1
|
Schuhmann F, Bordallo HN, Pezeshkian W. Physics-Based Protein Networks Might Recover Effectful Mutations─a Case Study on Cathepsin G. J Phys Chem B 2024; 128:10043-10050. [PMID: 39357873 PMCID: PMC11492240 DOI: 10.1021/acs.jpcb.4c04140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Molecular dynamics simulations have been remarkably effective for observing and analyzing structures and dynamics of proteins, with longer trajectories being computed every day. Still, often, relevant time scales are not observed. Adequately analyzing the generated trajectories can highlight the interesting areas within a protein such as mutation sites or allosteric hotspots, which might foreshadow dynamics untouched by the simulations. We employ a physics-based protein network and propose that such a network can adequately analyze the protein dynamics. The analysis is conducted on simulations of cathepsin G and neutrophil elastase, which are remarkably similar but with different specificities. However, a single mutation in cathepsin G recovers the specificity of neutrophil elastase. The physics-based network built on the interactions between residues instead of the distances can pinpoint the active triad in the proteins studied. Overall, the network seems to capture the structural behavior better than purely distance-based networks.
Collapse
Affiliation(s)
- Fabian Schuhmann
- Niels
Bohr International Academy, Niels Bohr Institute,
University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Heloisa N. Bordallo
- Niels
Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Weria Pezeshkian
- Niels
Bohr International Academy, Niels Bohr Institute,
University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Kanno R, Kono H, Ryoki A, Ouchi M, Terashima T. Multicomponent Self-Assembly and Self-Sorting of Polymer Micelles in Water: Selective and Switchable Association by Kinetic or Thermodynamic Control. J Am Chem Soc 2024. [PMID: 39404465 DOI: 10.1021/jacs.4c08778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Herein, we report multicomponent self-assembly and self-sorting of polymer micelles in water using mixtures of an anionic random copolymer bearing sodium sulfonate and dodecyl groups and random copolymers carrying poly(ethylene glycol) (PEG) and alkyl groups. In pure water, the anionic copolymer is co-self-assembled with the PEG copolymers to form anion/PEG-fused micelles with a controlled aggregation number. By designing the composition or alkyl groups of PEG copolymers, the fused micelle is reversibly self-sorted into discrete anion or PEG micelles in the presence of NaCl. Co-self-assembly of the anionic copolymer and PEG copolymers is kinetically or thermodynamically controlled, depending on the dynamic properties of the PEG copolymer micelles. Thus, the selective self-assembly of ternary copolymers is also controllable and switchable by temperature: A kinetically favored anion/PEG-fused micelle is predominantly formed in the presence of a kinetically frozen PEG micelle at low temperature, whereas the fused micelle is transformed via polymer chain exchange upon heating into a thermodynamically more stable anion/PEG-fused micelle.
Collapse
Affiliation(s)
- Rikuto Kanno
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Kono
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akiyuki Ryoki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
3
|
Corre MH, Rey B, David SC, Torii S, Chiappe D, Kohn T. The early communication stages between serine proteases and enterovirus capsids in the race for viral disintegration. Commun Biol 2024; 7:969. [PMID: 39122806 PMCID: PMC11316004 DOI: 10.1038/s42003-024-06627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Serine proteases are important environmental contributors of enterovirus biocontrol. However, the structural features of molecular interaction accounting for the susceptibility of enteroviruses to proteases remains unexplained. Here, we describe the molecular mechanisms involved in the recruitment of serine proteases to viral capsids. Among the virus types used, coxsackievirus A9 (CVA9), but not CVB5 and echovirus 11 (E11), was inactivated by Subtilisin A in a host-independent manner, while Bovine Pancreatic Trypsin (BPT) only reduced CVA9 infectivity in a host-dependent manner. Predictive interaction models of each protease with capsid protomers indicate the main targets as internal disordered protein (IDP) segments exposed either on the 5-fold vertex (DE loop VP1) or at the 5/2-fold intersection (C-terminal end VP1) of viral capsids. We further show that a functional binding protease/capsid depends on both the strength and the evolution over time of protease-VP1 complexes, and lastly on the local adaptation of proteases on surrounding viral regions. Finally, we predicted three residues on CVA9 capsid that trigger cleavage by Subtilisin A, one of which may act as a sensor residue contributing to enzyme recognition on the DE loop. Overall, this study describes an important biological mechanism involved in enteroviruses biocontrol.
Collapse
Affiliation(s)
- Marie-Hélène Corre
- Laboratory of Environmental Virology, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015-CH, Lausanne, Switzerland.
| | - Benjamin Rey
- Laboratory of Environmental Virology, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015-CH, Lausanne, Switzerland
| | - Shannon C David
- Laboratory of Environmental Virology, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015-CH, Lausanne, Switzerland
| | - Shotaro Torii
- Laboratory of Environmental Virology, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015-CH, Lausanne, Switzerland
| | - Diego Chiappe
- Proteomics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015-CH, Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015-CH, Lausanne, Switzerland
| |
Collapse
|
4
|
Charlier C, Gavalda S, Grga J, Perrot L, Gabrielli V, Löhr F, Schörghuber J, Lichtenecker R, Arnal G, Marty A, Tournier V, Lippens G. Exploring the pH dependence of an improved PETase. Biophys J 2024; 123:1542-1552. [PMID: 38664965 PMCID: PMC11213969 DOI: 10.1016/j.bpj.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Enzymatic recycling of plastic and especially of polyethylene terephthalate (PET) has shown great potential to reduce its negative impact on our society. PET hydrolases (PETases) have been optimized using rational design and machine learning, but the mechanistic details of the PET depolymerization process remain unclear. Belonging to the carboxylic-ester hydrolase family with a canonical Ser-His-Asp catalytic triad, their observed alkaline pH optimum is generally thought to be related to the protonation state of the catalytic His. Here, we explore this aspect in the context of LCCICCG, an optimized PETase, derived from the leaf-branch compost cutinase enzyme. We use NMR to identify the dominant tautomeric structure of the six histidines. Five show surprisingly low pKa values below 4.0, whereas the catalytic H242 in the active enzyme displays a pKa value that varies from 4.9 to 4.7 when temperatures increase from 30°C to 50°C. Whereas the hydrolytic activity of the enzyme toward a soluble substrate can be modeled by the corresponding protonation/deprotonation curve, an important discrepancy is found when the substrate is the solid plastic. This opens the way to further mechanistic understanding of the PETase activity and underscores the importance of studying the enzyme at the liquid-solid interface.
Collapse
Affiliation(s)
- Cyril Charlier
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Sabine Gavalda
- Carbios, Parc Cataroux - Bâtiment B80, Clermont-Ferrand, France
| | - Jelena Grga
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Laura Perrot
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Valeria Gabrielli
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe, University Frankfurt, Frankfurt am Main, Germany
| | - Julia Schörghuber
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, Vienna, Austria
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, Vienna, Austria; MAG-LAB, Vienna, Austria
| | - Grégory Arnal
- Carbios, Parc Cataroux - Bâtiment B80, Clermont-Ferrand, France
| | - Alain Marty
- Carbios, Parc Cataroux - Bâtiment B80, Clermont-Ferrand, France
| | | | - Guy Lippens
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France.
| |
Collapse
|
5
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
6
|
Ridgway H, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Hoffmann W, Węgrzyn K, Vassilaki N, Mpekoulis G, Zouridakis M, Giastas P, Vidali VP, Kelaidonis K, Matsoukas MT, Dimitriou M, Mavromoustakos T, Tsiodras S, Gorgoulis VG, Karakasiliotis I, Chasapis CT, Matsoukas JM. Novel benzimidazole angiotensin receptor blockers with anti-SARS-CoV-2 activity equipotent to that of nirmatrelvir: computational and enzymatic studies. Expert Opin Ther Targets 2024; 28:437-459. [PMID: 38828744 DOI: 10.1080/14728222.2024.2362675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Hypertension worsens outcomes in SARS-CoV-2 patients. Sartans, a type of antihypertensive angiotensin receptor blocker-(ARB), reduce COVID-19 morbidity and mortality by targeting angiotensin-converting enzyme-2 (ACE2). This study aimed to evaluate the antiviral and antihypertensive effects of nirmatrelvir, commercial sartans (candesartan, losartan, and losartan carboxylic (Exp3174)), and newly synthesized sartans (benzimidazole-N-biphenyl carboxyl (ACC519C) and benzimidazole-N-biphenyl tetrazole (ACC519T)), compared to nirmatrelvir, the antiviral component of Paxlovid. RESEARCH DESIGN AND METHODS Surface plasmon resonance (SPR) and enzymatic studies assessed drug effects on ACE2. Antiviral abilities were tested with SARS-CoV-2-infected Vero E6 cells, and antihypertensive effects were evaluated using angiotensin II-contracted rabbit iliac arteries. RESULTS Benzimidazole-based candesartan and ACC519C showed antiviral activity comparable to nirmatrelvir (95% inhibition). Imidazole-based losartan, Exp3174, and ACC519T were less potent (75%-80% and 50%, respectively), with Exp3174 being the least effective. SPR analysis indicated high sartans-ACE2 binding affinity. Candesartan and nirmatrelvir combined had greater inhibitory and cytopathic effects (3.96%) than individually (6.10% and 5.08%). ACE2 enzymatic assays showed varying effects of novel sartans on ACE2. ACC519T significantly reduced angiotensin II-mediated contraction, unlike nirmatrelvir and ACC519T(2). CONCLUSION This study reports the discovery of a new class of benzimidazole-based sartans that significantly inhibit SARS-CoV-2, likely due to their interaction with ACE2.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
- AquaMem Consultants, Rodeo, NM, USA
| | - Graham J Moore
- Pepmetics Inc, 772 Murphy Place, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| | - Weronika Hoffmann
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Marios Zouridakis
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Petros Giastas
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, Athens, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Veroniki P Vidali
- Natural Products and Bioorganic Chemistry Laboratory, Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | | | | - Marios Dimitriou
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- Faculty of Medicine, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - John M Matsoukas
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
- NewDrug PC, Patras Science Park, Patras, Greece
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
7
|
Das SK, Winghart MO, Han P, Rana D, Zhang ZY, Eckert S, Fondell M, Schnappinger T, Nibbering ETJ, Odelius M. Electronic Fingerprint of the Protonated Imidazole Dimer Probed by X-ray Absorption Spectroscopy. J Phys Chem Lett 2024; 15:1264-1272. [PMID: 38278137 PMCID: PMC10860131 DOI: 10.1021/acs.jpclett.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Protons in low-barrier superstrong hydrogen bonds are typically delocalized between two electronegative atoms. Conventional methods to characterize such superstrong hydrogen bonds are vibrational spectroscopy and diffraction techniques. We introduce soft X-ray spectroscopy to uncover the electronic fingerprints for proton sharing in the protonated imidazole dimer, a prototypical building block enabling effective proton transport in biology and high-temperature fuel cells. Using nitrogen core excitations as a sensitive probe for the protonation status, we identify the X-ray signature of a shared proton in the solvated imidazole dimer in a combined experimental and theoretical approach. The degree of proton sharing is examined as a function of structural variations that modify the shape of the low-barrier potential in the superstrong hydrogen bond. We conclude by showing how the sensitivity to the quantum distribution of proton motion in the double-well potential is reflected in the spectral signature of the shared proton.
Collapse
Affiliation(s)
- Sambit K. Das
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| | - Marc-Oliver Winghart
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Peng Han
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Debkumar Rana
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Zhuang-Yan Zhang
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Thomas Schnappinger
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| | - Erik T. J. Nibbering
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Rix G, Williams RL, Spinner H, Hu VJ, Marks DS, Liu CC. Continuous evolution of user-defined genes at 1-million-times the genomic mutation rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566922. [PMID: 38014077 PMCID: PMC10680746 DOI: 10.1101/2023.11.13.566922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
When nature maintains or evolves a gene's function over millions of years at scale, it produces a diversity of homologous sequences whose patterns of conservation and change contain rich structural, functional, and historical information about the gene. However, natural gene diversity likely excludes vast regions of functional sequence space and includes phylogenetic and evolutionary eccentricities, limiting what information we can extract. We introduce an accessible experimental approach for compressing long-term gene evolution to laboratory timescales, allowing for the direct observation of extensive adaptation and divergence followed by inference of structural, functional, and environmental constraints for any selectable gene. To enable this approach, we developed a new orthogonal DNA replication (OrthoRep) system that durably hypermutates chosen genes at a rate of >10 -4 substitutions per base in vivo . When OrthoRep was used to evolve a conditionally essential maladapted enzyme, we obtained thousands of unique multi-mutation sequences with many pairs >60 amino acids apart (>15% divergence), revealing known and new factors influencing enzyme adaptation. The fitness of evolved sequences was not predictable by advanced machine learning models trained on natural variation. We suggest that OrthoRep supports the prospective and systematic discovery of constraints shaping gene evolution, uncovering of new regions in fitness landscapes, and general applications in biomolecular engineering.
Collapse
|
9
|
Song C, Li H, Zheng C, Zhang T, Zhang Y. Dual Efficacy of a Catalytic Anti-Oligomeric Aβ42 scFv Antibody in Clearing Aβ42 Aggregates and Reducing Aβ Burden in the Brains of Alzheimer's Disease Mice. Mol Neurobiol 2023; 60:5515-5532. [PMID: 37326904 DOI: 10.1007/s12035-023-03406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
One of the primary pathological mechanisms underlying Alzheimer's disease (AD) is the deposition of amyloid β-protein (Aβ42) aggregates in the brain. In this study, a catalytic anti-oligomeric Aβ42 scFv antibody, HS72, was identified by screening a human antibody library, its ability to degrade Aβ42 aggregates was defined, and its role in the reduction of Aβ burden in the AD mouse brain was evaluated. HS72 specifically targeted Aβ42 aggregates with an approximately 14-68 kDa range. Based on molecular docking simulations, HS72 likely catalyzed the hydrolytic cleavage of the His13-His14 bond of Aβ42 chains in an Aβ42 aggregate unit, releasing N/C-terminal fragments and Aβ42 monomers. Degradation of Aβ42 aggregates by HS72 triggered a considerable disassembly or breakdown of the Aβ42 aggregates and greatly reduced their neurotoxicity. Aβ deposit/plaque load in the hippocampus of AD mice was reduced by approximately 27% after 7 days (once daily) of intravenous HS72 administration, while brain neural cells were greatly restored and their morphology was drastically improved. The above efficacies of HS72 were all greater than those of HT7, a simple anti-oligomeric Aβ42 scFv antibody. Although a catalytic anti-oligomeric Aβ42 antibody may have a slightly lower affinity for Aβ42 aggregates than a simple anti-oligomeric Aβ42 antibody, the former may display a stronger overall efficacy (dual efficacy of induction and catalysis) than the latter (induction alone) in clearing Aβ42 aggregates and improving histopathological changes in AD brain. Our findings on the catalytic antibody HS72 indicate the possibility of functional evolution of anti-oligomeric Aβ42 antibodies and provide novel insights into the immunotherapy of AD.
Collapse
Affiliation(s)
- Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Changxin Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
10
|
Matsushita T, Yamochi H, Omiya S, Koyama T, Hatano K, Matsuoka K. Proteolytic polymer: polyacrylamides functionalized with amino acids cleave bovine and human serum albumins. Bioorg Med Chem 2023; 92:117422. [PMID: 37523791 DOI: 10.1016/j.bmc.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Polyacrylamides with various compositions of serine, aspartic acid, and histidine, which are the amino acids involved in the catalytic triad of natural serine protease chymotrypsin, were synthesized and their protein cleavage activity was investigated. SDS-PAGE analysis showed that some of the synthesized ternary copolymers showed cleavage activity against bovine and human serum albumins. Polyacrylamides incorporating a single type of amino acid were also able to cleave the protein substrates. These homopolymers exhibited unique cleavage profiles and pH and temperature sensitivities that differed from those of α-chymotrypsin. The results indicate the potential of polymers functionalized with amino acids as proteolytic artificial enzymes.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan; Health Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Hinako Yamochi
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Shinzo Omiya
- Applied Chemistry Program, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Tetsuo Koyama
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Ken Hatano
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan; Health Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Koji Matsuoka
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan; Health Sciences and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan.
| |
Collapse
|
11
|
Wang C, Liu C, Zhu X, Peng Q, Ma Q. Catalytic site flexibility facilitates the substrate and catalytic promiscuity of Vibrio dual lipase/transferase. Nat Commun 2023; 14:4795. [PMID: 37558668 PMCID: PMC10412561 DOI: 10.1038/s41467-023-40455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Although enzyme catalysis is typified by high specificity, enzymes can catalyze various substrates (substrate promiscuity) and/or different reaction types (catalytic promiscuity) using a single active site. This interesting phenomenon is widely distributed in enzyme catalysis, with both fundamental and applied importance. To date, the mechanistic understanding of enzyme promiscuity is very limited. Herein, we report the structural mechanism underlying the substrate and catalytic promiscuity of Vibrio dual lipase/transferase (VDLT). Crystal structures of the VDLT from Vibrio alginolyticus (ValDLT) and its fatty acid complexes were solved, revealing prominent structural flexibility. In particular, the "Ser-His-Asp" catalytic triad machinery of ValDLT contains an intrinsically flexible oxyanion hole. Analysis of ligand-bound structures and mutagenesis showed that the flexible oxyanion hole and other binding residues can undergo distinct conformational changes to facilitate substrate and catalytic promiscuity. Our study reveals a previously unknown flexible form of the famous catalytic triad machinery and proposes a "catalytic site tuning" mechanism to expand the mechanistic paradigm of enzyme promiscuity.
Collapse
Affiliation(s)
- Chongyang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changshui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaochuan Zhu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Quancai Peng
- Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qingjun Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
12
|
Gupta AK, Singh K, Patidar Y, Sharma R, Sardesai AA, Reddy G, Gopal B. Allosteric Determinants in High Temperature Requirement A Enzymes Are Conserved and Regulate the Population of Active Conformations. ACS Chem Biol 2023; 18:1487-1499. [PMID: 37319329 DOI: 10.1021/acschembio.2c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High temperature requirement A (HtrA) are allosterically regulated enzymes wherein effector binding to the PDZ domain triggers proteolytic activity. Yet, it remains unclear if the inter-residue network governing allostery is conserved across HtrA enzymes. Here, we investigated and identified the inter-residue interaction networks by molecular dynamics simulations on representative HtrA proteases, Escherichia coli DegS and Mycobacterium tuberculosis PepD, in effector-bound and free forms. This information was used to engineer mutations that could potentially perturb allostery and conformational sampling in a different homologue, M. tuberculosis HtrA. Mutations in HtrA perturbed allosteric regulation─a finding consistent with the hypothesis that the inter-residue interaction network is conserved across HtrA enzymes. Electron density from data collected on cryo-protected HtrA crystals revealed that mutations altered the topology of the active site. Ensemble models fitted into electron density calculated from room-temperature diffraction data showed that only a fraction of these models had a catalytically competent active site conformation alongside a functional oxyanion hole thus providing experimental evidence that these mutations influenced conformational sampling. Mutations at analogous positions in the catalytic domain of DegS perturbed the coupling between effector binding and proteolytic activity, thus confirming the role of these residues in the allosteric response. The finding that a perturbation in the conserved inter-residue network alters conformational sampling and the allosteric response suggests that an ensemble allosteric model best describes regulated proteolysis in HtrA enzymes.
Collapse
Affiliation(s)
- Arvind Kumar Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Yogesh Patidar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Ravish Sharma
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | | | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
13
|
Kelaidonis K, Ligielli I, Letsios S, Vidali VP, Mavromoustakos T, Vassilaki N, Moore GJ, Hoffmann W, Węgrzyn K, Ridgway H, Chasapis CT, Matsoukas JM. Computational and Enzymatic Studies of Sartans in SARS-CoV-2 Spike RBD-ACE2 Binding: The Role of Tetrazole and Perspectives as Antihypertensive and COVID-19 Therapeutics. Int J Mol Sci 2023; 24:ijms24098454. [PMID: 37176159 PMCID: PMC10179460 DOI: 10.3390/ijms24098454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
This study is an extension of current research into a novel class of synthetic antihypertensive drugs referred to as "bisartans", which are bis-alkylated imidazole derivatives bearing two symmetric anionic biphenyltetrazoles. Research to date indicates that bisartans are superior to commercially available hypertension drugs, since the former undergo stronger docking to angiotensin-converting enzyme 2 (ACE2). ACE2 is the key receptor involved in SARS-CoV-2 entry, thus initiating COVID-19 infection and in regulating levels of vasoactive peptides such as angiotensin II and beneficial heptapeptides A(1-7) and Alamandine in the renin-angiotensin system (RAS). In previous studies using in vivo rabbit-iliac arterial models, we showed that Na+ or K+ salts of selected Bisartans initiate a potent dose-response inhibition of vasoconstriction. Furthermore, computational studies revealed that bisartans undergo stable binding to the vital interfacial region between ACE2 and the SARS-CoV-2 "receptor binding domain" (i.e., the viral RBD). Thus, bisartan homologs are expected to interfere with SARS-CoV-2 infection and/or suppress disease expression in humans. The primary goal of this study was to investigate the role of tetrazole in binding and the network of amino acids of SARS-CoV-2 Spike RBD-ACE2 complex involved in interactions with sartans. This study would, furthermore, allow the expansion of the synthetic space to create a diverse suite of new bisartans in conjunction with detailed computational and in vitro antiviral studies. A critical role for tetrazole was uncovered in this study, shedding light on the vital importance of this group in the binding of sartans and bisartans to the ACE2/Spike complex. The in silico data predicting an interaction of tetrazole-containing sartans with ACE2 were experimentally validated by the results of surface plasmon resonance (SPR) analyses performed with a recombinant human ACE2 protein.
Collapse
Affiliation(s)
| | - Irene Ligielli
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece
| | | | - Veroniki P Vidali
- Natural Products and Bioorganic Chemistry Laboratory, Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", 15341 Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Graham J Moore
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Weronika Hoffmann
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Abrahama 58, 80-307 Gdansk, Poland
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - John M Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
14
|
Ridgway H, Ntallis C, Chasapis CT, Kelaidonis K, Matsoukas MT, Plotas P, Apostolopoulos V, Moore G, Tsiodras S, Paraskevis D, Mavromoustakos T, Matsoukas JM. Molecular Epidemiology of SARS-CoV-2: The Dominant Role of Arginine in Mutations and Infectivity. Viruses 2023; 15:309. [PMID: 36851526 PMCID: PMC9963001 DOI: 10.3390/v15020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Background, Aims, Methods, Results, Conclusions: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global challenge due to its ability to mutate into variants that spread more rapidly than the wild-type virus. The molecular biology of this virus has been extensively studied and computational methods applied are an example paradigm for novel antiviral drug therapies. The rapid evolution of SARS-CoV-2 in the human population is driven, in part, by mutations in the receptor-binding domain (RBD) of the spike (S-) protein, some of which enable tighter binding to angiotensin-converting enzyme (ACE2). More stable RBD-ACE2 association is coupled with accelerated hydrolysis by proteases, such as furin, trypsin, and the Transmembrane Serine Protease 2 (TMPRSS2) that augment infection rates, while inhibition of the 3-chymotrypsin-like protease (3CLpro) can prevent the viral replication. Additionally, non-RBD and non-interfacial mutations may assist the S-protein in adopting thermodynamically favorable conformations for stronger binding. This study aimed to report variant distribution of SARS-CoV-2 across European Union (EU)/European Economic Area (EEA) countries and relate mutations with the driving forces that trigger infections. Variants' distribution data for SARS-CoV-2 across EU/EEA countries were mined from the European Centre for Disease Prevention and Control (ECDC) based on the sequence or genotyping data that are deposited in the Global Science Initiative for providing genomic data (GISAID) and The European Surveillance System (TESSy) databases. Docking studies performed with AutoDock VINA revealed stabilizing interactions of putative antiviral drugs, e.g., selected anionic imidazole biphenyl tetrazoles, with the ACE2 receptor in the RBD-ACE2 complex. The driving forces of key mutations for Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Lambda, and Omicron variants, which stabilize the RBD-ACE2 complex, were investigated by computational approaches. Arginine is the critical amino acid in the polybasic furin cleavage sites S1/S2 (681-PRRARS-686) S2' (814-KRS-816). Critical mutations into arginine residues that were found in the delta variant (L452R, P681R) and may be responsible for the increased transmissibility and morbidity are also present in two widely spreading omicron variants, named BA.4.6 and BQ.1, where mutation R346T in the S-protein potentially contributes to neutralization escape. Arginine binders, such as Angiotensin Receptor Blockers (ARBs), could be a class of novel drugs for treating COVID-19.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne 8001, VIC, Australia
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Charalampos Ntallis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | | | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne 3030, VIC, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne 3021, VIC, Australia
| | - Graham Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 11571 Athens, Greece
| | - John M. Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece
- Institute for Health and Sport, Victoria University, Melbourne 3030, VIC, Australia
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
15
|
Babić M, Janković P, Marchesan S, Mauša G, Kalafatovic D. Esterase Sequence Composition Patterns for the Identification of Catalytic Triad Microenvironment Motifs. J Chem Inf Model 2022; 62:6398-6410. [PMID: 36223497 DOI: 10.1021/acs.jcim.2c00977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ester hydrolysis is of wide biomedical interest, spanning from the green synthesis of pharmaceuticals to biomaterials' development. Existing peptide-based catalysts exhibit low catalytic efficiency compared to natural enzymes, due to the conformational heterogeneity of peptides. Moreover, there is lack of understanding of the correlation between the primary sequence and catalytic function. For this purpose, we statistically analyzed 22 EC 3.1 hydrolases with known catalytic triads, characterized by unique and well-defined mechanisms. The aim was to identify patterns at the sequence level that will better inform the creation of short peptides containing important information for catalysis, based on the catalytic triad, oxyanion holes and the triad residues microenvironments. Moreover, fragmentation schemes of the primary sequence of selected enzymes alongside the study of their amino acid frequencies, composition, and physicochemical properties are proposed. The results showed highly conserved catalytic sites with distinct positional patterns and chemical microenvironments that favor catalysis and revealed variations in catalytic site composition that could be useful for the design of minimalistic catalysts.
Collapse
Affiliation(s)
- Marko Babić
- Department of Biotechnology, University of Rijeka, 51000Rijeka, Croatia
| | - Patrizia Janković
- Department of Biotechnology, University of Rijeka, 51000Rijeka, Croatia
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127Trieste, Italy
| | - Goran Mauša
- Faculty of Engineering, University of Rijeka, 51000Rijeka, Croatia
| | - Daniela Kalafatovic
- Department of Biotechnology, University of Rijeka, 51000Rijeka, Croatia.,Center for Advanced Computing and Modeling, University of Rijeka, 51000Rijeka, Croatia
| |
Collapse
|
16
|
Welter AL, Machida YJ. Functions and evolution of FAM111 serine proteases. Front Mol Biosci 2022; 9:1081166. [PMID: 36589246 PMCID: PMC9798293 DOI: 10.3389/fmolb.2022.1081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Proteolysis plays fundamental and regulatory roles in diverse cellular processes. The serine protease FAM111A (FAM111 trypsin-like peptidase A) emerged recently as a protease involved in two seemingly distinct processes: DNA replication and antiviral defense. FAM111A localizes to nascent DNA and plays a role at the DNA replication fork. At the fork, FAM111A is hypothesized to promote DNA replication at DNA-protein crosslinks (DPCs) and protein obstacles. On the other hand, FAM111A has also been identified as a host restriction factor for mutants of SV40 and orthopoxviruses. FAM111A also has a paralog, FAM111B, a serine protease with unknown cellular functions. Furthermore, heterozygous missense mutations in FAM111A and FAM111B cause distinct genetic disorders. In this review, we discuss possible models that could explain how FAM111A can function as a protease in both DNA replication and antiviral defense. We also review the consequences of FAM111A and FAM111B mutations and explore possible mechanisms underlying the diseases. Additionally, we propose a possible explanation for what drove the evolution of FAM111 proteins and discuss why some species have two FAM111 proteases. Altogether, studies of FAM111 proteases in DNA repair, antiviral defense, and genetic diseases will help us elucidate their functions and the regulatory mechanisms.
Collapse
Affiliation(s)
- Allison L. Welter
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Yuichi J. Machida
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
17
|
Manyapu V, Lepcha A, Sharma SK, Kumar R. Role of psychrotrophic bacteria and cold-active enzymes in composting methods adopted in cold regions. ADVANCES IN APPLIED MICROBIOLOGY 2022; 121:1-26. [PMID: 36328730 DOI: 10.1016/bs.aambs.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Temperature-dependent composting is a challenging task but is worthy if it is done in the right manner. Cold composting has been known to be practiced since ancient times but there were not enough advancements to overcome the long mesophilic phase and bring the compost maturation to a short period. The composting processes that have been well practiced are discussed and the role of psychrotrophic bacteria that produce cold tolerant hydrolytic enzymes has been highlighted. In this chapter, the mechanism of substrate degradation has been elaborated to better understand the need of specific bacteria for a specific kind of substrate allowing fast and efficient decomposition. This chapter attempts to pave an appropriate way and suggest the best-suited method of composting for efficient production of compost by the conservation of heat in cold regions.
Collapse
Affiliation(s)
- Vivek Manyapu
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ayush Lepcha
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Sanjeev Kumar Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
18
|
Nagaroor V, Gummadi SN. An overview of mammalian and microbial hormone-sensitive lipases (lipolytic family IV): biochemical properties and industrial applications. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36154870 DOI: 10.1080/02648725.2022.2127071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
In mammals, hormone-sensitive lipase (EC 3.1.1.79) is an intracellular lipase that significantly regulates lipid metabolism. Mammalian HSL is more active towards diacylglycerol but lacks a lid covering the active site. Dyslipidemia, hepatic steatosis, cancer, and cancer-associated cachexia are symptoms of HSL pathophysiology. Certain microbial proteins show a sequence homologous to the catalytic domain of mammalian HSL, hence called microbial HSL. They possess a funnel-shaped substrate-binding pocket and restricted length of acyl chain esters, thus known as esterases. These enzymes have broad substrate specificities and are capable of stereo, regio, and enantioselective, making them attractive biocatalysts in a wide range of industrial applications in the production of flavors, pharmaceuticals, biosensors, and fine chemicals. This review will provide insight into mammalian and microbial HSLs, their sources, structural features related to substrate specificity, thermal stability, and their applications.
Collapse
Affiliation(s)
- Vijayalakshmi Nagaroor
- Applied and Industrial Microbiology laboratory (AIM lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology laboratory (AIM lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
19
|
Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer. Cell Oncol (Dordr) 2022; 45:831-859. [PMID: 36036882 DOI: 10.1007/s13402-022-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Prostate cancer is the leading cause of cancer in men, and its incidence increases with age. Among other risk factors, pre-existing metabolic diseases have been recently linked with prostate cancer, and our current knowledge recognizes prostate cancer as a condition with important metabolic anomalies as well. In malignancies, metabolic disorders are commonly associated with aberrations in mTOR, which is the master regulator of protein synthesis and energetic homeostasis. Although there are reports demonstrating the high dependency of prostate cancer cells for lipid derivatives and even for carbohydrates, the understanding regarding amino acids, and the relationship with the mTOR pathway ultimately resulting in metabolic aberrations, is still scarce. CONCLUSIONS AND PERSPECTIVES In this review, we briefly provide evidence supporting prostate cancer as a metabolic disease, and discuss what is known about mTOR signaling and prostate cancer. Next, we emphasized on the amino acids glutamine, leucine, serine, glycine, sarcosine, proline and arginine, commonly related to prostate cancer, to explore the alterations in their regulatory pathways and to link them with the associated metabolic reprogramming events seen in prostate cancer. Finally, we display potential therapeutic strategies for targeting mTOR and the referred amino acids, as experimental approaches to selectively attack prostate cancer cells.
Collapse
|
20
|
Moore GJ, Ridgway H, Kelaidonis K, Chasapis CT, Ligielli I, Mavromoustakos T, Bojarska J, Matsoukas JM. Actions of Novel Angiotensin Receptor Blocking Drugs, Bisartans, Relevant for COVID-19 Therapy: Biased Agonism at Angiotensin Receptors and the Beneficial Effects of Neprilysin in the Renin Angiotensin System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154854. [PMID: 35956801 PMCID: PMC9369639 DOI: 10.3390/molecules27154854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Angiotensin receptor blockers (ARBs) used in the treatment of hypertension and potentially in SARS-CoV-2 infection exhibit inverse agonist effects at angiotensin AR1 receptors, suggesting the receptor may have evolved to accommodate naturally occurring angiotensin ‘antipeptides’. Screening of the human genome has identified a peptide (EGVYVHPV) encoded by mRNA, complementary to that encoding ANG II itself, which is an inverse agonist. Thus, opposite strands of DNA encode peptides with opposite effects at AR1 receptors. Agonism and inverse agonism at AR1 receptors can be explained by a receptor ‘switching’ between an activated state invoking receptor dimerization/G protein coupling and an inverse agonist state mediated by an alternative/second messenger that is slow to reverse. Both receptor states appear to be driven by the formation of the ANG II charge-relay system involving TyrOH-His/imidazole-Carboxylate (analogous to serine proteases). In this system, tyrosinate species formed are essential for activating AT1 and AT2 receptors. ANGII is also known to bind to the zinc-coordinated metalloprotease angiotensin converting enzyme 2 (ACE2) used by the COVID-19 virus to enter cells. Here we report in silico results demonstrating the binding of a new class of anionic biphenyl-tetrazole sartans (‘Bisartans’) to the active site zinc atom of the endopeptidase Neprilysin (NEP) involved in regulating hypertension, by modulating humoral levels of beneficial vasoactive peptides in the RAS such as vasodilator angiotensin (1–7). In vivo and modeling evidence further suggest Bisartans can inhibit ANG II-induced pulmonary edema and may be useful in combatting SARS-CoV-2 infection by inhibiting ACE2-mediated viral entry to cells.
Collapse
Affiliation(s)
- Graham J. Moore
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada
- Correspondence: (G.J.M.); (J.M.M.)
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
- AquaMem Consultants, Rodeo, New Mexico, NM 88056, USA
| | | | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Irene Ligielli
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.L.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.L.); (T.M.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - John M. Matsoukas
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Correspondence: (G.J.M.); (J.M.M.)
| |
Collapse
|
21
|
Matsoukas JM, Gadanec LK, Zulli A, Apostolopoulos V, Kelaidonis K, Ligielli I, Moschovou K, Georgiou N, Plotas P, Chasapis CT, Moore G, Ridgway H, Mavromoustakos T. Diminazene Aceturate Reduces Angiotensin II Constriction and Interacts with the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2. Biomedicines 2022; 10:biomedicines10071731. [PMID: 35885036 PMCID: PMC9312513 DOI: 10.3390/biomedicines10071731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Diminazene aceturate (DIZE) is a putative angiotensin-converting enzyme 2 (ACE2) activator and angiotensin type 1 receptor antagonist (AT1R). Its simple chemical structure possesses a negatively charged triazene segment that is homologous to the tetrazole of angiotensin receptor blockers (ARB), which explains its AT1R antagonistic activity. Additionally, the activation of ACE2 by DIZE converts the toxic octapeptide angiotensin II (AngII) to the heptapeptides angiotensin 1–7 and alamandine, which promote vasodilation and maintains homeostatic balance. Due to DIZE’s protective cardiovascular and pulmonary effects and its ability to target ACE2 (the predominant receptor utilized by severe acute respiratory syndrome coronavirus 2 to enter host cells), it is a promising treatment for coronavirus 2019 (COVID-19). To determine DIZE’s ability to inhibit AngII constriction, in vitro isometric tension analysis was conducted on rabbit iliac arteries incubated with DIZE or candesartan and constricted with cumulative doses of AngII. In silico docking and ligand interaction studies were performed to investigate potential interactions between DIZE and other ARBs with AT1R and the spike protein/ACE2 complex. DIZE, similar to the other ARBs investigated, was able to abolish vasoconstriction in response to AngII and exhibited a binding affinity for the spike protein/ACE2 complex (PDB 6LZ6). These results support the potential of DIZE as a treatment for COVID-19.
Collapse
Affiliation(s)
- John M. Matsoukas
- NewDrug PC, Patras Science Park, 26500 Patras, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (J.M.M.); (T.M.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | | | - Irene Ligielli
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Kalliopi Moschovou
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Nikitas Georgiou
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece;
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Graham Moore
- Pepmetics Incorporated, 772 Murphy Pace, Victoria, BC V8Y 3H4, Canada;
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Thomas Mavromoustakos
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
- Correspondence: (J.M.M.); (T.M.)
| |
Collapse
|
22
|
Kanno R, Tanaka K, Ikami T, Ouchi M, Terashima T. Reversible Co-Self-Assembly and Self-Sorting Systems of Polymer Micelles in Water: Polymers Switch Association Partners in Response to Salts. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rikuto Kanno
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kei Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Ikami
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Ridgway H, Chasapis CT, Kelaidonis K, Ligielli I, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Mavromoustakos T, Matsoukas JM. Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy. Viruses 2022; 14:v14051029. [PMID: 35632769 PMCID: PMC9143829 DOI: 10.3390/v14051029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
SARS-CoV-2 is a global challenge due to its ability to mutate into variants that spread more rapidly than the wild-type virus. Because the molecular biology of this virus has been studied in such great detail, it represents an archetypal paradigm for research into new antiviral drug therapies. The rapid evolution of SARS-CoV-2 in the human population is driven, in part, by mutations in the receptor-binding domain (RBD) of the spike (S-) protein, some of which enable tighter binding to angiotensin-converting enzyme (ACE2). More stable RBD-ACE2 association is coupled with accelerated hydrolysis of furin and 3CLpro cleavage sites that augment infection. Non-RBD and non-interfacial mutations assist the S-protein in adopting thermodynamically favorable conformations for stronger binding. The driving forces of key mutations for Alpha, Beta, Gamma, Delta, Kappa, Lambda and Omicron variants, which stabilize the RBD-ACE2 complex, are investigated by free-energy computational approaches, as well as equilibrium and steered molecular dynamic simulations. Considered also are the structural hydropathy traits of the residues in the interface between SARS-CoV-2 RBD and ACE2 protein. Salt bridges and π-π interactions are critical forces that create stronger complexes between the RBD and ACE2. The trend of mutations is the replacement of non-polar hydrophobic interactions with polar hydrophilic interactions, which enhance binding of RBD with ACE2. However, this is not always the case, as conformational landscapes also contribute to a stronger binding. Arginine, the most polar and hydrophilic among the natural amino acids, is the most aggressive mutant amino acid for stronger binding. Arginine blockers, such as traditional sartans that bear anionic tetrazoles and carboxylates, may be ideal candidate drugs for retarding viral infection by weakening S-protein RBD binding to ACE2 and discouraging hydrolysis of cleavage sites. Based on our computational results it is suggested that a new generation of “supersartans”, called “bisartans”, bearing two anionic biphenyl-tetrazole pharmacophores, are superior to carboxylates in terms of their interactions with viral targets, suggesting their potential as drugs in the treatment of COVID-19. In Brief: This in silico study reviews our understanding of molecular driving forces that trigger mutations in the SARS-CoV-2 virus. It also reports further studies on a new class of “supersartans” referred to herein as “bisartans”, bearing two anionic biphenyltetrazole moieties that show potential in models for blocking critical amino acids of mutants, such as arginine, in the Delta variant. Bisartans may also act at other targets essential for viral infection and replication (i.e., ACE2, furin cleavage site and 3CLpro), rendering them potential new drugs for additional experimentation and translation to human clinical trials.
Collapse
Affiliation(s)
- Harry Ridgway
- AquaMem Consultants, Rodeo, New Mexico, NM 88056, USA
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 3030, Australia
- Correspondence: (H.R.); (J.M.M.)
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | | | - Irene Ligielli
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.L.); (T.M.)
| | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.L.); (T.M.)
| | - John M. Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Correspondence: (H.R.); (J.M.M.)
| |
Collapse
|
24
|
Discovery of a new generation of angiotensin receptor blocking drugs: receptor mechanisms and in silico binding to enzymes relevant to covid-19. Comput Struct Biotechnol J 2022; 20:2091-2111. [PMID: 35432786 PMCID: PMC8994259 DOI: 10.1016/j.csbj.2022.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The discovery and facile synthesis of a new class of sartan-like arterial antihypertensive drugs (angiotensin receptor blockers [ARBs]), subsequently referred to as “bisartans” is reported. In vivo results and complementary molecular modelling presented in this communication indicate bisartans may be beneficial for the treatment of not only heart disease, diabetes, renal dysfunction, and related illnesses, but possibly COVID-19. Bisartans are novel bis-alkylated imidazole sartan derivatives bearing dual symmetric anionic biphenyl tetrazole moieties. In silico docking and molecular dynamics studies revealed bisartans exhibited higher binding affinities for the ACE2/spike protein complex (PDB 6LZG) compared to all other known sartans. They also underwent stable docking to the Zn2+ domain of the ACE2 catalytic site as well as the critical interfacial region between ACE2 and the SARS-CoV-2 receptor binding domain. Additionally, semi-stable docking of bisartans at the arginine-rich furin-cleavage site of the SARS-CoV-2 spike protein (residues 681–686) required for virus entry into host cells, suggest bisartans may inhibit furin action thereby retarding viral entry into host cells. Bisartan tetrazole groups surpass nitrile, the pharmacophoric “warhead” of PF-07321332, in its ability to disrupt the cysteine charge relay system of 3CLpro. However, despite the apparent targeting of multifunctional sites, bisartans do not inhibit SARS-CoV-2 infection in bioassays as effectively as PF-07321332 (Paxlovid).
Collapse
|
25
|
Qin W, Lu Y, Wang H, Liu B, Jiang Z, Zhou C, Huang X, Dai X, Ren Q. Characterization and functional analysis of a clip domain serine protease (MncSP) and its alternative transcript (MncSP-isoform) from Macrobrachium nipponense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104237. [PMID: 34450128 DOI: 10.1016/j.dci.2021.104237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Clip domain serine protease (cSPs) play an important role in the innate immune defense of crustaceans. In this study, a clip domain serine protease (MncSP) and its alternative transcript (MncSP-isoform) were identified from Macrobrachium nipponense. The full-length cDNA sequences of MncSP and MncSP-isoform were 2447 and 2351 bp with open reading frames comprising 1497 and 1401 bp nucleotides and encoding 498 and 466 amino acids, respectively. The genome of MncSP had 10 exons and 9 introns. MncSP contained all 10 exons, whereas MncSP-isoform lacked the second exon. MncSP and MncSP-isoform contained a signal peptide, a clip domain, and a Tryp_SPc domain. Phylogenetic tree analysis showed that MncSP and MncSP-isoform clustered with cSPs from Palaemonidae. MncSP and MncSP-isoform were widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine. The expression profiles of MncSP and MncSP-isoform in the hemocytes of M. nipponense changed after simulation by Vibrio parahaemolyticus or Staphylococcus aureus. The RNAi of MncSP could inhibit the expression of antimicrobial peptides (AMPs), including crustins and anti-lipopolysaccharide factors. Phenoloxidase activity was also down-regulated in MncSP-silenced prawns. This study indicated that MncSP participated in the synthesis of AMPs and the activation of prophenoloxidase.
Collapse
Affiliation(s)
- Wei Qin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Yang Lu
- Nanjing Hydraulic Research Institute, Nanjing, Jiangsu Province, 210024, China
| | - Hongyu Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Beixiang Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Zuosheng Jiang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Chengxiang Zhou
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China.
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China.
| |
Collapse
|
26
|
Mondal T, Mandal B. Proteolytic functional amyloid digests pathogenic amyloid. J Mater Chem B 2022; 10:4216-4225. [DOI: 10.1039/d2tb00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although amyloids are a well-known pathological structure, functional amyloids are beneficial. Functional amyloids can be engineered to cultivate desired functionality that can destroy malicious amyloids. However, not much is known...
Collapse
|
27
|
Zadorozhnyi R, Sarkar S, Quinn CM, Zadrozny KK, Ganser-Pornillos BK, Pornillos O, Gronenborn AM, Polenova T. Determination of Histidine Protonation States in Proteins by Fast Magic Angle Spinning NMR. Front Mol Biosci 2021; 8:767040. [PMID: 34957215 PMCID: PMC8703106 DOI: 10.3389/fmolb.2021.767040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Histidine residues play important structural and functional roles in proteins, such as serving as metal-binding ligands, mediating enzyme catalysis, and modulating proton channel activity. Many of these activities are modulated by the ionization state of the imidazole ring. Here we present a fast MAS NMR approach for the determination of protonation and tautomeric states of His at frequencies of 40-62 kHz. The experiments combine 1H detection with selective magnetization inversion techniques and transferred echo double resonance (TEDOR)-based filters, in 2D heteronuclear correlation experiments. We illustrate this approach using microcrystalline assemblies of HIV-1 CACTD-SP1 protein.
Collapse
Affiliation(s)
- Roman Zadorozhnyi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sucharita Sarkar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Kaneil K. Zadrozny
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Barbie K. Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Yamamoto K, Wilkinson D, Bou-Gharios G. Targeting Dysregulation of Metalloproteinase Activity in Osteoarthritis. Calcif Tissue Int 2021; 109:277-290. [PMID: 32772139 PMCID: PMC8403128 DOI: 10.1007/s00223-020-00739-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Metalloproteinases were first identified as collagen cleaving enzymes and are now appreciated to play important roles in a wide variety of biological processes. The aberrant activity and dysregulation of the metalloproteinase family are linked to numerous diseases including cardiovascular and pulmonary diseases, chronic wounds, cancer, fibrosis and arthritis. Osteoarthritis (OA) is the most prevalent age-related joint disorder that causes pain and disability, but there are no disease-modifying drugs available. The hallmark of OA is loss of articular cartilage and elevated activities of matrix-degrading metalloproteinases are responsible. These enzymes do not exist in isolation and their activity is tightly regulated by a number of processes, such as transcription, proteolytic activation, interaction with their inhibitors, cell surface and extracellular matrix molecules, and endocytic clearance from the extracellular milieu. Here, we describe the functions and roles of metalloproteinase family in OA pathogenesis. We highlight recent studies that have illustrated novel mechanisms regulating their extracellular activity and impairment of such regulations that lead to the development of OA. We also discuss how to stop or slow down the degenerative processes by targeting aberrant metalloproteinase activity, which may in future become therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - David Wilkinson
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
29
|
Jeong WH, Lee JY, Lim KC, Kim HS. Identification and Study of Biomarkers from Novichok-Inhibited Butyrylcholinesterase in Human Plasma. Molecules 2021; 26:3810. [PMID: 34206601 PMCID: PMC8270327 DOI: 10.3390/molecules26133810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
To identify biomarkers of ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234)- or methyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A232)-inhibited butyrylcholinesterase (BChE), we investigated nonapeptide adducts containing the active site serine, which plays a key role in enzyme activity, using LC-MS/HRMS. Biomarkers were acquired as expected, and they exhibited a significant amount of fragment ions from the inhibiting agent itself, in contrast to the MS2 spectra of conventional nerve agents. These biomarkers had a higher abundance of [M+2H]2+ ions than [M+H]+ ions, making doubly charged ions more suitable for trace analysis.
Collapse
Affiliation(s)
- Woo-Hyeon Jeong
- Agency for Defense Development (ADD), P.O. Box 35, Yuseong-gu, Daejeon 34186, Korea; (J.-Y.L.); (K.-C.L.); (H.-S.K.)
| | | | | | | |
Collapse
|
30
|
Wang L, Han X, Wang Y, Wei X, Liu S, Shao S, Yang S, Sun L, Xin F. Rational Design for Broadened Substrate Specificity and Enhanced Activity of a Novel Acetyl Xylan Esterase from Bacteroides thetaiotaomicron. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6665-6675. [PMID: 34074097 DOI: 10.1021/acs.jafc.1c00750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gut bacteria-derived enzymes play important roles in the metabolism of dietary fiber through enabling the hydrolysis of polysaccharides. In this study, we identified and characterized a 29 kDa novel acetyl xylan esterase, BTAxe1, from Bacteroides thetaiotaomicron VPI5482. Then, we solved the structure of BTAxe1 and performed the rational design. Mutants N65S and N65A increased the activities toward short-chain (pNPA, pNPB) to near four-fold, and gained the activities toward longer-chain substrate (pNPO). Molecular docking analysis showed that the mutant N65S had a larger substrate binding pocket than the wild type. Hydrolysis studies using natural substrates showed that either N65S or N65A showed higher activity of that of wild-type, yielding 131.31 and 136.09 mM of acetic acid from xylan. This is the first study on the rational design of gut bacteria-derived Axes with broadened substrate specificity and enhanced activity, which can be referenced by other acetyl esterases or gut-derived enzymes.
Collapse
Affiliation(s)
- Luyao Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Han
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161000, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuli Shao
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161000, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lichao Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
31
|
Borne AL, Brulet JW, Yuan K, Hsu KL. Development and biological applications of sulfur-triazole exchange (SuTEx) chemistry. RSC Chem Biol 2021; 2:322-337. [PMID: 34095850 PMCID: PMC8174820 DOI: 10.1039/d0cb00180e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Sulfur electrophiles constitute an important class of covalent small molecules that have found widespread applications in synthetic chemistry and chemical biology. Various electrophilic scaffolds, including sulfonyl fluorides and arylfluorosulfates as recent examples, have been applied for protein bioconjugation to probe ligand sites amenable for chemical proteomics and drug discovery. In this review, we describe the development of sulfonyl-triazoles as a new class of electrophiles for sulfur-triazole exchange (SuTEx) chemistry. SuTEx achieves covalent reaction with protein sites through irreversible modification of a residue with an adduct group (AG) upon departure of a leaving group (LG). A principal differentiator of SuTEx from other chemotypes is the selection of a triazole heterocycle as the LG, which introduces additional capabilities for tuning the sulfur electrophile. We describe the opportunities afforded by modifications to the LG and AG alone or in tandem to facilitate nucleophilic substitution reactions at the SO2 center in cell lysates and live cells. As a result of these features, SuTEx serves as an efficient platform for developing chemical probes with tunable bioactivity to study novel nucleophilic sites on established and poorly annotated protein targets. Here, we highlight a suite of biological applications for the SuTEx electrophile and discuss future goals for this enabling covalent chemistry.
Collapse
Affiliation(s)
- Adam L. Borne
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
| | - Jeffrey W. Brulet
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Kun Yuan
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
- University of Virginia Cancer Center, University of VirginiaCharlottesvilleVA 22903USA
- Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleVirginia 22908USA
| |
Collapse
|
32
|
Gault S, Cockell CS. Perchlorate Salts Exert a Dominant, Deleterious Effect on the Structure, Stability, and Activity of α-Chymotrypsin. ASTROBIOLOGY 2021; 21:405-412. [PMID: 33784200 DOI: 10.1089/ast.2020.2223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of perchlorate ions on Mars raises the question of how these ions influence the biochemistry of any contaminant life introduced into the martian environment, or what selection pressures perchlorate ions exert on any environment that contains these ions, such as the Atacama Desert. In this study, we investigated the structure, stability, and enzyme activity of the model enzyme α-chymotrypsin in the presence of five Mars relevant salts, MgSO4, MgCl2, Mg(ClO4)2, Ca(ClO4)2, and NaClO4. We found that all the perchlorate salts reduced the enzyme activity of α-chymotrypsin in a concentration-dependent manner, with Mg(ClO4)2 and Ca(ClO4)2 having the greatest effect. This observation extends to our structural studies, which show that 1 M Mg(ClO4)2 and Ca(ClO4)2 greatly alter the tertiary structural environment of α-chymotrypsin. We also found that all the perchlorate salts assayed reduced the melting temperature of α-chymotrypsin, whereas the sulfate and chloride salts were able to increase the protein melting temperature. We also demonstrated that a brine containing both perchlorate and sulfate ions exerts the same deleterious effects on α-chymotrypsin's melting temperature and enzyme activity as that of a perchlorate-only brine. This suggests that the perchlorate salts exert a dominant, deleterious effect on protein biochemistry. These results indicate that although perchlorate salts are beneficial to the presence of liquid water due to low eutectic points, they also hamper the habitability of their own environment. Life in such brines would, therefore, have to adapt its cellular machinery to the perchlorate ion's presence or find a way of excluding it from said machinery.
Collapse
Affiliation(s)
- Stewart Gault
- Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles S Cockell
- Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Matsoukas J, Apostolopoulos V, Zulli A, Moore G, Kelaidonis K, Moschovou K, Mavromoustakos T. From Angiotensin II to Cyclic Peptides and Angiotensin Receptor Blockers (ARBs): Perspectives of ARBs in COVID-19 Therapy. Molecules 2021; 26:molecules26030618. [PMID: 33504092 PMCID: PMC7865783 DOI: 10.3390/molecules26030618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The octapeptide hormone angiotensin II is one of the most studied peptides with the aim of designing and synthesizing non-peptide mimetics for oral administration. To achieve this, cyclizations at different positions within the peptide molecule has been a useful strategy to define the active conformation. These studies on angiotensin II led to the discovery of Sarmesin, a type II angiotensin II antagonist, and the breakthrough non-peptide mimetic Losartan, the first in a series of sartans marketed as a new generation of anti-hypertensive drugs in the 1990s. Angiotensin II receptor blockers (ARBS) and angiotensin I converting enzyme inhibitors (ACEI) were recently reported to protect hypertensive patients infected with SARS-CoV-2. The renin–angiotensin system (RAS) inhibitors reduce excess angiotensin II and increase antagonist heptapeptides alamandine and aspamandine which counterbalance angiotensin II and maintain homeostasis and vasodilation.
Collapse
Affiliation(s)
- John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (A.Z.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- NewDrug, P.C., Patras Science Park, 26504 Patras, Greece;
- Correspondence: ; Tel.: +30-2610-911-546(5)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (A.Z.)
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (A.Z.)
| | - Graham Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada;
| | | | - Kalliopi Moschovou
- Department of Chemistry, National and Kapodistrian University of Athens, Zographou, 15784 Athens, Greece; (K.M.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Zographou, 15784 Athens, Greece; (K.M.); (T.M.)
| |
Collapse
|
34
|
Lather J, George J. Improving Enzyme Catalytic Efficiency by Co-operative Vibrational Strong Coupling of Water. J Phys Chem Lett 2021; 12:379-384. [PMID: 33356291 DOI: 10.1021/acs.jpclett.0c03003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we report enhancement of catalytic efficiency of an enzymatic reaction by co-operative vibrational strong coupling (VSC) of water and the enzyme α-chymotrypsin. Selective strong coupling of the O-H stretching mode of water along with O-H and N-H stretching modes of the enzyme modify the rate of the enzymatic ester hydrolysis, increasing the catalytic efficiency by more than 7 times. This is specifically achieved by controlling the rate-determining proton-transfer process through a co-operative mechanism. Here, VSC is also used as a spectroscopic tool to understand the mechanism of the enzymatic reaction, suggesting its potential applications in chemistry.
Collapse
Affiliation(s)
- Jyoti Lather
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab 140306, India
| | - Jino George
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab 140306, India
| |
Collapse
|
35
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarises stimulus-cleavable linkers from various research areas and their cleavage mechanisms, thus provides an insightful guideline to extend their potential applications to controlled drug release from nanomaterials.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton
- Victoria 3168
- Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| |
Collapse
|
36
|
Heckmann CM, Paradisi F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem 2020; 12:6082-6102. [PMID: 33381242 PMCID: PMC7756376 DOI: 10.1002/cctc.202001107] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic approaches to challenges in chemical synthesis are increasingly popular and very attractive to industry given their green nature and high efficiency compared to traditional methods. In this historical review we highlight the developments across several fields that were necessary to create the modern field of biocatalysis, with enzyme engineering and directed evolution at its core. We exemplify the modular, incremental, and highly unpredictable nature of scientific discovery, driven by curiosity, and showcase the resulting examples of cutting-edge enzymatic applications in industry.
Collapse
Affiliation(s)
- Christian M Heckmann
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
37
|
Fluorescence correlation spectroscopy as a tool to investigate the directionality of proteolysis. Int J Biol Macromol 2020; 164:2524-2534. [DOI: 10.1016/j.ijbiomac.2020.08.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022]
|
38
|
Selective synthesis of functionalized quinazolinone derivatives via biocatalysis. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Lakshmi SA, Shafreen RB, Priyanga A, Shiburaj S, Pandian SK. A highly divergent α-amylase from Streptomyces spp.: An evolutionary perspective. Int J Biol Macromol 2020; 163:2415-2428. [PMID: 32961188 DOI: 10.1016/j.ijbiomac.2020.09.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/01/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022]
Abstract
The present study deals with the genetic changes observed in the protein sequence of an α-amylase from Streptomyces spp. and its structural homologs from Pseudoalteromonas haloplanktis, invertebrates and mammals. The structural homologs are renowned for their important features such as chloride binding triad and a serine-protease like catalytic triad (a triad which is reported to be strictly conserved in all chloride-dependent α-amylases). These conserved regions are essential for allosteric activation of enzyme and conformational stability, respectively. An evaluation of these distinctive features in Streptomyces α-amylases revealed the role of mutations in conserved regions and evolution of chloride-independent α-amylases in Streptomyces spp. Besides, the study also discovers a highly divergent α-amylase from Streptomyces spp. which varies greatly even within the homologs of the same genus. Another very important feature is the number of disulfide bridges in which the structural homologs own eight Cys residues to form four disulfide bridges whereas Streptomyces α-amylases possess only seven Cys to form three disulfide bridges. The study also highlights the unique evolution of carbohydrate binding module 20 domain (CBM20 also known as raw starch binding domain or E domain) in Streptomyces α-amylases which is completely absent in α-amylases of other structural homologs.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India
| | | | - Appasamy Priyanga
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India
| | - Sugathan Shiburaj
- Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala 695562, India; Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | | |
Collapse
|
40
|
Abstract
Enzyme activity may be more pathophysiologically relevant than enzyme quantity and is regulated by changes in conformational status that are undetectable by traditional proteomic approaches. Further, enzyme activity may provide insights into rapid physiological responses to inflammation/injury that are not dependent on de novo protein transcription. Activity-based protein profiling (ABPP) is a chemical proteomic approach designed to characterize and identify active enzymes within complex biological samples. Activity probes have been developed to interrogate multiple enzyme families with broad applicability, including but not limited to serine hydrolases, cysteine proteases, matrix metalloproteases, nitrilases, caspases, and histone deacetylases. The goal of this overview is to describe the overall rationale, approach, methods, challenges, and potential applications of ABPP to transplantation research. To do so, we present a case example of urine serine hydrolase ABPP in kidney transplant rejection to illustrate the utility and workflow of this analytical approach. Ultimately, developing novel transplant therapeutics is critically dependent on understanding the pathophysiological processes that result in loss of transplant function. ABPP offers a new dimension for characterizing dynamic changes in clinical samples. The capacity to identify and measure relevant enzyme activities provides fresh opportunities for understanding these processes and may help identify markers of disease activity for the development of novel diagnostics and real-time monitoring of patients. Finally, these insights into enzyme activity may also help to identify new transplant therapeutics, such as enzyme-specific inhibitors.
Collapse
|
41
|
Xie ZB, Fu LH, Meng J, Lan J, Hu ZY, Le ZG. Efficient biocatalytic strategy for one-pot Biginelli reaction via enhanced specific effects of microwave in a circulating reactor. Bioorg Chem 2020; 101:103949. [PMID: 32531507 DOI: 10.1016/j.bioorg.2020.103949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
A one-pot efficient biocatalytic strategy for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones was developed in a circulating microwave reactor selecting α-chymotrypsin as the promiscuous biocatalyst. In the circulating reaction system, the combination of microwave heating and external cooling could avoid the denaturation and inactivation of enzyme, and greatly improved the radiation power of microwave, thus improving the specific effects of microwave. During the reaction process, the microwave radiation power was automatically adjusted by adjusting the speed of the reaction mixture circulation. When the microwave power was maintained at 110 W, the best results could be obtained with the highest yield of 96% at 55 °C in 50 min, and the reaction had a wide range of substrates. But no obvious product was detected in a tank microwave reactor at 55 °C for 100 min, under this condition, the microwave power was maintained at about 3 W. As a contrast, the reaction only obtained 63% yield in 55 °C oil bath for 96 h.
Collapse
Affiliation(s)
- Zong-Bo Xie
- State Key Laboratory of Nuclear Resources and Environment, School of nuclear science and engineering, East China University of Technology, 418 Guanglan Road, Nanchang 330013, PR China; Department of Applied Chemistry, East China University of Technology, 418 Guanglan Road, Nanchang 330013, PR China.
| | - Lei-Han Fu
- Department of Applied Chemistry, East China University of Technology, 418 Guanglan Road, Nanchang 330013, PR China
| | - Jia Meng
- Department of Applied Chemistry, East China University of Technology, 418 Guanglan Road, Nanchang 330013, PR China
| | - Jin Lan
- Department of Applied Chemistry, East China University of Technology, 418 Guanglan Road, Nanchang 330013, PR China
| | - Zhi-Yu Hu
- Department of Applied Chemistry, East China University of Technology, 418 Guanglan Road, Nanchang 330013, PR China
| | - Zhang-Gao Le
- State Key Laboratory of Nuclear Resources and Environment, School of nuclear science and engineering, East China University of Technology, 418 Guanglan Road, Nanchang 330013, PR China; Department of Applied Chemistry, East China University of Technology, 418 Guanglan Road, Nanchang 330013, PR China.
| |
Collapse
|
42
|
Watanabe Y, Watanabe Y, Watanabe S. Structural Basis for Phosphatidylethanolamine Biosynthesis by Bacterial Phosphatidylserine Decarboxylase. Structure 2020; 28:799-809.e5. [PMID: 32402247 DOI: 10.1016/j.str.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/12/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
In both prokaryotes and eukaryotes, phosphatidylethanolamine (PE), one of the most abundant membrane phospholipids, plays important roles in various membrane functions and is synthesized through the decarboxylation of phosphatidylserine (PS) by PS decarboxylases (PSDs). However, the catalysis and substrate recognition mechanisms of PSDs remain unclear. In this study, we focused on the PSD from Escherichia coli (EcPsd) and determined the crystal structures of EcPsd in the apo form and PE-bound form at resolutions of 2.6 and 3.6 Å, respectively. EcPsd forms a homodimer, and each protomer has a positively charged substrate binding pocket at the active site. Structure-based mutational analyses revealed that conserved residues in the pocket are involved in PS decarboxylation. EcPsd has an N-terminal hydrophobic helical region that is important for membrane binding, thereby achieving efficient PS recognition. These results provide a structural basis for understanding the mechanism of PE biosynthesis by PSDs.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Yasuo Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
43
|
Xu Y, Szell PM, Kumar V, Bryce DL. Solid-state NMR spectroscopy for the analysis of element-based non-covalent interactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Sivakumar D, Kumar V, Naumann M, Stein M. Activation and selectivity of OTUB-1 and OTUB-2 deubiquitinylases. J Biol Chem 2020; 295:6972-6982. [PMID: 32265297 DOI: 10.1074/jbc.ra120.013073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
The ovarian tumor domain (OTU) deubiquitinylating cysteine proteases OTUB1 and OTUB2 (OTU ubiquitin aldehyde binding 1 and 2) are representative members of the OTU subfamily of deubiquitinylases. Deubiquitinylation critically regulates a multitude of important cellular processes, such as apoptosis, cell signaling, and growth. Moreover, elevated OTUB expression has been observed in various cancers, including glioma, endometrial cancer, ovarian cancer, and breast cancer. Here, using molecular dynamics simulation approaches, we found that both OTUB1 and OTUB2 display a catalytic triad characteristic of proteases but differ in their configuration and protonation states. The OTUB1 protein had a prearranged catalytic site, with strong electrostatic interactions between the active-site residues His265 and Asp267 In OTUB2, however, the arrangement of the catalytic triad was different. In the absence of ubiquitin, the neutral states of the catalytic-site residues in OTUB2 were more stable, resulting in larger distances between these residues. Only upon ubiquitin binding did the catalytic triad in OTUB2 rearrange and bring the active site into a catalytically feasible state. An analysis of water access channels revealed only a few diffusion trajectories for the catalytically active form of OTUB1, whereas in OTUB2 the catalytic site was solvent-accessible, and a larger number of water molecules reached and left the binding pocket. Interestingly, in OTUB2, the catalytic residues His224 and Asn226 formed a stable hydrogen bond. We propose that the observed differences in activation kinetics, protonation states, water channels, and active-site accessibility between OTUB1 and OTUB2 may be relevant for the selective design of OTU inhibitors.
Collapse
Affiliation(s)
- Dakshinamurthy Sivakumar
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, 39106 Magdeburg, Germany
| | - Vikash Kumar
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, 39106 Magdeburg, Germany.,Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, 39106 Magdeburg, Germany
| |
Collapse
|
45
|
Zhao X, Su X, Cao L, Xie T, Chen Q, Li J, Xu R, Jiang C. OTUD4: A Potential Prognosis Biomarker for Multiple Human Cancers. Cancer Manag Res 2020; 12:1503-1512. [PMID: 32184655 PMCID: PMC7053814 DOI: 10.2147/cmar.s233028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Deubiquitinase OTU domain containing 4 (OTUD4) is initially identified as a K48-specific deubiquitinase and plays an important role in DNA damage repair signaling transduction. However, the expression level, prognostic role, biological function and mechanism of OTUD4 in multiple human cancers are unclear. Methods GEPIA online (http://gepia.cancer-pku.cn/; The Cancer Genome Atlas (TCGA) database) was used to analyze the mRNA expression of OTUD4 in multiple human cancers. Kaplan-Meier plotter (KM plotter) database and TCGA database were used to evaluate the prognostic value of OTUD4 expression in multiple human cancers. MTT, Transwell and 3D culture assays were used to detect the role of OTUD4 in breast, liver and lung cancer cells. The correlation between OTUD4 and apoptosis signaling pathway and AKT signaling pathway was analyzed by Gene set enrichment analysis (GSEA). Results OTUD4 mRNA expression is significantly downregulated in multiple human cancer tissues. Survival analysis establishes that the downregulation of OTUD4 predicts poor prognosis in many solid tumors, including breast invasive carcinoma (BRCA), esophageal carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV). Furthermore, overexpression of OTUD4 could inhibit tumor cell proliferation, migration and invasion of breast, liver and lung cancer cells through inhibiting the AKT signaling pathway. Conclusion This study found that OTUD4 may be a potential predictive factor for several human cancers and a tumor suppressor for breast, liver and lung cancer. The overexpression of OTUD4 restrained proliferation, migration and invasion of human breast, liver and lung cancer cells through promoting cancer cells apoptosis and inhibiting AKT signaling pathway. Notably, our results indicated that OTUD4 could be a useful biomarker for the prognosis of human cancers and a potential molecular target for diagnosis and treatment of breast, liver and lung cancer.
Collapse
Affiliation(s)
- Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiaobo Su
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Lu Cao
- Juancheng People's Hospital, Heze City, Shandong Province 274600, People's Republic of China
| | - Tian Xie
- Obstetrics and Prenatal Diagnosis Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Quan Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Jing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Rui Xu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, People's Republic of China
| | - Chao Jiang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China.,Department of Cancer Center, People's Hospital of Baoan District, Shenzhen 518101, People's Republic of China
| |
Collapse
|
46
|
Mondal T, Mandal B. Total degradation of extracellular amyloids by miniature artificial proteases. Chem Commun (Camb) 2020; 56:2348-2351. [PMID: 31993621 DOI: 10.1039/c9cc09409a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A miniaturized mimic of the active site of a protease, chymotrypsin, was linked to a target recognition unit to generate "Miniature Artificial Proteases" (mAPs). Time-resolved MALDI-TOF data analyses indicated that mAPs cleaved every amide bond between Lys16-Phe20 of the amyloid β fragment (Aβ12-21) and Aβ1-40, resulting in inhibition of fibrillization and disruption of the preformed amyloid. Such a platform may offer not only new therapeutic options against various amyloidoses but also novel routes for the selective knockdown of specific proteins.
Collapse
Affiliation(s)
- Tanmay Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Bhubaneswar Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
47
|
Muraoka T. Biofunctional Molecules Inspired by Protein Mimicry and Manipulation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
48
|
Fujii T, Fukano K, Hirano K, Mimura A, Terauchi M, Etoh SI, Iida A. A new serine protease family with elastase activity is produced by Streptomyces bacteria. MICROBIOLOGY-SGM 2020; 166:253-261. [PMID: 31896394 DOI: 10.1099/mic.0.000880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We found an elastolytic activity in the culture supernatant of Streptomyces sp. P-3, and the corresponding enzyme (streptomycetes elastase, SEL) was purified to apparent homogeneity from the culture supernatant. The molecular mass of purified SEL was approximately 18 kDa as judged by SDS-PAGE analysis and gel-filtration chromatography. Utilizing information from N-terminal amino acid sequencing of SEL and mass spectrometry of SEL tryptic fragments, we succeeded in cloning the gene-encoding SEL. The cloned SEL gene contains a 726 bp ORF, which encodes a 241 amino acid polypeptide containing a putative signal peptide for secretion (28 amino acid) and pro-sequence (14 amino acid). Although the deduced primary structure of SEL has sequence similarity to proteins in the S1 protease family, the amino acid sequence shares low identity (< 31.5 %) with any known elastase. SEL efficiently hydrolyses synthetic peptides having Ala or Val in the P1 position such as N-succinyl-Ala-Ala-(Pro or Val)-Ala-p-nitroanilide (pNA), whereas reported proteases by streptomycetes having elastolytic activity prefer large residues, such as Phe and Leu. Compared of kcat/Km ratios for Suc-Ala-Ala-Val-Ala-pNA and Suc-Ala-Ala-Pro-Ala-pNA with subtilisin YaB, which has high elastolytic activity, Streptomyces sp. P-3 SEL exhibits 12- and 121-fold higher, respectively. Phylogenetic analyses indicate that the predicted SEL protein, together with predicted proteins in streptomycetes, constitutes a novel group within the S1 serine protease family. These characteristics suggest that SEL-like proteins are new members of the S1 serine protease family, which display elastolytic activity.
Collapse
Affiliation(s)
- Taiki Fujii
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Kazuhiro Fukano
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Keita Hirano
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Akinori Mimura
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Miyu Terauchi
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Shin-Ichi Etoh
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Akihiro Iida
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| |
Collapse
|
49
|
Munasinghe A, Baker SL, Lin P, Russell AJ, Colina CM. Structure-function-dynamics of α-chymotrypsin based conjugates as a function of polymer charge. SOFT MATTER 2020; 16:456-465. [PMID: 31803897 DOI: 10.1039/c9sm01842e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The field of protein-polymer conjugates has suffered from a lack of predictive tools and design guidelines to synthesize highly active and stable conjugates. In order to develop this type of information, structure-function-dynamics relationships must be understood. These relationships depend strongly on protein-polymer interactions and how these influence protein dynamics and conformations. Probing nanoscale interactions is experimentally difficult, but computational tools, such as molecular dynamics simulations, can easily obtain atomic resolution. Atomistic molecular dynamics simulations were used to study α-chymotrypsin (CT) densely conjugated with either zwitterionic, positively charged, or negatively charged polymers. Charged polymers interacted with the protein surface to varying degrees and in different regions of the polymer, depending on their flexibilities. Specific interactions of the negatively charged polymer with CT caused structural deformations in CT's substrate binding pocket and active site while no deformations were observed for zwitterionic and positively charged polymers. Attachment of polymers displaced water molecules from CT's surface into the polymer phase and polymer hydration correlated with the Hofmeister series.
Collapse
Affiliation(s)
- Aravinda Munasinghe
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|
50
|
Le Z, Lu Y, Jiang G, Liu Y, Liu J, Xie Z. α‐Chymotrypsin–catalyzed direct C (Sp 3)–H functionalization reactions for synthesis of azaarene derivatives in water. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhang‐Gao Le
- State Key Laboratory of Nuclear Resources and EnvironmentEast China University of Technology Nanchang China
- Department of Applied ChemistryEast China University of Technology Nanchang China
| | - Yue Lu
- State Key Laboratory of Nuclear Resources and EnvironmentEast China University of Technology Nanchang China
- Department of Applied ChemistryEast China University of Technology Nanchang China
| | - Guo‐Fang Jiang
- State Key Laboratory of Nuclear Resources and EnvironmentEast China University of Technology Nanchang China
- Department of Applied ChemistryEast China University of Technology Nanchang China
| | - Yi‐Shuai Liu
- State Key Laboratory of Nuclear Resources and EnvironmentEast China University of Technology Nanchang China
- Department of Applied ChemistryEast China University of Technology Nanchang China
| | - Jia Liu
- State Key Laboratory of Nuclear Resources and EnvironmentEast China University of Technology Nanchang China
- Department of Applied ChemistryEast China University of Technology Nanchang China
| | - Zong‐Bo Xie
- State Key Laboratory of Nuclear Resources and EnvironmentEast China University of Technology Nanchang China
- Department of Applied ChemistryEast China University of Technology Nanchang China
| |
Collapse
|