1
|
Lasaad S, Crambert G. GDF15, an Emerging Player in Renal Physiology and Pathophysiology. Int J Mol Sci 2024; 25:5956. [PMID: 38892145 PMCID: PMC11172470 DOI: 10.3390/ijms25115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
These last years, the growth factor GDF15 has emerged as a key element in many different biological processes. It has been established as being produced in response to many pathological states and is now referred to as a stress-related hormone. Regarding kidney functions, GDF15 has been involved in different pathologies such as chronic kidney disease, diabetic nephropathy, renal cancer, and so on. Interestingly, recent studies also revealed a role of GDF15 in the renal homeostatic mechanisms allowing to maintain constant, as far as possible, the plasma parameters such as pH and K+ values. In this review, we recapitulate the role of GDF15 in physiological and pathological context by focusing our interest on its renal effect.
Collapse
Affiliation(s)
- Samia Lasaad
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Scientifique (INSERM), Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR 8228, F-75006 Paris, France
| |
Collapse
|
2
|
Kang MJ, Ioannou S, Lougheide Q, Dittmar M, Hsu Y, Pastor-Soler NM. The study of intercalated cells using ex vivo techniques: primary cell culture, cell lines, kidney slices, and organoids. Am J Physiol Cell Physiol 2024; 326:C229-C251. [PMID: 37899748 DOI: 10.1152/ajpcell.00479.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.
Collapse
Affiliation(s)
- Min Ju Kang
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Silvia Ioannou
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Quinn Lougheide
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Michael Dittmar
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Young Hsu
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Nuria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
3
|
Shi M, McCracken KW, Patel AB, Zhang W, Ester L, Valerius MT, Bonventre JV. Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types. Nat Biotechnol 2023; 41:252-261. [PMID: 36038632 PMCID: PMC9957856 DOI: 10.1038/s41587-022-01429-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) into functional ureteric and collecting duct (CD) epithelia is essential to kidney regenerative medicine. Here we describe highly efficient, serum-free differentiation of hPSCs into ureteric bud (UB) organoids and functional CD cells. The hPSCs are first induced into pronephric progenitor cells at 90% efficiency and then aggregated into spheres with a molecular signature similar to the nephric duct. In a three-dimensional matrix, the spheres form UB organoids that exhibit branching morphogenesis similar to the fetal UB and correct distal tip localization of RET expression. Organoid-derived cells incorporate into the UB tips of the progenitor niche in chimeric fetal kidney explant culture. At later stages, the UB organoids differentiate into CD organoids, which contain >95% CD cell types as estimated by single-cell RNA sequencing. The CD epithelia demonstrate renal electrophysiologic functions, with ENaC-mediated vectorial sodium transport by principal cells and V-type ATPase proton pump activity by FOXI1-induced intercalated cells.
Collapse
Affiliation(s)
- Min Shi
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Kyle W McCracken
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
| | - Ankit B Patel
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weitao Zhang
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lioba Ester
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine, and University Hospital Cologne, Cologne, Germany
| | - M Todd Valerius
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge and Boston, Boston, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge and Boston, Boston, MA, USA.
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Stavniichuk A, Pyrshev K, Tomilin VN, Kordysh M, Zaika O, Pochynyuk O. Modus operandi of ClC-K2 Cl - Channel in the Collecting Duct Intercalated Cells. Biomolecules 2023; 13:177. [PMID: 36671562 PMCID: PMC9855527 DOI: 10.3390/biom13010177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The renal collecting duct is known to play a critical role in many physiological processes, including systemic water-electrolyte homeostasis, acid-base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb in humans) is a Cl--permeable channel expressed on the basolateral membrane of several segments of the renal tubule, including the collecting duct intercalated cells. ClC-Kb mutations are causative for Bartters' syndrome type 3 manifested as hypotension, urinary salt wasting, and metabolic alkalosis. However, little is known about the significance of the channel in the collecting duct with respect to the normal physiology and pathology of Bartters' syndrome. In this review, we summarize the available experimental evidence about the signaling determinants of ClC-K2 function and the regulation by systemic and local factors as well as critically discuss the recent advances in understanding the collecting-duct-specific roles of ClC-K2 in adaptations to changes in dietary Cl- intake and maintaining systemic acid-base homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
5
|
Pyrshev K, Khayyat NH, Stavniichuk A, Tomilin VN, Zaika O, Ramkumar N, Pochynyuk O. ClC-K2 Cl - channel allows identification of A- and B-type of intercalated cells in split-opened collecting ducts. FASEB J 2022; 36:e22275. [PMID: 35349181 PMCID: PMC9014849 DOI: 10.1096/fj.202200160r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022]
Abstract
The collecting duct is a highly adaptive terminal part of the nephron, which is essential for maintaining systemic homeostasis. Principal and intercalated cells perform different physiological tasks and exhibit distinctive morphology. However, acid-secreting A- and base secreting B-type of intercalated cells cannot be easily separated in functional studies. We used BCECF-sensitive intracellular pH (pHi ) measurements in split-opened collecting ducts followed by immunofluorescent microscopy in WT and intercalated cell-specific ClC-K2-/- mice to demonstrate that ClC-K2 inhibition enables to distinguish signals from A- and B-intercalated cells. We show that ClC-K2 Cl- channel is expressed on the basolateral side of intercalated cells, where it governs Cl- -dependent H+ /HCO3- transport. ClC-K2 blocker, NPPB, caused acidification or alkalization in different subpopulations of intercalated cells in WT but not ClC-K2-/- mice. Immunofluorescent assessment of the same collecting ducts revealed that NPPB increased pHi in AE1-positive A-type and decreased pHi in pendrin-positive B-type of intercalated cells. Induction of metabolic acidosis led to a significantly augmented abundance and H+ secretion in A-type and decreased proton transport in B-type of intercalated cells, whereas metabolic alkalosis caused the opposite changes in intercalated cell function, but did not substantially change their relative abundance. Overall, we show that inhibition of ClC-K2 can be employed to discriminate between A- and B-type of intercalated cells in split-opened collecting duct preparations. We further demonstrate that this method can be used to independently monitor changes in the functional status and abundance of A- and B-type in response to systemic acid/base stimuli.
Collapse
Affiliation(s)
- Kyrylo Pyrshev
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Naghmeh Hassanzadeh Khayyat
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anna Stavniichuk
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Viktor N. Tomilin
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, Utah, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Eaton AF, Merkulova M, Brown D. The H +-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol 2020; 320:C392-C414. [PMID: 33326313 PMCID: PMC8294626 DOI: 10.1152/ajpcell.00442.2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary function of the H+-ATPase (or V-ATPase) is to create an electrochemical proton gradient across eukaryotic cell membranes, which energizes fundamental cellular processes. Its activity allows for the acidification of intracellular vesicles and organelles, which is necessary for many essential cell biological events to occur. In addition, many specialized cell types in various organ systems such as the kidney, bone, male reproductive tract, inner ear, olfactory mucosa, and more, use plasma membrane V-ATPases to perform specific activities that depend on extracellular acidification. It is, however, increasingly apparent that V-ATPases are central players in many normal and pathophysiological processes that directly influence human health in many different and sometimes unexpected ways. These include cancer, neurodegenerative diseases, diabetes, and sensory perception, as well as energy and nutrient-sensing functions within cells. This review first covers the well-established role of the V-ATPase as a transmembrane proton pump in the plasma membrane and intracellular vesicles and outlines factors contributing to its physiological regulation in different cell types. This is followed by a discussion of the more recently emerging unconventional roles for the V-ATPase, such as its role as a protein interaction hub involved in cell signaling, and the (patho)physiological implications of these interactions. Finally, the central importance of endosomal acidification and V-ATPase activity on viral infection will be discussed in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Shibata S. Role of Pendrin in the Pathophysiology of Aldosterone-Induced Hypertension. Am J Hypertens 2019; 32:607-613. [PMID: 30982848 DOI: 10.1093/ajh/hpz054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 11/14/2022] Open
Abstract
The recent advances in genetics and molecular biology have resulted in the characterization of key components that critically regulate renal NaCl transport and blood pressure. Pendrin is a Cl-/HCO3- exchanger that is highly expressed in thyroid, inner ear, and kidney. In the kidney, it is selectively present at the apical membrane in non-α intercalated cells of the connecting tubules and cortical collecting duct. Besides its role in acid/base homeostasis, accumulating studies using various genetically modified animals have provided compelling evidence that pendrin regulates extracellular fluid volume and electrolyte balance at the downstream of aldosterone signaling. We have shown that angiotensin II and aldosterone cooperatively control pendrin abundance partly through mammalian target of rapamycin signaling and mineralocorticoid receptor dephosphorylation, which is necessary for the kidney to prevent extracellular fluid loss and electrolyte disturbances under physiologic perturbations. In line with the experimental observations, several clinical data indicated that the impaired pendrin function can cause fluid and electrolyte abnormalities in humans. The purpose of this review is to provide an update on the recent progress regarding the role of pendrin in fluid and electrolyte homeostasis, as well as in the pathophysiology of hypertension associated with mineralocorticoid receptor signaling.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
López-Cayuqueo KI, Chavez-Canales M, Pillot A, Houillier P, Jayat M, Baraka-Vidot J, Trepiccione F, Baudrie V, Büsst C, Soukaseum C, Kumai Y, Jeunemaître X, Hadchouel J, Eladari D, Chambrey R. A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis. Kidney Int 2018; 94:514-523. [PMID: 30146013 DOI: 10.1016/j.kint.2018.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 02/04/2023]
Abstract
Pseudohypoaldosteronism type II (PHAII) is a genetic disease characterized by association of hyperkalemia, hyperchloremic metabolic acidosis, hypertension, low renin, and high sensitivity to thiazide diuretics. It is caused by mutations in the WNK1, WNK4, KLHL3 or CUL3 gene. There is strong evidence that excessive sodium chloride reabsorption by the sodium chloride cotransporter NCC in the distal convoluted tubule is involved. WNK4 is expressed not only in distal convoluted tubule cells but also in β-intercalated cells of the cortical collecting duct. These latter cells exchange intracellular bicarbonate for external chloride through pendrin, and therefore, account for renal base excretion. However, these cells can also mediate thiazide-sensitive sodium chloride absorption when the pendrin-dependent apical chloride influx is coupled to apical sodium influx by the sodium-driven chloride/bicarbonate exchanger. Here we determine whether this system is involved in the pathogenesis of PHAII. Renal pendrin activity was markedly increased in a mouse model carrying a WNK4 missense mutation (Q562E) previously identified in patients with PHAII. The upregulation of pendrin led to an increase in thiazide-sensitive sodium chloride absorption by the cortical collecting duct, and it caused metabolic acidosis. The function of apical potassium channels was altered in this model, and hyperkalemia was fully corrected by pendrin genetic ablation. Thus, we demonstrate an important contribution of pendrin in renal regulation of sodium chloride, potassium and acid-base homeostasis and in the pathophysiology of PHAII. Furthermore, we identify renal distal bicarbonate secretion as a novel mechanism of renal tubular acidosis.
Collapse
Affiliation(s)
- Karen I López-Cayuqueo
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Centro de Estudios Científicos, Valdivia, Chile
| | - Maria Chavez-Canales
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Alexia Pillot
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Pascal Houillier
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S1138, Centre de Recherche des Cordeliers, Paris, France; Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Maximilien Jayat
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Jennifer Baraka-Vidot
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1188, CYROI, Sainte Clotilde, La Réunion, France
| | - Francesco Trepiccione
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Véronique Baudrie
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Cara Büsst
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Christelle Soukaseum
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Yusuke Kumai
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Xavier Jeunemaître
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, Saint Denis, La Réunion, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1188, CYROI, Sainte Clotilde, La Réunion, France.
| | - Régine Chambrey
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1188, CYROI, Sainte Clotilde, La Réunion, France; Centre National de la Recherche Scientifique, Délégation Paris Michel-Ange, Paris, France.
| |
Collapse
|
10
|
Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Suszták K. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 2018; 360:758-763. [PMID: 29622724 DOI: 10.1126/science.aar2131] [Citation(s) in RCA: 761] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Our understanding of kidney disease pathogenesis is limited by an incomplete molecular characterization of the cell types responsible for the organ's multiple homeostatic functions. To help fill this knowledge gap, we characterized 57,979 cells from healthy mouse kidneys by using unbiased single-cell RNA sequencing. On the basis of gene expression patterns, we infer that inherited kidney diseases that arise from distinct genetic mutations but share the same phenotypic manifestation originate from the same differentiated cell type. We also found that the collecting duct in kidneys of adult mice generates a spectrum of cell types through a newly identified transitional cell. Computational cell trajectory analysis and in vivo lineage tracing revealed that intercalated cells and principal cells undergo transitions mediated by the Notch signaling pathway. In mouse and human kidney disease, these transitions were shifted toward a principal cell fate and were associated with metabolic acidosis.
Collapse
Affiliation(s)
- Jihwan Park
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rojesh Shrestha
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengxiang Qiu
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ayano Kondo
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shizheng Huang
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max Werth
- Renal Division, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Barasch
- Renal Division, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Katalin Suszták
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Peng H, Purkerson JM, Schwaderer AL, Schwartz GJ. Metabolic acidosis stimulates the production of the antimicrobial peptide cathelicidin in rabbit urine. Am J Physiol Renal Physiol 2017; 313:F1061-F1067. [PMID: 28747361 PMCID: PMC7276924 DOI: 10.1152/ajprenal.00701.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022] Open
Abstract
Intercalated cells of the collecting duct (CD) are critical for acid-base homeostasis and innate immune defense of the kidney. Little is known about the impact of acidosis on innate immune defense in the distal nephron. Urinary tract infections are mainly due to Escherichia coli and are an important risk factor for development of chronic kidney disease. While the effect of urinary pH on growth of E. coli is well established, in this study, we demonstrate that acidosis increases urine antimicrobial activity due, at least in part, to induction of cathelicidin expression within the CD. Acidosis was induced in rabbits by adding NH4Cl to the drinking water and reducing food intake over 3 days or by casein supplementation. Microdissected CDs were examined for cathelicidin mRNA expression and antimicrobial activity, and cathelicidin protein levels in rabbit urine were measured. Cathelicidin expression in CD cells was detected in kidney sections. CDs from acidotic rabbits expressed three times more cathelicidin mRNA than those isolated from normal rabbits. Urine from acidotic rabbits had significantly more antimicrobial activity (vs. E. coli) than normal urine, and most of this increased activity was blocked by cathelicidin antibody. The antibody had little effect on antimicrobial activity of normal urine. Urine from acidotic rabbits had at least twice the amount of cathelicidin protein as did normal urine. We conclude that metabolic acidosis not only stimulates CD acid secretion but also induces expression of cathelicidin and, thereby, enhances innate immune defense against urinary tract infections via induction of antimicrobial peptide expression.
Collapse
Affiliation(s)
- Hu Peng
- University of Rochester Medical Center, Rochester, New York; and
| | | | | | | |
Collapse
|
12
|
Acute regulated expression of pendrin in human urinary exosomes. Pflugers Arch 2017; 470:427-438. [PMID: 28803436 DOI: 10.1007/s00424-017-2049-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
It is well known that pendrin, an apical Cl-/HCO3-exchanger in type B intercalated cells, is modulated by chronic acid-base disturbances and electrolyte intake. To study this adaptation further at the acute level, we analyzed urinary exosomes from individuals subjected to oral acute acid, alkali, and NaCl loading. Acute oral NH4Cl loading (n = 8) elicited systemic acidemia with a drop in urinary pH and an increase in urinary NH4 excretion. Nadir urinary pH was achieved 5 h after NH4Cl loading. Exosomal pendrin abundance was dramatically decreased at 3 h after acid loading. In contrast, after acute equimolar oral NaHCO3 loading (n = 8), urinary and venous blood pH rose rapidly with a significant attenuation of urinary NH4 excretion. Alkali loading caused rapid upregulation of exosomal pendrin abundance at 1 h and normalized within 3 h of treatment. Equimolar NaCl loading (n = 6) did not alter urinary or venous blood pH or urinary NH4 excretion. However, pendrin abundance in urinary exosomes was significantly reduced at 2 h of NaCl ingestion with lowest levels observed at 4 h after treatment. In patients with inherited distal renal tubular acidosis (dRTA), pendrin abundance in urinary exosomes was greatly reduced and did not change upon oral NH4Cl loading. In summary, pendrin can be detected and quantified in human urinary exosomes by immunoblotting. Acid, alkali, and NaCl loadings cause acute changes in pendrin abundance in urinary exosomes within a few hours. Our data suggest that exosomal pendrin is a promising urinary biomarker for acute acid-base and volume status changes in humans.
Collapse
|
13
|
Chen L, Higgins PJ, Zhang W. Development and Diseases of the Collecting Duct System. Results Probl Cell Differ 2017; 60:165-203. [PMID: 28409346 DOI: 10.1007/978-3-319-51436-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The collecting duct of the mammalian kidney is important for the regulation of extracellular volume, osmolarity, and pH. There are two major structurally and functionally distinct cell types: principal cells and intercalated cells. The former regulates Na+ and water homeostasis, while the latter participates in acid-base homeostasis. In vivo lineage tracing using Cre recombinase or its derivatives such as CreGFP and CreERT2 is a powerful new technique to identify stem/progenitor cells in their native environment and to decipher the origins of the tissue that they give rise to. Recent studies using this technique in mice have revealed multiple renal progenitor cell populations that differentiate into various nephron segments and collecting duct. In particular, emerging evidence suggests that like principal cells, most of intercalated cells originate from the progenitor cells expressing water channel Aquaporin 2. Mutations or malfunctions of the channels, pumps, and transporters expressed in the collecting duct system cause various human diseases. For example, gain-of-function mutations in ENaC cause Liddle's syndrome, while loss-of-function mutations in ENaC lead to Pseudohypoaldosteronism type 1. Mutations in either AE1 or V-ATPase B1 result in distal renal tubular acidosis. Patients with disrupted AQP2 or AVPR2 develop nephrogenic diabetes insipidus. A better understanding of the function and development of the collecting duct system may facilitate the discovery of new therapeutic strategies for treating kidney disease.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, NHLBI, Bethesda, MD, 20892-1603, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
14
|
Werth M, Schmidt-Ott KM, Leete T, Qiu A, Hinze C, Viltard M, Paragas N, Shawber CJ, Yu W, Lee P, Chen X, Sarkar A, Mu W, Rittenberg A, Lin CS, Kitajewski J, Al-Awqati Q, Barasch J. Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts. eLife 2017; 6. [PMID: 28577314 PMCID: PMC5484618 DOI: 10.7554/elife.24265] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although most nephron segments contain one type of epithelial cell, the collecting ducts consists of at least two: intercalated (IC) and principal (PC) cells, which regulate acid-base and salt-water homeostasis, respectively. In adult kidneys, these cells are organized in rosettes suggesting functional interactions. Genetic studies in mouse revealed that transcription factor Tfcp2l1 coordinates IC and PC development. Tfcp2l1 induces the expression of IC specific genes, including specific H+-ATPase subunits and Jag1. Jag1 in turn, initiates Notch signaling in PCs but inhibits Notch signaling in ICs. Tfcp2l1 inactivation deletes ICs, whereas Jag1 inactivation results in the forfeiture of discrete IC and PC identities. Thus, Tfcp2l1 is a critical regulator of IC-PC patterning, acting cell-autonomously in ICs, and non-cell-autonomously in PCs. As a result, Tfcp2l1 regulates the diversification of cell types which is the central characteristic of 'salt and pepper' epithelia and distinguishes the collecting duct from all other nephron segments. DOI:http://dx.doi.org/10.7554/eLife.24265.001
Collapse
Affiliation(s)
- Max Werth
- Columbia University, New York, United States
| | - Kai M Schmidt-Ott
- Columbia University, New York, United States.,Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology and Intensive Care Medicine, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | | | - Andong Qiu
- Columbia University, New York, United States.,Tongji University, Shanghai, China
| | | | - Melanie Viltard
- Columbia University, New York, United States.,Institute for European Expertise in Physiology, Paris, France
| | - Neal Paragas
- Columbia University, New York, United States.,University of Washington, Seattle, United States
| | | | - Wenqiang Yu
- Columbia University, New York, United States.,Fudan University, Shanghai, China
| | - Peter Lee
- Columbia University, New York, United States
| | - Xia Chen
- Columbia University, New York, United States
| | - Abby Sarkar
- Columbia University, New York, United States
| | - Weiyi Mu
- Columbia University, New York, United States
| | | | | | - Jan Kitajewski
- Columbia University, New York, United States.,University of Illinois at Chicago, Chicago, United States
| | | | | |
Collapse
|
15
|
El-Dahr SS, Li Y, Liu J, Gutierrez E, Hering-Smith KS, Signoretti S, Pignon JC, Sinha S, Saifudeen Z. p63+ ureteric bud tip cells are progenitors of intercalated cells. JCI Insight 2017; 2:89996. [PMID: 28469077 DOI: 10.1172/jci.insight.89996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/23/2017] [Indexed: 01/13/2023] Open
Abstract
During renal branching morphogenesis, ureteric bud tip cells (UBTC) serve as the progenitor epithelium for all cell types of the collecting duct. While the transcriptional circuitry of ureteric bud (UB) branching has been intensively studied, the transcriptional control of UBTC differentiation has been difficult to ascertain. This is partly due to limited knowledge of UBTC-specific transcription factors that mark the progenitor state. Here, we identify the transcription factor p63 (also known as TP63), a master regulator of basal stem cells in stratified epithelia, as a specific marker of mouse and human UBTC. Nuclear p63 marks Ret+ UBTC transiently and is silenced by the end of nephrogenesis. Lineage tracing revealed that a subset of UBTC expressing the ΔNp63 isoform (N-terminus truncated p63) is dedicated to generating cortical intercalated cells. Germline targeting of ΔNp63 in mice caused a marked reduction in intercalated cells near the time of birth, indicating that p63 not only marks UBTC, but also is essential for their differentiation. We conclude that the choice of UBTC progenitors to differentiate is determined earlier than previously recognized and that UBTC progenitors are prepatterned and fate restricted. These findings prompt the rethinking of current paradigms of collecting duct differentiation and may have implications for regenerative renal medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard School of Medicine, Boston, Massachusetts, USA
| | - Jean-Christophe Pignon
- Department of Pathology, Brigham and Women's Hospital, Harvard School of Medicine, Boston, Massachusetts, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine, University of Buffalo, New York, USA
| | | |
Collapse
|
16
|
Daryadel A, Bourgeois S, Figueiredo MFL, Gomes Moreira A, Kampik NB, Oberli L, Mohebbi N, Lu X, Meima ME, Danser AHJ, Wagner CA. Colocalization of the (Pro)renin Receptor/Atp6ap2 with H+-ATPases in Mouse Kidney but Prorenin Does Not Acutely Regulate Intercalated Cell H+-ATPase Activity. PLoS One 2016; 11:e0147831. [PMID: 26824839 PMCID: PMC4732657 DOI: 10.1371/journal.pone.0147831] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022] Open
Abstract
The (Pro)renin receptor (P)RR/Atp6ap2 is a cell surface protein capable of binding and non-proteolytically activate prorenin. Additionally, (P)RR is associated with H+-ATPases and alternative functions in H+-ATPase regulation as well as in Wnt signalling have been reported. Kidneys express very high levels of H+-ATPases which are involved in multiple functions such as endocytosis, membrane protein recycling as well as urinary acidification, bicarbonate reabsorption, and salt absorption. Here, we wanted to localize the (P)RR/Atp6ap2 along the murine nephron, exmaine whether the (P)RR/Atp6ap2 is coregulated with other H+-ATPase subunits, and whether acute stimulation of the (P)RR/Atp6ap2 with prorenin regulates H+-ATPase activity in intercalated cells in freshly isolated collecting ducts. We localized (P)PR/Atp6ap2 along the murine nephron by qPCR and immunohistochemistry. (P)RR/Atp6ap2 mRNA was detected in all nephron segments with highest levels in the collecting system coinciding with H+-ATPases. Further experiments demonstrated expression at the brush border membrane of proximal tubules and in all types of intercalated cells colocalizing with H+-ATPases. In mice treated with NH4Cl, NaHCO3, KHCO3, NaCl, or the mineralocorticoid DOCA for 7 days, (P)RR/Atp6ap2 and H+-ATPase subunits were regulated but not co-regulated at protein and mRNA levels. Immunolocalization in kidneys from control, NH4Cl or NaHCO3 treated mice demonstrated always colocalization of PRR/Atp6ap2 with H+-ATPase subunits at the brush border membrane of proximal tubules, the apical pole of type A intercalated cells, and at basolateral and/or apical membranes of non-type A intercalated cells. Microperfusion of isolated cortical collecting ducts and luminal application of prorenin did not acutely stimulate H+-ATPase activity. However, incubation of isolated collecting ducts with prorenin non-significantly increased ERK1/2 phosphorylation. Our results suggest that the PRR/Atp6ap2 may form a complex with H+-ATPases in proximal tubule and intercalated cells but that prorenin has no acute effect on H+-ATPase activity in intercalated cells.
Collapse
MESH Headings
- Ammonium Chloride/pharmacology
- Animals
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Dogs
- Gene Expression Regulation
- Kidney Cortex/cytology
- Kidney Cortex/drug effects
- Kidney Cortex/metabolism
- Kidney Medulla/cytology
- Kidney Medulla/drug effects
- Kidney Medulla/metabolism
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Madin Darby Canine Kidney Cells
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Proton-Translocating ATPases/genetics
- Proton-Translocating ATPases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Renin/pharmacology
- Renin-Angiotensin System/drug effects
- Signal Transduction
- Sodium Bicarbonate/pharmacology
- Sodium Chloride/pharmacology
- Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
- Solute Carrier Family 12, Member 1/genetics
- Solute Carrier Family 12, Member 1/metabolism
- Solute Carrier Family 12, Member 3/genetics
- Solute Carrier Family 12, Member 3/metabolism
- Sulfate Transporters
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | | - Nicole B. Kampik
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Lisa Oberli
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Divison of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Xifeng Lu
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel E. Meima
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Carrisoza-Gaytan R, Carattino MD, Kleyman TR, Satlin LM. An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am J Physiol Cell Physiol 2015; 310:C243-59. [PMID: 26632600 DOI: 10.1152/ajpcell.00328.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flow-induced K secretion (FIKS) in the aldosterone-sensitive distal nephron (ASDN) is mediated by large-conductance, Ca(2+)/stretch-activated BK channels composed of pore-forming α-subunits (BKα) and accessory β-subunits. This channel also plays a critical role in the renal adaptation to dietary K loading. Within the ASDN, the cortical collecting duct (CCD) is a major site for the final renal regulation of K homeostasis. Principal cells in the ASDN possess a single apical cilium whereas the surfaces of adjacent intercalated cells, devoid of cilia, are decorated with abundant microvilli and microplicae. Increases in tubular (urinary) flow rate, induced by volume expansion, diuretics, or a high K diet, subject CCD cells to hydrodynamic forces (fluid shear stress, circumferential stretch, and drag/torque on apical cilia and presumably microvilli/microplicae) that are transduced into increases in principal (PC) and intercalated (IC) cell cytoplasmic Ca(2+) concentration that activate apical voltage-, stretch- and Ca(2+)-activated BK channels, which mediate FIKS. This review summarizes studies by ourselves and others that have led to the evolving picture that the BK channel is localized in a macromolecular complex at the apical membrane, composed of mechanosensitive apical Ca(2+) channels and a variety of kinases/phosphatases as well as other signaling molecules anchored to the cytoskeleton, and that an increase in tubular fluid flow rate leads to IC- and PC-specific responses determined, in large part, by the cell-specific composition of the BK channels.
Collapse
Affiliation(s)
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
18
|
Aquaporin 2-labeled cells differentiate to intercalated cells in response to potassium depletion. Histochem Cell Biol 2015; 145:17-24. [PMID: 26496924 DOI: 10.1007/s00418-015-1372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 10/22/2022]
Abstract
The mammalian renal collecting duct consists of principal cells (PCs) and intercalated cells (ICs). Both PCs and ICs are involved in potassium (K(+)) homeostasis, PCs through their role in K(+) secretion and ICs through their ability to facilitate K(+) resorption. We previously hypothesized that PCs may differentiate into ICs upon K(+) depletion. However, no direct evidence has yet been obtained to conclusively demonstrate that PCs differentiate into ICs in response to K(+) depletion. Here, we present direct evidence for the differentiation of PCs into ICs by cell lineage tracing using aquaporin 2 (AQP2)-Cre mice and R26R-EYFP transgenic mice. In control mice, AQP2-EYFP(+) cells exhibited mainly a PC phenotype (AQP2-positive/H(+)-ATPase-negative). Interestingly, some AQP2-EYFP(+) cells exhibited an IC phenotype (H(+)-ATPase-positive/AQP2-negative); these cells accounted for 1.7 %. After K(+) depletion, the proportion of AQP2-EYFP(+) cells with an IC phenotype was increased to 4.1 %. Furthermore, some AQP2-EYFP(+) cells exhibited a "null cell" phenotype (AQP2-negative/H(+)-ATPase-negative) after K(+) depletion. Collectively, our data demonstrate that AQP2-labeled cells can differentiate into ICs, as well as null cells, in response to K(+) depletion. This finding indicates that some of AQP2-labeled cells possess properties of progenitor cells and that they can differentiate into ICs in the adult mouse kidney.
Collapse
|
19
|
Schwartz GJ, Gao X, Tsuruoka S, Purkerson JM, Peng H, D'Agati V, Picard N, Eladari D, Al-Awqati Q. SDF1 induction by acidosis from principal cells regulates intercalated cell subtype distribution. J Clin Invest 2015; 125:4365-74. [PMID: 26517693 DOI: 10.1172/jci80225] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
The nephron cortical collecting duct (CCD) is composed of principal cells, which mediate Na, K, and water transport, and intercalated cells (ICs), which are specialized for acid-base transport. There are two canonical IC forms: acid-secreting α-ICs and HCO3-secreting β-ICs. Chronic acidosis increases α-ICs at the expense of β-ICs, thereby increasing net acid secretion by the CCD. We found by growth factor quantitative PCR array that acidosis increases expression of mRNA encoding SDF1 (or CXCL12) in kidney cortex and isolated CCDs from mouse and rabbit kidney cortex. Exogenous SDF1 or pH 6.8 media increased H+ secretion and decreased HCO3 secretion in isolated perfused rabbit CCDs. Acid-dependent changes in H+ and HCO3 secretion were largely blunted by AMD3100, which selectively blocks the SDF1 receptor CXCR4. In mice, diet-induced chronic acidosis increased α-ICs and decreased β-ICs. Additionally, IC-specific Cxcr4 deletion prevented IC subtype alterations and magnified metabolic acidosis. SDF1 was transcriptionally regulated and a target of the hypoxia-sensing transcription factor HIF1α. IC-specific deletion of Hif1a produced no effect on mice fed an acid diet, as α-ICs increased and β-ICs decreased similarly to that observed in WT littermates. However, Hif1a deletion in all CCD cells prevented acidosis-induced IC subtype distribution, resulting in more severe acidosis. Cultured principal cells exhibited an HIF1α-dependent increase of Sdf1 transcription in response to media acidification. Thus, our results indicate that principal cells respond to acid by producing SDF1, which then acts on adjacent ICs.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chemokine CXCL12/biosynthesis
- Chemokine CXCL12/genetics
- Hydrogen-Ion Concentration
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Ion Transport/physiology
- Kidney Glomerulus/cytology
- Kidney Glomerulus/metabolism
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/metabolism
- Mice
- Mice, Transgenic
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rabbits
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
Collapse
|
20
|
Xiao Z, Chen L, Zhou Q, Zhang W. Dot1l deficiency leads to increased intercalated cells and upregulation of V-ATPase B1 in mice. Exp Cell Res 2015; 344:167-75. [PMID: 26404731 DOI: 10.1016/j.yexcr.2015.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 01/19/2023]
Abstract
The collecting duct in the mammalian kidney consists of principal cells (PCs) and intercalated cells (ICs), which regulate electrolyte/fluid and acid/base balance, respectively. The epigenetic regulators of PC and IC differentiation remain obscure. We previously used Aqp2 and V-ATPase B1B2 to label PCs and ICs, respectively. We found that mice with histone H3 K79 methyltransferase Dot1l disrupted in Aqp2-expressing cells (Dot1l(AC)) vs. Dot1l(f/f) possessed ~20% more ICs coupled with a similar decrease in PCs. Here, we performed multiple double immunofluorescence staining using various PC and IC markers and confirmed that this finding. Both α-IC and β-IC populations were significantly expanded in Dot1l(AC) vs. Dot1l(f/f). These changes are associated with significantly upregulated V-ATPase B1 and B2, but not Aqp2, AE1, and Pendrin. Chromatin immunoprecipitation assay unveiled a significant reduction of Dot1l and H3K79 di-methylation bound at the Atp6v1b1 5' flanking region. Overexpression of Dot1a significantly downregulated a stably-transfected luciferase reporter driven by the Atp6v1b1 promoter in IMCD3 cells. This downregulation was impaired, but not completely abolished when a methyltransferase-dead mutant was overexpressed. Taken together, our data suggest that Dot1l is a new epigenetic regulator of PC and IC differentiation and Atp6v1b1 is a new transcriptional target of Dot1l.
Collapse
Affiliation(s)
- Zhou Xiao
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Lihe Chen
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiaoling Zhou
- Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wenzheng Zhang
- Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
22
|
Sun X, Stephens L, DuBose TD, Petrovic S. Adaptation by the collecting duct to an exogenous acid load is blunted by deletion of the proton-sensing receptor GPR4. Am J Physiol Renal Physiol 2015; 309:F120-36. [DOI: 10.1152/ajprenal.00507.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/05/2015] [Indexed: 12/14/2022] Open
Abstract
We previously reported that the deletion of the pH sensor GPR4 causes a non-gap metabolic acidosis and defective net acid excretion (NAE) in the GPR4 knockout mouse (GPR4−/−) (Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, and Petrovic S. J Am Soc Nephrol 21: 1745–1755, 2010). Since the major regulatory site of NAE in the kidney is the collecting duct (CD), we examined acid-base transport proteins in intercalated cells (ICs) of the CD and found comparable mRNA expression of kidney anion exchanger 1 (kAE1), pendrin, and the a4 subunit of H+-ATPase in GPR4−/− vs. +/+. However, NH4Cl loading elicited adaptive doubling of AE1 mRNA in GPR4+/+, but a 50% less pronounced response in GPR4−/−. In GPR4+/+, NH4Cl loading evoked a cellular response characterized by an increase in AE1-labeled and a decrease in pendrin-labeled ICs similar to what was reported in rabbits and rats. This response did not occur in GPR4−/−. Microperfusion experiments demonstrated that the activity of the basolateral Cl−/HCO3− exchanger, kAE1, in CDs isolated from GPR4−/− failed to increase with NH4Cl loading, in contrast to the increase observed in GPR4+/+. Therefore, the deficiency of GPR4 blunted, but did not eliminate the adaptive response to an acid load, suggesting a compensatory response from other pH/CO2/bicarbonate sensors. Indeed, the expression of the calcium-sensing receptor (CaSR) was nearly doubled in GPR4−/− kidneys, in the absence of apparent disturbances of Ca2+ homeostasis. In summary, the expression and activity of the key transport proteins in GPR4−/− mice are consistent with spontaneous metabolic acidosis, but the adaptive response to a superimposed exogenous acid load is blunted and might be partially compensated for by CaSR.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lisa Stephens
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Thomas D. DuBose
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Snezana Petrovic
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Claude D. Pepper Older Americans Independence Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| |
Collapse
|
23
|
Purkerson JM, Schwaderer AL, Nakamori A, Schwartz GJ. Distinct α-intercalated cell morphology and its modification by acidosis define regions of the collecting duct. Am J Physiol Renal Physiol 2015; 309:F464-73. [PMID: 26084929 DOI: 10.1152/ajprenal.00161.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/12/2015] [Indexed: 01/27/2023] Open
Abstract
During metabolic acidosis, the cortical collecting duct (CCD) of the rabbit reverses the polarity of bicarbonate flux from net secretion to net absorption, and this is accomplished by increasing the proton secretory rate by α-intercalated cells (ICs) and decreasing bicarbonate secretion by β-ICs. To better characterize dynamic changes in H(+)-secreting α-ICs, we examined their morphology in collecting ducts microdissected from kidneys of normal, acidotic, and recovering rabbits. α-ICs in defined axial regions varied in number and basolateral anion exchanger (AE)1 morphology, which likely reflects their relative activity and function along the collecting duct. Upon transition from CCD to outer medullary collecting duct from the outer stripe to the inner stripe, the number of α-ICs increases from 11.0 ± 1.2 to 15.4 ± 1.11 and to 32.0 ± 1.3 cells/200 μm, respectively. In the CCD, the basolateral structure defined by AE1 typically exhibited a pyramidal or conical shape, whereas in the medulla the morphology was elongated and shallow, resulting in a more rectangular shape. Furthermore, acidosis reversibly induced α-ICs in the CCD to acquire a more rectangular morphology concomitant with a transition from diffusely cytoplasmic to increased basolateral surface distribution of AE1 and apical polarization of B1-V-ATPase. The latter results are consistent with the supposition that morphological adaptation from the pyramidal to rectangular shape reflects a transition toward a more "active" configuration. In addition, α-ICs in the outer medullary collecting duct from the outer stripe exhibited cellular morphology strikingly similar to dendritic cells that may reflect a newly defined ancillary function in immune defense of the kidney.
Collapse
Affiliation(s)
- Jeffrey M Purkerson
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - Andrew L Schwaderer
- Department of Pediatrics and Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Aya Nakamori
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - George J Schwartz
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
24
|
Renal acid-base regulation: new insights from animal models. Pflugers Arch 2014; 467:1623-41. [PMID: 25515081 DOI: 10.1007/s00424-014-1669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
Because majority of biological processes are dependent on pH, maintaining systemic acid-base balance is critical. The kidney contributes to systemic acid-base regulation, by reabsorbing HCO3 (-) (both filtered by glomeruli and generated within a nephron) and acidifying urine. Abnormalities in those processes will eventually lead to a disruption in systemic acid-base balance and provoke metabolic acid-base disorders. Research over the past 30 years advanced our understanding on cellular and molecular mechanisms responsible for those processes. In particular, a variety of transgenic animal models, where target genes are deleted either globally or conditionally, provided significant insights into how specific transporters are contributing to the renal acid-base regulation. Here, we broadly overview the mechanisms of renal ion transport participating to acid-base regulation, with emphasis on data obtained from transgenic mice models.
Collapse
|
25
|
Purkerson JM, Heintz EV, Nakamori A, Schwartz GJ. Insights into acidosis-induced regulation of SLC26A4 (pendrin) and SLC4A9 (AE4) transporters using three-dimensional morphometric analysis of β-intercalated cells. Am J Physiol Renal Physiol 2014; 307:F601-11. [PMID: 24990900 DOI: 10.1152/ajprenal.00404.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to examine the three-dimensional (3-D) expression and distribution of anion transporters pendrin (SLC26A4) and anion exchanger (AE)4 (SLC4A9) in β-intercalated cells (β-ICs) of the rabbit cortical collecting duct (CCD) to better characterize the adaptation to acid-base disturbances. Confocal analysis and 3-D reconstruction of β-ICs, using identifiers of the nucleus and zona occludens, permitted the specific orientation of cells from normal, acidotic, and recovering rabbits, so that adaptive changes could be quantified and compared. The pendrin cap likely mediates apical Cl(-)/HCO3 (-) exchange, but it was also found beneath the zona occludens and in early endosomes, some of which may recycle back to the apical membrane via Rab11a(+) vesicles. Acidosis reduced the size of the pendrin cap, observed as a large decrease in cap volume above and below the zona occludens, and the volume of the Rab11a(+) apical recycling compartment. Correction of the acidosis over 12-18 h reversed these changes. Consistent with its proposed function in the basolateral exit of Na(+) via Na(+)-HCO3 (-) cotransport, AE4 was expressed as a barrel-like structure in the lateral membrane of β-ICs. Acidosis reduced AE4 expression in β-ICs, but this was rapidly reversed during the recovery from acidosis. The coordinate regulation of pendrin and AE4 during acidosis and recovery is likely to affect the magnitude of acid-base and possibly Na(+) transport across the CCD. In conclusion, acidosis induces a downregulation of AE expression in β-ICs and a diminished presence of pendrin in apical recycling endosomes.
Collapse
Affiliation(s)
- Jeffrey M Purkerson
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Eric V Heintz
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Aya Nakamori
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - George J Schwartz
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
26
|
Paragas N, Kulkarni R, Werth M, Schmidt-Ott KM, Forster C, Deng R, Zhang Q, Singer E, Klose AD, Shen TH, Francis KP, Ray S, Vijayakumar S, Seward S, Bovino ME, Xu K, Takabe Y, Amaral FE, Mohan S, Wax R, Corbin K, Sanna-Cherchi S, Mori K, Johnson L, Nickolas T, D'Agati V, Lin CS, Qiu A, Al-Awqati Q, Ratner AJ, Barasch J. α-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest 2014; 124:2963-76. [PMID: 24937428 DOI: 10.1172/jci71630] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
α-Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC-dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system.
Collapse
|
27
|
|
28
|
Li L, Wang ZV, Hill JA, Lin F. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. J Am Soc Nephrol 2014; 25:305-15. [PMID: 24179166 PMCID: PMC3904563 DOI: 10.1681/asn.2013040374] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/06/2013] [Indexed: 11/03/2022] Open
Abstract
The accumulation of autophagosomes in postischemic kidneys may be renoprotective, but whether this accumulation results from the induction of autophagy or from obstruction within the autophagic process is unknown. Utilizing the differential pH sensitivities of red fluorescent protein (RFP; pKa 4.5) and enhanced green fluorescent protein (EGFP; pKa 5.9), we generated CAG-RFP-EGFP-LC3 mice to distinguish early autophagic vacuoles from autolysosomes. In vitro and in vivo studies confirmed that in response to nutrient deprivation, renal epithelial cells in CAG-RFP-EGFP-LC3 mice produce autophagic vacuoles expressing RFP and EGFP puncta. EGFP fluorescence diminished substantially in the acidic environment of the autolysosomes, whereas bright RFP signals remained. Under normal conditions, nephrons expressed few EGFP and RFP puncta, but ischemia-reperfusion injury (IRI) led to dynamic changes in the proximal tubules, with increased numbers of RFP and EGFP puncta that peaked at 1 day after IRI. The number of EGFP puncta returned to control levels at 3 days after IRI, whereas the high levels of RFP puncta persisted, indicating autophagy initiation at day 1 and autophagosome clearance during renal recovery at day 3. Notably, proliferation decreased in cells containing RFP puncta, suggesting that autophagic cells are less likely to divide for tubular repair. Furthermore, 87% of proximal tubular cells with activated mechanistic target of rapamycin (mTOR), which prevents autophagy, contained no RFP puncta. Conversely, inhibition of mTOR complex 1 induced RFP and EGFP expression and decreased cell proliferation. In summary, our results highlight the dynamic regulation of autophagy in postischemic kidneys and suggest a role of mTOR in autophagy resolution during renal repair.
Collapse
Affiliation(s)
- Ling Li
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York; and
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, and
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, and
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Fangming Lin
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York; and
| |
Collapse
|
29
|
Abstract
Specialized cells in the body express high levels of V-ATPase in their plasma membrane and respond to hormonal and nonhormonal cues to regulate extracellular acidification. Mutations in or loss of some V-ATPase subunits cause several disorders, including renal distal tubular acidosis and male infertility. This review focuses on the regulation of V-ATPase-dependent luminal acidification in renal intercalated cells and epididymal clear cells, which are key players in these physiological processes.
Collapse
Affiliation(s)
- Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
30
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
31
|
Soleimani M. SLC26 Cl-/HCO3- exchangers in the kidney: roles in health and disease. Kidney Int 2013; 84:657-66. [PMID: 23636174 PMCID: PMC10947778 DOI: 10.1038/ki.2013.138] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/25/2013] [Accepted: 02/14/2013] [Indexed: 12/30/2022]
Abstract
Solute-linked carrier 26 (SLC26) isoforms constitute a conserved family of anion transporters with 10 distinct members. Except for SLC26A5 (prestin), all can operate as multifunctional anion exchangers, with three members (SLC26A7, SLC26A9, and SLC26A11) also capable of functioning as chloride channels. Several SLC26 isoforms can specifically mediate Cl(-)/HCO(3)(-) exchange. These include SLC26A3, A4, A6, A7, A9, and A11, which are expressed in the kidney except for SLC26A3 (DRA), which is predominantly expressed in the intestine. SLC26 Cl(-)/HCO(3)(-) exchanger isoforms display unique nephron segment distribution patterns with distinct subcellular localization in the kidney tubules. Together with studies in pathophysiologic states and the examination of genetically engineered mouse models, the evolving picture points to important roles for the SLC26 family in health and disease states. This review summarizes recent advances in the characterization of the SLC26 Cl(-)/HCO(3)(-) exchangers in the kidney with emphasis on their essential role in diverse physiological processes, including chloride homeostasis, oxalate excretion and kidney stone formation, vascular volume and blood pressure regulation, and acid-base balance.
Collapse
Affiliation(s)
- Manoocher Soleimani
- 1] Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA [2] Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA [3] Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
32
|
Trepiccione F, Capasso G, Nielsen S, Christensen BM. Evaluation of cellular plasticity in the collecting duct during recovery from lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2013; 305:F919-29. [DOI: 10.1152/ajprenal.00152.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular morphology of the collecting duct is altered by chronic lithium treatment. We have previously shown that lithium increases the fraction of type-A intercalated cells and lowers the fraction of principal cells along the collecting duct. Moreover, type-A intercalated cells acquire a long-row distribution pattern along the tubules. In the present study, we show that these morphological changes reverse progressively after discontinuation of lithium and finally disappear after 19 days from lithium suspension. In this time frame we have identified for the first time, in vivo, a novel cellular type positive for both intercalated and principal cells functional markers, as recognized by colabeling with H+-ATPase/aquaporin-4 (AQP4) and anion exchanger-1 (AE-1)/AQP2 and Foxi1/AQP4. This cell type is mainly present after 6 days of lithium washout, and it disappears in parallel with the long-row pattern of the type-A intercalated cells. It usually localizes either in the middle or at the edge of the long-row pattern. Its ultrastructure resembles the intercalated cells as shown both by differential interference contrast and by electron microscopy. The time course of appearance, the localization along the collecting duct, and the ultrastructure suggest that the cells double labeled for principal and intercalated cells markers could represent a transition element driving the conversion of intercalated cells into principal cells.
Collapse
Affiliation(s)
- Francesco Trepiccione
- The Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic and Respiratory Science, Second University of Naples, Naples, Italy
| | - Giovambattista Capasso
- Department of Cardiothoracic and Respiratory Science, Second University of Naples, Naples, Italy
| | - Søren Nielsen
- The Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
33
|
Al-Awqati Q. Cell biology of the intercalated cell in the kidney. FEBS Lett 2013; 587:1911-4. [PMID: 23684635 DOI: 10.1016/j.febslet.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022]
Abstract
The intercalated cell of the collecting tubule of the mammalian kidney is specialized for the transport of H(+) and HCO3. They exist in two forms; one specialized for acid secretion and the other secretes HCO3 into the urine. We discovered many years ago that feeding animals an acid diet converts the HCO3 secreting form to an acid secreting type. Here I discuss the molecular basis of this transformation. The conversion of the cell types is mediated by an extracellular matrix protein hensin (also known as DMBT1). However much remains to be identified in the differentiation of these cells.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine, College of Physicians & Surgeons of Columbia University, 630 W 168th Str., New York, NY 10032, USA.
| |
Collapse
|
34
|
Vijayakumar S, Peng H, Schwartz GJ. Galectin-3 mediates oligomerization of secreted hensin using its carbohydrate-recognition domain. Am J Physiol Renal Physiol 2013; 305:F90-9. [PMID: 23657851 DOI: 10.1152/ajprenal.00498.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A multidomain, multifunctional 230-kDa extracellular matrix (ECM) protein, hensin, regulates the adaptation of rabbit kidney to metabolic acidosis by remodeling collecting duct intercalated cells. Conditional deletion of hensin in intercalated cells of the mouse kidney leads to distal renal tubular acidosis and to a significant reduction in the number of cells expressing the basolateral chloride-bicarbonate exchanger kAE1, a characteristic marker of α-intercalated cells. Although hensin is secreted as a monomer, its polymerization and ECM assembly are essential for its role in the adaptation of the kidney to metabolic acidosis. Galectin-3, a unique lectin with specific affinity for β-galactoside glycoconjugates, directly interacts with hensin. Acidotic rabbits had a significant increase in the number of cells expressing galectin-3 in the collecting duct and exhibited colocalization of galectin-3 with hensin in the ECM of microdissected tubules. In this study, we confirmed the increased expression of galectin-3 in acidotic rabbit kidneys by real-time RT-PCR. Galectin-3 interacted with hensin in vitro via its carbohydrate-binding COOH-terminal domain, and the interaction was competitively inhibited by lactose, removal of the COOH-terminal domain of galectin-3, and deglycosylation of hensin. Galectin-9, a lectin with two carbohydrate-recognition domains, is also present in the rabbit kidney; galectin-9 partially oligomerized hensin in vitro. Our results demonstrate that galectin-3 plays a critical role in hensin ECM assembly by oligomerizing secreted monomeric hensin. Both the NH₂-terminal and COOH-terminal domains are required for this function. We suggest that in the case of galectin-3-null mice galectin-9 may partially substitute for the function of galectin-3.
Collapse
Affiliation(s)
- Soundarapandian Vijayakumar
- Department of Pediatrics (Pediatric Nephrology), University of Rochester School of Medicine, Rochester, NY, USA
| | | | | |
Collapse
|
35
|
Amlal H, Xu J, Barone S, Zahedi K, Soleimani M. The chloride channel/transporter Slc26a9 regulates the systemic arterial pressure and renal chloride excretion. J Mol Med (Berl) 2013; 91:561-72. [PMID: 23149824 PMCID: PMC11709006 DOI: 10.1007/s00109-012-0973-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/07/2012] [Accepted: 10/16/2012] [Indexed: 01/21/2023]
Abstract
Apical chloride secretory pathways in the kidney medullary collecting duct are thought to play an important role in the modulation of final urine composition and regulation of systemic vascular volume and/or blood pressure. However, the molecular identity of these molecules has largely remained unknown. Here, we demonstrate that Slc26a9, an electrogenic chloride channel/transporter, is localized on the apical membrane of principal cells in the kidney medullary collecting duct and mediates chloride secretion. Mice with the genetic deletion of Slc26a9 show significant reduction in renal chloride excretion when fed a diet high in salt or subjected to water deprivation. Arterial pressure measurements indicated that Slc26a9 knockout (Slc26a9(-/-)) mice are hypertensive under baseline conditions and increase their blood pressure further within 48 h of switching to a high-salt diet. These results suggest that Slc26a9 plays an important role in renal chloride/fluid excretion and arterial pressure regulation. We propose that impaired SLC26A9 activity in humans may interfere with the excretion of excess salt and result in hypertension.
Collapse
Affiliation(s)
- Hassane Amlal
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
36
|
Mohebbi N, Perna A, van der Wijst J, Becker HM, Capasso G, Wagner CA. Regulation of two renal chloride transporters, AE1 and pendrin, by electrolytes and aldosterone. PLoS One 2013; 8:e55286. [PMID: 23383138 PMCID: PMC3561381 DOI: 10.1371/journal.pone.0055286] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/21/2012] [Indexed: 01/14/2023] Open
Abstract
The renal handling of salt and protons and bicarbonate are intricately linked through shared transport mechanisms for sodium, chloride, protons, and bicarbonate. In the collecting duct, the regulated fine-tuning of salt and acid-base homeostasis is achieved by a series of transport proteins located in different cell types, intercalated and principal cells. Intercalated cells are considered to be of less importance for salt handling but recent evidence has suggested that the anion exchanger pendrin may participate in salt reabsorption and blood pressure regulation. Here, we examined the regulated expression of two functionally related but differentially expressed anion exchangers, AE1 and pendrin, by dietary electrolyte intake and aldosterone. Cortical expression of pendrin was regulated on mRNA and protein level. The combination of NaHCO3 and DOCA enhanced pendrin mRNA and protein levels, whereas DOCA or NaHCO3 alone had no effect. NaCl or KHCO3 increased pendrin mRNA, KCl decreased its mRNA abundance. On protein level, NH4Cl, NaCl, and KCl reduced pendrin expression, the other treatments were without effect. In contrast, AE1 mRNA or protein expression in kidney cortex was regulated by none of these treatments. In kidney medulla, NaHCO3/DOCA or NaHCO3 alone enhanced AE1 mRNA levels. AE1 protein abundance was increased by NH4Cl, NaHCO3/DOCA, and NaCl. Immunolocalization showed that during NH4Cl treatment the relative number of AE1 positive cells was increased and pendrin expressing cells reduced. Thus, pendrin and AE1 are differentially regulated with distinct mechanisms that separately affect mRNA and protein levels. Pendrin is regulated by acidosis and chloride intake, whereas AE1 is enhanced by acidosis, NaCl, and the combination of DOCA and NaHCO3.
Collapse
Affiliation(s)
- Nilufar Mohebbi
- Institute of Physiology and Zurich Center for Integrative Human Physiology-ZIHP, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Wu H, Chen L, Zhou Q, Zhang X, Berger S, Bi J, Lewis DE, Xia Y, Zhang W. Aqp2-expressing cells give rise to renal intercalated cells. J Am Soc Nephrol 2013; 24:243-52. [PMID: 23308014 DOI: 10.1681/asn.2012080866] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The mammalian collecting duct comprises principal and intercalated cells, which maintain sodium/water and acid/base balance, respectively, but the epigenetic contributors to the differentiation of these cell types remain unknown. Here, we investigated whether the histone H3 K79 methyltransferase Dot1l, which is highly expressed in principal cells, participates in this process. Taking advantage of the distribution of aquaporin 2 (Aqp2), which localizes to principal cells of the collecting duct, we developed mice lacking Dot1l in Aqp2-expressing cells (Dot1l(AC)) and found that these mice had approximately 20% fewer principal cells and 13%-16% more intercalated cells than control mice. This deletion of Dot1l in principal cells abolished histone H3 K79 methylation in these cells, but unexpectedly, most intercalated cells also had undetectable di-methyl K79, suggesting that Aqp2(+) cells give rise to intercalated cells. These Aqp2(+) cell-derived intercalated cells were present in both developing and mature kidneys. Furthermore, compared with control mice, Dot1l(AC) mice had 40% higher urine volume and 18% lower urine osmolarity with relatively normal electrolyte and acid-base homeostasis. In conclusion, these data suggest that Dot1l deletion facilitates the differentiation of some α- and β-intercalated cells from Aqp2-expressing progenitor cells or mature principal cells.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cornelius RJ, Wen D, Hatcher LI, Sansom SC. Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron. Am J Physiol Renal Physiol 2012; 303:F1563-71. [PMID: 22993067 DOI: 10.1152/ajprenal.00490.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When wild type (WT) were placed on HK-alk, but not HK-Cl, renal BK-β4 expression increased (Western blot). When WT and β4KO were placed on HK-Cl, plasma K concentration ([K]) was elevated compared with control K diets; however, K excretion was not different between WT and β4KO. When HK-alk was consumed, the plasma [K] was lower and K clearance was greater in WT compared with β4KO. The urine was alkaline in mice on HK-alk; however, urinary pH was not different between WT and β4KO. Immunohistochemical analysis of pendrin and V-ATPase revealed the same increases in β-IC, comparing WT and β4KO on HK-alk. We found an amiloride-sensitive reduction in Na excretion in β4KO, compared with WT, on HK-alk, indicating enhanced Na reabsorption as a compensatory mechanism to secrete K. Treating mice with an alkaline, Na-deficient, high-K diet (LNaHK) to minimize Na reabsorption exaggerated the defective K handling of β4KO. When WT on LNaHK were given NH(4)Cl in the drinking water, K excretion was reduced to the magnitude of β4KO on LNaHK. These results show that WT, but not β4KO, efficiently excretes K on HK-alk but not on HK-Cl and suggest that BK-α/β4-mediated K secretion is promoted by bicarbonaturia.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Dept. of Cellular and Integrative Physiology, Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
39
|
Hennings JC, Picard N, Huebner AK, Stauber T, Maier H, Brown D, Jentsch TJ, Vargas-Poussou R, Eladari D, Hübner CA. A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule. EMBO Mol Med 2012; 4:1057-71. [PMID: 22933323 PMCID: PMC3491836 DOI: 10.1002/emmm.201201527] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/19/2012] [Accepted: 07/10/2012] [Indexed: 11/09/2022] Open
Abstract
The V-ATPase is a multisubunit complex that transports protons across membranes. Mutations of its B1 or a4 subunit are associated with distal renal tubular acidosis and deafness. In the kidney, the a4 subunit is expressed in intercalated cells of the distal nephron, where the V-ATPase controls acid/base secretion, and in proximal tubule cells, where its role is less clear. Here, we report that a4 KO mice suffer not only from severe acidosis but also from proximal tubule dysfunction with defective endocytic trafficking, proteinuria, phosphaturia and accumulation of lysosomal material and we provide evidence that these findings may be also relevant in patients. In the inner ear, the a4 subunit co-localized with pendrin at the apical side of epithelial cells lining the endolymphatic sac. As a4 KO mice were profoundly deaf and displayed enlarged endolymphatic fluid compartments mirroring the alterations in pendrin KO mice, we propose that pendrin and the proton pump co-operate in endolymph homeostasis. Thus, our mouse model gives new insights into the divergent functions of the V-ATPase and the pathophysiology of a4-related symptoms.
Collapse
|
40
|
Abstract
The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
41
|
Brown D, Bouley R, Păunescu TG, Breton S, Lu HAJ. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. Am J Physiol Cell Physiol 2012; 302:C1421-33. [PMID: 22460710 DOI: 10.1152/ajpcell.00085.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.
Collapse
Affiliation(s)
- Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
The intercalated cell of collecting ducts of the kidney is of two forms, the α form secretes acid, whereas the β form secretes HCO(3). Here, we review recent work that shows that the α form is derived from the β form and that the pathway is mediated by an extracellular matrix protein called hensin/DMBT1.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| | | |
Collapse
|
43
|
Liu W, Pastor-Soler NM, Schreck C, Zavilowitz B, Kleyman TR, Satlin LM. Luminal flow modulates H+-ATPase activity in the cortical collecting duct (CCD). Am J Physiol Renal Physiol 2012; 302:F205-15. [PMID: 21957178 PMCID: PMC3251342 DOI: 10.1152/ajprenal.00179.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
Epithelial Na(+) channel (ENaC)-mediated Na(+) absorption and BK channel-mediated K(+) secretion in the cortical collecting duct (CCD) are modulated by flow, the latter requiring an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), microtubule integrity, and exocytic insertion of preformed channels into the apical membrane. As axial flow modulates HCO(3)(-) reabsorption in the proximal tubule due to changes in both luminal Na(+)/H(+) exchanger 3 and H(+)-ATPase activity (Du Z, Yan Q, Duan Y, Weinbaum S, Weinstein AM, Wang T. Am J Physiol Renal Physiol 290: F289-F296, 2006), we sought to test the hypothesis that flow also regulates H(+)-ATPase activity in the CCD. H(+)-ATPase activity was assayed in individually identified cells in microperfused CCDs isolated from New Zealand White rabbits, loaded with the pH-sensitive dye BCECF, and then subjected to an acute intracellular acid load (NH(4)Cl prepulse technique). H(+)-ATPase activity was defined as the initial rate of bafilomycin-inhibitable cell pH (pH(i)) recovery in the absence of luminal K(+), bilateral Na(+), and CO(2)/HCO(3)(-), from a nadir pH of ∼6.2. We found that 1) an increase in luminal flow rate from ∼1 to 5 nl·min(-1)·mm(-1) stimulated H(+)-ATPase activity, 2) flow-stimulated H(+) pumping was Ca(2+) dependent and required microtubule integrity, and 3) basal and flow-stimulated pH(i) recovery was detected in cells that labeled with the apical principal cell marker rhodamine Dolichos biflorus agglutinin as well as cells that did not. We conclude that luminal flow modulates H(+)-ATPase activity in the rabbit CCD and that H(+)-ATPases therein are present in both principal and intercalated cells.
Collapse
Affiliation(s)
- Wen Liu
- Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1198, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
44
|
Xu J, Barone S, Li H, Holiday S, Zahedi K, Soleimani M. Slc26a11, a chloride transporter, localizes with the vacuolar H(+)-ATPase of A-intercalated cells of the kidney. Kidney Int 2011; 80:926-937. [PMID: 21716257 PMCID: PMC11709004 DOI: 10.1038/ki.2011.196] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chloride has an important role in regulating vacuolar H(+)-ATPase activity across specialized cellular and intracellular membranes. In the kidney, vacuolar H(+)-ATPase is expressed on the apical membrane of acid-secreting A-type intercalated cells in the collecting duct where it has an essential role in acid secretion and systemic acid base homeostasis. Here, we report the identification of a chloride transporter, which co-localizes with and regulates the activity of plasma membrane H(+)-ATPase in the kidney collecting duct. Immunoblotting and immunofluorescent labeling identified Slc26a11 (∼72 kDa), expressed in a subset of cells in the collecting duct. On the basis of double-immunofluorescent labeling with AQP2 and identical co-localization with H(+)-ATPase, cells expressing Slc26a11 were deemed to be distinct from principal cells and were found to be intercalated cells. Functional studies in transiently transfected COS7 cells indicated that Slc26a11 (designated as kidney brain anion transporter (KBAT)) can transport chloride and increase the rate of acid extrusion by means of H(+)-ATPase. Thus, Slc26a11 is a partner of vacuolar H(+)-ATPase facilitating acid secretion in the collecting duct.
Collapse
Affiliation(s)
- Jie Xu
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sharon Barone
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hong Li
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shannon Holiday
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kamyar Zahedi
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Manoocher Soleimani
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
45
|
Welsh-Bacic D, Nowik M, Kaissling B, Wagner CA. Proliferation of acid-secretory cells in the kidney during adaptive remodelling of the collecting duct. PLoS One 2011; 6:e25240. [PMID: 22039408 PMCID: PMC3200326 DOI: 10.1371/journal.pone.0025240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/29/2011] [Indexed: 01/07/2023] Open
Abstract
The renal collecting duct adapts to changes in acid-base metabolism by remodelling and altering the relative number of acid or alkali secreting cells, a phenomenon termed plasticity. Acid secretory A intercalated cells (A-IC) express apical H(+)-ATPases and basolateral bicarbonate exchanger AE1 whereas bicarbonate secretory B intercalated cells (B-IC) express basolateral (and apical) H(+)-ATPases and the apical bicarbonate exchanger pendrin. Intercalated cells were thought to be terminally differentiated and unable to proliferate. However, a recent report in mouse kidney suggested that intercalated cells may proliferate and that this process is in part dependent on GDF-15. Here we extend these observations to rat kidney and provide a detailed analysis of regional differences and demonstrate that differentiated A-IC proliferate massively during adaptation to systemic acidosis. We used markers of proliferation (PCNA, Ki67, BrdU incorporation) and cell-specific markers for A-IC (AE1) and B-IC (pendrin). Induction of remodelling in rats with metabolic acidosis (with NH(4)Cl for 12 hrs, 4 and 7 days) or treatment with acetazolamide for 10 days resulted in a larger fraction of AE1 positive cells in the cortical collecting duct. A large number of AE1 expressing A-IC was labelled with proliferative markers in the cortical and outer medullary collecting duct whereas no labeling was found in B-IC. In addition, chronic acidosis also increased the rate of proliferation of principal collecting duct cells. The fact that both NH(4)Cl as well as acetazolamide stimulated proliferation suggests that systemic but not urinary pH triggers this response. Thus, during chronic acidosis proliferation of AE1 containing acid-secretory cells occurs and may contribute to the remodelling of the collecting duct or replace A-IC due to a shortened life span under these conditions.
Collapse
Affiliation(s)
- Desa Welsh-Bacic
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marta Nowik
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Abstract
The distal nephron plays a critical role in the renal control of homeostasis. Until very recently most studies focused on the control of Na(+), K(+), and water balance by principal cells of the collecting duct and the regulation of solute and water by hormones from the renin-angiotensin-aldosterone system and by antidiuretic hormone. However, recent studies have revealed the unexpected importance of renal intercalated cells, a subtype of cells present in the connecting tubule and collecting ducts. Such cells were thought initially to be involved exclusively in acid-base regulation. However, it is clear now that intercalated cells absorb NaCl and K(+) and hence may participate in the regulation of blood pressure and potassium balance. The second paradigm-challenging concept we highlight is the emerging importance of local paracrine factors that play a critical role in the renal control of water and electrolyte balance.
Collapse
Affiliation(s)
- Dominique Eladari
- Centre de Recherche des Cordeliers, Université Paris Descartes, INSERM UMRS 872, Equipe 3, F-75006, Paris, France; ,
- Université Pierre et Marie Curie, CNRS ERL7226, F-75006, Paris, France
- Département de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015, Paris, France
| | - Régine Chambrey
- Centre de Recherche des Cordeliers, Université Paris Descartes, INSERM UMRS 872, Equipe 3, F-75006, Paris, France; ,
- Université Pierre et Marie Curie, CNRS ERL7226, F-75006, Paris, France
| | - Janos Peti-Peterdi
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033;
| |
Collapse
|
47
|
Liu W, Schreck C, Coleman RA, Wade JB, Hernandez Y, Zavilowitz B, Warth R, Kleyman TR, Satlin LM. Role of NKCC in BK channel-mediated net K⁺ secretion in the CCD. Am J Physiol Renal Physiol 2011; 301:F1088-97. [PMID: 21816753 DOI: 10.1152/ajprenal.00347.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apical SK/ROMK and BK channels mediate baseline and flow-induced K secretion (FIKS), respectively, in the cortical collecting duct (CCD). BK channels are detected in acid-base transporting intercalated (IC) and Na-absorbing principal (PC) cells. Although the density of BK channels is greater in IC than PC, Na-K-ATPase activity in IC is considered inadequate to sustain high rates of urinary K secretion. To test the hypothesis that basolateral NKCC in the CCD contributes to BK channel-mediated FIKS, we measured net K secretion (J(K)) and Na absorption (J(Na)) at slow (∼1) and fast (∼5 nl·min(-1)·mm(-1)) flow rates in rabbit CCDs microperfused in vitro in the absence and presence of bumetanide, an inhibitor of NKCC, added to the bath. Bumetanide inhibited FIKS but not basal J(K), J(Na), or the flow-induced [Ca(2+)](i) transient necessary for BK channel activation. Addition of luminal iberiotoxin, a BK channel inhibitor, to bumetanide-treated CCDs did not further reduce J(K). Basolateral Cl removal reversibly inhibited FIKS but not basal J(K) or J(Na). Quantitative PCR performed on single CCD samples using NKCC1- and 18S-specific primers and probes and the TaqMan assay confirmed the presence of the transcript in this nephron segment. To identify the specific cell type to which basolateral NKCC is localized, we exploited the ability of NKCC to accept NH(4)(+) at its K-binding site to monitor the rate of bumetanide-sensitive cytosolic acidification after NH(4)(+) addition to the bath in CCDs loaded with the pH indicator dye BCECF. Both IC and PC were found to have a basolateral bumetanide-sensitive NH(4)(+) entry step and NKCC1-specific antibodies labeled the basolateral surfaces of both cell types in CCDs. These results suggest that BK channel-mediated FIKS is dependent on a basolateral bumetanide-sensitive, Cl-dependent transport pathway, proposed to be NKCC1, in both IC and PC in the CCD.
Collapse
Affiliation(s)
- Wen Liu
- Division of Pediatric Nephrology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Al-Awqati Q. Terminal differentiation in epithelia: the role of integrins in hensin polymerization. Annu Rev Physiol 2011; 73:401-12. [PMID: 20936943 DOI: 10.1146/annurev-physiol-012110-142253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelia, the most abundant cell type, differentiate to protoepithelia from stem cells by developing apical and basolateral membrane domains and form sheets of cells connected by junctions. Following this differentiation step, the cells undergo a second step (terminal differentiation), during which they acquire a mature phenotype, which unlike the protoepithelial one is tissue and organ specific. An extracellular matrix (ECM) protein termed hensin (DMBT1) mediates this differentiation step in the kidney intercalated cells. Although hensin is secreted as a soluble monomer, it requires polymerization and deposition in the ECM to become active. The polymerization step is mediated by the activation of inside-out signaling by integrins and by the secretion of two proteins: cypA (a cis-trans prolyl isomerase) and galectin 3.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
49
|
Deyev IE, Sohet F, Vassilenko KP, Serova OV, Popova NV, Zozulya SA, Burova EB, Houillier P, Rzhevsky DI, Berchatova AA, Murashev AN, Chugunov AO, Efremov RG, Nikol’sky NN, Bertelli E, Eladari D, Petrenko AG. Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab 2011; 13:679-89. [PMID: 21641549 PMCID: PMC3119365 DOI: 10.1016/j.cmet.2011.03.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 12/18/2010] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
Abstract
The insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family, can be activated by alkaline media both in vitro and in vivo at pH >7.9. The alkali-sensing property of IRR is conserved in frog, mouse, and human. IRR activation is specific, dose-dependent and quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess.
Collapse
Affiliation(s)
- Igor E. Deyev
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Fabien Sohet
- Université Paris Descartes; INSERM UMRS 872, Equipe 3; centre de Recherche des cordeliers, 15 rue de l’Ecole de Médecine, F-75006, Paris, France
- Université Pierre et Marie Curie; and CNRS ERL7226, 15 rue de l’Ecole de Médecine, F-75006, Paris, France
| | - Konstantin P. Vassilenko
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St Petersburg 194064, Russia
| | - Oxana V. Serova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Sergey A. Zozulya
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena B. Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St Petersburg 194064, Russia
| | - Pascal Houillier
- Université Paris Descartes; INSERM UMRS 872, Equipe 3; centre de Recherche des cordeliers, 15 rue de l’Ecole de Médecine, F-75006, Paris, France
- Université Pierre et Marie Curie; and CNRS ERL7226, 15 rue de l’Ecole de Médecine, F-75006, Paris, France
- Hopital Européen Georges Pompidou, Département de Physiologie, Assistance Publique-Hopitaux de Paris, 20 rue Leblanc, F-75015, Paris, France
| | - Dmitry I. Rzhevsky
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastasiya A. Berchatova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Arkady N. Murashev
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anton O. Chugunov
- Laboratory of Biomolecular Modeling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G. Efremov
- Laboratory of Biomolecular Modeling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Nikolai N. Nikol’sky
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St Petersburg 194064, Russia
| | - Eugenio Bertelli
- Department of Physiopathology, Experimental Medicine and Public Health, University of Siena, 53100 Siena, Italy
| | - Dominique Eladari
- Université Paris Descartes; INSERM UMRS 872, Equipe 3; centre de Recherche des cordeliers, 15 rue de l’Ecole de Médecine, F-75006, Paris, France
- Université Pierre et Marie Curie; and CNRS ERL7226, 15 rue de l’Ecole de Médecine, F-75006, Paris, France
- Hopital Européen Georges Pompidou, Département de Physiologie, Assistance Publique-Hopitaux de Paris, 20 rue Leblanc, F-75015, Paris, France
| | - Alexander G. Petrenko
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
50
|
Wade JB, Stanton BA, Brown D. Structural Correlates of Transport in Distal Tubule and Collecting Duct Segments. Compr Physiol 2011. [DOI: 10.1002/cphy.cp080104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|