womack
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
| | - Matthew Farrow
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Kim JM, Kim TW, Park HJ, Lee SW, Yoo YJ, Yoon MJ, Chang SY, Won SJ. Estimation of the muscle force by perineural intramuscular electrical stimulation in healthy volunteers. Medicine (Baltimore) 2024; 103:e40043. [PMID: 39465818 PMCID: PMC11479414 DOI: 10.1097/md.0000000000040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
The present study aimed to evaluate the elbow flexor force induced by perineural intramuscular stimulation compared with surface electrical stimulation (ES) and maximal voluntary contraction. Thirty nondominant arms of healthy volunteers were evaluated. Isometric elbow flexion force was evaluated using a surface electrode stimulation at the biceps brachii muscle, a perineural intramuscular stimulation around the musculocutaneous nerve, and maximum voluntary contraction. The elbow flexion force was measured at the wrist volar area in a 90° elbow flexion posture, fixed with a rigid elbow orthosis. Pain and discomfort associated with ES were evaluated using a numeric rating scale. The mean maximum elbow flexion force was 16.6 ± 4.1 kgf via voluntary contraction. The mean elbow flexion force by ES was 2.9 ± 2.0 kgf, stimulation intensity was 24.8 ± 5.5 mA, and the numeric rating scale was 5.0 ± 2.5 via surface electrode stimulation and 3.1 ± 2.0 kgf, 5.0 mA, and 3.8 ± 1.9 via perineural stimulation, respectively. ES provides 16% to 18% of the maximal voluntary contraction force in elbow flexion, which corresponds to a fair grade of muscle force. Perineural intramuscular stimulation can generate an equivocal contraction force with less discomfort in elbow flexion than surface electrode stimulation.
Collapse
Affiliation(s)
- Jae Min Kim
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Woo Kim
- National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Se Won Lee
- Department of Physical Medicine and Rehabilitation, Mt. View Hospital, Las Vegas, NV
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - So-youn Chang
- Department of Rehabilitation Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Jae Won
- Department of Rehabilitation Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Alharbi A, Li J, Womack E, Farrow M, Yarar-Fisher C. The Effect of Lower Limb Combined Neuromuscular Electrical Stimulation on Skeletal Muscle Signaling for Glucose Utilization, Myofiber Distribution, and Metabolic Function after Spinal Cord Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6958. [PMID: 37887696 PMCID: PMC10606374 DOI: 10.3390/ijerph20206958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Maintaining healthy myofiber type and metabolic function early after spinal cord injury (SCI) may prevent chronic metabolic disorders. This study compares the effects of a 2-5 week combined (aerobic + resistance) neuromuscular electrical stimulation (Comb-NMES) regimen versus a sham control treatment on muscle protein signaling for glucose uptake, myofiber type distribution, and metabolic function. Twenty participants (31 ± 9 years of age) with an SCI (C4-L1, AIS level A-C) within 14 days of the SCI were randomly assigned to control (N = 8) or Comb-NMES (N = 12). Sessions were given three times per week. Fasting blood samples and vastus lateralis muscle biopsies were collected 24-48 h before or after the last session. Western blots were performed to quantify proteins, immunohistochemical analyses determined muscle myofiber distribution, and enzymatic assays were performed to measure serum glucose, insulin, and lipids. Our main findings include a decrease in fasting glucose (p < 0.05) and LDL-C (p < 0.05) levels, an upregulation of CamKII and Hexokinase (p < 0.05), and an increase in type I (+9%) and a decrease in type IIx (-36%) myofiber distribution in response to Comb-NMES. Our findings suggest that maintaining healthy myofiber type and metabolic function may be achieved via early utilization of Comb-NMES.
Collapse
Affiliation(s)
- Amal Alharbi
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Erika Womack
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
| | - Matthew Farrow
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH 43210, USA; (J.L.); (M.F.)
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Docter H, Podvinšek K, Koomen S. Practical approaches of PULSE Racing in training their athlete for the Cybathlon Global Edition Functional Electrical Stimulation bike race: a case report. J Neuroeng Rehabil 2023; 20:30. [PMID: 36869321 PMCID: PMC9983524 DOI: 10.1186/s12984-023-01143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/20/2023] [Indexed: 03/05/2023] Open
Abstract
During the Cybathlon Global Edition 2020, athletes compete in a Functional Electrical Stimulation (FES) bike race. In this event, athletes with a spinal cord injury cover a distance of 1200 m on an adapted bike by using electrostimulation to activate their leg muscles in order to evoke a pedalling movement. This report reviews the training regimen, as designed by the PULSE Racing team, and the experience of one athlete in preparation for the Cybathlon Global Edition 2020. The training plan was designed to vary exercise modes in order to optimize physiological adaptations and minimize monotony for the athlete. Additional constraints due to coronavirus pandemic, e.g., postponement of the Cybathon Global Edition and modification from a live cycling track to a virtual stationary race, along with the health concerns of the athlete, e.g. unwanted effects from the FES and bladder infection, required creativity to ensure an effective and safe training protocol. The individual needs of the athlete and task requirements for the FES bike race made the design of a suitable training programme challenging, emphasizing the importance of monitoring. Several objective and subjective measures to assess the athlete's health and progress are presented, all with their own advantages and disadvantages. Despite these limitations, the athlete achieved a gold medal in the FES bike race Cybathlon Global Edition 2020 through discipline, team collaboration and the athlete's own motivation.
Collapse
Affiliation(s)
- Heleen Docter
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands. .,Amsterdam Movement Sciences, Amsterdam, The Netherlands.
| | - Katja Podvinšek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Sander Koomen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.,Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
de Sire A, Moggio L, Marotta N, Curci C, Lippi L, Invernizzi M, Mezian K, Ammendolia A. Impact of rehabilitation on volumetric muscle loss in subjects with traumatic spinal cord injury: A systematic review. NeuroRehabilitation 2023; 52:365-386. [PMID: 36806523 DOI: 10.3233/nre-220277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) leads to spinal nerve fiber tract damage resulting in functional impairments. Volumetric muscle loss (VML), a skeletal muscle volume abnormal reduction, is represented by atrophy below the injury level. The strategies for VML management included personalized approaches, and no definite indications are available. OBJECTIVE To identify the rehabilitation effects of VML in subjects with SCI (humans and animals). METHODS PubMed, Scopus, and Web of Science databases were systematically searched to identify longitudinal observational studies with individuals affected by traumatic SCI as participants; rehabilitation treatment as intervention; no control, sham treatment, and electrical stimulation programs as control; total lean body and lower limb lean mass, cross-sectional area, functional gait recovery, muscle thickness, and ultrasound intensity, as outcome. RESULTS Twenty-four longitudinal observational studies were included, evaluating different rehabilitation approaches' effects on the VML reduction in subjects affected by SCI. The data showed that electrical stimulation and treadmill training are effective in reducing the VML in this population. CONCLUSION This systematic review underlines the need to treat subjects with traumatic SCI (humans and animals) with different rehabilitation approaches to prevent VML in the subacute and chronic phases. Further clinical observations are needed to overcome the bias and to define the intervention's timing and modalities.
Collapse
Affiliation(s)
- Alessandro de Sire
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy.,Department of Rehabilitation and Sports Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Lucrezia Moggio
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy.,Rehabilitation Unit, Ospedale degliInfermi, Biella, Italy
| | - Nicola Marotta
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy
| | - Claudio Curci
- Department of Neurosciences, Physical Medicine and Rehabilitation Unit, ASST CarloPoma, Mantova, Italy
| | - Lorenzo Lippi
- Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy.,Translational Medicine, DipartimentoAttività Integrate Ricerca e Innovazione (DAIRI), AziendaOspedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy.,Translational Medicine, DipartimentoAttività Integrate Ricerca e Innovazione (DAIRI), AziendaOspedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Kamal Mezian
- Department of Rehabilitation Medicine, First Faculty of Medicine, Charles University and General UniversityHospital in Prague, Prague, Czech Republic
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy
| |
Collapse
|
8
|
Kim J, Park J, Yang J, Kim Y, Kim I, Shim H, Jang C, Kim M, Kim M, Lee B. Effects of 8-Week Electromyostimulation Training on Upper-Limb Muscle Activity and Respiratory Gas Analysis in Athletes with Disabilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:299. [PMID: 36612622 PMCID: PMC9819487 DOI: 10.3390/ijerph20010299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This study was aimed at verifying the efficacy of EMS training by investigating the changes in upper-limb muscle functions and energy expenditure in athletes with disabilities after an 8-week intervention of EMS training. We compared variations in muscle activity, respiratory gas, and symmetry index (SI) after an 8-week intervention in eight professional male athletes with disabilities wearing an electromyostimulation (EMS) suit (age: 42.00 ± 8.67 years, height: 1.65 ± 0.16 m, weight: 64.00 ± 8.72 kg, career length: 11.75 ± 3.83 years). For EMS training, each participant wore an EMS suit. EMS was applied to the upper-limb muscles pectoralis major and triceps at 40 °C water temperature, with a 25 Hz frequency (duty cycle 10%) for 15 min, followed by a 5 Hz frequency (duty cycle 5%) for 5 min. The pre- and post-intervention measurements were taken in the same way at a pre-set time (for 1 h, twice a week) for 8 weeks. Training involved a seated chest press, and the muscle activity (pectoralis major, triceps, and antebrachial muscles), upper-limb SI, and respiratory gas variables (maximal oxygen consumption (VO2), carbon dioxide output (VCO2), respiratory quotient (RQ), metabolic equivalents (METs), and energy expenditure per min (Energy expended per minute; EEm)) were analyzed. Variations pre- and post-intervention across the measured variables were analyzed. Regarding the change in muscle activity, significant variations were found in the pectoralis major right (p < 0.004), pectoralis major left (p < 0.001), triceps right (p < 0.002), and antebrachial right (p < 0.001). Regarding left-to-right SI, a positive change was detected in the pectoralis major and triceps muscles. Additionally, respiratory gas analysis indicated significant variations in VO2 (p < 0.001), VCO2 (p < 0.001), METs (p < 0.001), and EEm (p < 0.001). EMS training improved muscle strength and respiratory gas variables and is predicted to contribute to enhanced muscle function and rehabilitation training for athletes with disabilities.
Collapse
Affiliation(s)
- Jongbin Kim
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Joonsung Park
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Jeongok Yang
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Youngsoo Kim
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Inhyung Kim
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Himchan Shim
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Changho Jang
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Mincheol Kim
- Independent Researcher, Busan 48316, Republic of Korea
| | | | - Bomjin Lee
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
9
|
Fenton JM, King JA, Hoekstra SP, Valentino SE, Phillips SM, Goosey-Tolfrey VL. Protocols aiming to increase muscle mass in persons with motor complete spinal cord injury: a systematic review. Disabil Rehabil 2022; 45:1433-1443. [PMID: 35465798 DOI: 10.1080/09638288.2022.2063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this review was to compare all intervention modalities aimed at increasing skeletal muscle mass (SMM) in the paralysed limbs of persons with chronic (>1-year post-injury), motor complete spinal cord injury (SCI). MATERIALS AND METHODS A systematic review of EMBASE, MEDLINE, Scopus, and SPORTDiscus databases was conducted from inception until December 2021. Published intervention studies aimed to increase SMM (measured by magnetic resonance imaging, computed tomography, ultrasound, muscle biopsy, or lean soft tissue mass by dual X-ray absorptiometry) in the paralysed limbs of adults (>18 years) with SCI were included. RESULTS Fifty articles were included that, overall, demonstrated a high risk of bias. Studies were categorised into six groups: neuromuscular electrical stimulation (NMES) with and without external resistance, functional electrical stimulation cycling, walking- and standing-based interventions, pharmacological treatments, and studies that compared or combined intervention modalities. Resistance training (RT) using NMES on the quadriceps produced the largest and most consistent increases in SMM of all intervention modalities. CONCLUSIONS Current evidence suggests that clinical practise aiming to increase SMM in the paralysed limbs of persons with motor complete SCI should perform NMES-RT. However, more high-quality randomised control trials are needed to determine how training variables, such as exercise volume and intensity, can be optimised for increasing SMM. Implications for rehabilitationPersons with spinal cord injury (SCI) experience severe reductions in skeletal muscle mass (SMM) post-injury, which may exacerbate their risk of obesity and metabolic disease.Out of all exercise and non-exercise-based interventions, this systematic review shows that neuromuscular electrical stimulation-based resistance training demonstrates the most robust and consistent evidence for increasing skeletal muscle mass in the paralysed limbs of adults with motor complete spinal cord injury.The findings from this review can be used to inform evidence-based practise for exercise practitioners, as well as direct future research focused on increasing muscle mass in this population.
Collapse
Affiliation(s)
- Jordan M. Fenton
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Sven P. Hoekstra
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | | | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria L. Goosey-Tolfrey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| |
Collapse
|
10
|
Atkins KD, Bickel CS. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr Opin Pharmacol 2021; 60:226-231. [PMID: 34464934 DOI: 10.1016/j.coph.2021.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury is a devastating condition interrupting voluntary movement and motor control. In response to unloading, skeletal muscle undergoes numerous adaptations, including rapid and profound atrophy, intramuscular fat accumulation, impaired muscular glucose metabolism and decreased force generation and muscle performance. Functional electrical stimulation (FES) involves electrically stimulating affected muscles to contract in a coordinated manner to create a functional movement or task. Effects of FES-cycling, rowing and resistance training on muscle health are described here. Briefly, FES-cycling and resistance training may slow muscle atrophy or facilitate muscle hypertrophy, and all modalities benefit muscle composition and performance to some extent. These interventions show promise as future rehabilitative tools after spinal cord injury.
Collapse
Affiliation(s)
- Kelly D Atkins
- Department of Physical Therapy, Samford University, Birmingham, AL, USA
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, AL, USA.
| |
Collapse
|
11
|
Figoni SF, Dolbow DR, Crawford EC, White ML, Pattanaik S. Does aerobic exercise benefit persons with tetraplegia from spinal cord injury? A systematic review. J Spinal Cord Med 2021; 44:690-703. [PMID: 32043944 PMCID: PMC8477928 DOI: 10.1080/10790268.2020.1722935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CONTEXT This review synthesizes the findings of previous research studies on the cardiovascular and metabolic benefits of aerobic exercise for individuals with tetraplegia secondary to spinal cord injury. They are often less active due to muscular paralysis, sensory loss, and sympathetic nervous system dysfunction that result from injury. Consequently, these persons are at higher risk for exercise intolerance and secondary health conditions. OBJECTIVE To evaluate the evidence concerning efficacy of aerobic exercise training for improving health and exercise performance in persons with tetraplegia from cervical injury. METHODS The search engines PubMed and Google Scholar were used to locate published research. The final 75 papers were selected on the basis of inclusion criteria. The studies were then rank-ordered using Physiotherapy Evidence Database. RESULTS Studies combining individuals with tetraplegia and paraplegia show that voluntary arm-crank training can increase mean peak power output by 33%. Functional electrical stimulation leg cycling was shown to induce higher peak cardiac output and stroke volume than arm-crank exercise. A range of peak oxygen uptake (VO2peak) values have been reported (0.57-1.32 L/min). Both VO2peak and cardiac output may be enhanced via increased muscle pump in the legs and venous return to the heart. Hybrid exercise (arm-crank and functional electrical stimulation leg cycling) can result in greater peak oxygen uptake and cardiovascular responses. CONCLUSION Evidence gathered from this systematic review of literature is inconclusive due to the lack of research focusing on those with tetraplegia. Higher power studies (level 1-3) are needed with the focus on those with tetraplegia.
Collapse
Affiliation(s)
- Stephen F Figoni
- Spinal Cord Injury/Disorders Healthcare Group (128), Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - David R Dolbow
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Edwin C Crawford
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Margaret L White
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Sambit Pattanaik
- College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA
| |
Collapse
|
12
|
van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. Functional electrical stimulation cycling exercise after spinal cord injury: a systematic review of health and fitness-related outcomes. J Neuroeng Rehabil 2021; 18:99. [PMID: 34118958 PMCID: PMC8196442 DOI: 10.1186/s12984-021-00882-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The objective of this review was to summarize and appraise evidence on functional electrical stimulation (FES) cycling exercise after spinal cord injury (SCI), in order to inform the development of evidence-based clinical practice guidelines. METHODS PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, SPORTDiscus, and CINAHL were searched up to April 2021 to identify FES cycling exercise intervention studies including adults with SCI. In order to capture the widest array of evidence available, any outcome measure employed in such studies was considered eligible. Two independent reviewers conducted study eligibility screening, data extraction, and quality appraisal using Cochranes' Risk of Bias or Downs and Black tools. Each study was designated as a Level 1, 2, 3 or 4 study, dependent on study design and quality appraisal scores. The certainty of the evidence for each outcome was assessed using GRADE ratings ('High', 'Moderate', 'Low', or 'Very low'). RESULTS Ninety-two studies met the eligibility criteria, comprising 999 adults with SCI representing all age, sex, time since injury, lesion level and lesion completeness strata. For muscle health (e.g., muscle mass, fiber type composition), significant improvements were found in 3 out of 4 Level 1-2 studies, and 27 out of 32 Level 3-4 studies (GRADE rating: 'High'). Although lacking Level 1-2 studies, significant improvements were also found in nearly all of 35 Level 3-4 studies on power output and aerobic fitness (e.g., peak power and oxygen uptake during an FES cycling test) (GRADE ratings: 'Low'). CONCLUSION Current evidence indicates that FES cycling exercise improves lower-body muscle health of adults with SCI, and may increase power output and aerobic fitness. The evidence summarized and appraised in this review can inform the development of the first international, evidence-based clinical practice guidelines for the use of FES cycling exercise in clinical and community settings of adults with SCI. Registration review protocol: CRD42018108940 (PROSPERO).
Collapse
Affiliation(s)
- Jan W van der Scheer
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
- The Healthcare Improvement Studies (THIS) Institute, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Clifford Allbutt Building, Cambridge, CB2 OAH, UK
| | - Victoria L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Sydney E Valentino
- Department of Kinesiology, McMaster University, Room IWC EG115, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Glen M Davis
- Discipline of Exercise and Sport Sciences, Faculty of Medicine and Health, Sydney School of Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chester H Ho
- Division of Physical Medicine & Rehabilitation, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
13
|
Furlan JC, Pakosh M, Craven BC, Popovic MR. Insights on the Potential Mechanisms of Action of Functional Electrical Stimulation Therapy in Combination With Task-Specific Training: A Scoping Review. Neuromodulation 2021; 25:1280-1288. [PMID: 34031937 DOI: 10.1111/ner.13403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES This scoping review was undertaken to synthetize and appraise the literature on the potential mechanisms of action of functional electrical stimulation therapy in combination with task-specific training (FEST + TST) in the rehabilitation following stroke, spinal cord injury, traumatic brain injury, or multiple sclerosis. MATERIALS AND METHODS The literature search was performed using multiple databases (including APA, PsycInfo, Medline, PubMed, EMBASE, CCRCT, and Cochrane Database of Systematic Reviews) from 1946 to June 2020. The literature search used the following terms: (spinal cord injury, paraplegia, tetraplegia, quadriplegia, stroke, multiple sclerosis, traumatic brain injury, or acquired brain injury) AND (functional electrical stimulation or FES). The search included clinical and preclinical studies without limits to language. RESULTS Of the 8209 titles retrieved from the primary search, 57 publications fulfilled the inclusion and exclusion criteria for this scoping review. While most publications were clinical studies (n = 50), there were only seven preclinical studies using animal models. The results of this review suggest that FEST + TST can result in multiple effects on different elements from the muscle to the cerebral cortex. However, most studies were focused on the muscle changes after FEST + TST. CONCLUSIONS The results of this scoping review suggest that FEST + TST can result in multiple effects on different elements of the neuromuscular system, while most research studies were focused on the muscle changes after FEST + TST. Despite the efficacy of the FEST + TST in the neurorehabilitation after CNS injury or disease, the results of this review underline an important knowledge gap with regards to the actual mechanism of action of FEST + TST.
Collapse
Affiliation(s)
- Julio Cesar Furlan
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada.,Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,KITE - Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Maureen Pakosh
- Library & Information Services, Rumsey Cardiac Centre Library, University Health Network, Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Beverley Catharine Craven
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada.,Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,KITE - Research Institute, University Health Network, Toronto, ON, Canada
| | - Milos Radomir Popovic
- KITE - Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Jesus I, Michel-Flutot P, Deramaudt TB, Paucard A, Vanhee V, Vinit S, Bonay M. Effects of aerobic exercise training on muscle plasticity in a mouse model of cervical spinal cord injury. Sci Rep 2021; 11:112. [PMID: 33420246 PMCID: PMC7794462 DOI: 10.1038/s41598-020-80478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical spinal cord injury (SCI) results in permanent life-altering motor and respiratory deficits. Other than mechanical ventilation for respiratory insufficiency secondary to cervical SCI, effective treatments are lacking and the development of animal models to explore new therapeutic strategies are needed. The aim of this work was to demonstrate the feasibility of using a mouse model of partial cervical spinal hemisection at the second cervical metameric segment (C2) to investigate the impact of 6 weeks training on forced exercise wheel system on locomotor/respiratory plasticity muscles. To measure run capacity locomotor and respiratory functions, incremental exercise tests and diaphragmatic electromyography were done. In addition, muscle fiber type composition and capillary distribution were assessed at 51 days following chronic C2 injury in diaphragm, extensor digitorum communis (EDC), tibialis anterior (TA) and soleus (SOL) muscles. Six-week exercise training increased the running capacity of trained SCI mice. Fiber type composition in EDC, TA and SOL muscles was not modified by our protocol of exercise. The vascularization was increased in all muscle limbs in SCI trained group. No increase in diaphragmatic electromyography amplitude of the diaphragm muscle on the side of SCI was observed, while the contraction duration was significantly decreased in sedentary group compared to trained group. Cross-sectional area of type IIa myofiber in the contralateral diaphragm side of SCI was smaller in trained group. Fiber type distribution between contralateral and ipsilateral diaphragm in SCI sedentary group was affected, while no difference was observed in trained group. In addition, the vascularization of the diaphragm side contralateral to SCI was increased in trained group. All these results suggest an increase in fatigue resistance and a contribution to the running capacity in SCI trained group. Our exercise protocol could be a promising non-invasive strategy to sustain locomotor and respiratory muscle plasticity following SCI.
Collapse
Affiliation(s)
- Isley Jesus
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France
| | | | | | - Alexia Paucard
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France
| | - Valentin Vanhee
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France
| | - Stéphane Vinit
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France
| | - Marcel Bonay
- Inserm, END-ICAP, Université Paris-Saclay, UVSQ, 78000, Versailles, France.
- Service de Physiologie-Explorations Fonctionnelles; Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, Boulogne, France.
| |
Collapse
|
15
|
McMillan DW, Maher JL, Jacobs KA, Nash MS, Gater DR. Exercise Interventions Targeting Obesity in Persons With Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:109-120. [PMID: 33814889 PMCID: PMC7983638 DOI: 10.46292/sci20-00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) results in an array of cardiometabolic complications, with obesity being the most common component risk of cardiometabolic disease (CMD) in this population. Recent Consortium for Spinal Cord Medicine Clinical Practice Guidelines for CMD in SCI recommend physical exercise as a primary treatment strategy for the management of CMD in SCI. However, the high prevalence of obesity in SCI and the pleiotropic nature of this body habitus warrant strategies for tailoring exercise to specifically target obesity. In general, exercise for obesity management should aim primarily to induce a negative energy balance and secondarily to increase the use of fat as a fuel source. In persons with SCI, reductions in the muscle mass that can be recruited during activity limit the capacity for exercise to induce a calorie deficit. Furthermore, the available musculature exhibits a decreased oxidative capacity, limiting the utilization of fat during exercise. These constraints must be considered when designing exercise interventions for obesity management in SCI. Certain forms of exercise have a greater therapeutic potential in this population partly due to impacts on metabolism during recovery from exercise and at rest. In this article, we propose that exercise for obesity in SCI should target large muscle groups and aim to induce hypertrophy to increase total energy expenditure response to training. Furthermore, although carbohydrate reliance will be high during activity, certain forms of exercise might induce meaningful postexercise shifts in the use of fat as a fuel. General activity in this population is important for many components of health, but low energy cost of daily activities and limitations in upper body volitional exercise mean that exercise interventions targeting utilization and hypertrophy of large muscle groups will likely be required for obesity management.
Collapse
Affiliation(s)
- David W. McMillan
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Jennifer L. Maher
- Department of Health, University of Bath, Claverton Down, Bath, United Kingdom
| | - Kevin A. Jacobs
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, Florida
| | - Mark S. Nash
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
| | - David R. Gater
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
| |
Collapse
|
16
|
Li A, Yi J, Li X, Zhou J. Physiological Ca 2+ Transients Versus Pathological Steady-State Ca 2+ Elevation, Who Flips the ROS Coin in Skeletal Muscle Mitochondria. Front Physiol 2020; 11:595800. [PMID: 33192612 PMCID: PMC7642813 DOI: 10.3389/fphys.2020.595800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are both the primary provider of ATP and the pivotal regulator of cell death, which are essential for physiological muscle activities. Ca2+ plays a multifaceted role in mitochondrial function. During muscle contraction, Ca2+ influx into mitochondria activates multiple enzymes related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation, resulting in increased ATP synthesis to meet the energy demand. Pathophysiological conditions such as skeletal muscle denervation or unloading also lead to elevated Ca2+ levels inside mitochondria. However, the outcomes of this steady-state elevation of mitochondrial Ca2+ level include exacerbated reactive oxygen species (ROS) generation, sensitized opening of mitochondrial permeability transition pore (mPTP), induction of programmed cell death, and ultimately muscle atrophy. Previously, both acute and long-term endurance exercises have been reported to activate certain signaling pathways to counteract ROS production. Meanwhile, electrical stimulation is known to help prevent apoptosis and alleviate muscle atrophy in denervated animal models and patients with motor impairment. There are various mechanistic studies that focus on the excitation-transcription coupling framework to understand the beneficial role of exercise and electrical stimulation. Interestingly, a recent study has revealed an unexpected role of rapid mitochondrial Ca2+ transients in keeping mPTP at a closed state with reduced mitochondrial ROS production. This discovery motivated us to contribute this review article to inspire further discussion about the potential mechanisms underlying differential outcomes of physiological mitochondrial Ca2+ transients and pathological mitochondrial Ca2+ elevation in skeletal muscle ROS production.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
17
|
Duffell LD, Donaldson NDN. A Comparison of FES and SCS for Neuroplastic Recovery After SCI: Historical Perspectives and Future Directions. Front Neurol 2020; 11:607. [PMID: 32714270 PMCID: PMC7344227 DOI: 10.3389/fneur.2020.00607] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
There is increasing evidence that neuroplastic changes can occur even years after spinal cord injury, leading to reduced disability and better health which should reduce the cost of healthcare. In motor-incomplete spinal cord injury, recovery of leg function may occur if repetitive training causes afferent input to the lumbar spinal cord. The afferent input may be due to activity-based therapy without electrical stimulation but we present evidence that it is faster with electrical stimulation. This may be spinal cord stimulation or peripheral nerve stimulation. Recovery is faster if the stimulation is phasic and that the patient is trying to use their legs during the training. All the published studies are small, so all conclusions are provisional, but it appears that patients with more disability (AIS A and B) may need to continue using stimulation and for them, an implanted stimulator is likely to be convenient. Patients with less disability (AIS C and D) may make useful recovery and improve their quality of life from a course of therapy. This might be locomotion therapy but we argue that cycling with electrical stimulation, which uses biofeedback to encourage descending drive, causes rapid recovery and might be used with little supervision at home, making it much less expensive. Such an electrical therapy followed by conventional physiotherapy might be affordable for the many people living with chronic SCI. To put this in perspective, we present some information about what treatments are funded in the UK and the US.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Implanted Devices Group, University College London, London, United Kingdom.,Aspire CREATe, University College London, London, United Kingdom
| | | |
Collapse
|
18
|
Gorgey AS, Graham ZA, Chen Q, Rivers J, Adler RA, Lesnefsky EJ, Cardozo CP. Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury. J Appl Physiol (1985) 2020; 128:1487-1496. [PMID: 32352341 DOI: 10.1152/japplphysiol.00865.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of testosterone replacement therapy (TRT) with and without evoked resistance training (RT) on protein expression of key metabolic and hypertrophy regulators, muscle fiber cross-sectional area (CSA), and markers of mitochondrial health after spinal cord injury (SCI). Twenty-two men with chronic motor complete SCI were randomly assigned to either TRT + RT (n = 11) or TRT (n = 11) for 16 wk. TRT + RT men underwent twice weekly progressive RT using electrical stimulation with ankle weights. TRT was administered via testosterone patches (2-6 mg/day). Muscle biopsies were obtained before and after 16 wk from the right vastus lateralis. Expression of proteins associated with oxidative muscles and mechanical loading (PGC-1α and FAK), muscle hypertrophy (total and phosphorylated Akt, total and phosphorylated mTOR), and cellular metabolism (total and phosphorylated AMPK and GLUT4) were evaluated. Immunohistochemistry analysis was performed to measure fiber CSA and succinate dehydrogenase (SDH) activity as well as mitochondrial citrate synthase (CS) activity and complex III (CIII) activities. TRT + RT demonstrated a robust 27.5% increase in average fiber CSA compared with a -9% decrease following TRT only (P = 0.01). GLUT4 protein expression was elevated in the TRT + RT group compared with TRT only (P = 0.005). Total Akt (P = 0.06) and phosphorylated Akt Ser389 (P = 0.049) were also elevated in the TRT + RT group. Mitochondrial activity of SDH (P = 0.03) and CS (P = 0.006) increased in the TRT + RT group, with no changes in the TRT-only group. Sixteen weeks of TRT with RT resulted in fiber hypertrophy and beneficial changes in markers of skeletal muscle health and function.NEW & NOTEWORTHY Fiber cross-sectional area (CSA), protein expression, mitochondrial citrate synthase (CS), and succinate dehydrogenase (SDH) were measured following 16 wk of low-dose testosterone replacement therapy (TRT) with and without electrically evoked resistance training (RT) in men with spinal cord injury (SCI). Fiber CSA and protein expression of total GLUT4, total Akt, and phosphorylated Akt increased following TRT + RT but not in the TRT-only group. Mitochondrial CS and SDH increased after TRT + RT but not in TRT-only group.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Virginia Commonwealth University, Department of Physical Medicine and Rehabilitation, Richmond, Virginia
| | - Zachary A Graham
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Jeannie Rivers
- Surgery Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia
| | - Christopher P Cardozo
- Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
19
|
Duffell LD, Paddison S, Alahmary AF, Donaldson N, Burridge J. The effects of FES cycling combined with virtual reality racing biofeedback on voluntary function after incomplete SCI: a pilot study. J Neuroeng Rehabil 2019; 16:149. [PMID: 31771600 PMCID: PMC6880599 DOI: 10.1186/s12984-019-0619-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Background Functional Electrical Stimulation (FES) cycling can benefit health and may lead to neuroplastic changes following incomplete spinal cord injury (SCI). Our theory is that greater neurological recovery occurs when electrical stimulation of peripheral nerves is combined with voluntary effort. In this pilot study, we investigated the effects of a one-month training programme using a novel device, the iCycle, in which voluntary effort is encouraged by virtual reality biofeedback during FES cycling. Methods Eleven participants (C1-T12) with incomplete SCI (5 sub-acute; 6 chronic) were recruited and completed 12-sessions of iCycle training. Function was assessed before and after training using the bilateral International Standards for Neurological Classification of SCI (ISNC-SCI) motor score, Oxford power grading, Modified Ashworth Score, Spinal Cord Independence Measure, the Walking Index for Spinal Cord Injury and 10 m-walk test. Power output (PO) was measured during all training sessions. Results Two of the 6 participants with chronic injuries, and 4 of the 5 participants with sub-acute injuries, showed improvements in ISNC-SCI motor score > 8 points. Median (IQR) improvements were 3.5 (6.8) points for participants with a chronic SCI, and 8.0 (6.0) points for those with sub-acute SCI. Improvements were unrelated to other measured variables (age, time since injury, baseline ISNC-SCI motor score, baseline voluntary PO, time spent training and stimulation amplitude; p > 0.05 for all variables). Five out of 11 participants showed moderate improvements in voluntary cycling PO, which did not correlate with changes in ISNC-SCI motor score. Improvement in PO during cycling was positively correlated with baseline voluntary PO (R2 = 0.50; p < 0.05), but was unrelated to all other variables (p > 0.05). The iCycle was not suitable for participants who were too weak to generate a detectable voluntary torque or whose effort resulted in a negative torque. Conclusions Improved ISNC-SCI motor scores in chronic participants may be attributable to the iCycle training. In sub-acute participants, early spontaneous recovery and changes due to iCycle training could not be distinguished. The iCycle is an innovative progression from existing FES cycling systems, and positive results should be verified in an adequately powered controlled trial. Trial registration ClinicalTrials.gov, NCT03834324. Registered 06 February 2019 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03834324. Protocol V03, dated 06.08.2015.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK.
| | - Sue Paddison
- London Spinal Cord Injury Centre, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Ahmad F Alahmary
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Nick Donaldson
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Jane Burridge
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
20
|
Arpin DJ, Ugiliweneza B, Forrest G, Harkema SJ, Rejc E. Optimizing Neuromuscular Electrical Stimulation Pulse Width and Amplitude to Promote Central Activation in Individuals With Severe Spinal Cord Injury. Front Physiol 2019; 10:1310. [PMID: 31681016 PMCID: PMC6813182 DOI: 10.3389/fphys.2019.01310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) is one of the most effective treatments for counteracting the deleterious skeletal muscle adaptations that occur after spinal cord injury (SCI). Additionally, previous findings suggest that NMES can activate motor units via both peripheral and central mechanisms; however, this NMES-promoted central activation is not well understood. In this study, we aimed at investigating the effects of NMES on central activation in 10 individuals with motor complete SCI, focusing on understanding how to optimize NMES pulse width and amplitude for promoting central activation in this population. To this end, we used NMES to generate isometric contractions of the knee extensors and ankle plantarflexors while electromyographic (EMG) activity was recorded from the vastus lateralis and gastrocnemius medialis, respectively. We used EMG activity that persisted after the termination of NMES delivery (post-NMES) as a neurophysiological marker to assess central activation and explored differences in post-NMES EMG activity promoted by 500 and 1,000 μs pulse width NMES. Additionally, we explored the relationships between post-NMES EMG amplitude, torque output, and stimulation amplitude. Our results show that the higher pulse width (1,000 μs) demonstrated a greater effect on central activation as quantified by more frequent occurrences of post-NMES EMG activity (p = 0.002) and a 3.551 μV higher EMG amplitude (p = 0.003) when controlling for the torque output generated by 500 and 1,000 μs pulse width NMES. Importantly, we also found that the interplay among central activation, stimulation amplitude, and muscle torque output differs across SCI individuals, conceivably because of the individual-specific characteristics of the cord lesion and following plasticity of the spinal circuitry. These results suggest that NMES can be optimized to promote central activation, which may lead to novel opportunities for motor function recovery after SCI.
Collapse
Affiliation(s)
- David J Arpin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Gail Forrest
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Frazier Rehab Institute, KentuckyOne Health, Louisville, KY, United States
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
21
|
Effects of treadmill training on microvascular remodeling in the rat after spinal cord injury. Muscle Nerve 2018; 59:370-379. [DOI: 10.1002/mus.26379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 01/06/2023]
|
22
|
Arpin DJ, Forrest G, Harkema SJ, Rejc E. Submaximal Marker for Investigating Peak Muscle Torque Using Neuromuscular Electrical Stimulation after Paralysis. J Neurotrauma 2018; 36:930-936. [PMID: 30226407 DOI: 10.1089/neu.2018.5848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spinal cord injury (SCI) results in deleterious skeletal muscle adaptations, such as relevant atrophy and loss of force. In particular, the relevant loss of lower-limb force-generating capacity may limit functional mobility even if neuronal control was sufficient. Currently, methods of assessing maximal force-generating capacity using neuromuscular electrical stimulation (NMES) are limited in individuals who cannot tolerate higher stimulation amplitudes, such as those with residual sensation and those at risk of fracture. In this study, we examined the relationship between NMES amplitude and muscle torque exerted (recruitment curve) in order to determine whether maximal torque output can be characterized by a submaximal marker. Recruitment curves for knee extensors, knee flexors, and ankle plantarflexors were recorded from 30 individuals with motor complete SCI. NMES was delivered starting with an amplitude of 5 mA, and increasing by 5 mA for every subsequent stimulation until either the participant requested to stop the stimulation or the maximum stimulation amplitude (140 mA) was reached. Significant correlations between peak slope of the recruitment curve and peak torque for all muscle groups were found (knee extensors, r = 0.75; p < 0.0001; knee flexors, r = 0.68; p < 0.0001; ankle plantarflexors, r = 0.91; p < 0.0001), indicating that muscles that show greater peak slope of the recruitment curve tend to generate a greater peak torque. This suggests that peak slope, which was achieved at an average stimulation intensity (55.0 mA) that was 43% smaller than that corresponding to peak torque (97.4 mA), may be used as a submaximal marker for characterizing maximal torque output in individuals with SCI.
Collapse
Affiliation(s)
- David J Arpin
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Gail Forrest
- 3 Human Performance and Engineering Research, Kessler Foundation, West Orange, New Jersey.,4 Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Susan J Harkema
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,5 Frazier Rehab Institute, Kentucky One Health, Louisville, Kentucky
| | - Enrico Rejc
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
23
|
Hasnan N, Mohamad Saadon NS, Hamzaid NA, Teoh MXH, Ahmadi S, Davis GM. Muscle oxygenation during hybrid arm and functional electrical stimulation-evoked leg cycling after spinal cord injury. Medicine (Baltimore) 2018; 97:e12922. [PMID: 30412097 PMCID: PMC6221724 DOI: 10.1097/md.0000000000012922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study compared muscle oxygenation (StO2) during arm cranking (ACE), functional electrical stimulation-evoked leg cycling (FES-LCE), and hybrid (ACE+FES-LCE) exercise in spinal cord injury individuals. Eight subjects with C7-T12 lesions performed exercises at 3 submaximal intensities. StO2 was measured during rest and exercise at 40%, 60%, and 80% of subjects' oxygen uptake (VO2) peak using near-infrared spectroscopy. StO2 of ACE showed a decrease whereas in ACE+FES-LCE, the arm muscles demonstrated increasing StO2 from rest in all of VO2) peak respectively. StO2 of FES-LCE displayed a decrease at 40% VO2 peak and steady increase for 60% and 80%, whereas ACE+FES-LCE revealed a steady increase from rest at all VO2 peak. ACE+FES-LCE elicited greater StO2 in both limbs which suggested that during this exercise, upper- and lower-limb muscles have higher blood flow and improved oxygenation compared to ACE or FES-LCE performed alone.
Collapse
Affiliation(s)
- Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine
| | | | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mira Xiao-Hui Teoh
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sirous Ahmadi
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Glen M. Davis
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
24
|
Yarar-Fisher C, Polston KFL, Eraslan M, Henley KY, Kinikli GI, Bickel CS, Windham ST, McLain AB, Oster RA, Bamman MM. Paralytic and nonparalytic muscle adaptations to exercise training versus high-protein diet in individuals with long-standing spinal cord injury. J Appl Physiol (1985) 2018; 125:64-72. [PMID: 29494292 PMCID: PMC6086973 DOI: 10.1152/japplphysiol.01029.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 02/08/2023] Open
Abstract
This study compares the effects of an 8-wk isocaloric high-protein (HP) diet versus a combination exercise (Comb-Ex) regimen on paralytic vastus lateralis (VL) and nonparalytic deltoid muscle in individuals with long-standing spinal cord injury (SCI). Fiber-type distribution, cross-sectional area (CSA), levels of translation initiation signaling proteins (Erk-1/2, Akt, p70S6K1, 4EBP1, RPS6, and FAK), and lean thigh mass were analyzed at baseline and after the 8-wk interventions. A total of 11 participants (C5-T12 levels, 21.8 ± 6.3 yr postinjury; 6 Comb-Ex and 5 HP diet) completed the study. Comb-Ex training occurred 3 days/wk and consisted of upper body resistance training (RT) in addition to neuromuscular electrical stimulation (NMES)-induced-RT for paralytic VL muscle. Strength training was combined with high-intensity arm-cranking exercises (1-min intervals at 85-90%, V̇o2peak) for improving cardiovascular endurance. For the HP diet intervention, protein and fat each comprised 30%, and carbohydrate comprised 40% of total energy. Clinical tests and muscle biopsies were performed 24 h before and after the last exercise or diet session. The Comb-Ex intervention increased Type IIa myofiber distribution and CSA in VL muscle and Type I and IIa myofiber CSA in deltoid muscle. In addition, Comb-Ex increased lean thigh mass, V̇o2peak, and upper body strength ( P < 0.05). These results suggest that exercise training is required to promote favorable changes in paralytic and nonparalytic muscles in individuals with long-standing SCI, and adequate dietary protein consumption alone may not be sufficient to ameliorate debilitating effects of paralysis. NEW & NOTEWORTHY This study is the first to directly compare the effects of an isocaloric high-protein diet and combination exercise training on clinical and molecular changes in paralytic and nonparalytic muscles of individuals with long-standing spinal cord injury. Our results demonstrated that muscle growth and fiber-type alterations can best be achieved when the paralyzed muscle is sufficiently loaded via neuromuscular electrical stimulation-induced resistance training.
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Keith F L Polston
- University of Tennessee Health Science Center College of Medicine , Memphis, Tennessee
| | - Mualla Eraslan
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kathryn Y Henley
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Gizem I Kinikli
- Physical Therapy and Rehabilitation, Hacettepe University , Ankara , Turkey
| | - C Scott Bickel
- Physical Therapy and Rehabilitation, Samford University , Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie B McLain
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert A Oster
- Department of Medicine/Division of Preventive Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- University of Alabama at Birmingham Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center , Birmingham, Alabama
| |
Collapse
|
25
|
Vromans M, Faghri P. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue. Eur J Transl Myol 2017; 27:6816. [PMID: 29299218 PMCID: PMC5745385 DOI: 10.4081/ejtm.2017.6816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 12/02/2022] Open
Abstract
This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.
Collapse
Affiliation(s)
- Maria Vromans
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Pouran Faghri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.,Department of Allied Health Sciences, Storrs, CT, USA
| |
Collapse
|
26
|
Metani A, Popović-Maneski L, Mateo S, Lemahieu L, Bergeron V. Functional electrical stimulation cycling strategies tested during preparation for the First Cybathlon Competition - a practical report from team ENS de Lyon. Eur J Transl Myol 2017; 27:7110. [PMID: 29299222 PMCID: PMC5745378 DOI: 10.4081/ejtm.2017.7110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023] Open
Abstract
Whether it is from the patient’s or the physical therapist’s point of view, FES cycling can be considered either as a recreational activity, or an engaging rehabilitation tool. In both cases, it keeps patients with lower-limb paralysis motivated to sustain a regular physical activity. Thus, it is not surprising that it was selected as one of the six disciplines of the first Cybathlon competition held on October 8, 2016. However, many unresolved issues prevent FES cycling from being an activity practiced outdoors on a daily basis; such as, low power production, rapid muscle fatigue, precise electrode positioning, lack of systematic procedures to determine stimulation patterns, and the difficulty of transferring disabled riders from their wheelchair to the tricycle. This article documents the challenges we faced during preparation for the Cybathlon 2016 FES cycling race, and provides results obtained during different phases of the process. A particular specificity of our team was that, unlike most other teams where pilots were mainly paraplegic, both the primary and backup pilots for team ENS de Lyon are C6/C7 tetraplegics, with neither voluntary control of their abdominal muscles nor hand grip, and only partial use of their arms.
Collapse
Affiliation(s)
- Amine Metani
- École Normale Supérieure de Lyon, CNRS UMR 5672, Lyon, France
| | - Lana Popović-Maneski
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sebastien Mateo
- Université de Lyon, Université de Lyon 1, INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, France.,Hospices Civils de Lyon, Hôpital Henry Gabrielle, Plateforme Mouvement et Handicap, Lyon, France
| | - Laura Lemahieu
- École Normale Supérieure de Lyon, CNRS UMR 5672, Lyon, France
| | - Vance Bergeron
- École Normale Supérieure de Lyon, CNRS UMR 5672, Lyon, France
| |
Collapse
|
27
|
Barss TS, Ainsley EN, Claveria-Gonzalez FC, Luu MJ, Miller DJ, Wiest MJ, Collins DF. Utilizing Physiological Principles of Motor Unit Recruitment to Reduce Fatigability of Electrically-Evoked Contractions: A Narrative Review. Arch Phys Med Rehabil 2017; 99:779-791. [PMID: 28935232 DOI: 10.1016/j.apmr.2017.08.478] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
Neuromuscular electrical stimulation (NMES) is used to produce contractions to restore movement and reduce secondary complications for individuals experiencing motor impairment. NMES is conventionally delivered through a single pair of electrodes over a muscle belly or nerve trunk using short pulse durations and frequencies between 20 and 40Hz (conventional NMES). Unfortunately, the benefits and widespread use of conventional NMES are limited by contraction fatigability, which is in large part because of the nonphysiological way that contractions are generated. This review provides a summary of approaches designed to reduce fatigability during NMES, by using physiological principles that help minimize fatigability of voluntary contractions. First, relevant principles of the recruitment and discharge of motor units (MUs) inherent to voluntary contractions and conventional NMES are introduced, and the main mechanisms of fatigability for each contraction type are briefly discussed. A variety of NMES approaches are then described that were designed to reduce fatigability by generating contractions that more closely mimic voluntary contractions. These approaches include altering stimulation parameters, to recruit MUs in their physiological order, and stimulating through multiple electrodes, to reduce MU discharge rates. Although each approach has unique advantages and disadvantages, approaches that minimize MU discharge rates hold the most promise for imminent translation into rehabilitation practice. The way that NMES is currently delivered limits its utility as a rehabilitative tool. Reducing fatigability by delivering NMES in ways that better mimic voluntary contractions holds promise for optimizing the benefits and widespread use of NMES-based programs.
Collapse
Affiliation(s)
- Trevor S Barss
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Emily N Ainsley
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Francisca C Claveria-Gonzalez
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - M John Luu
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Dylan J Miller
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Matheus J Wiest
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Biomechanics Laboratory, Department of Physical Education, Federal University of Santa Catarina, Florianópolis, Brazil
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Bochkezanian V, Newton RU, Trajano GS, Vieira A, Pulverenti TS, Blazevich AJ. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force. BMC Neurol 2017; 17:82. [PMID: 28464800 PMCID: PMC5414318 DOI: 10.1186/s12883-017-0862-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. METHODS Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. RESULTS TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. CONCLUSIONS Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.
Collapse
Affiliation(s)
- Vanesa Bochkezanian
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia. .,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia.,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - Timothy S Pulverenti
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
29
|
Gorgey AS, Khalil RE, Gill R, O'Brien LC, Lavis T, Castillo T, Cifu DX, Savas J, Khan R, Cardozo C, Lesnefsky EJ, Gater DR, Adler RA. Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord Injury (TEREX-SCI): study protocol for a randomised controlled trial. BMJ Open 2017; 7:e014125. [PMID: 28377392 PMCID: PMC5387951 DOI: 10.1136/bmjopen-2016-014125] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Individuals with spinal cord injury (SCI) are at a lifelong risk of obesity and chronic metabolic disorders including insulin resistance and dyslipidemia. Within a few weeks of injury, there is a significant decline in whole body fat-free mass, particularly lower extremity skeletal muscle mass, and subsequent increase in fat mass (FM). This is accompanied by a decrease in anabolic hormones including testosterone. Testosterone replacement therapy (TRT) has been shown to increase skeletal muscle mass and improve metabolic profile. Additionally, resistance training (RT) has been shown to increase lean mass and reduce metabolic disturbances in SCI and other clinical populations. METHODS AND ANALYSIS 26 individuals with chronic, motor complete SCI between 18 and 50 years old were randomly assigned to a RT+TRT group (n=13) or a TRT group (n=13). 22 participants completed the initial 16-week training phase of the study and 4 participants withdrew. 12 participants of the 22 completed 16 weeks of detraining. The TRT was provided via transdermal testosterone patches (4-6 mg/day). The RT+TRT group had 16 weeks of supervised unilateral progressive RT using surface neuromuscular electrical stimulation with ankle weights. This study will investigate the effects of evoked RT+TRT or TRT alone on body composition (muscle cross-sectional area, visceral adipose tissue, %FM) and metabolic profile (glucose and lipid metabolism) in individuals with motor complete SCI. Findings from this study may help in designing exercise therapies to alleviate the deterioration in body composition after SCI and decrease the incidence of metabolic disorders in this clinical population. ETHICS AND DISSEMINATION The study is currently approved by the McGuire VA Medical Center and Virginia Commonwealth University. All participants read and signed approved consent forms. Results will be submitted to peer-reviewed journals and presented at national and international conferences. TRIAL REGISTRATION NUMBER Pre-result, NCT01652040.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
| | - Ranjodh Gill
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia,USA
| | - Laura C O'Brien
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
| | - Timothy Lavis
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Teodoro Castillo
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
| | - David X Cifu
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia, USA
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jeannie Savas
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Rehan Khan
- Radiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York City, New York, USA
| | - Edward J Lesnefsky
- Cardiology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- Division of Cardiology, Department of Medicine, Pauley Heart Center Virginia Commonwealth University, Richmond, Virginia, USA
| | - David R Gater
- Department of Physical Medicine and Rehabilitation, Penn State Milton S Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Robert A Adler
- Endocrinology Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
- Endocrine Division, Virginia Commonwealth University School of Medicine¸ Richmond, Virginia,USA
| |
Collapse
|
30
|
Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation. J Med Eng 2016; 2016:6957287. [PMID: 27110556 PMCID: PMC4826699 DOI: 10.1155/2016/6957287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/07/2015] [Accepted: 02/28/2016] [Indexed: 11/18/2022] Open
Abstract
Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES.
Collapse
|
31
|
De Brandt J, Spruit MA, Derave W, Hansen D, Vanfleteren LEGW, Burtin C. Changes in structural and metabolic muscle characteristics following exercise-based interventions in patients with COPD: a systematic review. Expert Rev Respir Med 2016; 10:521-45. [PMID: 26901573 DOI: 10.1586/17476348.2016.1157472] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Patients with COPD suffer from lower-limb muscle dysfunction characterized by lower muscle oxidative capacity and muscle mass. Exercise-based training is expected to attenuate lower-limb intramuscular characteristics, but a detailed systematic approach to review the available evidence has not been performed yet. PUBMED and PEDro databases were searched. Twenty-five studies that implemented an exercise-based training program (aerobic and/or resistance training, high intensity interval training, electrical or magnetic stimulation) and reported muscle biopsy data of patients with COPD were critically appraised. The coverage of results includes changes in muscle structure, muscle protein turnover regulation, mitochondrial enzyme activity, oxidative and nitrosative stress, and inflammation after exercise-based training interventions. Study design and training modalities varied among studies, which partly explains the observed heterogeneous response in muscle characteristics. Gaps in the current knowledge are identified and recommendations for future research are made to enhance our knowledge on exercise training effects in patients with COPD.
Collapse
Affiliation(s)
- Jana De Brandt
- a REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| | - Martijn A Spruit
- a REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium.,b Department of Research and Education , CIRO, Center of Expertise for Chronic Organ Failure , Horn , The Netherlands
| | - Wim Derave
- c Department of Movement and Sports Sciences , Ghent University , Ghent , Belgium
| | - Dominique Hansen
- a REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| | - Lowie E G W Vanfleteren
- b Department of Research and Education , CIRO, Center of Expertise for Chronic Organ Failure , Horn , The Netherlands
| | - Chris Burtin
- a REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences , Hasselt University , Diepenbeek , Belgium
| |
Collapse
|
32
|
Electrical Impedance Myography to Detect the Effects of Electrical Muscle Stimulation in Wild Type and Mdx Mice. PLoS One 2016; 11:e0151415. [PMID: 26986564 PMCID: PMC4795734 DOI: 10.1371/journal.pone.0151415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Objective Tools to better evaluate the impact of therapy on nerve and muscle disease are needed. Electrical impedance myography (EIM) is sensitive to neuromuscular disease progression as well as to therapeutic interventions including myostatin inhibition and antisense oligonucleotide-based treatments. Whether the technique identifies the impact of electrical muscle stimulation (EMS) is unknown. Methods Ten wild-type (wt) C57B6 mice and 10 dystrophin-deficient (mdx) mice underwent 2 weeks of 20 min/day EMS on left gastrocnemius and sham stimulation on the right gastrocnemius. Multifrequency EIM data and limb girth were obtained before and at the conclusion of the protocol. Muscle weight, in situ force measurements, and muscle fiber histology were also assessed at the conclusion of the study. Results At the time of sacrifice, muscle weight was greater on the EMS-treated side than on the sham-stimulated side (p = 0.018 for wt and p = 0.007 for mdx). Similarly, in wt animals, EIM parameters changed significantly compared to baseline (resistance (p = 0.009), reactance (p = 0.0003) and phase (p = 0.002); these changes were due in part to reductions in the EIM values on the EMS-treated side and elevations on the sham-simulated side. Mdx animals showed analogous but non-significant changes (p = 0.083, p = 0.064, and p = 0.57 for resistance, reactance and phase, respectively). Maximal isometric force trended higher on the stimulated side in wt animals only (p = 0.06). Myofiber sizes in wt animals were also larger on the stimulated side than on the sham-stimulated side (p = 0.034); no significant difference was found in the mdx mice (p = 0.79). Conclusion EIM is sensitive to stimulation-induced muscle alterations in wt animals; similar trends are also present in mdx mice. The mechanisms by which these EIM changes develop, however, remains uncertain. Possible explanations include longer-term trophic effects and shorter-term osmotic effects.
Collapse
|
33
|
Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Davis GM. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review. PLoS One 2016; 11:e0149024. [PMID: 26859296 PMCID: PMC4747522 DOI: 10.1371/journal.pone.0149024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Methods Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Results Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units. Conclusion Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Khairi Abdul Wahab
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Glen M. Davis
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia. Sports Med 2015; 45:71-82. [PMID: 25205000 DOI: 10.1007/s40279-014-0250-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Regular exercise can be broadly beneficial to health and quality of life in humans with spinal cord injury (SCI). However, exercises must meet certain criteria, such as the intensity and muscle mass involved, to induce significant benefits. SCI patients can have difficulty achieving these exercise requirements since the paralysed muscles cannot contribute to overall oxygen consumption. One solution is functional electrical stimulation (FES) and, more importantly, hybrid training that combines volitional arm and electrically controlled contractions of the lower limb muscles. However, it might be rather complicated for therapists to use FES because of the wide variety of protocols that can be employed, such as stimulation parameters or movements induced. Moreover, although the short-term physiological and psychological responses during different types of FES exercises have been extensively reported, there are fewer data regarding the long-term effects of FES. Therefore, the purpose of this brief review is to provide a critical appraisal and synthesis of the literature on the use of FES for exercise in paraplegic individuals. After a short introduction underlying the importance of exercise for SCI patients, the main applications and effects of FES are reviewed and discussed. Major findings reveal an increased physiological demand during FES hybrid exercises as compared with arms only exercises. In addition, when repeated within a training period, FES exercises showed beneficial effects on muscle characteristics, force output, exercise capacity, bone mineral density and cardiovascular parameters. In conclusion, there appears to be promising evidence of beneficial effects of FES training, and particularly FES hybrid training, for paraplegic individuals.
Collapse
|
35
|
Astorino TA, Harness ET, White AC. Efficacy of Acute Intermittent Hypoxia on Physical Function and Health Status in Humans with Spinal Cord Injury: A Brief Review. Neural Plast 2015; 2015:409625. [PMID: 26167303 PMCID: PMC4475712 DOI: 10.1155/2015/409625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) results in a loss of motor and sensory function and is consequent with reductions in locomotion, leading to a relatively sedentary lifestyle which predisposes individuals to premature morbidity and mortality. Many exercise modalities have been employed to improve physical function and health status in SCI, yet they are typically expensive, require many trained clinicians to implement, and are thus relegated to specialized rehabilitation centers. These characteristics of traditional exercise-based rehabilitation in SCI make their application relatively impractical considering the time-intensive nature of these regimens and patients' poor access to exercise. A promising approach to improve physical function in persons with SCI is exposure to acute intermittent hypoxia (IH) in the form of a small amount of sessions of brief, repeated exposures to low oxygen gas mixtures interspersed with normoxic breathing. This review summarizes the clinical application of IH in humans with SCI, describes recommended dosing and potential side effects of IH, and reviews existing data concerning the efficacy of relatively brief exposures of IH to modify health and physical function. Potential mechanisms explaining the effects of IH are also discussed. Collectively, IH appears to be a safe, time-efficient, and robust approach to enhance physical function in chronic, incomplete SCI.
Collapse
Affiliation(s)
- Todd A. Astorino
- Department of Kinesiology, CSU San Marcos, San Marcos, CA 92096-0001, USA
| | | | - Ailish C. White
- Department of Kinesiology, CSU San Marcos, San Marcos, CA 92096-0001, USA
| |
Collapse
|
36
|
Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Gater DR. The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury--Part II. J Spinal Cord Med 2015; 38:23-37. [PMID: 25001669 PMCID: PMC4293531 DOI: 10.1179/2045772314y.0000000244] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diet and exercise are cornerstones in the management of obesity and associated metabolic complications, including insulin resistance, type 2 diabetes, and disturbances in the lipid profile. However, the role of exercise in managing body composition adaptations and metabolic disorders after spinal cord injury (SCI) is not well established. The current review summarizes evidence about the efficacy of using neuromuscular electrical stimulation or functional electrical stimulation in exercising the paralytic lower extremities to improve body composition and metabolic profile after SCI. There are a number of trials that investigated the effects on muscle cross-sectional area, fat-free mass, and glucose/lipid metabolism. The duration of the intervention in these trials varied from 6 weeks to 24 months. Training frequency ranged from 2 to 5 days/week. Most studies documented significant increases in muscle size but no noticeable changes in adipose tissue. While increases in skeletal muscle size after twice weekly training were greater than those trials that used 3 or 5 days/week, other factors such as differences in the training mode, i.e. resistance versus cycling exercise and pattern of muscle activation may be responsible for this observation. Loading to evoke muscle hypertrophy is a key component in neuromuscular training after SCI. The overall effects on lean mass were modest and did not exceed 10% and the effects of training on trunk or pelvic muscles remain unestablished. Most studies reported improvement in glucose metabolism with the enhancement of insulin sensitivity being the major factor following training. The effect on lipid profile is unclear and warrants further investigation.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Correspondence to: Ashraf S. Gorgey, Department of Veterans Affairs, Hunter Holmes McGuire Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA.
| | - David R. Dolbow
- School of Human Performance and Recreation, University of Southern Mississippi, Hattiesburg, MS, USA
| | - James D. Dolbow
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Refka K. Khalil
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, Penn State University, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
37
|
Sayenko DG, Nguyen R, Hirabayashi T, Popovic MR, Masani K. Method to Reduce Muscle Fatigue During Transcutaneous Neuromuscular Electrical Stimulation in Major Knee and Ankle Muscle Groups. Neurorehabil Neural Repair 2014; 29:722-33. [PMID: 25549655 DOI: 10.1177/1545968314565463] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND A critical limitation with transcutaneous neuromuscular electrical stimulation as a rehabilitative approach is the rapid onset of muscle fatigue during repeated contractions. We have developed a method called spatially distributed sequential stimulation (SDSS) to reduce muscle fatigue by distributing the center of electrical field over a wide area within a single stimulation site, using an array of surface electrodes. OBJECTIVE To extend the previous findings and to prove feasibility of the method by exploring the fatigue-reducing ability of SDSS for lower limb muscle groups in the able-bodied population, as well as in individuals with spinal cord injury (SCI). METHODS SDSS was delivered through 4 active electrodes applied to the knee extensors and flexors, plantarflexors, and dorsiflexors, sending a stimulation pulse to each electrode one after another with 90° phase shift between successive electrodes. Isometric ankle torque was measured during fatiguing stimulations using SDSS and conventional single active electrode stimulation lasting 2 minutes. RESULTS We demonstrated greater fatigue-reducing ability of SDSS compared with the conventional protocol, as revealed by larger values of fatigue index and/or torque peak mean in all muscles except knee flexors of able-bodied individuals, and in all muscles tested in individuals with SCI. CONCLUSIONS Our study has revealed improvements in fatigue tolerance during transcutaneous neuromuscular electrical stimulation using SDSS, a stimulation strategy that alternates activation of subcompartments of muscles. The SDSS protocol can provide greater stimulation times with less decrement in mechanical output compared with the conventional protocol.
Collapse
Affiliation(s)
| | - Robert Nguyen
- Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland
| | - Tomoyo Hirabayashi
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Milos R Popovic
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada
| | - Kei Masani
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Petrie MA, Suneja M, Faidley E, Shields RK. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS One 2014; 9:e115791. [PMID: 25531450 PMCID: PMC4274164 DOI: 10.1371/journal.pone.0115791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022] Open
Abstract
Paralysis after a spinal cord injury (SCI) induces physiological adaptations that compromise the musculoskeletal and metabolic systems. Unlike non-SCI individuals, people with spinal cord injury experience minimal muscle activity which compromises optimal glucose utilization and metabolic control. Acute or chronic muscle activity, induced through electrical stimulation, may regulate key genes that enhance oxidative metabolism in paralyzed muscle. We investigated the short and long term effects of electrically induced exercise on mRNA expression of human paralyzed muscle. We developed an exercise dose that activated the muscle for only 0.6% of the day. The short term effects were assessed 3 hours after a single dose of exercise, while the long term effects were assessed after training 5 days per week for at least one year (adherence 81%). We found a single dose of exercise regulated 117 biological pathways as compared to 35 pathways after one year of training. A single dose of electrical stimulation increased the mRNA expression of transcriptional, translational, and enzyme regulators of metabolism important to shift muscle toward an oxidative phenotype (PGC-1α, NR4A3, IFRD1, ABRA, PDK4). However, chronic training increased the mRNA expression of specific metabolic pathway genes (BRP44, BRP44L, SDHB, ACADVL), mitochondrial fission and fusion genes (MFF, MFN1, MFN2), and slow muscle fiber genes (MYH6, MYH7, MYL3, MYL2). These findings support that a dose of electrical stimulation (∼10 minutes/day) regulates metabolic gene signaling pathways in human paralyzed muscle. Regulating these pathways early after SCI may contribute to reducing diabetes in people with longstanding paralysis from SCI.
Collapse
Affiliation(s)
- Michael A. Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Manish Suneja
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth Faidley
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Veterans Affairs, VA Medical Center, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
39
|
do Espírito Santo CC, Swarowsky A, Recchia TL, Lopes APF, Ilha J. Is body weight-support treadmill training effective in increasing muscle trophism after traumatic spinal cord injury? A systematic review. Spinal Cord 2014; 53:176-181. [PMID: 25403505 DOI: 10.1038/sc.2014.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/09/2014] [Accepted: 10/08/2014] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To determine the effectiveness of body weight-support treadmill training (BWSTT) for muscle atrophy management in people with spinal cord injury (SCI). SETTING Studies from multiple countries were included. METHODS The following databases were consulted from January to October 2013: PubMed, Institute for Scientific Information (ISI), Science Direct and Lilacs. The methodological quality of the articles included was classified according to Jovell and Navarro-Rubio. RESULTS A total of five studies were included. These studies reported a significant association between BWSTT and increased trophism of the lower limb muscles of humans with SCI, which was observed as an increase in the cross-sectional area. Moreover, improvements in the ability to generate peak torque, contract the knee extensors and ankle plantarflexors with reduction of body weight support were observed after BWSTT. CONCLUSION The results were considered inconclusive because of the low methodological quality of the articles, which was because of the absence of sample homogeneity, thereby providing a low level of evidence for clinical practice.
Collapse
Affiliation(s)
- C C do Espírito Santo
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Brazil.,Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| | - A Swarowsky
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Brazil.,Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| | - T L Recchia
- Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| | - A P F Lopes
- Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| | - J Ilha
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Brazil.,Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| |
Collapse
|
40
|
Wageck B, Nunes GS, Silva FL, Damasceno MCP, de Noronha M. Application and effects of neuromuscular electrical stimulation in critically ill patients: systematic review. Med Intensiva 2014; 38:444-54. [PMID: 25060511 DOI: 10.1016/j.medin.2013.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/28/2013] [Accepted: 12/08/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the applications and effects of neuromuscular electrical stimulation (NMES) in critically ill patients in ICU by means of a systematic review. MATERIALS AND METHODS Electronic searches were conducted in the databases Medline, CINAHL, Cochrane Central Register of Controlled Trials, Web of Science, Embase, ProQuest Health and Medical Complete, AMED, and PEDro. The PEDro score was used to assess the methodological quality of the eligible studies. RESULTS The search yielded a total of 9759 titles and nine articles satisfied the eligibility criteria. These studies showed that NMES can maintain or increase muscle mass, strength and volume, reduce time in mechanical ventilation and weaning time, and increase muscle degradation in critically ill patients in ICU. Two studies allowed a meta-analysis of the effects of NMES on quadriceps femoris strength and it showed a significant effect in favor of NMES in the Medical Research Council (MRC) Scale (standardized mean difference 0.77 points; p=0.02; 95% CI: 0.13-1.40). CONCLUSIONS The selected studies showed that NMES has good results when used for the maintenance of muscle mass and strength in critically ill patients in ICU. Future studies with high methodological quality should be conducted to provide more evidence for the use of NMES in an ICU setting.
Collapse
Affiliation(s)
- B Wageck
- Department of Physiotherapy, Center of Health and Sport Sciences, Santa Catarina State University, Florianópolis, Brazil.
| | - G S Nunes
- Department of Physiotherapy, Center of Health and Sport Sciences, Santa Catarina State University, Florianópolis, Brazil
| | - F L Silva
- Santa Casa de Misericórdia Dona Carolina Malheiros, São João da Boa Vista, Brazil
| | - M C P Damasceno
- Santa Casa de Misericórdia Dona Carolina Malheiros, São João da Boa Vista, Brazil
| | - M de Noronha
- Department of Physiotherapy, Center of Health and Sport Sciences, Santa Catarina State University, Florianópolis, Brazil; Department of Allied Health, La Trobe University, Bendigo, Australia
| |
Collapse
|
41
|
Corral L, Javierre C, Blasi J, Viscor G, Ricart A, Ventura JL. Combined intermittent hypobaric hypoxia and muscle electro-stimulation: a method to increase circulating progenitor cell concentration? J Transl Med 2014; 12:174. [PMID: 24947505 PMCID: PMC4074133 DOI: 10.1186/1479-5876-12-174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our goal was to test whether short-term intermittent hypobaric hypoxia (IHH) at a level well tolerated by healthy humans could, in combination with muscle electro-stimulation (ME), mobilize circulating progenitor cells (CPC) and increase their concentration in peripheral circulation. METHODS Nine healthy male subjects were subjected, as the active group (HME), to a protocol involving IHH plus ME. IHH exposure consisted of four, three-hour sessions at a barometric pressure of 540 hPa (equivalent to an altitude of 5000 m). These sessions took place on four consecutive days. ME was applied in two separate 20-minute periods during each IHH session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment, and then 24 h, 48 h, 4 days, 7 days and 14 days after the last day of hypoxic exposure. Four months later a control study was carried out involving seven of the original subjects (CG), who underwent the same protocol of blood samples but without receiving any special stimulus. RESULTS In comparison with the CG the HME group showed only a non-significant increase in the number of CPC CD34+ cells on the fourth day after the combined IHH and ME treatment. CONCLUSION CPC levels oscillated across the study period and provide no firm evidence to support an increased CPC count after IHH plus ME, although it is not possible to know if this slight increase observed is physiologically relevant. Further studies are required to understand CPC dynamics and the physiology and physiopathology of the hypoxic stimulus.
Collapse
Affiliation(s)
- Luisa Corral
- Intensive Care Unit of Bellvitge University Hospital and Department of Physiological Sciences II of University of Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat-08907, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
42
|
Dolbow DR, Holcomb WR, Gorgey AS. Improving the Efficiency of Electrical Stimulation Activities After Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2014; 2:169-175. [PMID: 29503764 PMCID: PMC5832057 DOI: 10.1007/s40141-014-0053-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to enhance spinal cord injury (SCI) rehabilitation programs using neuromuscular electrical stimulation (NMES) and functional electrical stimulation (FES) it is important to examine the manner in which muscle fibers are recruited and the dose-response relationship. A review of the literature suggests that premature force decline and early fatigue with NMES and FES activities may be alleviated with decreased current frequency and increased current intensity. Dose-response relationships with NMES and FES are dependent on the goals of interest as reversing muscle atrophy can be achieved with activities 2-3 times per week for 6 or more weeks while increasing bone mass is more limited and requires more intense activity with greater exercise frequency and duration, e.g., 3-5 days per week for at least 6-12 months. The best known protocol to elicit neurological improvement is massed practice activities-based restorative therapies (ABRT) (3-5 h per day for several weeks).
Collapse
Affiliation(s)
- David R Dolbow
- Human Performance and Recreation Department, University of Southern Mississippi, 118 College Drive, Box 5142, Hattiesburg, MS 39406, USA
| | - William R Holcomb
- Human Performance and Recreation Department, University of Southern Mississippi, 118 College Drive, Box 5142, Hattiesburg, MS 39406, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury Research, McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA 23224, USA
| |
Collapse
|
43
|
Labruyère R, Zimmerli M, van Hedel HJ. Slowed Down: Response Time Deficits in Well-Recovered Subjects With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil 2013; 94:2020-6. [DOI: 10.1016/j.apmr.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
|
44
|
Wu Y, Collier L, Qin W, Creasey G, Bauman WA, Jarvis J, Cardozo C. Electrical stimulation modulates Wnt signaling and regulates genes for the motor endplate and calcium binding in muscle of rats with spinal cord transection. BMC Neurosci 2013; 14:81. [PMID: 23914941 PMCID: PMC3735397 DOI: 10.1186/1471-2202-14-81] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/19/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) results in muscle atrophy and a shift of slow oxidative to fast glycolytic fibers. Electrical stimulation (ES) at least partially restores muscle mass and fiber type distribution. The objective of this study was to was to characterize the early molecular adaptations that occur in rat soleus muscle after initiating isometric resistance exercise by ES for one hour per day for 1, 3 or 7 days when ES was begun 16 weeks after SCI. Additionally, changes in mRNA levels after ES were compared with those induced in soleus at the same time points after gastrocnemius tenotomy (GA). RESULTS ES increased expression of Hey1 and Pitx2 suggesting increased Notch and Wnt signaling, respectively, but did not normalize RCAN1.4, a measure of calcineurin/NFAT signaling, or PGC-1ß mRNA levels. ES increased PGC-1α expression but not that of slow myofibrillar genes. Microarray analysis showed that after ES, genes coding for calcium binding proteins and nicotinic acetylcholine receptors were increased, and the expression of genes involved in blood vessel formation and morphogenesis was altered. Of the 165 genes altered by ES only 16 were also differentially expressed after GA, of which 12 were altered in the same direction by ES and GA. In contrast to ES, GA induced expression of genes related to oxidative phosphorylation. CONCLUSIONS Notch and Wnt signaling may be involved in ES-induced increases in the mass of paralyzed muscle. Molecular adaptations of paralyzed soleus to resistance exercise are delayed or defective compared to normally innervated muscle.
Collapse
Affiliation(s)
- Yong Wu
- Center of Excellence for the Medical Consequences of SCI, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Lauren Collier
- Center of Excellence for the Medical Consequences of SCI, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Weiping Qin
- Center of Excellence for the Medical Consequences of SCI, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Graham Creasey
- VA Palo Alto Health Care System, Stanford University, Palo Alto, CA, USA
| | - William A Bauman
- Center of Excellence for the Medical Consequences of SCI, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Jonathan Jarvis
- School of Biomedical Sciences, University of Liverpool, Liverpool, UK
| | - Christopher Cardozo
- Center of Excellence for the Medical Consequences of SCI, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
- Department of Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
45
|
McBain RA, Boswell-Ruys CL, Lee BB, Gandevia SC, Butler JE. Abdominal Muscle Training Can Enhance Cough After Spinal Cord Injury. Neurorehabil Neural Repair 2013; 27:834-43. [DOI: 10.1177/1545968313496324] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background. Respiratory complications in people with high-level spinal cord injury (SCI) are a major cause of morbidity and mortality, particularly because of a reduced ability to cough as a result of abdominal muscle paralysis. Objective. We investigated the effect of cough training combined with functional electrical stimulation (FES) over the abdominal muscles for 6 weeks to observe whether training could improve cough strength. Methods. Fifteen SCI subjects (C4-T5) trained for 6 weeks, 5 days per week (5 sets of 10 coughs per day) in a randomized crossover design study. Subjects coughed voluntarily at the same time as a train of electrical stimulation was delivered over the abdominal muscles via posterolaterally positioned electrodes (50 Hz, 3 seconds). Measurements were made of esophageal (Pes) and gastric (Pga) expiratory pressures and the peak expiratory flow (PEFcough) produced at the 3 time points of before, during, and after the training. Results. During voluntary coughs, FES cough stimulation improved Pga, Pes, and PEFcough acutely, 20-fold, 4-fold, and 50%, respectively. Six weeks of cough training significantly increased Pga (37.1 ± 2.0 to 46.5 ± 2.9 cm H2O), Pes (35.4 ± 2.7 to 48.1 ± 2.9 cm H2O), and PEFcough (3.1 ± 0.1 to 3.6 ± 0.1 L/s). Cough training also improved pressures and flow during voluntary unstimulated coughs. Conclusions. FES of abdominal muscles acutely increases mechanical output in coughing in high-level SCI subjects. Six weeks of cough training further increases gastric and esophageal cough pressures and expiratory cough flow during stimulated cough maneuvers.
Collapse
Affiliation(s)
- Rachel A. McBain
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Randwick Campus, Randwick, New South Wales, Australia
| | - Claire L. Boswell-Ruys
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Randwick Campus, Randwick, New South Wales, Australia
| | - Bonsan B. Lee
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Randwick Campus, Randwick, New South Wales, Australia
- Prince of Wales Hospital, Randwick, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Randwick Campus, Randwick, New South Wales, Australia
| | - Jane E. Butler
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Randwick Campus, Randwick, New South Wales, Australia
| |
Collapse
|
46
|
Ryan TE, Erickson ML, Young HJ, McCully KK. Case report: endurance electrical stimulation training improves skeletal muscle oxidative capacity in chronic spinal cord injury. Arch Phys Med Rehabil 2013; 94:2559-2561. [PMID: 23816924 DOI: 10.1016/j.apmr.2013.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To describe the use of a novel neuromuscular electrical stimulation (NMES) endurance exercise protocol and its effects on skeletal muscle oxidative capacity. DESIGN Case report, pre/post intervention. SETTING University-based trial. PARTICIPANT A 39-year-old man who suffered a motor complete spinal cord injury (C5-6, ASIA Impairment Scale grade A). INTERVENTION Twenty-four weeks of endurance NMES that consisted of progressive increases in the twitch frequency, duration of sessions, and sessions per week. MAIN OUTCOME MEASURE Mitochondrial capacity was measured, in vivo, as the rate of recovery of muscle oxygen consumption using near-infrared spectroscopy. RESULTS The rate of recovery of muscle oxygen consumption increased approximately 3-fold from 0.52 to 1.43, 1.46, and 1.40/min measured on 3 separate occasions during week 12 of training, and 1.57/min after 24 weeks of NMES endurance training. CONCLUSION The findings of this study suggest that NMES endurance training using twitches can increase mitochondrial capacity to comparable levels measured in nonparalyzed muscles of sedentary able-bodied controls.
Collapse
Affiliation(s)
- Terence E Ryan
- Department of Kinesiology, University of Georgia, Athens, GA.
| | | | - Hui-Ju Young
- Department of Kinesiology, University of Georgia, Athens, GA
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, GA
| |
Collapse
|
47
|
Ryan TE, Brizendine JT, Backus D, McCully KK. Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil 2013; 94:2166-73. [PMID: 23816921 DOI: 10.1016/j.apmr.2013.06.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To examine the effects of 16 weeks of electrically induced resistance training on insulin resistance and glucose tolerance, and changes in muscle size, composition, and metabolism in paralyzed muscle. DESIGN Pre-post intervention. SETTING University-based trial. PARTICIPANTS Participants (N=14; 11 men and 3 women) with chronic (>2y post spinal cord injury), motor complete spinal cord injury. INTERVENTION Home-based electrically induced resistance exercise training twice weekly for 16 weeks. MAIN OUTCOME MEASURES Plasma glucose and insulin throughout a standard clinical oral glucose tolerance test, thigh muscle and fat mass via dual-energy x-ray absorptiometry, quadriceps and hamstrings muscle size and composition via magnetic resonance imaging, and muscle oxidative metabolism using phosphorus magnetic resonance spectroscopy. RESULTS Muscle mass increased in all participants (mean ± SD, 39%±27%; range, 5%-84%). The mean change ± SD in intramuscular fat was 3%±22%. Phosphocreatine mean recovery time constants ± SD were 102±24 and 77±18 seconds before and after electrical stimulation-induced resistance training, respectively (P<.05). There was no improvement in fasting blood glucose levels, homeostatic model assessment calculated insulin resistance, 2-hour insulin, or 2-hour glucose. CONCLUSIONS Sixteen weeks of electrical stimulation-induced resistance training increased muscle mass, but did not reduce intramuscular fat. Similarly, factors associated with insulin resistance or glucose tolerance did not improve with training. We did find a 25% improvement in mitochondrial function, as measured by phosphocreatine recovery rates. Larger improvements in mitochondrial function may translate into improved glucose tolerance and insulin resistance.
Collapse
Affiliation(s)
- Terence E Ryan
- Department of Kinesiology, University of Georgia, Athens, GA.
| | | | | | | |
Collapse
|
48
|
Functional electrical stimulation elliptical stepping versus cycling in spinal cord-injured individuals. Clin Biomech (Bristol, Avon) 2012; 27:731-7. [PMID: 22516622 DOI: 10.1016/j.clinbiomech.2012.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND The cardiorespiratory responses and mechanical efficiencies of two modalities of functional electrical stimulation augmented leg exercises - isokinetic cycling and isokinetic elliptical stepping - were compared amongst individuals with spinal cord injury. METHODS Five subjects performed seated isokinetic evoked cycling and elliptical stepping leg exercise at 10, 20 and 30rev·min(-1) pedal cadences. 3-D motion analysis and force transducers attached onto the foot pedals quantified the external forces and power outputs developed by each lower extremity. Hip, knee and ankle joints power were derived via inverse dynamics analysis. The subjects' cardiorespiratory responses during exercise were measured by respiratory gas analysis. FINDINGS Ensemble-averaged oxygen uptakes across pedal cadences were higher during stepping (448 (75) ml·min(-1)) compared to cycling (422 (54) ml·min(-1)). External power outputs and metabolic efficiencies during stepping (9.9 (8.3) W, 2.9 (3.2) %) were double those observed during cycling (5.3 (6.3) W, 1.6 (1.9) %). Cumulative internal and external leg joint powers during stepping were twice higher than cycling, but the stepping mechanical efficiencies derived from inverse dynamics analysis were comparable to cycling (76.3 (21.2) % and 63.6 (12.3) % respectively). Heart rate responses were similar between cycling and stepping, while carbon dioxide production and expired ventilation were slightly higher during elliptical stepping. INTERPRETATION Both exercise modalities could deliver appropriate training stimuli for improving the aerobic fitness and leg pedalling strength of spinal cord-injured individuals. However electrical stimulation-enhanced elliptical stepping might provide greater exercise dose-potency for leg muscle strengthening than electrically-enhanced cycling due to the higher power outputs observed.
Collapse
|
49
|
Systematic review of the methodological quality and outcome measures utilized in exercise interventions for adults with spinal cord injury. Spinal Cord 2012; 50:718-27. [DOI: 10.1038/sc.2012.78] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Florensa-Vila J. Time-course response in serum markers of bone turnover to a single-bout of electrical stimulation in patients with recent spinal cord injury. Eur J Appl Physiol 2012; 113:89-97. [PMID: 22576416 DOI: 10.1007/s00421-012-2416-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/30/2012] [Indexed: 12/14/2022]
Abstract
The objective of the present repeat-measures study was to determine whether plasma serum levels of testosterone, cortisol, osteocalcin or type I collagen C-telopeptide (CT) are acutely affected following an electro-myostimulation (EMS) bout, and their relation to bone mineral density and muscle mass. Ten men with recent (8 weeks) thoracic spinal cord injury (SCI) (ASIA A) and 10 age-matched able-bodied (AB) men performed one EMS bout on the quadriceps femoris muscle. Blood samples were drawn at basal condition, immediately after EMS, and 15 min, 30 min, 24 h and 48 h post-EMS. Muscle cross-sectional area was measured by magnetic resonance imaging. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry. In the SCI group, a significant decrease in testosterone, cortisol and CT together with a significant increase in testosterone/cortisol ratio and osteocalcin/CT ratio was observed after EMS. For the AB subjects, only testosterone and CT decreased significantly following EMS. Muscle size was only related to testosterone/cortisol ratio in the SCI sample (R = 0.659, p < 0.05), whereas BMD did not show any relation to any biomarker. Acute EMS in recent spinal cord injured men seems to induce positive effects on bone turnover biomarkers, and anabolic and catabolic hormones.
Collapse
|