1
|
Hosseinzadeh Anvar L, Moosavi SE, Charsouei S, Zeinalzadeh N, Nikanfar M, Ahmadalipour A. Association Between the Endocannabinoid System-Related Gene Variants and Epilepsy. Mol Neurobiol 2024; 61:8967-8974. [PMID: 38578355 DOI: 10.1007/s12035-024-04132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The endocannabinoid system (ECS) is an intricate network consisting of receptors, enzymes, and endogenous ligands that play a pivotal role in various neurological processes. It has been implicated in the pathophysiology of several neurological disorders, including epilepsy. Extensive research has demonstrated the involvement of genetic factors in influencing the susceptibility to and progression of epilepsy. In this study, we focused on investigating the connection between genetic variations in genes related to the ECS and the occurrence of epilepsy. Some ECS-related gene variants were selected and genotyping was performed using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique. Interestingly, CNR1 rs12720071 genotype (OR 16.33, 95% CI 1.8-149; p = 0.001) showed an association with generalized epilepsy and MGLL rs604300 genotype (OR 2, 95% CI 1.1-3.4; p = 0.013) demonstrated a relationship with females diagnosed with focal epilepsy. So, studying CNR1, MGLL, and their genetic variations provides insights into the role of the endocannabinoid system in health and diseases. Moreover, they hold the potential to pave the way for the development of novel therapeutic approaches specifically targeting them.
Collapse
Affiliation(s)
- Leila Hosseinzadeh Anvar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Ebrahim Moosavi
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Charsouei
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Narges Zeinalzadeh
- Department of Animal Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Hosseinzadeh Anvar L, Ahmadalipour A. Fatty acid amide hydrolase C385A polymorphism affects susceptibility to various diseases. Biofactors 2023; 49:62-78. [PMID: 36300805 DOI: 10.1002/biof.1911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/24/2022] [Indexed: 11/08/2022]
Abstract
The endocannabinoid (eCB) system is an important neuromodulatory system with its extensive network of receptors throughout the human body that has complex actions in the nervous system, immune system, and all of the body's other organs. Fatty acid amide hydrolase (FAAH) is an important membrane-bound homodimeric degrading enzyme that controls the biological activity of N-arachidonoylethanolamide (AEA) in the eCB system and other relevant bioactive lipids. It has been shown that several single nucleotide polymorphisms (SNPs) of FAAH are associated with various phenotypes and diseases including cardiovascular, endocrine, drug abuse, and neuropsychiatric disorders. A common functional and most studied polymorphism of this gene is C385A (rs324420), which results in the replacement of a conserved proline to threonine in the FAAH enzyme structure, leads to a reduction of the activity and expression of FAAH, compromises the inactivation of AEA and causes higher synaptic concentrations of AEA that can be associated with several various phenotypes. The focus of this review is on evidence-based studies on the associations of the FAAH C385A polymorphism and the various diseases or traits. Although there was variability in the results of these reports, the overall consensus is that the FAAH C385A genotype can affect susceptibility to some multifactorial disorders and can be considered a potential therapeutic target.
Collapse
Affiliation(s)
- Leila Hosseinzadeh Anvar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
4
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, López-Picón F, Morcuende Á, Femenía T, Manzanares J. Biomarkers of the Endocannabinoid System in Substance Use Disorders. Biomolecules 2022; 12:biom12030396. [PMID: 35327588 PMCID: PMC8946268 DOI: 10.3390/biom12030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite substance use disorders (SUD) being one of the leading causes of disability and mortality globally, available therapeutic approaches remain ineffective. The difficulty in accurately characterizing the neurobiological mechanisms involved with a purely qualitative diagnosis is an obstacle to improving the classification and treatment of SUD. In this regard, identifying central and peripheral biomarkers is essential to diagnosing the severity of drug dependence, monitoring therapeutic efficacy, predicting treatment response, and enhancing the development of safer and more effective pharmacological tools. In recent years, the crucial role that the endocannabinoid system (ECS) plays in regulating the reinforcing and motivational properties of drugs of abuse has been described. This has led to studies characterizing ECS alterations after exposure to various substances to identify biomarkers with potential diagnostic, prognostic, or therapeutic utility. This review aims to compile the primary evidence available from rodent and clinical studies on how the ECS components are modified in the context of different substance-related disorders, gathering data from genetic, molecular, functional, and neuroimaging experimental approaches. Finally, this report concludes that additional translational research is needed to further characterize the modifications of the ECS in the context of SUD, and their potential usefulness in the necessary search for biomarkers.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Francisco López-Picón
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, 20520 Turku, Finland;
| | - Álvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
| | - Teresa Femenía
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965-919-248
| |
Collapse
|
5
|
Mills L, Lintzeris N, O'Malley M, Arnold JC, McGregor IS. Prevalence and correlates of cannabis use disorder among Australians using cannabis products to treat a medical condition. Drug Alcohol Rev 2022; 41:1095-1108. [PMID: 35172040 DOI: 10.1111/dar.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Prior research has examined the prevalence and correlates of cannabis use disorder (CUD) in people who use cannabis; however, these are poorly described for people using cannabis for medical reasons. METHODS Data came from a 2018 to 2019 online, anonymous, cross-sectional survey of Australians reporting using either illicit or licit cannabis for medical reasons within the past year. Included were questions on demographics, current and lifetime patterns of cannabis use, clinical conditions for which medical cannabis was used, and individual criteria for CUD and cannabis withdrawal syndrome. Bayesian Horseshoe logistic regression models were used to identify covariates associated with meeting CUD DSM-5 conditions for any-CUD (≥2/11 criteria) and moderate-severe-CUD (≥4/11). RESULTS A total of 905 participants were included in the analysis. The majority (98%) used illicit cannabis products. Criteria for any-CUD criteria were met by 290 (32.0%), and 117 (12.9%) met criteria for moderate-severe-CUD. Tolerance (21%) and withdrawal (35%) were the most commonly met criteria. Correlates with the strongest association with CUD were inhaled route of administration [odds ratio (OR) = 2.96, 95% credible interval 1.11, 7.06], frequency of cannabis use (OR = 1.24, 1.11-1.35), proportion of cannabis for medical reasons (OR = 0.83, 0.74, 0.94), frequency of tobacco use (OR = 1.10, 1.03, 1.17), age (OR = 0.75, 0.64, 0.90) and pain as main clinical indication (OR = 0.58, 0.36, 1.00). DISCUSSION AND CONCLUSIONS Prevalence of CUD in medical cannabis users appears comparable to 'recreational' users, with many similar correlates. CUD was associated with using cannabis to treat mental health rather than pain conditions and inhaled over other routes of administration.
Collapse
Affiliation(s)
- Llewellyn Mills
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, Australia.,Discipline of Addiction Medicine, Faculty of Medicine and Public Health, The University of Sydney, Sydney, Australia.,Drug and Alcohol Clinical Research and Improvement Network, Sydney, Australia.,National Drug and Alcohol Research Centre, UNSW Sydney, Sydney, Australia
| | - Nicholas Lintzeris
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, Australia.,Discipline of Addiction Medicine, Faculty of Medicine and Public Health, The University of Sydney, Sydney, Australia.,Drug and Alcohol Clinical Research and Improvement Network, Sydney, Australia
| | - Michael O'Malley
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, Australia.,Discipline of Addiction Medicine, Faculty of Medicine and Public Health, The University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Iain S McGregor
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Gerra ML, Gerra MC, Tadonio L, Pellegrini P, Marchesi C, Mattfeld E, Gerra G, Ossola P. Early parent-child interactions and substance use disorder: An attachment perspective on a biopsychosocial entanglement. Neurosci Biobehav Rev 2021; 131:560-580. [PMID: 34606823 DOI: 10.1016/j.neubiorev.2021.09.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
This review aims to elucidate environmental and genetic factors, as well as their epigenetic and neuroendocrine moderators, that may underlie the association between early childhood experiences and Substance Use Disorders (SUD), through the lens of parental attachment. Here we review those attachment-related studies that examined the monoaminergic systems, the hypothalamic pituitary adrenal stress response system, the oxytoninergic system, and the endogenous opioid system from a genetic, epigenetic, and neuroendocrine perspective. Overall, the selected studies point to a moderating effect of insecure attachment between genetic vulnerability and SUD, reasonably through epigenetic modifications. Preliminary evidence suggests that vulnerability to SUDs is related with hypo-methylation (e.g. hyper-expression) of high-risk polymorphisms on the monoaminergic and hypothalamic pituitary adrenal system and hyper-methylation (e.g. hypo-expressions) of protective polymorphisms on the opioid and oxytocin system. These epigenetic modifications may induce a cascade of neuroendocrine changes contributing to the subclinical and behavioural manifestations that precede the clinical onset of SUD. Protective and supportive parenting could hence represent a key therapeutic target to prevent addiction and moderate insecure attachment.
Collapse
Affiliation(s)
| | - Maria Carla Gerra
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| | | | | | - Carlo Marchesi
- Psychiatry Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Elizabeth Mattfeld
- Drug Prevention and Health Branch, Prevention Treatment and Rehabilitation Section, United Nations Office on Drugs and Crime, Vienna, Austria.
| | - Gilberto Gerra
- Department of Mental Health, AUSL of Parma, Parma, Italy.
| | - Paolo Ossola
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
7
|
Holz NE, Häge A, Plichta MM, Boecker-Schlier R, Jennen-Steinmetz C, Baumeister S, Meyer-Lindenberg A, Laucht M, Banaschewski T, Brandeis D. Early Maternal Care and Amygdala Habituation to Emotional Stimuli in Adulthood. Soc Cogn Affect Neurosci 2021; 16:1100-1110. [PMID: 33963390 PMCID: PMC8483279 DOI: 10.1093/scan/nsab059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that maternal care constitutes a protective factor for psychopathology which may be conditional on the level of family adversity. Given that psychopathology is frequently linked with social deficits, and the amygdala with social functioning, we investigated the impact of early maternal care on amygdala function under high versus low familial risk for psychopathology. Amygdala activity and habituation during an emotional face-matching paradigm was analyzed in participants of an epidemiological cohort study followed since birth (N=172, 25 years). Early mother-infant interaction was assessed during a standardized nursing and play setting at the age of 3 months. Information on familial risk during the offspring's childhood and on the participants' lifetime psychopathology was obtained with diagnostic interviews. An interaction between maternal stimulation and familial risk was found on amygdala habituation but not on activation, with higher maternal stimulation predicting stronger amygdala habituation in the familial risk group only. Furthermore, amygdala habituation correlated inversely with ADHD diagnoses. The findings underline the long-term importance of early maternal care on the offspring´s socioemotional neurodevelopment and of interventions targeting maternal sensitivity early in life, particularly by increasing maternal interactive behavior in those with familial risk.
Collapse
Affiliation(s)
- Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Alexander Häge
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Michael M Plichta
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany.,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-Universität Frankfurt am Main, Hoffmann-Str. 10, Frankfurt am Main 60528, Germany
| | - Regina Boecker-Schlier
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Christine Jennen-Steinmetz
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, Mannheim 68159, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Manfred Laucht
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumünsterallee 9, Zurich 8032, Switzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumünsterallee 9, Zurich 8032, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center for Integrative Human Physiology, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
8
|
Fitzgerald JM, Chesney SA, Lee TS, Brasel K, Larson CL, Hillard CJ, deRoon-Cassini TA. Circulating endocannabinoids and prospective risk for depression in trauma-injury survivors. Neurobiol Stress 2021; 14:100304. [PMID: 33614866 PMCID: PMC7876629 DOI: 10.1016/j.ynstr.2021.100304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/19/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Abstract
Biological mechanisms associated with response to trauma may impact risk for depression. One such mechanism is endocannabinoid signaling (eCB), a neuromodulatory system comprised of the CB1 subtype of cannabinoid receptors (CB1R), encoded by the CNR1 gene, and two primary endogenous ligands: 2-arachidonoylglycerol (2-AG) and N-arachidonylethanolamine (AEA), hydrolyzed by monoacylglycerol lipase (gene name MGLL) and fatty acid amide hydrolase (gene name FAAH). Preclinical data suggest that eCB/CB1R signaling acts as a stress buffer and its loss or suppression increases depression-like behaviors. We examined circulating concentrations of the eCBs (2-AG and AEA) days and six months after a traumatic injury as a marker of eCB/CB1R signaling and as predictors of Center for Epidemiologic Studies of Depression Scale-Revised [CESD-R] scores as a measure of depression severity six months after injury. We also explored associations of CNR1, FAAH, and MGLL genetic variance with depression severity at six months. Results from hierarchical multiple linear regressions showed that higher 2-AG serum concentrations after trauma predicted greater depression at six months (β = 0.23, p = 0.007); neither AEA after trauma, nor 2-AG and AEA at six months were significant predictors (p's > 0.305). Carriers of minor allele for the putative single nucleotide polymorphism in the CNR1 gene rs806371 (β = 0.19, p = 0.024) experienced greater depression at six months. These data suggest that the eCB signaling system is highly activated following trauma and that eCB/CB1R activity contributes to long-term depression risk.
Collapse
Affiliation(s)
| | - Samantha A. Chesney
- Froedtert Memorial Lutheran Hospital - Neurological Rehabilitation Services, Milwaukee, WI, USA
| | | | - Karen Brasel
- Oregon Health & Science University, Portland, OR, USA
| | - Christine L. Larson
- University of Wisconsin – Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Cecilia J. Hillard
- Medical College of Wisconsin, Neuroscience Research Center and Department of Pharmacology and Toxicology, Milwaukee, WI, USA
| | - Terri A. deRoon-Cassini
- Medical College of Wisconsin, Department of Surgery, Division of Trauma & Acute Care Surgery, Milwaukee, WI, USA
| |
Collapse
|
9
|
Elkrief L, Spinney S, Vosberg DE, Banaschewski T, Bokde ALW, Quinlan EB, Desrivières S, Flor H, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère Martinot ML, Nees F, Papadopoulos Orfanos D, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Pausova Z, Paus T, Huguet G, Conrod P. Endocannabinoid Gene × Gene Interaction Association to Alcohol Use Disorder in Two Adolescent Cohorts. Front Psychiatry 2021; 12:645746. [PMID: 33959052 PMCID: PMC8093566 DOI: 10.3389/fpsyt.2021.645746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 12/31/2022] Open
Abstract
Genetic markers of the endocannabinoid system have been linked to a variety of addiction-related behaviors that extend beyond cannabis use. In the current study we investigate the relationship between endocannabinoid (eCB) genetic markers and alcohol use disorder (AUD) in European adolescents (14-18 years old) followed in the IMAGEN study (n = 2,051) and explore replication in a cohort of North American adolescents from Canadian Saguenay Youth Study (SYS) (n = 772). Case-control status is represented by a score of more than 7 on the Alcohol Use Disorder Identification Test (AUDIT). First a set-based test method was used to examine if a relationship between the eCB system and AUDIT case/control status exists at the gene level. Using only SNPs that are both independent and significantly associated to case-control status, we perform Fisher's exact test to determine SNP level odds ratios in relation to case-control status and then perform logistic regressions as post-hoc analysis, while considering various covariates. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the most robust SNP×SNP interaction of the five eCB genes with positive AUDIT screen. While no gene-sets were significantly associated to AUDIT scores after correction for multiple tests, in the case/control analysis, 7 SNPs were significantly associated with AUDIT scores of > 7 (p < 0.05; OR<1). Two SNPs remain significant after correction by false discovery rate (FDR): rs9343525 in CNR1 (pcorrected =0.042, OR = 0.73) and rs507961 in MGLL (pcorrected = 0.043, OR = 0.78). Logistic regression showed that both rs9353525 (CNR1) and rs507961 (MGLL) remained significantly associated with positive AUDIT screens (p < 0.01; OR < 1) after correction for multiple covariables and interaction of covariable × SNP. This result was not replicated in the SYS cohort. The GMDR model revealed a significant three-SNP interaction (p = 0.006) involving rs484061 (MGLL), rs4963307 (DAGLA), and rs7766029 (CNR1) predicted case-control status, after correcting for multiple covariables in the IMAGEN sample. A binomial logistic regression of the combination of these three SNPs by phenotype in the SYS cohort showed a result in the same direction as seen in the IMAGEN cohort (BETA = 0.501, p = 0.06). While preliminary, the present study suggests that the eCB system may play a role in the development of AUD in adolescents.
Collapse
Affiliation(s)
- Laurent Elkrief
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Sean Spinney
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Daniel E. Vosberg
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine (PONS), SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, United States
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Andreas Heinz
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires développementales en psychiatrie,” Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie,” Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli and AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- PONS Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Zdenka Pausova
- Departments of Physiology and Nutritional Science, Hospital for Sick Children, Toronto, ON, Canada
| | - Tomáš Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Guillaume Huguet
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Patricia Conrod
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
10
|
Fantauzzi MF, Aguiar JA, Tremblay BJM, Mansfield MJ, Yanagihara T, Chandiramohan A, Revill S, Ryu MH, Carlsten C, Ask K, Stämpfli M, Doxey AC, Hirota JA. Expression of endocannabinoid system components in human airway epithelial cells: impact of sex and chronic respiratory disease status. ERJ Open Res 2020; 6:00128-2020. [PMID: 33344628 PMCID: PMC7737429 DOI: 10.1183/23120541.00128-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis smoking is the dominant route of delivery, with the airway epithelium functioning as the site of first contact. The endocannabinoid system is responsible for mediating the physiological effects of inhaled phytocannabinoids. The expression of the endocannabinoid system in the airway epithelium and contribution to normal physiological responses remains to be defined. To begin to address this knowledge gap, a curated dataset of 1090 unique human bronchial brushing gene expression profiles was created. The dataset included 616 healthy subjects, 136 subjects with asthma, and 338 subjects with COPD. A 32-gene endocannabinoid signature was analysed across all samples with sex and disease-specific analyses performed. Immunohistochemistry and immunoblots were performed to probe in situ and in vitro protein expression. CB1, CB2, and TRPV1 protein signal is detectable in human airway epithelial cells in situ and in vitro, justifying examining the downstream endocannabinoid pathway. Sex status was associated with differential expression of 7 of 32 genes. In contrast, disease status was associated with differential expression of 21 of 32 genes in people with asthma and 26 of 32 genes in people with COPD. We confirm at the protein level that TRPV1, the most differentially expressed candidate in our analyses, was upregulated in airway epithelial cells from people with asthma relative to healthy subjects. Our data demonstrate that the endocannabinoid system is expressed in human airway epithelial cells with expression impacted by disease status and minimally by sex. The data suggest that cannabis consumers may have differential physiological responses in the respiratory mucosa.
Collapse
Affiliation(s)
- Matthew F Fantauzzi
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | | | | | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Toyoshi Yanagihara
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Abiram Chandiramohan
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Spencer Revill
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Min Hyung Ryu
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Martin Stämpfli
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Andrew C Doxey
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,Dept of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Dept of Biology, University of Waterloo, Waterloo, ON, Canada.,Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Zhang H, Guo W, Zhang F, Li R, Zhou Y, Shao F, Feng X, Tan F, Wang J, Gao S, Gao Y, He J. Monoacylglycerol Lipase Knockdown Inhibits Cell Proliferation and Metastasis in Lung Adenocarcinoma. Front Oncol 2020; 10:559568. [PMID: 33363004 PMCID: PMC7756122 DOI: 10.3389/fonc.2020.559568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022] Open
Abstract
Abnormal metabolism is one of the hallmarks of cancer cells. Monoacylglycerol lipase (MGLL), a key enzyme in lipid metabolism, has emerged as an important regulator of tumor progression. In this study, we aimed to characterize the role of MGLL in the development of lung adenocarcinoma (LUAD). To this end, we used tissue microarrays to evaluate the expression of MGLL in LUAD tissue and assessed whether the levels of this protein are correlated with clinicopathological characteristics of LUAD. We found that the expression of MGLL is higher in LUAD samples than that in adjacent non-tumor tissues. In addition, elevated MGLL expression was found to be associated with advanced tumor progression and poor prognosis in LUAD patients. Functional studies further demonstrated that stable short hairpin RNA (shRNA)-mediated knockdown of MGLL inhibits tumor proliferation and metastasis, both in vitro and in vivo, and mechanistically, our data indicate that MGLL regulates Cyclin D1 and Cyclin B1 in LUAD cells. Moreover, we found that knockdown of MGLL suppresses the expression of matrix metalloproteinase 14 (MMP14) in A549 and H322 cells, and in clinical samples, expression of MMP14 is significantly correlated with MGLL expression. Taken together, our results indicate that MGLL plays an oncogenic role in LUAD progression and metastasis and may serve as a potential biomarker for disease prognosis and as a target for the development of personalized therapies.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
deRoon-Cassini TA, Stollenwerk TM, Beatka M, Hillard CJ. Meet Your Stress Management Professionals: The Endocannabinoids. Trends Mol Med 2020; 26:953-968. [PMID: 32868170 PMCID: PMC7530069 DOI: 10.1016/j.molmed.2020.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
The endocannabinoid signaling system (ECSS) is altered by exposure to stress and mediates and modulates the effects of stress on the brain. Considerable preclinical data support critical roles for the endocannabinoids and their target, the CB1 cannabinoid receptor, in the adaptation of the brain to repeated stress exposure. Chronic stress exposure increases vulnerability to mental illness, so the ECSS has attracted attention as a potential therapeutic target for the prevention and treatment of stress-related psychopathology. We discuss human genetic studies indicating that the ECSS contributes to risk for mental illness in those exposed to severe stress and trauma early in life, and we explore the potential difficulties in pharmacological manipulation of the ECSS.
Collapse
Affiliation(s)
- Terri A deRoon-Cassini
- Neuroscience Research Center, USA; Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Margaret Beatka
- Neuroscience Research Center, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cecilia J Hillard
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
13
|
Tardelli M. Monoacylglycerol lipase reprograms lipid precursors signaling in liver disease. World J Gastroenterol 2020; 26:3577-3585. [PMID: 32742127 PMCID: PMC7366061 DOI: 10.3748/wjg.v26.i25.3577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary oversupply of triglycerides represent the hallmark of obesity and connected complications in the liver such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which eventually progress to cirrhosis and hepatocellular carcinoma. Monoacylglycerol lipase is the last enzymatic step in the hydrolysis of triglycerides, generating glycerol and fatty acids (FAs), which are signaling precursors in physiology and disease. Notably, monoacylglycerol lipase (MGL) also hydrolyzes 2-arachidonoylglycerol, which is a potent ligand within the endocannabinoid system, into arachidonic acid - a precursor for prostaglandin synthesis; thus representing a pivotal substrates provider in multiple organs for several intersecting biological pathways ranging from FA metabolism to inflammation, pain and appetite. MGL inhibition has been shown protective in limiting several liver diseases as FAs may drive hepatocyte injury, fibrogenesis and de- activate immune cells, however the complexity of MGL network system still needs further and deeper understanding. The present review will focus on MGL function and FA partitioning in the horizons of liver disease.
Collapse
Affiliation(s)
- Matteo Tardelli
- Division of Gastroenterology and Hepatology, Joan and Sanford I Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY 10021, United States
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Internal Medicine III, Medical University of Vienna, Vienna 1040, Austria
| |
Collapse
|
14
|
Sofis MJ, Budney AJ, Stanger C, Knapp AA, Borodovsky JT. Greater delay discounting and cannabis coping motives are associated with more frequent cannabis use in a large sample of adult cannabis users. Drug Alcohol Depend 2020; 207:107820. [PMID: 31887604 PMCID: PMC7147078 DOI: 10.1016/j.drugalcdep.2019.107820] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Self-regulation deficits expressed through a decreased ability to value future rewards (delay discounting (DD)) and impaired emotion regulation (negative urgency (NU), cannabis coping motives (CCM), and anxiety sensitivity (AS)) relate to more frequent or problematic cannabis use. However, there is a need to better understand how self-regulation and emotion regulation constructs reflect competition between deliberative and reactive systems that drive individual differences in cannabis use patterns. Further, few studies assess frequency of cannabis use within and across days of use, which may obscure differentiation of individual differences. METHODS In a large national sample of 2545 cannabis users, Latent Class Analysis was used to derive participant sub-classes based on two frequency indices, self-reported cannabis use days and times cannabis was used per day. Three classes emerged: Low (1-9 days/month, 1 time/day; 23 %), moderate (10-29 days/month, 2-3 times/day; 41 %), and high (30 days/month, ≥4 times/day; 36 %). Relationships among frequency classes and emotional regulation and impulsivity were assessed with a multinomial logistic regression. RESULTS Higher frequency use was associated with greater DD (χ2 = 6.0, p = .05), greater CCM (χ2 = 73.3, p < .001), and lower cognitive AS (χ2 = 12.1, p = .002), when controlling for demographics, tobacco use, and number of cannabis administration methods. Frequency class and NU were not significantly associated. CONCLUSIONS Identifying meaningful patterns of cannabis use may improve our understanding of individual differences that increase risk of frequent or problematic cannabis use. Excessive delay discounting and using cannabis to cope with negative affect may be relevant targets for treatments designed to reduce cannabis use.
Collapse
Affiliation(s)
- Michael J Sofis
- Geisel School of Medicine, Dartmouth College, Center for Technology and Behavioral Health, 46 Centerra Parkway, Suite 315, Lebanon, NH, USA.
| | - Alan J Budney
- Geisel School of Medicine, Dartmouth College, Center for Technology and Behavioral Health, 46 Centerra Parkway, Suite 315, Lebanon, NH, USA
| | - Catherine Stanger
- Geisel School of Medicine, Dartmouth College, Center for Technology and Behavioral Health, 46 Centerra Parkway, Suite 315, Lebanon, NH, USA
| | - Ashley A Knapp
- Department of Preventive Medicine, Northwestern University Center for Behavioral Intervention Technologies (CBITs), 750 N. Lake Shore Drive Chicago, IL, 60611, USA
| | - Jacob T Borodovsky
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, Box 8134, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Scheyer AF, Melis M, Trezza V, Manzoni OJJ. Consequences of Perinatal Cannabis Exposure. Trends Neurosci 2019; 42:871-884. [PMID: 31604585 DOI: 10.1016/j.tins.2019.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/10/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Cannabis exposure during the perinatal period results in varied and significant consequences in affected offspring. The prevalence of detrimental outcomes of perinatal cannabis exposure is likely to increase in tandem with the broadening of legalization and acceptance of the drug. As such, it is crucial to highlight the immediate and protracted consequences of cannabis exposure on pre- and postnatal development. Here, we identify lasting changes in neurons' learning flexibility (synaptic plasticity) and epigenetic misregulation in animal models of perinatal cannabinoid exposure (using synthetic cannabinoids or active components of the cannabis plant), in addition to significant alterations in social behavior and executive functions. These findings are supported by epidemiological data indicating similar behavioral outcomes throughout life in human offspring exposed to cannabis during pregnancy. Further, we indicate important lingering questions regarding accurate modeling of perinatal cannabis exposure as well as the need for sex- and age-dependent outcome measures in future studies.
Collapse
Affiliation(s)
- Andrew F Scheyer
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Provence, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University, Provence, France/Indiana University, Bloomington, IN, USA
| | - Miriam Melis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; National Institute of Neuroscience, Cagliari, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Olivier J J Manzoni
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Provence, France; Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University, Provence, France/Indiana University, Bloomington, IN, USA.
| |
Collapse
|
16
|
Palmer RHC, McGeary JE, Knopik VS, Bidwell LC, Metrik JM. CNR1 and FAAH variation and affective states induced by marijuana smoking. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:514-526. [PMID: 31184938 DOI: 10.1080/00952990.2019.1614596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Polymorphisms in cannabinoid receptor type 1 (encoded by CNR1) and fatty acid amide hydrolase (encoded by FAAH) have been associated with cannabis dependence, but it remains unknown whether variation within these genes influences cannabis' acute effects on affect. Objective: Conduct a secondary data analysis study to determine whether previously observed acute effects of tetrahydrocannabinol (THC) on mood was dependent upon variation in CNR1 and FAAH. Methods: A balanced placebo design was used crossing marijuana administration (i.e., 0% THC vs. 2.8% THC) with stimulus expectancy. Participants (N = 118; 64% male) provided DNA and completed the Profile of Mood States questionnaire prior to and after smoking. Haplotypes were constructed from genotyped single nucleotide polymorphisms for CNR1 (rs1049353 and rs806368) and FAAH (rs4141964, rs324420, and rs11576941); rs2023239 (CNR1) and rs6703669 (FAAH) were not part of a phased haplotype block. Analyses tested both main and interaction effects for genotype across CNR1 and FAAH, and drug, and expectancy effects. Results: THC increased levels of POMS Tension-Anxiety and Confusion-Bewilderment over and above the effects of variation in CNR1 and FAAH. Significant drug X genotype/haplotype and expectancy X genotype/haplotype interaction effects were observed for some but not all mood states [e.g., 'C' allele carriers of rs2023239 who received THC had higher levels of Anger-Hostility (β= 0.29 (0.12), p= .02) compared to those who received placebo]. Conclusion: These preliminary findings suggest individual differences in mood states after using marijuana depend on genetic variation. Such information might be useful in understanding either motivation for use of marijuana and/or risk for associated behaviors.
Collapse
Affiliation(s)
- Rohan H C Palmer
- a Department of Psychology at Emory University, Behavioral Genetics of Addiction Laboratory , Atlanta , GA , USA
| | - John E McGeary
- b Providence Veterans Affairs Medical Center , Providence , RI , USA.,c Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University , Providence , RI , USA.,d Center for Alcohol and Addiction Studies, Brown University School of Public Health , Providence , RI , USA
| | - Valerie S Knopik
- e Human Development and Family Studies, Purdue University , West Lafayette , IN , USA
| | - L Cinnamon Bidwell
- f Institute for Cognitive Science, University of Colorado at Boulder , Boulder , CO , USA
| | - Jane M Metrik
- b Providence Veterans Affairs Medical Center , Providence , RI , USA.,d Center for Alcohol and Addiction Studies, Brown University School of Public Health , Providence , RI , USA
| |
Collapse
|
17
|
Ma CY, Madden P, Gontarz P, Wang T, Zhang B. FeatSNP: An Interactive Database for Brain-Specific Epigenetic Annotation of Human SNPs. Front Genet 2019; 10:262. [PMID: 31001319 PMCID: PMC6454007 DOI: 10.3389/fgene.2019.00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/08/2019] [Indexed: 11/23/2022] Open
Abstract
FeatSNP is an online tool and a curated database for exploring 81 million common SNPs’ potential functional impact on the human brain. FeatSNP uses the brain transcriptomes of the human population to improve functional annotation of human SNPs by integrating transcription factor binding prediction, public eQTL information, and brain specific epigenetic landscape, as well as information of Topologically Associating Domains (TADs). FeatSNP supports both single and batched SNP searching, and its interactive user interface enables users to explore the functional annotations and generate publication-quality visualization results. FeatSNP is freely available on the internet at FeatSNP.org with all major web browsers supported.
Collapse
Affiliation(s)
- Chun-Yu Ma
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul Gontarz
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Bo Zhang
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Ma CY, Madden P, Gontarz P, Wang T, Zhang B. FeatSNP: An Interactive Database for Brain-Specific Epigenetic Annotation of Human SNPs. Front Genet 2019. [PMID: 31001319 DOI: 10.3389/fgene.2019.00262/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
FeatSNP is an online tool and a curated database for exploring 81 million common SNPs' potential functional impact on the human brain. FeatSNP uses the brain transcriptomes of the human population to improve functional annotation of human SNPs by integrating transcription factor binding prediction, public eQTL information, and brain specific epigenetic landscape, as well as information of Topologically Associating Domains (TADs). FeatSNP supports both single and batched SNP searching, and its interactive user interface enables users to explore the functional annotations and generate publication-quality visualization results. FeatSNP is freely available on the internet at FeatSNP.org with all major web browsers supported.
Collapse
Affiliation(s)
- Chun-Yu Ma
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul Gontarz
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Bo Zhang
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
19
|
Hill MN, Eiland L, Lee TTY, Hillard CJ, McEwen BS. Early life stress alters the developmental trajectory of corticolimbic endocannabinoid signaling in male rats. Neuropharmacology 2018; 146:154-162. [PMID: 30496752 DOI: 10.1016/j.neuropharm.2018.11.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/24/2018] [Indexed: 01/19/2023]
Abstract
Early-life stress modulates the development of cortico-limbic circuits and increases vulnerability to adult psychopathology. Given the important stress-buffering role of endocannabinoid (eCB) signaling, we performed a comprehensive investigation of the developmental trajectory of the eCB system and the impact of exposure to early life stress induced by repeated maternal separation (MS; 3 h/day) from postnatal day 2 (PND2) to PND12. Tissue levels of the eCB molecules anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured after MS exposures, as well under basal conditions at juvenile (PND14), adolescent (PND40) and adult (PND70) timepoints in the prefrontal cortex (PFC), amygdala and hippocampus. We also examined the effects of MS on CB1 receptor binding in these three brain regions at PND40 and PND70. AEA content was found to increase from PND2 into adulthood in a linear manner across all brain regions, while 2-AG was found to exhibit a transient spike during the juvenile period (PND12-14) within the amygdala and PFC, but increased in a linear manner across development in the hippocampus. Exposure to MS resulted in bidirectional changes in AEA and 2-AG tissue levels within the amygdala and hippocampus and produced a sustained reduction in eCB function in the hippocampus at adulthood. CB1 receptor densities across all brain regions were generally found to be downregulated later in life following exposure to MS. Collectively, these data demonstrate that early life stress can alter the normative ontogeny of the eCB system, resulting in a sustained deficit in eCB function, particularly within the hippocampus, in adulthood.
Collapse
Affiliation(s)
- Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology & Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada; Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | - Lisa Eiland
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Tiffany T Y Lee
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
20
|
Hryhorowicz S, Walczak M, Zakerska-Banaszak O, Słomski R, Skrzypczak-Zielińska M. Pharmacogenetics of Cannabinoids. Eur J Drug Metab Pharmacokinet 2018; 43:1-12. [PMID: 28534260 PMCID: PMC5794848 DOI: 10.1007/s13318-017-0416-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the application of medical marijuana and cannabinoid drugs is controversial, it is a part of modern-day medicine. The list of diseases in which cannabinoids are promoted as a treatment is constantly expanding. Cases of significant improvement in patients with a very poor prognosis of glioma or epilepsy have already been described. However, the occurrence of side effects is still difficult to estimate, and the current knowledge of the therapeutic effects of cannabinoids is still insufficient. In our opinion, the answers to many questions and concerns regarding the medical use of cannabis can be provided by pharmacogenetics. Knowledge based on proteins and molecules involved in the transport, action, and metabolism of cannabinoids in the human organism leads us to predict candidate genes which variations are responsible for the presence of the therapeutic and side effects of medical marijuana and cannabinoid-based drugs. We can divide them into: receptor genes-CNR1, CNR2, TRPV1, and GPR55, transporters-ABCB1, ABCG2, SLC6A, biotransformation, biosynthesis, and bioactivation proteins encoded by CYP3A4, CYP2C19, CYP2C9, CYP2A6, CYP1A1, COMT, FAAH, COX2, ABHD6, ABHD12 genes, and also MAPK14. This review organizes the current knowledge in the context of cannabinoids pharmacogenetics according to individualized medicine and cannabinoid drugs therapy.
Collapse
Affiliation(s)
- Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| | - Michal Walczak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Oliwia Zakerska-Banaszak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
- Department of Biochemistry and Biotechnology, University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland
| | | |
Collapse
|
21
|
Cecil CA, Walton E, Jaffee SR, O’Connor T, Maughan B, Relton CL, Smith RG, McArdle W, Gaunt TR, Ouellet-Morin I, Barker ED. Neonatal DNA methylation and early-onset conduct problems: A genome-wide, prospective study. Dev Psychopathol 2018; 30:383-397. [PMID: 28595673 PMCID: PMC7612607 DOI: 10.1017/s095457941700092x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Early-onset conduct problems (CP) are a key predictor of adult criminality and poor mental health. While previous studies suggest that both genetic and environmental risks play an important role in the development of early-onset CP, little is known about potential biological processes underlying these associations. In this study, we examined prospective associations between DNA methylation (cord blood at birth) and trajectories of CP (4-13 years), using data drawn from the Avon Longitudinal Study of Parents and Children. Methylomic variation at seven loci across the genome (false discovery rate < 0.05) differentiated children who go on to develop early-onset (n = 174) versus low (n = 86) CP, including sites in the vicinity of the monoglyceride lipase (MGLL) gene (involved in endocannabinoid signaling and pain perception). Subthreshold associations in the vicinity of three candidate genes for CP (monoamine oxidase A [MAOA], brain-derived neurotrophic factor [BDNF], and FK506 binding protein 5 [FKBP5]) were also identified. Within the early-onset CP group, methylation levels of the identified sites did not distinguish children who will go on to persist versus desist in CP behavior over time. Overall, we found that several of the identified sites correlated with prenatal exposures, and none were linked to known genetic methylation quantitative trait loci. Findings contribute to a better understanding of epigenetic patterns associated with early-onset CP.
Collapse
Affiliation(s)
| | - Esther Walton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK
| | - Sara R. Jaffee
- Department of Psychology, University of Pennsylvania, USA
| | | | - Barbara Maughan
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Caroline L. Relton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK
| | | | - Wendy McArdle
- School of Social and Community Medicine, University of Bristol, UK
| | - Tom R. Gaunt
- School of Social and Community Medicine, University of Bristol, UK
| | | | - Edward D. Barker
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
22
|
Meyer HC, Lee FS, Gee DG. The Role of the Endocannabinoid System and Genetic Variation in Adolescent Brain Development. Neuropsychopharmacology 2018; 43:21-33. [PMID: 28685756 PMCID: PMC5719094 DOI: 10.1038/npp.2017.143] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
During adolescence, both rodent and human studies have revealed dynamic changes in the developmental trajectories of corticolimbic structures, which are known to contribute to the regulation of fear and anxiety-related behaviors. The endocannabinoid (eCB) system critically regulates stress responsivity and anxiety throughout the life span. Emerging evidence suggests that during adolescence, changes in eCB signaling contribute to the maturation of local and corticolimbic circuit populations of neurons, such as mediating the balance between excitatory and inhibitory neurotransmission within the prefrontal cortex. This function of the eCB system facilitates efficient communication within and between brain regions and serves a central role in establishing complex and adaptive cognitive and behavioral processing. Although these peri-adolescent changes in eCB signaling promote brain development and plasticity, they also render this period a particularly sensitive one for environmental perturbations to these normative fluctuations in eCB signaling, such as stress, potentially leading to altered developmental trajectories of neural circuits governing emotional behaviors. In this review, we focus on the role of eCB signaling on the regulation of stress and anxiety-related behaviors both during and after adolescence. Moreover, we discuss the functional implications of human genetic variation in the eCB system for the risk for anxiety and consequences of stress across development and into adulthood.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
23
|
Smith DR, Stanley CM, Foss T, Boles RG, McKernan K. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans. PLoS One 2017; 12:e0187926. [PMID: 29145497 PMCID: PMC5690672 DOI: 10.1371/journal.pone.0187926] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders—alone or in combination with anxiety—compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.
Collapse
Affiliation(s)
- Douglas R. Smith
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
- * E-mail:
| | | | - Theodore Foss
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| | - Richard G. Boles
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| | - Kevin McKernan
- Courtagen Life Sciences, Inc., Woburn, MA, United States of America
| |
Collapse
|
24
|
Natividad LA, Buczynski MW, Herman MA, Kirson D, Oleata CS, Irimia C, Polis I, Ciccocioppo R, Roberto M, Parsons LH. Constitutive Increases in Amygdalar Corticotropin-Releasing Factor and Fatty Acid Amide Hydrolase Drive an Anxious Phenotype. Biol Psychiatry 2017; 82:500-510. [PMID: 28209423 PMCID: PMC5509512 DOI: 10.1016/j.biopsych.2017.01.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) mediates anxiogenic responses by activating CRF type 1 (CRF1) receptors in limbic brain regions. Anxiety is further modulated by the endogenous cannabinoid (eCB) system that attenuates the synaptic effects of stress. In the amygdala, acute stress activates the enzymatic clearance of the eCB N-arachidonoylethanolamine via fatty acid amide hydrolase (FAAH), although it is unclear whether chronic dysregulation of CRF systems induces maladaptive changes in amygdalar eCB signaling. Here, we used genetically selected Marchigian Sardinian P (msP) rats carrying an innate overexpression of CRF1 receptors to study the role of constitutive upregulation in CRF systems on amygdalar eCB function and persistent anxiety-like effects. METHODS We applied behavioral, pharmacological, and biochemical methods to broadly characterize anxiety-like behaviors and amygdalar eCB clearance enzymes in msP versus nonselected Wistar rats. Subsequent studies examined the influence of dysregulated CRF and FAAH systems in altering excitatory transmission in the central amygdala (CeA). RESULTS msPs display an anxious phenotype accompanied by elevations in amygdalar FAAH activity and reduced dialysate N-arachidonoylethanolamine levels in the CeA. Elevations in CRF-CRF1 signaling dysregulate FAAH activity, and this genotypic difference is normalized with pharmacological blockade of CRF1 receptors. msPs also exhibit elevated baseline glutamatergic transmission in the CeA, and dysregulated CRF-FAAH facilitates stress-induced increases in glutamatergic activity. Treatment with an FAAH inhibitor relieves sensitized glutamatergic responses in msPs and attenuates the anxiety-like phenotype. CONCLUSIONS Pathological anxiety and stress hypersensitivity are driven by constitutive increases in CRF1 signaling that dysregulate N-arachidonoylethanolamine signaling mechanisms and reduce neuronal inhibitory control of CeA glutamatergic synapses.
Collapse
Affiliation(s)
- Luis A Natividad
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Matthew W Buczynski
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California; Virginia Tech School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Melissa A Herman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Dean Kirson
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Christopher S Oleata
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Cristina Irimia
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Ilham Polis
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California.
| | - Loren H Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
25
|
Bogdan R, Salmeron BJ, Carey CE, Agrawal A, Calhoun VD, Garavan H, Hariri AR, Heinz A, Hill MN, Holmes A, Kalin NH, Goldman D. Imaging Genetics and Genomics in Psychiatry: A Critical Review of Progress and Potential. Biol Psychiatry 2017; 82:165-175. [PMID: 28283186 PMCID: PMC5505787 DOI: 10.1016/j.biopsych.2016.12.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/17/2022]
Abstract
Imaging genetics and genomics research has begun to provide insight into the molecular and genetic architecture of neural phenotypes and the neural mechanisms through which genetic risk for psychopathology may emerge. As it approaches its third decade, imaging genetics is confronted by many challenges, including the proliferation of studies using small sample sizes and diverse designs, limited replication, problems with harmonization of neural phenotypes for meta-analysis, unclear mechanisms, and evidence that effect sizes may be more modest than originally posited, with increasing evidence of polygenicity. These concerns have encouraged the field to grow in many new directions, including the development of consortia and large-scale data collection projects and the use of novel methods (e.g., polygenic approaches, machine learning) that enhance the quality of imaging genetic studies but also introduce new challenges. We critically review progress in imaging genetics and offer suggestions and highlight potential pitfalls of novel approaches. Ultimately, the strength of imaging genetics and genomics lies in their translational and integrative potential with other research approaches (e.g., nonhuman animal models, psychiatric genetics, pharmacologic challenge) to elucidate brain-based pathways that give rise to the vast individual differences in behavior as well as risk for psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri.
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Caitlin E Carey
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, University of New Mexico, Albuquerque, New Mexico; Departments of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, New Mexico; Electronic and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, Vermont
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | - Andreas Heinz
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin; Neuroscience Training Program (NHK, RK, PHR, DPMT, MEE), University of Wisconsin, Madison, Wisconsin; Wisconsin National Primate Research Center (NHK, MEE), Madison, Wisconsin
| | - David Goldman
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| |
Collapse
|
26
|
Di Iorio CR, Carey CE, Michalski LJ, Corral-Frias NS, Conley ED, Hariri AR, Bogdan R. Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function. Psychoneuroendocrinology 2017; 80:170-178. [PMID: 28364727 PMCID: PMC5685810 DOI: 10.1016/j.psyneuen.2017.03.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 01/17/2023]
Abstract
Early life stress may precipitate psychopathology, at least in part, by influencing amygdala function. Converging evidence across species suggests that links between childhood stress and amygdala function may be dependent upon hypothalamic-pituitary-adrenal (HPA) axis function. Using data from college-attending non-Hispanic European-Americans (n=308) who completed the Duke Neurogenetics Study, we examined whether early life stress (ELS) and HPA axis genetic variation interact to predict threat-related amygdala function as well as psychopathology symptoms. A biologically-informed multilocus profile score (BIMPS) captured HPA axis genetic variation (FKBP5 rs1360780, CRHR1 rs110402; NR3C2 rs5522/rs4635799) previously associated with its function (higher BIMPS are reflective of higher HPA axis activity). BOLD fMRI data were acquired while participants completed an emotional face matching task. ELS and depression and anxiety symptoms were measured using the childhood trauma questionnaire and the mood and anxiety symptom questionnaire, respectively. The interaction between HPA axis BIMPS and ELS was associated with right amygdala reactivity to threat-related stimuli, after accounting for multiple testing (empirical-p=0.016). Among individuals with higher BIMPS (i.e., the upper 21.4%), ELS was positively coupled with threat-related amygdala reactivity, which was absent among those with average or low BIMPS. Further, higher BIMPS were associated with greater self-reported anxious arousal, though there was no evidence that amygdala function mediated this relationship. Polygenic variation linked to HPA axis function may moderate the effects of early life stress on threat-related amygdala function and confer risk for anxiety symptomatology. However, what, if any, neural mechanisms may mediate the relationship between HPA axis BIMPS and anxiety symptomatology remains unclear.
Collapse
Affiliation(s)
- Christina R Di Iorio
- BRAIN Lab, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Caitlin E Carey
- BRAIN Lab, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lindsay J Michalski
- BRAIN Lab, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nadia S Corral-Frias
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Ryan Bogdan
- BRAIN Lab, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA; Neurosciences Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA; Molecular Genetics and Genomics Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA; Human and Statistical Genetics Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
Corral-Frías NS, Pizzagalli DA, Carré JM, Michalski LJ, Nikolova YS, Perlis RH, Fagerness J, Lee MR, Conley ED, Lancaster TM, Haddad S, Wolf A, Smoller JW, Hariri AR, Bogdan R. COMT Val(158) Met genotype is associated with reward learning: a replication study and meta-analysis. GENES BRAIN AND BEHAVIOR 2017; 15:503-13. [PMID: 27138112 DOI: 10.1111/gbb.12296] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/25/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
Identifying mechanisms through which individual differences in reward learning emerge offers an opportunity to understand both a fundamental form of adaptive responding as well as etiological pathways through which aberrant reward learning may contribute to maladaptive behaviors and psychopathology. One candidate mechanism through which individual differences in reward learning may emerge is variability in dopaminergic reinforcement signaling. A common functional polymorphism within the catechol-O-methyl transferase gene (COMT; rs4680, Val(158) Met) has been linked to reward learning, where homozygosity for the Met allele (linked to heightened prefrontal dopamine function and decreased dopamine synthesis in the midbrain) has been associated with relatively increased reward learning. Here, we used a probabilistic reward learning task to asses response bias, a behavioral form of reward learning, across three separate samples that were combined for analyses (age: 21.80 ± 3.95; n = 392; 268 female; European-American: n = 208). We replicate prior reports that COMT rs4680 Met allele homozygosity is associated with increased reward learning in European-American participants (β = 0.20, t = 2.75, P < 0.01; ΔR(2) = 0.04). Moreover, a meta-analysis of 4 studies, including the current one, confirmed the association between COMT rs4680 genotype and reward learning (95% CI -0.11 to -0.03; z = 3.2; P < 0.01). These results suggest that variability in dopamine signaling associated with COMT rs4680 influences individual differences in reward which may potentially contribute to psychopathology characterized by reward dysfunction.
Collapse
Affiliation(s)
- N S Corral-Frías
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, USA.,BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - D A Pizzagalli
- Center For Depression, Anxiety and Stress Research and Neuroimaging Center, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | - J M Carré
- Nipissing University, North Bay, Ontario, Canada
| | - L J Michalski
- BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - Y S Nikolova
- Centre for Addiction and Mental Health Toronto, Ontario, Canada
| | - R H Perlis
- Massachusetts General Hospital and Harvard Medical School, Cambridge, MA, USA.,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - J Fagerness
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - M R Lee
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | | | - T M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - S Haddad
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - A Wolf
- Department of Psychiatry Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - J W Smoller
- Massachusetts General Hospital and Harvard Medical School, Cambridge, MA, USA.,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - A R Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - R Bogdan
- BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
28
|
Melroy-Greif WE, Wilhelmsen KC, Ehlers CL. Genetic variation in FAAH is associated with cannabis use disorders in a young adult sample of Mexican Americans. Drug Alcohol Depend 2016; 166:249-53. [PMID: 27394933 PMCID: PMC4983484 DOI: 10.1016/j.drugalcdep.2016.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cannabis is a commonly used drug and studies have shown that a significant portion of the variation in cannabis use disorders (CUDs) is heritable. Five genes known to play a role in the endocannabinoid system and CUDs were examined in a community sample of young adult Mexican Americans (MAs): CNR1, MGLL, FAAH, DAGLA, and DAGLB. METHODS Gene-based tests were run to test for association between each gene and two DSM-5 cannabis phenotypes. Subsequent linear regressions were run in PLINK using an additive model to determine which single nucleotide polymorphisms (SNPs) were driving the association. RESULTS FAAH was significantly associated with DSM-5 cannabis use disorder group count (DSM-5 CUD) using a gene-based test (p=0.0035). This association survived Bonferroni correction for multiple testing at p<0.004. Post hoc analyses suggested this association was driven by two common (minor allele frequency >5%) SNPs in moderate linkage disequilibrium, rs324420 and rs4141964, at p=0.0014 and p=0.0023, respectively. In both cases the minor allele increased risk for DSM-5 CUD. CONCLUSIONS Genetic variation in FAAH was associated with DSM-5 CUD in MAs. This association was primarily driven by the missense SNP rs324420. In vitro work has provided evidence that the risk allele generates an enzyme with decreased expression and cellular stability. Although this SNP has been previously associated with substance use in the literature, this is the first association in a young adult MA sample.
Collapse
Affiliation(s)
- Whitney E. Melroy-Greif
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kirk C. Wilhelmsen
- Department of Genetics and Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cindy L. Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA,Corresponding author: Dr. Cindy L. Ehlers, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, CA 92037, Mail SP30-1501, Tel: 858-784-7058, Fax: 858-784-7409,
| |
Collapse
|
29
|
Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions. Biol Psychiatry 2016; 80:356-62. [PMID: 26923505 PMCID: PMC4935637 DOI: 10.1016/j.biopsych.2015.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Preclinical models reveal that stress-induced amygdala activity and impairment in fear extinction reflect reductions in anandamide driven by corticotropin-releasing factor receptor type 1 (CRF1) potentiation of the anandamide catabolic enzyme fatty acid amide hydrolase. METHODS Here, we provide clinical translation for the importance of these molecular interactions using an imaging genetics strategy to examine whether interactions between genetic polymorphisms associated with differential anandamide (FAAH rs324420) and CRF1 (CRHR1 rs110402) signaling modulate amygdala function and anxiety disorder diagnosis. RESULTS Analyses revealed that individuals with a genetic background predicting relatively high anandamide and CRF1 signaling exhibited blunted basolateral amygdala habituation, which further mediated increased risk for anxiety disorders among these same individuals. CONCLUSIONS The convergence of preclinical and clinical data suggests that interactions between anandamide and CRF1 represent a fundamental molecular mechanism regulating amygdala function and anxiety. Our results further highlight the potential of imaging genetics to powerfully translate complex preclinical findings to clinically meaningful human phenotypes.
Collapse
|
30
|
Bogdan R, Winstone JMA, Agrawal A. Genetic and Environmental Factors Associated with Cannabis Involvement. CURRENT ADDICTION REPORTS 2016; 3:199-213. [PMID: 27642547 PMCID: PMC5019486 DOI: 10.1007/s40429-016-0103-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately 50-70% of the variation in cannabis use and use disorders can be attributed to heritable factors. For cannabis use, the remaining variance can be parsed in to familial and person-specific environmental factors while for use disorders, only the latter contribute. While numerous candidate gene studies have identified the role of common variation influencing liability to cannabis involvement, replication has been elusive. To date, no genomewide association study has been sufficiently powered to identify significant loci. Despite this, studies adopting polygenic techniques and integrating genetic variation with neural phenotypes and measures of environmental risk, such as childhood adversity, are providing promising new leads. It is likely that the small effect sizes associated with variants related to cannabis involvement will only be robustly identified in substantially larger samples. Results of such large-scale efforts will provide valuable single variant targets for translational research in neurogenetic, pharmacogenetic and non-human animal models as well as polygenic risk indices that can be used to explore a host of other genetic hypotheses related to cannabis use and misuse.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN lab, Department of Psychological and Brain Sciences, Washington University in St. Louis
| | - Jonathan MA Winstone
- BRAIN lab, Department of Psychological and Brain Sciences, Washington University in St. Louis
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
31
|
Bogdan R, Pagliaccio D, Baranger DAA, Hariri AR. Genetic Moderation of Stress Effects on Corticolimbic Circuitry. Neuropsychopharmacology 2016; 41:275-96. [PMID: 26189450 PMCID: PMC4677127 DOI: 10.1038/npp.2015.216] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 02/06/2023]
Abstract
Stress exposure is associated with individual differences in corticolimbic structure and function that often mirror patterns observed in psychopathology. Gene x environment interaction research suggests that genetic variation moderates the impact of stress on risk for psychopathology. On the basis of these findings, imaging genetics, which attempts to link variability in DNA sequence and structure to neural phenotypes, has begun to incorporate measures of the environment. This research paradigm, known as imaging gene x environment interaction (iGxE), is beginning to contribute to our understanding of the neural mechanisms through which genetic variation and stress increase psychopathology risk. Although awaiting replication, evidence suggests that genetic variation within the canonical neuroendocrine stress hormone system, the hypothalamic-pituitary-adrenal axis, contributes to variability in stress-related corticolimbic structure and function, which, in turn, confers risk for psychopathology. For iGxE research to reach its full potential it will have to address many challenges, of which we discuss: (i) small effects, (ii) measuring the environment and neural phenotypes, (iii) the absence of detailed mechanisms, and (iv) incorporating development. By actively addressing these challenges, iGxE research is poised to help identify the neural mechanisms underlying genetic and environmental associations with psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- Department of Psychology, BRAIN Lab, Washington University in St Louis, St Louis, MO, USA
- Neurosciences Program, Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO, USA
| | - David Pagliaccio
- Neurosciences Program, Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO, USA
| | - David AA Baranger
- Department of Psychology, BRAIN Lab, Washington University in St Louis, St Louis, MO, USA
- Neurosciences Program, Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Laboratory of NeuroGenetics, Duke University, Durham, NC, USA
| |
Collapse
|