1
|
Sun Y, Hasbi A, George SR. G Protein-Coupled Receptor Heteromers in Brain: Functional and Therapeutic Importance in Neuropsychiatric Disorders. Annu Rev Pharmacol Toxicol 2025; 65:215-236. [PMID: 39847466 DOI: 10.1146/annurev-pharmtox-061724-080727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of plasma membrane proteins targeted for therapeutic development. For decades, GPCRs were investigated as monomeric entities during analysis of their pharmacology or signaling and during drug development. However, a considerable body of evidence now indicates that GPCRs function as dimers or higher-order oligomers. Greater acceptance of oligomerization occurred with the recognition that GPCR interactions form heteromeric receptor complexes, which was validated in vivo, often with pharmacologic, signaling, and functional properties distinct from the constituent protomers. GPCR heteromerization is reviewed in the context of brain disorders, with examples illustrating their functional implication in diverse neuropsychiatric and neurodegenerative disorders, making them an enormous unexploited resource for selective pharmacotherapy target identification. The strategies for development of heteromer-selective ligands are discussed as a new opportunity to precisely target the function of a receptor complex with greater specificity, in contrast to the classical ligands targeting individual receptors.
Collapse
Affiliation(s)
- Yalin Sun
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Ahmed Hasbi
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Susan R George
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Li M, Qing R, Tao F, Xu P, Zhang S. Inhibitory effect of truncated isoforms on GPCR dimerization predicted by combinatorial computational strategy. Comput Struct Biotechnol J 2024; 23:278-286. [PMID: 38173876 PMCID: PMC10762321 DOI: 10.1016/j.csbj.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in fundamental biological processes and disease development. GPCR isoforms, derived from alternative splicing, can exhibit distinct signaling patterns. Some highly-truncated isoforms can impact functional performance of full-length receptors, suggesting their intriguing regulatory roles. However, how these truncated isoforms interact with full-length counterparts remains largely unexplored. Here, we computationally investigated the interaction patterns of three human GPCRs from three different classes, ADORA1 (Class A), mGlu2 (Class C) and SMO (Class F) with their respective truncated isoforms because their homodimer structures have been experimentally determined, and they have truncated isoforms deposited and identified at protein level in Uniprot database. Combining the neural network-based AlphaFold2 and two physics-based protein-protein docking tools, we generated multiple complex structures and assessed the binding affinity in the context of atomistic molecular dynamics simulations. Our computational results suggested all the four studied truncated isoforms showed potent binding to their counterparts and overlapping interfaces with homodimers, indicating their strong potential to block homodimerization of their counterparts. Our study offers insights into functional significance of GPCR truncated isoforms and supports the ubiquity of their regulatory roles.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Khodamoradi M, Müller CP, Ghazvini H, Ghaderi A, Abdoli N, Zarei SA. Targeting retrieval of methamphetamine reward memory in the context of REM sleep deprivation: Age-dependent role of GABA B receptors. Pharmacol Biochem Behav 2024; 245:173900. [PMID: 39490704 DOI: 10.1016/j.pbb.2024.173900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
GABAB receptors play a modulatory role in the mechanisms underlying drug addiction, sleep problems, and aging; however, there are few studies addressing their relationships to each other. Therefore, this study aimed to examine whether blockade of these receptors affects methamphetamine (METH) reward memory in adult and adolescent rapid-eye movement sleep-deprived (RSD) rats. Adolescent and adult male Wistar rats were subjected to RSD for seven days. They were then conditioned to receive methamphetamine (METH; 2 mg/kg, ip) during an eight-day conditioning period. METH reward memory was then reactivated during a retrieval trial and the GABAB receptor agonist baclofen (2.5 or 5 mg/kg, ip) was injected prior to the retrieval trial. Afterward, animals were retested for the expression of conditioned place preference (CPP) and hippocampal expression of GABAB receptors. Baclofen dose-dependently decreased the retrieval of METH reward memory in control and RSD adult and adolescent rats, but its effects were stronger at the higher dose. Moreover, we found stronger effects of baclofen in adolescent animals than in adult ones. In addition, baclofen at its higher dose decreased GABAB overexpression in the hippocampus of adolescent rats, but not in adult rats. These findings shed new light on the mechanisms underlying the role of GABAB receptors in the retrieval of METH reward memory and highlight the importance of considering age and sleep problems in understanding addiction. Further research could potentially lead to the development of therapeutics for individuals struggling with METH addiction.
Collapse
Affiliation(s)
- Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hamed Ghazvini
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Abolhassan Ghaderi
- Clinical Research Development Unit, Imam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Nasrin Abdoli
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahab Aldin Zarei
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, P.R.China
| |
Collapse
|
4
|
Gupta A, Gomes I, Osman A, Fujita W, Devi LA. Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones. J Pharmacol Exp Ther 2024; 391:279-288. [PMID: 39103231 PMCID: PMC11493451 DOI: 10.1124/jpet.124.002187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), δ opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT: This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors.
Collapse
MESH Headings
- Animals
- Mice
- Molecular Chaperones/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Mice, Inbred C57BL
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Humans
- Cannabidiol/pharmacology
- Receptors, Opioid, delta/metabolism
- Male
- Receptors, Opioid/metabolism
- Receptors, Opioid/genetics
- HEK293 Cells
- Receptors, Cannabinoid/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aya Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
6
|
Ortiz-Leal I, Torres MV, López-Beceiro A, Fidalgo L, Shin T, Sanchez-Quinteiro P. First Immunohistochemical Demonstration of the Expression of a Type-2 Vomeronasal Receptor, V2R2, in Wild Canids. Int J Mol Sci 2024; 25:7291. [PMID: 39000398 PMCID: PMC11241633 DOI: 10.3390/ijms25137291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Ana López-Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Luis Fidalgo
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| |
Collapse
|
7
|
Belkacemi K, Rondard P, Pin JP, Prézeau L. Heterodimers Revolutionize the Field of Metabotropic Glutamate Receptors. Neuroscience 2024:S0306-4522(24)00270-7. [PMID: 38936459 DOI: 10.1016/j.neuroscience.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Identified 40 years ago, the metabotropic glutamate (mGlu) receptors play key roles in modulating many synapses in the brain, and are still considered as important drug targets to treat various brain diseases. Eight genes encoding mGlu subunits have been identified. They code for complex receptors composed of a large extracellular domain where glutamate binds, connected to a G protein activating membrane domain. They are covalently linked dimers, a quaternary structure needed for their activation by glutamate. For many years they have only been considered as homodimers, then limiting the number of mGlu receptors to 8 subtypes composed of twice the same subunit. Twelve years ago, mGlu subunits were shown to also form heterodimers with specific subunits combinations, increasing the family up to 19 different potential dimeric receptors. Since then, a number of studies brought evidence for the existence of such heterodimers in the brain, through various approaches. Structural and molecular dynamic studies helped understand their peculiar activation process. The present review summarizes the approaches used to study their activation process and their pharmacological properties and to demonstrate their existence in vivo. We will highlight how the existence of mGlu heterodimers revolutionizes the mGlu receptor field, opening new possibilities for therapeutic intervention for brain diseases. As illustrated by the number of possible mGlu heterodimers, this study will highlight the need for further research to fully understand their role in physiological and pathological conditions, and to develop more specific therapeutic tools.
Collapse
Affiliation(s)
- Kawthar Belkacemi
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France.
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France.
| |
Collapse
|
8
|
Pratt HE, Andrews G, Shedd N, Phalke N, Li T, Pampari A, Jensen M, Wen C, Consortium P, Gandal MJ, Geschwind DH, Gerstein M, Moore J, Kundaje A, Colubri A, Weng Z. Using a comprehensive atlas and predictive models to reveal the complexity and evolution of brain-active regulatory elements. SCIENCE ADVANCES 2024; 10:eadj4452. [PMID: 38781344 PMCID: PMC11114231 DOI: 10.1126/sciadv.adj4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Most genetic variants associated with psychiatric disorders are located in noncoding regions of the genome. To investigate their functional implications, we integrate epigenetic data from the PsychENCODE Consortium and other published sources to construct a comprehensive atlas of candidate brain cis-regulatory elements. Using deep learning, we model these elements' sequence syntax and predict how binding sites for lineage-specific transcription factors contribute to cell type-specific gene regulation in various types of glia and neurons. The elements' evolutionary history suggests that new regulatory information in the brain emerges primarily via smaller sequence mutations within conserved mammalian elements rather than entirely new human- or primate-specific sequences. However, primate-specific candidate elements, particularly those active during fetal brain development and in excitatory neurons and astrocytes, are implicated in the heritability of brain-related human traits. Additionally, we introduce PsychSCREEN, a web-based platform offering interactive visualization of PsychENCODE-generated genetic and epigenetic data from diverse brain cell types in individuals with psychiatric disorders and healthy controls.
Collapse
Affiliation(s)
- Henry E. Pratt
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gregory Andrews
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tongxin Li
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Khoury College of Computer Science, Northeastern University, Boston, MA 02115, USA
| | - Anusri Pampari
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Jensen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Michael J. Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel H. Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Andrés Colubri
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Franchini L, Orlandi C. Deorphanization of G Protein Coupled Receptors: A Historical Perspective. Mol Pharmacol 2024; 105:374-385. [PMID: 38622017 DOI: 10.1124/molpharm.124.000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Counting over 800 members, G protein coupled receptors (GPCRs) form the largest family of membrane receptors encoded in the human genome. Since the discovery of G proteins and GPCRs in the late 1970s and early 1980s, a significant portion of the GPCR research has been focused on identifying ligand/receptor pairs in parallel to studies related to their signaling properties. Despite significant advancements, about a fourth of the ∼400 nonodorant GPCRs are still considered orphan because their natural or endogenous ligands have yet to be identified. We should consider that every GPCR was once an orphan and that endogenous ligands have often been associated with biologic effects without a complete understanding of the molecular identity of their target receptors. Within this framework, this review offers a historical perspective on deorphanization processes for representative GPCRs, including the ghrelin receptor, γ aminobutyric acid B receptor, apelin receptor, cannabinoid receptors, and GPR15. It explores three main scenarios encountered in deorphanization efforts and discusses key questions and methodologies employed in elucidating ligand-receptor interactions, providing insights for future research endeavors. SIGNIFICANCE STATEMENT: Understanding how scientists have historically approached the issue of GPCR deorphanization and pairing of biologically active ligands with their cognate receptors are relevant topics in pharmacology. In fact, the biology of each GPCR, including its pathophysiological involvement, has often been uncovered only after its deorphanization, illuminating druggable targets for various diseases. Furthermore, uncovered endogenous ligands have therapeutic value as many ligands-or derivates thereof-are developed into drugs.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
10
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
11
|
Wang Y, Wu J, Gong Y, Wang H, Wu T, Liu R, Sui W, Zhang M. Peanut oil odor enhances the immunomodulatory effect on immunosuppressed mice by regulating the cAMP signaling pathway via the brain-spleen axis. Food Funct 2024; 15:1994-2007. [PMID: 38288526 DOI: 10.1039/d3fo03629d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The role of sniffing relative to immune function has attracted considerable attention. The present study investigated the immunomodulatory effects of peanut oil odor on cyclophosphamide (CTX)-induced immunosuppressed mice. The subset of mice subjected to prolonged (8 h) sniffing peanut oil odor (PL) demonstrated significantly elevated levels of agouti-related peptide, neuropeptide Y, and glutamate (p < 0.05), whereas it significantly down-regulated the level of γ-aminobutyric acid in the brain (p < 0.05). Furthermore, immunohistochemistry results indicated significantly increased expression of mGluR1/5 and decreased expression of GABABR in the hippocampus and hypothalamus (p < 0.05) of the PL group. Additionally, the PL group had significantly up-regulated expression levels of cAMP, Epac, Rap1, ERK1/2 and PKA (p < 0.05) and remarkably increased phosphorylation of CREB in the cAMP signaling pathway (p < 0.05), which influenced the central nervous system. Moreover, compared with CTX-induced mice, the percentages of peripheral blood T lymphocytes (CD3+CD4+ and CD3+CD8+) and the levels of splenic cytokines (IL-2, IL-4, and TNF-α) were significantly increased following PL treatment (p < 0.05). The PL group also showed significantly up-regulated expression levels of cAMP, p-p65, and p-IκBα in the spleen (p < 0.05) by western blot analysis. In summary, PL intervention significantly up-regulated the expression levels of cAMP in the brain (p < 0.05), with subsequent transfer of cAMP to the spleen which promoted phosphorylation of p65 and IκBα. This series of events enhanced the immunity of mice, which confirmed the regulatory effect of PL on the cAMP signaling pathway, thereby enhancing immune function via the brain-spleen axis.
Collapse
Affiliation(s)
- Yijin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianfu Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ying Gong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Huiting Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
| |
Collapse
|
12
|
Hleihil M, Benke D. Restoring GABA B receptor expression in the ventral tegmental area of methamphetamine addicted mice inhibits locomotor sensitization and drug seeking behavior. Front Mol Neurosci 2024; 17:1347228. [PMID: 38384279 PMCID: PMC10879384 DOI: 10.3389/fnmol.2024.1347228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Repeated exposure to psychostimulants such as methamphetamine (METH) induces neuronal adaptations in the mesocorticolimbic dopamine system, including the ventral tegmental area (VTA). These changes lead to persistently enhanced neuronal activity causing increased dopamine release and addictive phenotypes. A factor contributing to increased dopaminergic activity in this system appears to be reduced GABAB receptor-mediated neuronal inhibition in the VTA. Dephosphorylation of serine 783 (Ser783) of the GABAB2 subunit by protein phosphatase 2A (PP2A) appears to trigger the downregulation GABAB receptors in psychostimulant-addicted rodents. Therefore, preventing the interaction of GABAB receptors with PP2A using an interfering peptide is a promising strategy to restore GABAB receptor-mediated neuronal inhibition. We have previously developed an interfering peptide (PP2A-Pep) that inhibits the GABAB receptors/PP2A interaction and thereby restores receptor expression under pathological conditions. Here, we tested the hypothesis that restoration of GABAB receptor expression in the VTA of METH addicted mice reduce addictive phenotypes. We found that the expression of GABAB receptors was significantly reduced in the VTA and nucleus accumbens but not in the hippocampus and somatosensory cortex of METH-addicted mice. Infusion of PP2A-Pep into the VTA of METH-addicted mice restored GABAB receptor expression in the VTA and inhibited METH-induced locomotor sensitization as assessed in the open field test. Moreover, administration of PP2A-Pep into the VTA also reduced drug seeking behavior in the conditioned place preference test. These observations underscore the importance of VTA GABAB receptors in controlling addictive phenotypes. Furthermore, this study illustrates the value of interfering peptides targeting diseases-related protein-protein interactions as an alternative approach for a potential development of selective therapeutic interventions.
Collapse
Affiliation(s)
- Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zürich, Switzerland
| |
Collapse
|
13
|
Su M, Luo Q, Wu Z, Feng H, Zhou H. Thymoma-associated autoimmune encephalitis with myasthenia gravis: Case series and literature review. CNS Neurosci Ther 2024; 30:e14568. [PMID: 38421083 PMCID: PMC10850820 DOI: 10.1111/cns.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVES This comprehensive review aimed to compile cases of patients with thymoma diagnosed with both autoimmune encephalitis (AE) and myasthenia gravis (MG), and describe their clinical characteristics. METHODS Clinical records of 3 AE patients in the first affiliated hospital of Sun Yat-sen University were reviewed. All of them were diagnosed with AE between 1 November 2021 and 1 March 2022, and clinical evidence about thymoma and MG was found. All published case reports were searched for comprehensive literature from January 1990 to June 2022. RESULTS A total of 18 cases diagnosed with thymoma-associated autoimmune encephalitis (TAAE) and thymoma-associated myasthenia gravis (TAMG) were included in this complication, wherein 3 cases were in the first affiliated hospital of Sun Yat-sen University and the other 15 were published case reports. 5/18 patients had alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antibody (AMPAR-Ab) in their serum and cerebrospinal fluid (CSF). All of them had positive anti-acetylcholine receptor antibody (AChR-Ab). And 12/18 patients showed a positive response to thymectomy and immunotherapy. Besides, thymoma recurrences were detected because of AE onset. And the shortest interval between operation and AE onset was 2 years in patients with thymoma recurrence. CONCLUSIONS There was no significant difference in the clinical manifestations between these patients and others with only TAMG or TAAE. TAAE was commonly associated with AMPAR2-Ab. Significantly, AE more commonly heralded thymoma recurrences than MG onset. And the intervals of thymectomy and MG or AE onset had different meanings for thymoma recurrence and prognoses of patients.
Collapse
Affiliation(s)
- Miao Su
- Department of NeurologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Qiuyan Luo
- Department of NeurologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Department of NeurologyGuangzhou Women and Children's Medical CenterGuangzhouChina
| | - Zichao Wu
- Department of NeurologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Huiyu Feng
- Department of NeurologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Hongyan Zhou
- Department of NeurologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
14
|
McArdle CJ, Arnone AA, Heaney CF, Raab-Graham KF. A paradoxical switch: the implications of excitatory GABAergic signaling in neurological disorders. Front Psychiatry 2024; 14:1296527. [PMID: 38268565 PMCID: PMC10805837 DOI: 10.3389/fpsyt.2023.1296527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. In the mature brain, inhibitory GABAergic signaling is critical in maintaining neuronal homeostasis and vital human behaviors such as cognition, emotion, and motivation. While classically known to inhibit neuronal function under physiological conditions, previous research indicates a paradoxical switch from inhibitory to excitatory GABAergic signaling that is implicated in several neurological disorders. Various mechanisms have been proposed to contribute to the excitatory switch such as chloride ion dyshomeostasis, alterations in inhibitory receptor expression, and modifications in GABAergic synaptic plasticity. Of note, the hypothesized mechanisms underlying excitatory GABAergic signaling are highlighted in a number of neurodevelopmental, substance use, stress, and neurodegenerative disorders. Herein, we present an updated review discussing the presence of excitatory GABAergic signaling in various neurological disorders, and their potential contributions towards disease pathology.
Collapse
Affiliation(s)
- Colin J. McArdle
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Alana A. Arnone
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chelcie F. Heaney
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
Da Silva E, Scott MGH, Enslen H, Marullo S. Control of CCR5 Cell-Surface Targeting by the PRAF2 Gatekeeper. Int J Mol Sci 2023; 24:17438. [PMID: 38139265 PMCID: PMC10744302 DOI: 10.3390/ijms242417438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The cell-surface targeting of neo-synthesized G protein-coupled receptors (GPCRs) involves the recruitment of receptors into COPII vesicles budding at endoplasmic reticulum exit sites (ERESs). This process is regulated for some GPCRs by escort proteins, which facilitate their export, or by gatekeepers that retain the receptors in the ER. PRAF2, an ER-resident four trans- membrane domain protein with cytoplasmic extremities, operates as a gatekeeper for the GB1 protomer of the heterodimeric GABAB receptor, interacting with a tandem di-leucine/RXR retention motif in the carboxyterminal tail of GB1. PRAF2 was also reported to interact in a two-hybrid screen with a peptide corresponding to the carboxyterminal tail of the chemokine receptor CCR5 despite the absence of RXR motifs in its sequence. Using a bioluminescence resonance energy transfer (BRET)-based subcellular localization system, we found that PRAF2 inhibits, in a concentration-dependent manner, the plasma membrane export of CCR5. BRET-based proximity assays and Co-IP experiments demonstrated that PRAF2/CCR5 interaction does not require the presence of a receptor carboxyterminal tail and involves instead the transmembrane domains of both proteins. The mutation of the potential di-leucine/RXR motif contained in the third intracellular loop of CCR5 does not affect PRAF2-mediated retention. It instead impairs the cell-surface export of CCR5 by inhibiting CCR5's interaction with its private escort protein, CD4. PRAF2 and CD4 thus display opposite roles on the cell-surface export of CCR5, with PRAF2 inhibiting and CD4 promoting this process, likely operating at the level of CCR5 recruitment into COPII vesicles, which leave the ER.
Collapse
Affiliation(s)
| | | | | | - Stefano Marullo
- CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France; (E.D.S.); (M.G.H.S.); (H.E.)
| |
Collapse
|
16
|
Li M, Qing R, Tao F, Xu P, Zhang S. Dynamic Dimerization of Chemokine Receptors and Potential Inhibitory Role of Their Truncated Isoforms Revealed through Combinatorial Prediction. Int J Mol Sci 2023; 24:16266. [PMID: 38003455 PMCID: PMC10671024 DOI: 10.3390/ijms242216266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Chemokine receptors play crucial roles in fundamental biological processes. Their malfunction may result in many diseases, including cancer, autoimmune diseases, and HIV. The oligomerization of chemokine receptors holds significant functional implications that directly affect their signaling patterns and pharmacological responses. However, the oligomerization patterns of many chemokine receptors remain poorly understood. Furthermore, several chemokine receptors have highly truncated isoforms whose functional role is not yet clear. Here, we computationally show homo- and heterodimerization patterns of four human chemokine receptors, namely CXCR2, CXCR7, CCR2, and CCR7, along with their interaction patterns with their respective truncated isoforms. By combining the neural network-based AlphaFold2 and physics-based protein-protein docking tool ClusPro, we predicted 15 groups of complex structures and assessed the binding affinities in the context of atomistic molecular dynamics simulations. Our results are in agreement with previous experimental observations and support the dynamic and diverse nature of chemokine receptor dimerization, suggesting possible patterns of higher-order oligomerization. Additionally, we uncover the strong potential of truncated isoforms to block homo- and heterodimerization of chemokine receptors, also in a dynamic manner. Our study provides insights into the dimerization patterns of chemokine receptors and the functional significance of their truncated isoforms.
Collapse
Affiliation(s)
- Mengke Li
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Q.); (F.T.); (P.X.)
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Q.); (F.T.); (P.X.)
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Q.); (F.T.); (P.X.)
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Q.); (F.T.); (P.X.)
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| |
Collapse
|
17
|
Gill KS, Mehta K, Heredia JD, Krishnamurthy VV, Zhang K, Procko E. Multiple mechanisms of self-association of chemokine receptors CXCR4 and CCR5 demonstrated by deep mutagenesis. J Biol Chem 2023; 299:105229. [PMID: 37690681 PMCID: PMC10551899 DOI: 10.1016/j.jbc.2023.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Chemokine receptors are members of the rhodopsin-like class A GPCRs whose signaling through G proteins drives the directional movement of cells in response to a chemokine gradient. Chemokine receptors CXCR4 and CCR5 have been extensively studied due to their roles in leukocyte development and inflammation and their status as coreceptors for HIV-1 infection, among other roles. Both receptors form dimers or oligomers of unclear function. While CXCR4 has been crystallized in a dimeric arrangement, available atomic resolution structures of CCR5 are monomeric. To investigate their dimerization interfaces, we used a bimolecular fluorescence complementation (BiFC)-based screen and deep mutational scanning to find mutations that change how the receptors self-associate, either via specific oligomer assembly or alternative mechanisms of clustering in close proximity. Many disruptive mutations promoted self-associations nonspecifically, suggesting they aggregated in the membrane. A mutationally intolerant region was found on CXCR4 that matched the crystallographic dimer interface, supporting this dimeric arrangement in living cells. A mutationally intolerant region was also observed on the surface of CCR5 by transmembrane helices 3 and 4. Mutations predicted from the scan to reduce BiFC were validated and were localized in the transmembrane domains as well as the C-terminal cytoplasmic tails where they reduced lipid microdomain localization. A mutation in the dimer interface of CXCR4 had increased binding to the ligand CXCL12 and yet diminished calcium signaling. There was no change in syncytia formation with cells expressing HIV-1 Env. The data highlight that multiple mechanisms are involved in self-association of chemokine receptor chains.
Collapse
Affiliation(s)
- Kevin S Gill
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Kritika Mehta
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Jeremiah D Heredia
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | | | - Kai Zhang
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA; Cyrus Biotechnology, Seattle, Washington, USA.
| |
Collapse
|
18
|
Bhat MA, Grampp T, Benke D. ERK1/2-Dependent Phosphorylation of GABA B1(S867/T872), Controlled by CaMKIIβ, Is Required for GABA B Receptor Degradation under Physiological and Pathological Conditions. Int J Mol Sci 2023; 24:13436. [PMID: 37686242 PMCID: PMC10488028 DOI: 10.3390/ijms241713436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
GABAB receptor-mediated inhibition is indispensable for maintaining a healthy neuronal excitation/inhibition balance. Many neurological diseases are associated with a disturbed excitation/inhibition balance and downregulation of GABAB receptors due to enhanced sorting of the receptors to lysosomal degradation. A key event triggering the downregulation of the receptors is the phosphorylation of S867 in the GABAB1 subunit mediated by CaMKIIβ. Interestingly, close to S867 in GABAB1 exists another phosphorylation site, T872. Therefore, the question arose as to whether phosphorylation of T872 is involved in downregulating the receptors and whether phosphorylation of this site is also mediated by CaMKIIβ or by another protein kinase. Here, we show that mutational inactivation of T872 in GABAB1 prevented the degradation of the receptors in cultured neurons. We found that, in addition to CaMKIIβ, also ERK1/2 is involved in the degradation pathway of GABAB receptors under physiological and ischemic conditions. In contrast to our previous view, CaMKIIβ does not appear to directly phosphorylate S867. Instead, the data support a mechanism in which CaMKIIβ activates ERK1/2, which then phosphorylates S867 and T872 in GABAB1. Blocking ERK activity after subjecting neurons to ischemic stress completely restored downregulated GABAB receptor expression to normal levels. Thus, preventing ERK1/2-mediated phosphorylation of S867/T872 in GABAB1 is an opportunity to inhibit the pathological downregulation of the receptors after ischemic stress and is expected to restore a healthy neuronal excitation/inhibition balance.
Collapse
Affiliation(s)
- Musadiq A. Bhat
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; (M.A.B.); (T.G.)
| | - Thomas Grampp
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; (M.A.B.); (T.G.)
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; (M.A.B.); (T.G.)
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
19
|
Liu L, Lin L, Shen C, Rondard P, Pin JP, Xu C, Liu J. Asymmetric activation of dimeric GABA B and metabotropic glutamate receptors. Am J Physiol Cell Physiol 2023; 325:C79-C89. [PMID: 37184233 DOI: 10.1152/ajpcell.00150.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane proteins and are important drug targets. GPCRs are allosteric machines that transduce an extracellular signal to the cell by activating heterotrimeric G proteins. Herein, we summarize the recent advancements in the molecular activation mechanism of the γ-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors, the most important class C GPCRs that modulate synaptic transmission in the brain. Both are mandatory dimers, this quaternary structure being needed for their function The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of mGlu heterodimers, where the eight mGlu subunits can form specific and functional heterodimers. Finally, the development of allosteric modulators has revealed new possibilities for regulating the function of these receptors by targeting the transmembrane dimer interface. This family of receptors never ceases to astonish and serve as models to better understand the diversity and asymmetric functioning of GPCRs.NEW & NOTEWORTHY γ-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors form constitutive dimers, which are required for their function. They serve as models to better understand the diversity and activation of G protein-coupled receptors (GPCRs). The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of specific and functional mGlu heterodimers. Allosteric modulators can be developed to target the transmembrane interface and modulate the asymmetry.
Collapse
Affiliation(s)
- Lei Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Lin
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Cangsong Shen
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Chanjuan Xu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
20
|
Saha S, González-Maeso J. The crosstalk between 5-HT 2AR and mGluR2 in schizophrenia. Neuropharmacology 2023; 230:109489. [PMID: 36889432 PMCID: PMC10103009 DOI: 10.1016/j.neuropharm.2023.109489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. First generation or typical antipsychotics such as haloperidol and second generation or atypical antipsychotics such as clozapine and risperidone remain the current standard for schizophrenia treatment. In some patients with schizophrenia, antipsychotics produce complete remission of positive symptoms, such as hallucinations and delusions. However, antipsychotic drugs are ineffective against cognitive deficits and indeed treated schizophrenia patients have small improvements or even deterioration in several cognitive domains. This underlines the need for novel and more efficient therapeutic targets for schizophrenia treatment. Serotonin and glutamate have been identified as key parts of two neurotransmitter systems involved in fundamental brain processes. Serotonin (or 5-hydroxytryptamine) 5-HT2A receptor (5-HT2AR) and metabotropic glutamate 2 receptor (mGluR2) are G protein-coupled receptors (GPCRs) that interact at epigenetic and functional levels. These two receptors can form GPCR heteromeric complexes through which their pharmacology, function and trafficking becomes affected. Here we review past and current research on the 5-HT2AR-mGluR2 heterocomplex and its potential implication in schizophrenia and antipsychotic drug action. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Somdatta Saha
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
21
|
Gill KS, Mehta K, Heredia JD, Krishnamurthy VV, Zhang K, Procko E. Multiple mechanisms of self-association of chemokine receptors CXCR4 and CCR5 demonstrated by deep mutagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534231. [PMID: 36993221 PMCID: PMC10055436 DOI: 10.1101/2023.03.25.534231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chemokine receptors are members of the rhodopsin-like class A GPCRs whose signaling through G proteins drives the directional movement of cells in response to a chemokine gradient. Chemokine receptors CXCR4 and CCR5 have been extensively studied due to their roles in white blood cell development and inflammation and their status as coreceptors for HIV-1 infection, among other functions. Both receptors form dimers or oligomers but the function/s of self-associations are unclear. While CXCR4 has been crystallized in a dimeric arrangement, available atomic resolution structures of CCR5 are monomeric. To investigate the dimerization interfaces of these chemokine receptors, we used a bimolecular fluorescence complementation (BiFC)-based screen and deep mutational scanning to find mutations that modify receptor self-association. Many disruptive mutations promoted self-associations nonspecifically, suggesting they aggregated in the membrane. A mutationally intolerant region was found on CXCR4 that matched the crystallographic dimer interface, supporting this dimeric arrangement in living cells. A mutationally intolerant region was also observed on the surface of CCR5 by transmembrane helices 3 and 4. Mutations from the deep mutational scan that reduce BiFC were validated and were localized in the transmembrane domains as well as the C-terminal cytoplasmic tails where they reduced lipid microdomain localization. The reduced self-association mutants of CXCR4 had increased binding to the ligand CXCL12 but diminished calcium signaling. There was no change in syncytia formation with cells expressing HIV-1 Env. The data highlight that multiple mechanisms are involved in self-association of chemokine receptor chains.
Collapse
Affiliation(s)
- Kevin S Gill
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Kritika Mehta
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Jeremiah D Heredia
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Current affiliation: Codexis, Redwood City, CA 94063
| | | | - Kai Zhang
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Cyrus Biotechnology, Seattle, WA 98121, USA
| |
Collapse
|
22
|
Lu MF, Fu Q, Qiu TY, Yang JH, Peng QH, Hu ZZ. The CaMKII-dependent phosphorylation of GABA B receptors in the nucleus accumbens was involved in cocaine-induced behavioral sensitization in rats. CNS Neurosci Ther 2023; 29:1345-1356. [PMID: 36756679 PMCID: PMC10068462 DOI: 10.1111/cns.14107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Previous studies have established that the regulation of prolonged, distal neuronal inhibition by the GABAB heteroreceptor (GABAB R) is determined by its stability, and hence residence time, on the plasma membrane. AIMS Here, we show that GABAB R in the nucleus accumbens (NAc) of rats affects the development of cocaine-induced behavioral sensitization by mediating its perinucleus internalization and membrane expression. MATERIALS & METHODS By immunofluorescent labeling, flow cytometry analysis, Co-immunoprecipitation and open field test, we measured the role of Ca2+ /calmodulin-dependent protein kinase II (CaMKII) to the control of GABAB R membrane anchoring and cocaine induced-behavioral sensitization. RESULTS Repeated cocaine treatment in rats (15 mg/kg) significantly decreases membrane levels of GABAB1 R and GABAB2 R in the NAc after day 3, 5 and 7. The membrane fluorescence and protein levels of GABAB R was also decreased in NAc GAD67 + neurons post cocaine (1 μM) treatment after 5 min. Moreover, the majority of internalized GABAB1 Rs exhibited perinuclear localization, a decrease in GABAB1 R-pHluroin signals was observed in cocaine-treated NAc neurons. By contrast, membrane expression of phosphorylated CaMKII (pCaMKII) post cocaine treatment was significantly increased after day 1, 3, 5 and 7. Baclofen blocked the cocaine induced behavioral sensitization via inhibition of cocaine enhanced-pCaMKII-GABAB1 R interaction. CONCLUSION These findings reveal a new mechanism by which pCaMKII-GABAB R signaling can promote psychostimulant-induced behavioral sensitization.
Collapse
Affiliation(s)
- Ming F Lu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, Department Two, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Tian Y Qiu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Jian H Yang
- Department of Physiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qing H Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Z Hu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Swan AH, Schindler RFR, Savarese M, Mayer I, Rinné S, Bleser F, Schänzer A, Hahn A, Sabatelli M, Perna F, Chapman K, Pfuhl M, Spivey AC, Decher N, Udd B, Tasca G, Brand T. Differential effects of mutations of POPDC proteins on heteromeric interaction and membrane trafficking. Acta Neuropathol Commun 2023; 11:4. [PMID: 36624536 PMCID: PMC9830914 DOI: 10.1186/s40478-022-01501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
The Popeye domain containing (POPDC) genes encode sarcolemma-localized cAMP effector proteins. Mutations in blood vessel epicardial substance (BVES) also known as POPDC1 and POPDC2 have been associated with limb-girdle muscular dystrophy and cardiac arrhythmia. Muscle biopsies of affected patients display impaired membrane trafficking of both POPDC isoforms. Biopsy material of patients carrying mutations in BVES were immunostained with POPDC antibodies. The interaction of POPDC proteins was investigated by co-precipitation, proximity ligation, bioluminescence resonance energy transfer and bimolecular fluorescence complementation. Site-directed mutagenesis was utilised to map the domains involved in protein-protein interaction. Patients carrying a novel homozygous variant, BVES (c.547G > T, p.V183F) displayed only a skeletal muscle pathology and a mild impairment of membrane trafficking of both POPDC isoforms. In contrast, variants such as BVES p.Q153X or POPDC2 p.W188X were associated with a greater impairment of membrane trafficking. Co-transfection analysis in HEK293 cells revealed that POPDC proteins interact with each other through a helix-helix interface located at the C-terminus of the Popeye domain. Site-directed mutagenesis of an array of ultra-conserved hydrophobic residues demonstrated that some of them are required for membrane trafficking of the POPDC1-POPDC2 complex. Mutations in POPDC proteins that cause an impairment in membrane localization affect POPDC complex formation while mutations which leave protein-protein interaction intact likely affect some other essential function of POPDC proteins.
Collapse
Affiliation(s)
- Alexander H. Swan
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute (NHLI), Imperial College London, London, UK ,grid.7445.20000 0001 2113 8111Department of Chemistry, Imperial College London, London, UK
| | - Roland F. R. Schindler
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute (NHLI), Imperial College London, London, UK ,grid.434240.5Present Address: Assay Biology, Domainex Ltd, Cambridge, CB10 1XL UK
| | - Marco Savarese
- grid.7737.40000 0004 0410 2071Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Isabelle Mayer
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Susanne Rinné
- grid.10253.350000 0004 1936 9756Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Felix Bleser
- grid.10253.350000 0004 1936 9756Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Anne Schänzer
- grid.8664.c0000 0001 2165 8627Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Hahn
- grid.8664.c0000 0001 2165 8627Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
| | - Mario Sabatelli
- grid.8142.f0000 0001 0941 3192Department of Neurology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Perna
- grid.414603.4Dipartimento Di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Kathryn Chapman
- grid.434240.5Present Address: Assay Biology, Domainex Ltd, Cambridge, CB10 1XL UK
| | - Mark Pfuhl
- grid.13097.3c0000 0001 2322 6764School of Cardiovascular Medicine and Sciences and Randall Centre, King’s College London, London, UK
| | - Alan C. Spivey
- grid.7445.20000 0001 2113 8111Department of Chemistry, Imperial College London, London, UK
| | - Niels Decher
- grid.8664.c0000 0001 2165 8627Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Bjarne Udd
- grid.7737.40000 0004 0410 2071Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ,grid.1006.70000 0001 0462 7212Present Address: John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Thomas Brand
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute (NHLI), Imperial College London, London, UK ,Imperial Centre of Translational and Experimental Medicine, Du Cane Road, London, W120NN UK
| |
Collapse
|
24
|
Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane. Nat Commun 2023; 14:34. [PMID: 36596803 PMCID: PMC9810740 DOI: 10.1038/s41467-022-35708-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
The γ-aminobutyric acid type B (GABAB) receptor is a prototypical family C G protein-coupled receptor (GPCR) that plays a key role in the regulation of synaptic transmission. Although growing evidence suggests that GPCR signaling in neurons might be highly organized in time and space, limited information is available about the mechanisms controlling the nanoscale organization of GABAB receptors and other GPCRs on the neuronal plasma membrane. Using a combination of biochemical assays in vitro, single-particle tracking, and super-resolution microscopy, we provide evidence that the spatial organization and diffusion of GABAB receptors on the plasma membrane are governed by dynamic interactions with filamin A, which tethers the receptors to sub-cortical actin filaments. We further show that GABAB receptors are located together with filamin A in small nanodomains in hippocampal neurons. These interactions are mediated by the first intracellular loop of the GABAB1 subunit and modulate the kinetics of Gαi protein activation in response to GABA stimulation.
Collapse
|
25
|
Antonopoulos SR, Durham PL. Grape seed extract suppresses calcitonin gene-related peptide secretion and upregulates expression of GAD 65/67 and GABAB receptor in primary trigeminal ganglion cultures. IBRO Neurosci Rep 2022; 13:187-197. [PMID: 36093283 PMCID: PMC9449751 DOI: 10.1016/j.ibneur.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
The trigeminal ganglion is implicated in the underlying pathology of migraine and temporomandibular joint disorders (TMD), which are orofacial pain conditions involving peripheral and central sensitization. The neuropeptide calcitonin gene-related peptide (CGRP) is synthesized in some trigeminal ganglion neurons, and its release promotes inflammation, peripheral and central sensitization, and pain signaling. Recent studies in preclinical migraine and TMD models provide evidence that dietary supplementation with grape seed extract (GSE) inhibits trigeminal pain signaling. The goal of this study was to investigate the cellular mechanisms by which GSE modulates primary trigeminal ganglion cultures. The effect of GSE on CGRP secretion was determined by radioimmunoassay. To determine if GSE effects involved modulation of CGRP or the GABAergic system, expression of CGRP, GAD 65 and 67, GABAA receptor, and GABAB1 and GABAB2 receptor subunits were investigated by immunocytochemistry. GSE significantly inhibited basal CGRP secretion but did not alter neuronal CGRP expression. GAD 65 and 67 expression levels in neurons were significantly increased in response to GSE. While GSE did not cause a change in the neuronal expression of GABAA, GSE significantly increased GABAB1 expression in neurons, satellite glial cells, and Schwann cells. GABAB2 expression was significantly elevated in satellite glia and Schwann cells. These findings support the notion that GSE inhibition of basal CGRP secretion involves increased neuronal GAD 65 and 67 and GABAB receptor expression. GSE repression of CGRP release coupled with increased GABAB1 and GABAB2 glial cell expression would be neuroprotective by suppressing neuronal and glial excitability in the trigeminal ganglion. Grape seed extract inhibited basal CGRP release from cultured trigeminal neurons Neuronal expression of GAD 65/67 and GABAB1 was stimulated by grape seed extract Grape seed extract also increased GABAB1 in satellite glial cells and Schwann cells Glial expression of G protein-coupled GABAB2 was enhanced by grape seed extract Grape seed extract promotes neuroprotective cellular changes in trigeminal ganglion
Collapse
|
26
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
27
|
Cediel ML, Stawarski M, Blanc X, Nosková L, Magner M, Platzer K, Gburek-Augustat J, Baldridge D, Constantino JN, Ranza E, Bettler B, Antonarakis SE. GABBR1 monoallelic de novo variants linked to neurodevelopmental delay and epilepsy. Am J Hum Genet 2022; 109:1885-1893. [PMID: 36103875 PMCID: PMC9606381 DOI: 10.1016/j.ajhg.2022.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023] Open
Abstract
GABAB receptors are obligatory heterodimers responsible for prolonged neuronal inhibition in the central nervous system. The two receptor subunits are encoded by GABBR1 and GABBR2. Variants in GABBR2 have been associated with a Rett-like phenotype (MIM: 617903), epileptic encephalopathy (MIM: 617904), and milder forms of developmental delay with absence epilepsy. To date, however, no phenotypes associated with pathogenic variants of GABBR1 have been established. Through GeneMatcher, we have ascertained four individuals who each have a monoallelic GABBR1 de novo non-synonymous variant; these individuals exhibit motor and/or language delay, ranging from mild to severe, and in one case, epilepsy. Further phenotypic features include varying degrees of intellectual disability, learning difficulties, autism, ADHD, ODD, sleep disorders, and muscular hypotonia. We functionally characterized the four de novo GABBR1 variants, p.Glu368Asp, p.Ala397Val, p.Ala535Thr, and p.Gly673Asp, in transfected HEK293 cells. GABA fails to efficiently activate the variant receptors, most likely leading to an increase in the excitation/inhibition balance in the central nervous system. Variant p.Gly673Asp in transmembrane domain 3 (TMD3) renders the receptor completely inactive, consistent with failure of the receptor to reach the cell surface. p.Glu368Asp is located near the orthosteric binding site and reduces GABA potency and efficacy at the receptor. GABA exhibits normal potency but decreased efficacy at the p.Ala397Val and p.Ala535Thr variants. Functional characterization of GABBR1-related variants provides a rationale for understanding the severity of disease phenotypes and points to possible therapeutic strategies.
Collapse
Affiliation(s)
- Maria Lucia Cediel
- Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Xavier Blanc
- Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
| | - Lenka Nosková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Magner
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Pediatrics, First Faculty of Medicine, Charles University and University Thomayer Hospital in Prague, Prague, Czech Republic
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | | | | | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | |
Collapse
|
28
|
Unravelling biological roles and mechanisms of GABA BR on addiction and depression through mood and memory disorders. Biomed Pharmacother 2022; 155:113700. [PMID: 36152411 DOI: 10.1016/j.biopha.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The metabotropic γ-aminobutyric acid type B receptor (GABABR) remains a hotspot in the recent research area. Being an idiosyncratic G-protein coupled receptor family member, the GABABR manifests adaptively tailored functionality under multifarious modulations by a constellation of agents, pointing to cross-talk between receptors and effectors that converge on the domains of mood and memory. This review systematically summarizes the latest achievements in signal transduction mechanisms of the GABABR-effector-regulator complex and probes how the up-and down-regulation of membrane-delimited GABABRs are associated with manifold intrinsic and extrinsic agents in synaptic strength and plasticity. Neuropsychiatric conditions depression and addiction share the similar pathophysiology of synapse inadaptability underlying negative mood-related processes, memory formations, and impairments. In the attempt to emphasize all convergent discoveries, we hope the insights gained on the GABABR system mechanisms of action are conducive to designing more therapeutic candidates so as to refine the prognosis rate of diseases and minimize side effects.
Collapse
|
29
|
Avoli M, Lévesque M. GABA B Receptors: are they Missing in Action in Focal Epilepsy Research? Curr Neuropharmacol 2022; 20:1704-1716. [PMID: 34429053 PMCID: PMC9881065 DOI: 10.2174/1570159x19666210823102332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
GABA, the key inhibitory neurotransmitter in the adult forebrain, activates pre- and postsynaptic receptors that have been categorized as GABAA, which directly open ligand-gated (or receptor-operated) ion-channels, and GABAB, which are metabotropic since they operate through second messengers. Over the last three decades, several studies have addressed the role of GABAB receptors in the pathophysiology of generalized and focal epileptic disorders. Here, we will address their involvement in focal epileptic disorders by mainly reviewing in vitro studies that have shown: (i) how either enhancing or decreasing GABAB receptor function can favour epileptiform synchronization and thus ictogenesis, although with different features; (ii) the surprising ability of GABAB receptor antagonism to disclose ictal-like activity when the excitatory ionotropic transmission is abolished; and (iii) their contribution to controlling seizure-like discharges during repetitive electrical stimuli delivered in limbic structures. In spite of this evidence, the role of GABAB receptor function in focal epileptic disorders has been attracting less interest when compared to the numerous studies that have addressed GABAA receptor signaling. Therefore, the main aim of our mini-review is to revive interest in the function of GABAB receptors in focal epilepsy research.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of; ,Department of Experimental Medicine, Sapienza University of Rome, 00185Rome, Italy,Address correspondence to this author at the Montreal Neurological Institute-Hospital, 3801 University Street, Montréal, Canada, H3A 2B4, QC; Tels: +1 514 998 6790; +39 333 483 1060; E-mail:
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of;
| |
Collapse
|
30
|
Abstract
GABA is the main inhibitory neurotransmitter in the mammalian central nervous system (CNS) and acts via metabotropic GABAB receptors. Neurodegenerative diseases are a major burden and affect an ever increasing number of humans. The actual therapeutic drugs available are partially effective to slow down the progression of the diseases, but there is a clear need to improve pharmacological treatment thus find alternative drug targets and develop newer pharmaco-treatments. This chapter is dedicated to reviewing the latest evidence about GABAB receptors and their inhibitory mechanisms and pathways involved in the neurodegenerative pathologies.
Collapse
Affiliation(s)
- Alessandra P Princivalle
- Department of Bioscience and Chemistry, Biomolecular Research Centre, College of Health, Wellbeing and Life Sciences at Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
31
|
Treppiedi D, Marra G, Di Muro G, Catalano R, Mangili F, Esposito E, Calebiro D, Arosio M, Peverelli E, Mantovani G. Dimerization of GPCRs: Novel insight into the role of FLNA and SSAs regulating SST 2 and SST 5 homo- and hetero-dimer formation. Front Endocrinol (Lausanne) 2022; 13:892668. [PMID: 35992099 PMCID: PMC9389162 DOI: 10.3389/fendo.2022.892668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The process of GPCR dimerization can have profound effects on GPCR activation, signaling, and intracellular trafficking. Somatostatin receptors (SSTs) are class A GPCRs abundantly expressed in pituitary tumors where they represent the main pharmacological targets of somatostatin analogs (SSAs), thanks to their antisecretory and antiproliferative actions. The cytoskeletal protein filamin A (FLNA) directly interacts with both somatostatin receptor type 2 (SST2) and 5 (SST5) and regulates their expression and signaling in pituitary tumoral cells. So far, the existence and physiological relevance of SSTs homo- and hetero-dimerization in the pituitary have not been explored. Moreover, whether octreotide or pasireotide may play modulatory effects and whether FLNA may participate to this level of receptor organization have remained elusive. Here, we used a proximity ligation assay (PLA)-based approach for the in situ visualization and quantification of SST2/SST5 dimerization in rat GH3 as well as in human melanoma cells either expressing (A7) or lacking (M2) FLNA. First, we observed the formation of endogenous SST5 homo-dimers in GH3, A7, and M2 cells. Using the PLA approach combined with epitope tagging, we detected homo-dimers of human SST2 in GH3, A7, and M2 cells transiently co-expressing HA- and SNAP-tagged SST2. SST2 and SST5 can also form endogenous hetero-dimers in these cells. Interestingly, FLNA absence reduced the basal number of hetero-dimers (-36.8 ± 6.3% reduction of PLA events in M2, P < 0.05 vs. A7), and octreotide but not pasireotide promoted hetero-dimerization in both A7 and M2 (+20.0 ± 11.8% and +44.1 ± 16.3% increase of PLA events in A7 and M2, respectively, P < 0.05 vs. basal). Finally, immunofluorescence data showed that SST2 and SST5 recruitment at the plasma membrane and internalization are similarly induced by octreotide and pasireotide in GH3 and A7 cells. On the contrary, in M2 cells, octreotide failed to internalize both receptors whereas pasireotide promoted robust receptor internalization at shorter times than in A7 cells. In conclusion, we demonstrated that in GH3 cells SST2 and SST5 can form both homo- and hetero-dimers and that FLNA plays a role in the formation of SST2/SST5 hetero-dimers. Moreover, we showed that FLNA regulates SST2 and SST5 intracellular trafficking induced by octreotide and pasireotide.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- University Sapienza of Rome, Rome, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Erika Peverelli,
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
32
|
Dale NC, Johnstone EKM, Pfleger KDG. GPCR heteromers: An overview of their classification, function and physiological relevance. Front Endocrinol (Lausanne) 2022; 13:931573. [PMID: 36111299 PMCID: PMC9468249 DOI: 10.3389/fendo.2022.931573] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are capable of interacting to form higher order structures such as homomers and heteromers. Heteromerisation in particular has implications for receptor function, with research showing receptors can attain unique expression, ligand binding, signalling and intracellular trafficking upon heteromerisation. As such, GPCR heteromers represent novel drug targets with extensive therapeutic potential. Changes to ligand affinity, efficacy and G protein coupling have all been described, with alterations to these pharmacological aspects now well accepted as common traits for heteromeric complexes. Changes in internalisation and trafficking kinetics, as well as β-arrestin interactions are also becoming more apparent, however, few studies to date have explicitly looked at the implications these factors have upon the signalling profile of a heteromer. Development of ligands to target GPCR heteromers both experimentally and therapeutically has been mostly concentrated on bivalent ligands due to difficulties in identifying and developing heteromer-specific ligands. Improving our understanding of the pharmacology and physiology of GPCR heteromers will enable further development of heteromer-specific ligands with potential to provide therapeutics with increased efficacy and decreased side effects.
Collapse
Affiliation(s)
- Natasha C. Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, Australia
- *Correspondence: Kevin D. G. Pfleger, ; Elizabeth K. M. Johnstone,
| |
Collapse
|
33
|
Mohanraj N, Joshi NS, Poulose R, Patil RR, Santhoshkumar R, Kumar A, Waghmare GP, Saha AK, Haider SZ, Markandeya YS, Dey G, Rao LT, Govindaraj P, Mehta B. A proteomic study to unveil lead toxicity-induced memory impairments invoked by synaptic dysregulation. Toxicol Rep 2022; 9:1501-1513. [DOI: 10.1016/j.toxrep.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
|
34
|
Abstract
A substantial fraction of the human population suffers from chronic pain states, which often cannot be sufficiently treated with existing drugs. This calls for alternative targets and strategies for the development of novel analgesics. There is substantial evidence that the G protein-coupled GABAB receptor is involved in the processing of pain signals and thus has long been considered a valuable target for the generation of analgesics to treat chronic pain. In this review, the contribution of GABAB receptors to the generation and modulation of pain signals, their involvement in chronic pain states as well as their target suitability for the development of novel analgesics is discussed.
Collapse
Affiliation(s)
- Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Bukina ES, Kondratyev NV, Kozin SV, Golimbet VE, Artyuhov AS, Dashinimaev EB. SLC6A1 and Neuropsychiatric Diseases: The Role of Mutations and Prospects for Treatment with Genome Editing Systems. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Parmar S, Tadavarty R, Sastry BR. G-protein coupled receptors and synaptic plasticity in sleep deprivation. World J Psychiatry 2021; 11:954-980. [PMID: 34888167 PMCID: PMC8613756 DOI: 10.5498/wjp.v11.i11.954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/05/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Insufficient sleep has been correlated to many physiological and psychoneurological disorders. Over the years, our understanding of the state of sleep has transcended from an inactive period of rest to a more active state involving important cellular and molecular processes. In addition, during sleep, electrophysiological changes also occur in pathways in specific regions of the mammalian central nervous system (CNS). Activity mediated synaptic plasticity in the CNS can lead to long-term and sometimes permanent strengthening and/or weakening synaptic strength affecting neuronal network behaviour. Memory consolidation and learning that take place during sleep cycles, can be affected by changes in synaptic plasticity during sleep disturbances. G-protein coupled receptors (GPCRs), with their versatile structural and functional attributes, can regulate synaptic plasticity in CNS and hence, may be potentially affected in sleep deprived conditions. In this review, we aim to discuss important functional changes that can take place in the CNS during sleep and sleep deprivation and how changes in GPCRs can lead to potential problems with therapeutics with pharmacological interventions.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Ramakrishna Tadavarty
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Bhagavatula R Sastry
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| |
Collapse
|
37
|
Vlachou S. A Brief History and the Significance of the GABA B Receptor. Curr Top Behav Neurosci 2021; 52:1-17. [PMID: 34595739 DOI: 10.1007/7854_2021_264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABA type B (GABAB) receptors (GABABRs) are the only metabotropic G protein-coupled receptors for GABA and can be found distributed not only in the central nervous system, but also in the periphery. This chapter introduces important, fundamental knowledge related to GABABR function and the various potential therapeutic applications of the development of novel GABABR-active compounds, as documented through extensive studies presented in subsequent chapters of this Current Topic in Behavioral Neurosciences volume on the role of the neurobiology of GABABR function. The compounds that have received increased attention in the last few years compared to GABABR agonists and antagonists - the positive allosteric modulators - exhibit better pharmacological profiles and fewer side effects. As we continue to unveil the mystery of GABABRs at the molecular and cellular levels, we further understand the significance of these receptors. Future directions should aim for developing highly selective GABABR compounds for treating neuropsychiatric disorders and their symptomatology.
Collapse
Affiliation(s)
- Styliani Vlachou
- Neuropsychopharmacology Division, Behavioural Neuroscience Laboratory, School of Psychology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
38
|
Walden EL, Li S. Metabolic reprogramming of glial cells as a new target for central nervous system axon regeneration. Neural Regen Res 2021; 17:997-998. [PMID: 34558517 PMCID: PMC8552852 DOI: 10.4103/1673-5374.324833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Erin L Walden
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
39
|
Organocatalytic Asymmetric Michael Addition in Aqueous Media by a Hydrogen-Bonding Catalyst and Application for Inhibitors of GABAB Receptor. Catalysts 2021. [DOI: 10.3390/catal11091134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Catalysts based on (R, R)-1,2-diphenylethylenediamine are, as chiral organic catalysts, applied to the asymmetric Michael addition to α, β-unsaturated nitroalkenes under neutral conditions. The role of an aqueous medium for organic catalytic activity can be reversed concerning hydrophilic-hydrophobic function depending on the reaction conditions. In this study, to provide an environmentally friendly system, the thiourea-based catalyst substituted with 3,5-(CF3)2-Ph was used in water solvents. The hydrophobic effect of the substituent provided fast reaction, high chemical yield, and mirror-image selectivity. This reaction allowed the preparation of GABAB agonists in an optically pure manner. Additionally, GABA (γ-aminobutyric acid) analogs such as baclofen and phenibut were synthesized as R-type S-type with high optical purity.
Collapse
|
40
|
Profiling novel pharmacology of receptor complexes using Receptor-HIT. Biochem Soc Trans 2021; 49:1555-1565. [PMID: 34436548 PMCID: PMC8421044 DOI: 10.1042/bst20201110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Many receptors are able to undergo heteromerisation, leading to the formation of receptor complexes that may have pharmacological profiles distinct from those of the individual receptors. As a consequence of this, receptor heteromers can be classed as new drug targets, with the potential for achieving greater specificity and selectivity over targeting their constituent receptors. We have developed the Receptor-Heteromer Investigation Technology (Receptor-HIT), which enables the detection of receptor heteromers using a proximity-based reporter system such as bioluminescence resonance energy transfer (BRET). Receptor-HIT detects heteromers in live cells and in real time, by utilising ligand-induced signals that arise from altered interactions with specific biomolecules, such as ligands or proteins. Furthermore, monitoring the interaction between the receptors and the specific biomolecules generates functional information about the heteromer that can be pharmacologically quantified. This review will discuss various applications of Receptor-HIT, including its use with different classes of receptors (e.g. G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and others), its use to monitor receptor interactions both intracellularly and extracellularly, and also its use with genome-edited endogenous proteins.
Collapse
|
41
|
Favuzzi E, Huang S, Saldi GA, Binan L, Ibrahim LA, Fernández-Otero M, Cao Y, Zeine A, Sefah A, Zheng K, Xu Q, Khlestova E, Farhi SL, Bonneau R, Datta SR, Stevens B, Fishell G. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 2021; 184:4048-4063.e32. [PMID: 34233165 PMCID: PMC9122259 DOI: 10.1016/j.cell.2021.06.018] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023]
Abstract
Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.
Collapse
Affiliation(s)
- Emilia Favuzzi
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Shuhan Huang
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Giuseppe A Saldi
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Loïc Binan
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Leena A Ibrahim
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marian Fernández-Otero
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuqing Cao
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ayman Zeine
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adwoa Sefah
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Karen Zheng
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Qing Xu
- New York University Abu Dhabi, Abu Dhabi, UAE
| | - Elizaveta Khlestova
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samouil L Farhi
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA; Center for Data Science, New York University, New York, NY 10011, USA
| | - Sandeep Robert Datta
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA 02115, USA
| | - Gord Fishell
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
42
|
mGluR1 signaling in cerebellar Purkinje cells: Subcellular organization and involvement in cerebellar function and disease. Neuropharmacology 2021; 194:108629. [PMID: 34089728 DOI: 10.1016/j.neuropharm.2021.108629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
The cerebellum is essential for the control, coordination, and learning of movements, and for certain aspects of cognitive function. Purkinje cells are the sole output neurons in the cerebellar cortex and therefore play crucial roles in the diverse functions of the cerebellum. The type 1 metabotropic glutamate receptor (mGluR1) is prominently enriched in Purkinje cells and triggers downstream signaling pathways that are required for functional and structural plasticity, and for synaptic responses. To understand how mGluR1 contributes to cerebellar functions, it is important to consider not only the operational properties of this receptor, but also its spatial organization and the molecular interactions that enable its proper functioning. In this review, we highlight how mGluR1 and its related signaling molecules are organized into tightly coupled microdomains to fulfill physiological functions. We also describe emerging evidence that altered mGluR1 signaling in Purkinje cells underlies cerebellar dysfunction in ataxias of human patients and mouse models.
Collapse
|
43
|
GABA B Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Curr Top Behav Neurosci 2021; 52:81-118. [PMID: 34036555 DOI: 10.1007/7854_2021_232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.
Collapse
|
44
|
Shaye H, Stauch B, Gati C, Cherezov V. Molecular mechanisms of metabotropic GABA B receptor function. SCIENCE ADVANCES 2021; 7:7/22/eabg3362. [PMID: 34049877 PMCID: PMC8163086 DOI: 10.1126/sciadv.abg3362] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Metabotropic γ-aminobutyric acid G protein-coupled receptors (GABAB) represent one of the two main types of inhibitory neurotransmitter receptors in the brain. These receptors act both pre- and postsynaptically by modulating the transmission of neuronal signals and are involved in a range of neurological diseases, from alcohol addiction to epilepsy. A series of recent cryo-EM studies revealed critical details of the activation mechanism of GABAB Structures are now available for the receptor bound to ligands with different modes of action, including antagonists, agonists, and positive allosteric modulators, and captured in different conformational states from the inactive apo to the fully active state bound to a G protein. These discoveries provide comprehensive insights into the activation of the GABAB receptor, which not only broaden our understanding of its structure, pharmacology, and physiological effects but also will ultimately facilitate the discovery of new therapeutic drugs and neuromodulators.
Collapse
Affiliation(s)
- Hamidreza Shaye
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Stauch
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Cornelius Gati
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
45
|
Mlyniec K, Siodłak D, Doboszewska U, Nowak G. GPCR oligomerization as a target for antidepressants: Focus on GPR39. Pharmacol Ther 2021; 225:107842. [PMID: 33746052 DOI: 10.1016/j.pharmthera.2021.107842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
At present most of the evidence for the relevance of oligomerization for the pharmacology of depression comes from in vitro studies which identified oligomers, and from neuropsychopharmacological studies of receptors which participate in oligomerization. For example, behavioural and biochemical studies in knockout animals suggest that GPR39 may mediate the antidepressant action of monoaminergic antidepressants. We have recently found long-lasting antidepressant-like effects of GPR39 agonist, thus suggesting GPR39 as a target for the development of novel antidepressant drugs. In vitro studies have shown that GPR39 oligomerizes with other GPCRs. Oligomerization of GPR39 should thus be considered in relation to the development of new antidepressants targeting this receptor as well as antidepressants targeting other receptors that may form complexes with GPR39. Here, we summarize recent data suggestive of the importance of oligomerization for the pharmacology of depression and discuss approaches for validation of this phenomenon.
Collapse
Affiliation(s)
- Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland.
| | - Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
46
|
Yang JQ, Yang CH, Yin BQ. Combined the GABA-A and GABA-B receptor agonists attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Behav Brain Res 2021; 403:113094. [PMID: 33359845 DOI: 10.1016/j.bbr.2020.113094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. In this study, we employed prenatally exposed to valproic acid (VPA) to establish a validated ASD mouse model and found impaired inhibitory gamma-aminobutyric acid (GABAergic) neurotransmission through a presynaptic mechanism in these model mice, which was accompanied with decreased GABA release and GABA-A and GABA-B receptor subunits expression. And acute administration of individual GABA-A or GABA-B receptor agonists partially reversed autistic-like behaviors in the model mice. Furthermore, acute administration of the combined GABA-A and GABA-B receptor agonists palliated sociability deficits, anxiety and repetitive behaviors in the animal model of autistic-like behaviors, demonstrating the therapeutic potential of above cocktail in the treatment of ASD.
Collapse
Affiliation(s)
- Jian-Quan Yang
- Department of Children Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao-Hua Yang
- Department of Children Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bao-Qi Yin
- Department of Children Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
47
|
Shen C, Mao C, Xu C, Jin N, Zhang H, Shen DD, Shen Q, Wang X, Hou T, Chen Z, Rondard P, Pin JP, Zhang Y, Liu J. Structural basis of GABA B receptor-G i protein coupling. Nature 2021; 594:594-598. [PMID: 33911284 PMCID: PMC8222003 DOI: 10.1038/s41586-021-03507-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
G-protein-coupled receptors (GPCRs) have central roles in intercellular communication1,2. Structural studies have revealed how GPCRs can activate G proteins. However, whether this mechanism is conserved among all classes of GPCR remains unknown. Here we report the structure of the class-C heterodimeric GABAB receptor, which is activated by the inhibitory transmitter GABA, in its active form complexed with Gi1 protein. We found that a single G protein interacts with the GB2 subunit of the GABAB receptor at a site that mainly involves intracellular loop 2 on the side of the transmembrane domain. This is in contrast to the G protein binding in a central cavity, as has been observed with other classes of GPCR. This binding mode results from the active form of the transmembrane domain of this GABAB receptor being different from that of other GPCRs, as it shows no outside movement of transmembrane helix 6. Our work also provides details of the inter- and intra-subunit changes that link agonist binding to G-protein activation in this heterodimeric complex.
Collapse
Affiliation(s)
- Cangsong Shen
- grid.33199.310000 0004 0368 7223ZJU-HUST Joint Laboratory of Cellular Signaling, Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China ,grid.13402.340000 0004 1759 700XDepartment of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Chunyou Mao
- grid.13402.340000 0004 1759 700XDepartment of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China ,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, China
| | - Chanjuan Xu
- grid.33199.310000 0004 0368 7223ZJU-HUST Joint Laboratory of Cellular Signaling, Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China ,grid.508040.9Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Nan Jin
- grid.33199.310000 0004 0368 7223ZJU-HUST Joint Laboratory of Cellular Signaling, Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China ,grid.13402.340000 0004 1759 700XDepartment of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Huibing Zhang
- grid.13402.340000 0004 1759 700XDepartment of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China ,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, China
| | - Dan-Dan Shen
- grid.13402.340000 0004 1759 700XDepartment of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China ,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, China
| | - Qingya Shen
- grid.13402.340000 0004 1759 700XDepartment of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China ,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, China
| | - Xiaomei Wang
- grid.33199.310000 0004 0368 7223ZJU-HUST Joint Laboratory of Cellular Signaling, Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Tingjun Hou
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- grid.268505.c0000 0000 8744 8924Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Philippe Rondard
- grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jean-Philippe Pin
- grid.121334.60000 0001 2097 0141Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Yan Zhang
- grid.13402.340000 0004 1759 700XDepartment of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China ,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, China ,grid.13402.340000 0004 1759 700XMOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Liu
- grid.33199.310000 0004 0368 7223ZJU-HUST Joint Laboratory of Cellular Signaling, Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China ,grid.508040.9Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
48
|
Xiao X, Bi M, Jiao Q, Chen X, Du X, Jiang H. A new understanding of GHSR1a--independent of ghrelin activation. Ageing Res Rev 2020; 64:101187. [PMID: 33007437 DOI: 10.1016/j.arr.2020.101187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone secretagogue receptor 1a (GHSR1a), a member of the G protein-coupled receptor (GPCR) family, is a functional receptor of ghrelin. The expression levels and activities of GHSR1a are affected by various factors. In past years, it has been found that the ghrelin-GHSR1a system can perform biological functions such as anti-inflammation, anti-apoptosis, and anti-oxidative stress. In addition to mediating the effect of ghrelin, GHSR1a also has abnormally high constitutive activity; that is, it can still transmit intracellular signals without activation of the ghrelin ligand. This constitutive activity affects brain functions, growth and development of the body; therefore, it has profound impacts on neurodegenerative diseases and some other age-related diseases. In addition, GHSR1a can also form homodimers or heterodimers with other GPCRs, affecting the release of neurotransmitters, appetite regulation, cell proliferation and insulin release. Therefore, further understanding of the constitutive activities and dimerization of GHSR1a will enable us to better clarify the characteristics of GHSR1a and provide more therapeutic targets for drug development. Here, we focus on the roles of GHSR1a in various biological functions and provide a comprehensive summary of the current research on GHSR1a to provide broader therapeutic prospects for age-related disease treatment.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
49
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
50
|
Cieślik P, Wierońska JM. Regulation of Glutamatergic Activity via Bidirectional Activation of Two Select Receptors as a Novel Approach in Antipsychotic Drug Discovery. Int J Mol Sci 2020; 21:ijms21228811. [PMID: 33233865 PMCID: PMC7699963 DOI: 10.3390/ijms21228811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a mental disorder that affects approximately 1-2% of the population and develops in early adulthood. The disease is characterized by positive, negative, and cognitive symptoms. A large percentage of patients with schizophrenia have a treatment-resistant disease, and the risk of developing adverse effects is high. Many researchers have attempted to introduce new antipsychotic drugs to the clinic, but most of these treatments failed, and the diversity of schizophrenic symptoms is one of the causes of disappointing results. The present review summarizes the results of our latest papers, showing that the simultaneous activation of two receptors with sub-effective doses of their ligands induces similar effects as the highest dose of each compound alone. The treatments were focused on inhibiting the increased glutamate release responsible for schizophrenia arousal, without interacting with dopamine (D2) receptors. Ligands activating metabotropic receptors for glutamate, GABAB or muscarinic receptors were used, and the compounds were administered in several different combinations. Some combinations reversed all schizophrenia-related deficits in animal models, but others were active only in select models of schizophrenia symptoms (i.e., cognitive or negative symptoms).
Collapse
|