1
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
2
|
Wang H, Zhou WX, Huang JF, Zheng XQ, Tian HJ, Wang B, Fu WL, Wu AM. Endocrine Therapy for the Functional Recovery of Spinal Cord Injury. Front Neurosci 2020; 14:590570. [PMID: 33390881 PMCID: PMC7773784 DOI: 10.3389/fnins.2020.590570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a major cause of physical disability and leads to patient dissatisfaction with their quality of life. Patients with SCI usually exhibit severe clinical symptoms, including sensory and motor dysfunction below the injured levels, paraplegia, quadriplegia and urinary retention, which can exacerbate the substantial medical and social burdens. The major pathological change observed in SCI is inflammatory reaction, which induces demyelination, axonal degeneration, and the apoptosis and necrosis of neurons. Traditional medical treatments are mainly focused on the recovery of motor function and prevention of complications. To date, numerous studies have been conducted to explore the cellular and molecular mechanism of SCI and have proposed lots of effective treatments, but the clinical applications are still limited due to the complex pathogenesis and poor prognosis after SCI. Endocrine hormones are kinds of molecules that are synthesized by specialized endocrine organs and can participate in the regulation of multiple physiological activities, and their protective effects on several disorders have been widely discussed. In addition, many studies have identified that endocrine hormones can promote nerve regeneration and functional recovery in individuals with central nervous system diseases. Therefore, studies investigating the clinical applications of endocrine hormones as treatments for SCI are necessary. In this review, we described the neuroprotective roles of several endocrine hormones in SCI; endocrine hormone administration reduces cell death and promotes functional repair after SCI. We also proposed novel therapies for SCI.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wen-Xian Zhou
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jin-Feng Huang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuan-Qi Zheng
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hai-Jun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei-Li Fu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-Min Wu
- Zhejiang Provincial Key Laboratory of Orthopaedics, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Hebda-Bauer EK, Dokas LA, Watson SJ, Akil H. Adaptation to single housing is dynamic: Changes in hormone levels, gene expression, signaling in the brain, and anxiety-like behavior in adult male C57Bl/6J mice. Horm Behav 2019; 114:104541. [PMID: 31220462 PMCID: PMC7466935 DOI: 10.1016/j.yhbeh.2019.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
For basic research, rodents are often housed in individual cages prior to behavioral testing. However, aspects of the experimental design, such as duration of isolation and timing of animal manipulation, may unintentionally introduce variance into collected data. Thus, we examined temporal correlates of acclimation of C57Bl/6J mice to single housing in a novel environment following two commonly used experimental time periods (7 or 14 days, SH7 or SH14). We measured circulating stress hormones (adrenocorticotropic hormone and corticosterone), basally or after injection stress, hippocampal gene expression of transcripts implicated in stress and affect regulation: the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), including the MR/GR ratio, and fibroblast growth factor 2 (FGF2). We also measured signaling in the mammalian target of rapamycin (mTOR) pathway. The basal elevation of stress hormones in the SH14 group is accompanied by a blunting in the circadian rhythms of GR and FGF2 hippocampal gene expression, and the MR/GR ratio, that is observed in SH7 mice. Following mild stress, the endocrine response and hippocampal mTOR pathway signaling are decreased in the SH14 mice. These neural and endocrine changes at 14 days of single housing likely underlie increased anxiety-like behavior measured in an elevated plus maze test. We conclude that multiple measures of stress responsiveness change dynamically between one and two weeks of single housing. The ramifications of these alterations should be considered when designing animal experiments since such hidden sources of variance might cause lack of replicability and misinterpretation of data.
Collapse
Affiliation(s)
- Elaine K Hebda-Bauer
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America.
| | - Linda A Dokas
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Stanley J Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
4
|
Wassink G, Davidson JO, Lear CA, Juul SE, Northington F, Bennet L, Gunn AJ. A working model for hypothermic neuroprotection. J Physiol 2018; 596:5641-5654. [PMID: 29660115 DOI: 10.1113/jp274928] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/28/2018] [Indexed: 01/04/2023] Open
Abstract
Therapeutic hypothermia significantly improves survival without disability in near-term and full-term newborns with moderate to severe hypoxic-ischaemic encephalopathy. However, hypothermic neuroprotection is incomplete. The challenge now is to find ways to further improve outcomes. One major limitation to progress is that the specific mechanisms of hypothermia are only partly understood. Evidence supports the concept that therapeutic cooling suppresses multiple extracellular death signals, including intracellular pathways of apoptotic and necrotic cell death and inappropriate microglial activation. Thus, the optimal depth of induced hypothermia is that which effectively suppresses the cell death pathways after hypoxia-ischaemia, but without inhibiting recovery of the cellular environment. Thus mild hypothermia needs to be continued until the cell environment has recovered until it can actively support cell survival. This review highlights that key survival cues likely include the inter-related restoration of neuronal activity and growth factor release. This working model suggests that interventions that target overlapping mechanisms, such as anticonvulsants, are unlikely to materially augment hypothermic neuroprotection. We suggest that further improvements are most likely to be achieved with late interventions that maximise restoration of the normal cell environment after therapeutic hypothermia, such as recombinant human erythropoietin or stem cell therapy.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Sandra E Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Frances Northington
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
The Function of FGFR1 Signalling in the Spinal Cord: Therapeutic Approaches Using FGFR1 Ligands after Spinal Cord Injury. Neural Plast 2017; 2017:2740768. [PMID: 28197342 PMCID: PMC5286530 DOI: 10.1155/2017/2740768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/25/2016] [Indexed: 11/24/2022] Open
Abstract
Extensive research is ongoing that concentrates on finding therapies to enhance CNS regeneration after spinal cord injury (SCI) and to cure paralysis. This review sheds light on the role of the FGFR pathway in the injured spinal cord and discusses various therapies that use FGFR activating ligands to promote regeneration after SCI. We discuss studies that use peripheral nerve grafts or Schwann cell grafts in combination with FGF1 or FGF2 supplementation. Most of these studies show evidence that these therapies successfully enhance axon regeneration into the graft. Further they provide evidence for partial recovery of sensory function shown by electrophysiology and motor activity evidenced by behavioural data. We also present one study that indicates that combination with additional, synergistic factors might further drive the system towards functional regeneration. In essence, this review summarises the potential of nerve and cell grafts combined with FGF1/2 supplementation to improve outcome even after severe spinal cord injury.
Collapse
|
6
|
Furuya T, Hashimoto M, Koda M, Murata A, Okawa A, Dezawa M, Matsuse D, Tabata Y, Takahashi K, Yamazaki M. Treatment with basic fibroblast growth factor-incorporated gelatin hydrogel does not exacerbate mechanical allodynia after spinal cord contusion injury in rats. J Spinal Cord Med 2013; 36:134-9. [PMID: 23809528 PMCID: PMC3595961 DOI: 10.1179/2045772312y.0000000030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
UNLABELLED Besides stimulating angiogenesis or cell survival, basic fibroblast growth factor (bFGF) has the potential for protecting neurons in the injured spinal cord. OBJECTIVE To investigate the effects of a sustained-release system of bFGF from gelatin hydrogel (GH) in a rat spinal cord contusion model. METHODS Adult female Sprague-Dawley rats were subjected to a spinal cord contusion injury at the T10 vertebral level using an IH impactor (200 kdyn). One week after contusion, GH containing bFGF (20 µg) was injected into the lesion epicenter (bFGF - GH group). The GH-only group was designated as the control. Locomotor recovery was assessed over 9 weeks by Basso, Beattie, Bresnahan rating scale, along with inclined plane and Rota-rod testing. Sensory abnormalities in the hind paws of all the rats were evaluated at 5, 7, and 9 weeks. RESULTS There were no significant differences in any of the motor assessments at any time point between the bFGF - GH group and the control GH group. The control GH group showed significantly more mechanical allodynia than did the group prior to injury. In contrast, the bFGF - GH group showed no statistically significant changes of mechanical withdrawal thresholds compared with pre-injury. CONCLUSION Our findings suggest that bFGF-incorporated GH could have therapeutic potential for alleviating mechanical allodynia following spinal cord injury.
Collapse
Affiliation(s)
- Takeo Furuya
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayuki Hashimoto
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan,Correspondence to: Masayuki Hashimoto, Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Masao Koda
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Murata
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akihiko Okawa
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mari Dezawa
- Department of Anatomy and Neurobiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dai Matsuse
- Department of Anatomy and Neurobiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
7
|
Awad BI, Carmody MA, Steinmetz MP. Potential role of growth factors in the management of spinal cord injury. World Neurosurg 2013; 83:120-31. [PMID: 23334003 DOI: 10.1016/j.wneu.2013.01.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To review central nervous system growth factors and their therapeutic potential and clinical translation into spinal cord injury (SCI), as well as the challenges that have been encountered during clinical development. METHODS A systemic review of the available current and historical literature regarding central nervous system growth factors and clinical trials regarding their use in spinal cord injury was conducted. RESULTS The effectiveness of administering growth factors as a potential therapeutic strategy for SCI has been tested with the use of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, neurotrophin 3, and neurotrophin-4/5. Delivery of growth factors to injured SC has been tested by numerous methods. Unfortunately, most of clinical trials at this time are uncontrolled and have questionable results because of lack of efficacy and/or unacceptable side effects. CONCLUSIONS There is promise in the use of specific growth factors therapeutically for SCI. However, more studies involving neuronal regeneration and functional recovery are needed, as well the development of delivery methods that allow sufficient quantity of growth factors while restricting their distribution to target sites.
Collapse
Affiliation(s)
- Basem I Awad
- Department of Neurosurgery, Mansoura University School of Medicine, Mansoura, Egypt; Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Margaret A Carmody
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael P Steinmetz
- Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
8
|
Sacerdote P, Niada S, Franchi S, Arrigoni E, Rossi A, Yenagi V, de Girolamo L, Panerai AE, Brini AT. Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy. Stem Cells Dev 2013. [PMID: 23190263 DOI: 10.1089/scd.2012.0398] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the last decade, it has been proved that mesenchymal stem cells (MSCs) elicit anti-inflammatory effects. MSCs from adipose tissue (hASCs) differentiate into cells of the mesodermal lineage and transdifferentiate into ectodermal-origin cells. Although there are various etiologies to chronic pain, one common feature is that painful states are associated with increased inflammation. We believe in hASCs as a therapeutic tool also in pathologies involving neuroinflammation and neuronal tissue damage. We have investigated the effect of hASCs injected in a model of neuropathic pain [(mouse sciatic nerve chronic constriction injury (CCI)]. hASCs from 5 donors were characterized, and no major differences were depicted. hASCs were cryopreserved and grown on demand. About 1×10(6), 3×10(6), and 6×10(6) hASCs were intravenously injected into normal immunocompetent mice. No mouse died, and no macroscopic toxicity or behavioral changes were observed, confirming the safety of hASCs. hASCs, intravenously (i.v.) injected into C57BL/6 mice when the neuropathic pain was already established, induced a significant reduction in mechanical allodynia and a complete reversion of thermal hyperalgesia in a dose-response fashion, already 1 day after administration. Moreover, the hASCs effect can be boosted by repeated administrations, allowing a prolonged therapeutic effect. Treatment decreased the level of the CCI-induced proinflammatory cytokine interleukin (IL)-1β and activated the anti-inflammatory cytokine IL-10 in the lesioned nerve. hASCs treatment also restored normal inducible nitric oxide synthase expression in the spinal cord of CCI animals. Our data suggest that hASCs are worthy of further studies as an anti-inflammatory therapy in the treatment of neuropathic pain or chronic inflammatory diseases.
Collapse
Affiliation(s)
- Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shimosaka M, Ujjal K. Bhawal. bFGF Upregulates the Expression of NGFR in PC12 Cells. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Callaghan BL, Graham BM, Li S, Richardson R. From resilience to vulnerability: mechanistic insights into the effects of stress on transitions in critical period plasticity. Front Psychiatry 2013; 4:90. [PMID: 23964249 PMCID: PMC3741646 DOI: 10.3389/fpsyt.2013.00090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022] Open
Abstract
While early experiences are proposed to be important for the emergence of anxiety and other mental health problems, there is little empirical research examining the impact of such experiences on the development of emotional learning. Of the research that has been performed in this area, however, a complex picture has emerged in which the maturation of emotion circuits is influenced by the early experiences of the animal. For example, under typical laboratory rearing conditions infant rats rapidly forget learned fear associations (infantile amnesia) and express a form of extinction learning which is relapse-resistant (i.e., extinction in infant rats may be due to fear erasure). In contrast, adult rats exhibit very long-lasting memories of past learned fear associations, and express a form of extinction learning that is relapse-prone (i.e., the fear returns in a number of situations). However, when rats are reared under stressful conditions then they exhibit adult-like fear retention and extinction behaviors at an earlier stage of development (i.e., good retention of learned fear and relapse-prone extinction learning). In other words, under typical rearing conditions infant rats appear to be protected from exhibiting anxiety whereas after adverse rearing fear learning appears to make those infants more vulnerable to the later development of anxiety. While the effects of different experiences on infant rats' fear retention and extinction are becoming better documented, the mechanisms which mediate the early transition seen following stress remain unclear. Here we suggest that rearing stress may lead to an early maturation of the molecular and cellular signals shown to be involved in the closure of critical period plasticity in sensory modalities (e.g., maturation of GABAergic neurons, development of perineuronal nets), and speculate that these signals could be manipulated in adulthood to reopen infant forms of emotional learning (i.e., those that favor resilience).
Collapse
Affiliation(s)
- Bridget L Callaghan
- School of Psychology, The University of New South Wales , Sydney, NSW , Australia
| | | | | | | |
Collapse
|
11
|
Hendrickson ML, Ling C, Kalil RE. Degeneration of axotomized projection neurons in the rat dLGN: temporal progression of events and their mitigation by a single administration of FGF2. PLoS One 2012; 7:e46918. [PMID: 23144793 PMCID: PMC3489851 DOI: 10.1371/journal.pone.0046918] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022] Open
Abstract
Removal of visual cortex in the rat axotomizes projection neurons in the dorsal lateral geniculate nucleus (dLGN), leading to cytological and structural changes and apoptosis. Biotinylated dextran amine was injected into the visual cortex to label dLGN projection neurons retrogradely prior to removing the cortex in order to quantify the changes in the dendritic morphology of these neurons that precede cell death. At 12 hours after axotomy we observed a loss of appendages and the formation of varicosities in the dendrites of projection neurons. During the next 7 days, the total number of dendrites and the cross-sectional areas of the dendritic arbors of projection neurons declined to about 40% and 20% of normal, respectively. The response of dLGN projection neurons to axotomy was asynchronous, but the sequence of structural changes in individual neurons was similar; namely, disruption of dendrites began within hours followed by cell soma atrophy and nuclear condensation that commenced after the loss of secondary dendrites had occurred. However, a single administration of fibroblast growth factor-2 (FGF2), which mitigates injury-induced neuronal cell death in the dLGN when given at the time of axotomy, markedly reduced the dendritic degeneration of projection neurons. At 3 and 7 days after axotomy the number of surviving dendrites of dLGN projection neurons in FGF-2 treated rats was approximately 50% greater than in untreated rats, and the cross-sectional areas of dendritic arbors were approximately 60% and 50% larger. Caspase-3 activity in axotomized dLGN projection neurons was determined by immunostaining for fractin (fractin-IR), an actin cleavage product produced exclusively by activated caspase-3. Fractin-IR was seen in some dLGN projection neurons at 36 hours survival, and it increased slightly by 3 days. A marked increase in reactivity was seen by 7 days, with the entire dLGN filled with dense fractin-IR in neuronal cell somas and dendrites.
Collapse
Affiliation(s)
- Michael L. Hendrickson
- W.M. Keck Laboratory for Biological Imaging, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Changying Ling
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ronald E. Kalil
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Hato N, Nota J, Komobuchi H, Teraoka M, Yamada H, Gyo K, Yanagihara N, Tabata Y. Facial nerve decompression surgery using bFGF-impregnated biodegradable gelatin hydrogel in patients with Bell palsy. Otolaryngol Head Neck Surg 2011; 146:641-6. [PMID: 22166965 DOI: 10.1177/0194599811431661] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Basic fibroblast growth factor (bFGF) promotes the regeneration of denervated nerves. The aim of this study was to evaluate the regeneration-facilitating effects of novel facial nerve decompression surgery using bFGF in a gelatin hydrogel in patients with severe Bell palsy. STUDY DESIGN Prospective clinical study. SETTING Tertiary referral center. SUBJECTS AND METHODS Twenty patients with Bell palsy after more than 2 weeks following the onset of severe paralysis were treated with the new procedure. The facial nerve was decompressed between tympanic and mastoid segments via the mastoid. A bFGF-impregnated biodegradable gelatin hydrogel was placed around the exposed nerve. Regeneration of the facial nerve was evaluated by the House-Brackmann (H-B) grading system. The outcomes were compared with the authors' previous study, which reported outcomes of the patients who underwent conventional decompression surgery (n = 58) or conservative treatment (n = 43). RESULTS The complete recovery (H-B grade 1) rate of the novel surgery (75.0%) was significantly better than the rate of conventional surgery (44.8%) and conservative treatment (23.3%). Every patient in the novel decompression surgery group improved to H-B grade 2 or better even when undergone between 31 and 99 days after onset. CONCLUSION Advantages of this decompression surgery are low risk of complications and long effective period after onset of the paralysis. To the authors' knowledge, this is the first clinical report of the efficacy of bFGF using a new drug delivery system in patients with severe Bell palsy.
Collapse
Affiliation(s)
- Naohito Hato
- Department of Otolaryngology, Ehime University School of Medicine, Ehime, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy. PLoS One 2011; 6:e27458. [PMID: 22125614 PMCID: PMC3220696 DOI: 10.1371/journal.pone.0027458] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/17/2011] [Indexed: 01/19/2023] Open
Abstract
Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline were injected into the unilateral hind limb muscles. Mechanical hyperalgesia and cold allodynia in SD rats were measured as the number of foot withdrawals to von Frey hair stimulation and acetone application, respectively. Two weeks after the BM-MNC transplantation, sciatic motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), sciatic nerve blood flow (SNBF), mRNA expressions and histology were assessed. The BM-MNC transplantation significantly ameliorated mechanical hyperalgesia and cold allodynia in the BM-MNC-injected side. Furthermore, the slowed MNCV/SNCV and decreased SNBF in diabetic rats were improved in the BM-MNC-injected side. BM-MNC transplantation improved the decreased mRNA expression of NT-3 and number of microvessels in the hind limb muscles. There was no distinct effect of BM-MNC transplantation on the intraepidermal nerve fiber density. These results suggest that autologous transplantation of BM-MNCs could be a novel strategy for the treatment of painful diabetic neuropathy.
Collapse
|
14
|
Ferreira AFB, Real CC, Rodrigues AC, Alves AS, Britto LRG. Short-term, moderate exercise is capable of inducing structural, BDNF-independent hippocampal plasticity. Brain Res 2011; 1425:111-22. [PMID: 22035567 DOI: 10.1016/j.brainres.2011.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 09/12/2011] [Accepted: 10/02/2011] [Indexed: 12/28/2022]
Abstract
Exercise is known to improve cognitive functions and to induce neuroprotection. In this study we used a short-term, moderate intensity treadmill exercise protocol to investigate the effects of exercise on usual markers of hippocampal synaptic and structural plasticity, such as synapsin I (SYN), synaptophysin (SYP), neurofilaments (NF), microtubule-associated protein 2 (MAP2), glutamate receptor subunits GluR1 and GluR2/3, brain-derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP). Immunohistochemistry, Western blotting and real-time PCR were used. We also evaluated the number of cells positive for the proliferation marker 5-bromo-2-deoxyuridine (BrdU), the neurogenesis marker doublecortin (DCX) and the plasma corticosterone levels. Adult male Wistar rats were adapted to a treadmill and divided into 4 groups: sedentary (SED), 3-day exercise (EX3), 7-day exercise (EX7) and 15-day exercise (EX15). The protein changes detected were increased levels of NF68 and MAP2 at EX3, of SYN at EX7 and of GFAP at EX15, accompanied by a decreased level of GluR1 at EX3. Immunohistochemical findings revealed a similar pattern of changes. The real-time PCR analysis disclosed only an increase of MAP2 mRNA at EX7. We also observed an increased number of BrdU-positive cells and DCX-positive cells in the subgranular zone of the dentate gyrus at all time points and increased corticosterone levels at EX3 and EX7. These results reveal a positive effect of short-term, moderate treadmill exercise on hippocampal plasticity. This effect was in general independent of transcriptional processes and of BDNF upregulation, and occurred even in the presence of increased corticosterone levels.
Collapse
Affiliation(s)
- Ana F B Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
15
|
Paciaroni M, Bogousslavsky J. Trafermin for stroke recovery: is it time for another randomized clinical trial? Expert Opin Biol Ther 2011; 11:1533-41. [DOI: 10.1517/14712598.2011.616888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Graham B, Richardson R. Memory of fearful events: the role of fibroblast growth factor-2 in fear acquisition and extinction. Neuroscience 2011; 189:156-69. [DOI: 10.1016/j.neuroscience.2011.05.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/14/2011] [Accepted: 05/17/2011] [Indexed: 12/15/2022]
|
17
|
Foster PP, Rosenblatt KP, Kuljiš RO. Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer's disease. Front Neurol 2011; 2:28. [PMID: 21602910 PMCID: PMC3092070 DOI: 10.3389/fneur.2011.00028] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 12/17/2022] Open
Abstract
Lifestyle factors such as intellectual stimulation, cognitive and social engagement, nutrition, and various types of exercise appear to reduce the risk for common age-associated disorders such as Alzheimer’s disease (AD) and vascular dementia. In fact, many studies have suggested that promoting physical activity can have a protective effect against cognitive deterioration later in life. Slowing or a deterioration of walking speed is associated with a poor performance in tests assessing psychomotor speed and verbal fluency in elderly individuals. Fitness training influences a wide range of cognitive processes, and the largest positive impact observed is for executive (a.k.a. frontal lobe) functions. Studies show that exercise improves additional cognitive functions such as tasks mediated by the hippocampus, and result in major changes in plasticity in the hippocampus. Interestingly, this exercise-induced plasticity is also pronounced in APOE ε4 carriers who express a risk factor for late-onset AD that may modulate the effect of treatments. Based on AD staging by Braak and Braak (1991) and Braak et al. (1993) we propose that the effects of exercise occur in two temporo-spatial continua of events. The “inward” continuum from isocortex (neocortex) to entorhinal cortex/hippocampus for amyloidosis and a reciprocal “outward” continuum for neurofibrillary alterations. The exercise-induced hypertrophy of the hippocampus at the core of these continua is evaluated in terms of potential for prevention to stave off neuronal degeneration. Exercise-induced production of growth factors such as the brain-derived neurotrophic factor (BDNF) has been shown to enhance neurogenesis and to play a key role in positive cognitive effects. Insulin-like growth factor (IGF-1) may mediate the exercise-induced response to exercise on BDNF, neurogenesis, and cognitive performance. It is also postulated to regulate brain amyloid β (Aβ) levels by increased clearance via the choroid plexus. Growth factors, specifically fibroblast growth factor and IGF-1 receptors and/or their downstream signaling pathways may interact with the Klotho gene which functions as an aging suppressor gene. Neurons may not be the only cells affected by exercise. Glia (astrocytes and microglia), neurovascular units and the Fourth Element may also be affected in a differential fashion by the AD process. Analyses of these factors, as suggested by the multi-dimensional matrix approach, are needed to improve our understanding of this complex multi-factorial process, which is increasingly relevant to conquering the escalating and intersecting world-wide epidemics of dementia, diabetes, and sarcopenia that threaten the global healthcare system. Physical activity and interventions aimed at enhancing and/or mimicking the effects of exercise are likely to play a significant role in mitigating these epidemics, together with the embryonic efforts to develop cognitive rehabilitation for neurodegenerative disorders.
Collapse
Affiliation(s)
- Philip P Foster
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch Galveston, TX, USA
| | | | | |
Collapse
|
18
|
Cotman CW, Kahle JS, Korotzer AR. Maintenance and Regulation in Brain of Neurotransmission, Trophic Factors, and Immune Responses. Compr Physiol 2011. [DOI: 10.1002/cphy.cp110113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Komobuchi H, Hato N, Teraoka M, Wakisaka H, Takahashi H, Gyo K, Tabata Y, Yamamoto M. Basic fibroblast growth factor combined with biodegradable hydrogel promotes healing of facial nerve after compression injury: an experimental study. Acta Otolaryngol 2010; 130:173-8. [PMID: 19680989 DOI: 10.3109/00016480902896139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONCLUSION Topical application of basic fibroblast growth factor (bFGF) hydrogel facilitates faster healing from traumatic facial paralysis due to continuous release of bFGF. OBJECTIVES bFGF is considered a potent agent to facilitate recovery from neuronal damage; however, exogenously applied bFGF does not work well because of its short acting time. To enhance the effects in vivo, we developed a new drug delivery system by embedding bFGF in a gelatin hydrogel that degrades slowly. In this study, the effects of bFGF-hydrogel on traumatic facial nerve paralysis were investigated in guinea pigs. METHODS The intratemporal facial nerve was exposed and clamped at the vertical portion using micro needle forceps. The animals were then subjected to one of the following three procedures: group A, no further treatment; group B, one-shot application of bFGF to the nerve; and group C, application of bFGF-hydrogel instead. Six weeks later, facial nerve functions were evaluated by three test batteries: observation of facial movements, electrophysiological testing, and histological study. RESULTS The results for groups A and B were similar in the three tests, indicating that one-shot application of bFGF did not benefit facial nerve recovery. In contrast, group C achieved better results in all tests.
Collapse
Affiliation(s)
- Hayato Komobuchi
- Department of Otolaryngology, Ehime University School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zechel S, Werner S, Unsicker K, von Bohlen und Halbach O. Expression and Functions of Fibroblast Growth Factor 2 (FGF-2) in Hippocampal Formation. Neuroscientist 2010; 16:357-73. [DOI: 10.1177/1073858410371513] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Among the 23 members of the fibroblast growth factor (FGF) family, FGF-2 is the most abundant one in the central nervous system. Its impact on neural cells has been profoundly investigated by in vitro and in vivo studies as well as by gene knockout analyses during the past 2 decades. Key functions of FGF-2 in the nervous system include roles in neurogenesis, promotion of axonal growth, differentiation in development, and maintenance and plasticity in adulthood. From a clinical perspective, its prominent role for the maintenance of lesioned neurons (e.g., ischemia and following transection of fiber tracts) is of particular relevance. In the unlesioned brain, FGF-2 is involved in synaptic plasticity and processes attributed to learning and memory. The focus of this review is on the expression of FGF-2 and its receptors in the hippocampal formation and the physiological and pathophysiological roles of FGF-2 in this region during development and adulthood.
Collapse
Affiliation(s)
- Sabrina Zechel
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Sandra Werner
- Department of Molecular Embryology, Institute of Anatomy & Cell Biology, University of Freiburg, Freiburg, Germany
| | - Klaus Unsicker
- Department of Molecular Embryology, Institute of Anatomy & Cell Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
21
|
|
22
|
Zimering MB, Alder J, Thakker-Varia S. Neurotrophic effects of fibroblast growth factor-like autoantibodies in serum from three patients with breast cancer. Brain Res 2009; 1251:276-86. [PMID: 19059221 DOI: 10.1016/j.brainres.2008.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 11/29/2022]
Abstract
Basic fibroblast growth factor (FGF) promotes branching neuritogenesis and survival in rat hippocampal neurons in vitro. Basic FGF is a broad spectrum mitogen which does not normally circulate, but increases in serum from a variety of cancers. In prior work, we described spontaneously-occurring fibroblast growth factor-like autoantibodies in serum from a subset of breast cancer patients with neurological complications. The FGF-like autoantibodies mimicked the potent endothelial cell growth-promoting activity of bFGF yet had remarkably increased stability (activity survived storage at 0-4 degrees C for up to 5 years). In the present study we tested whether FGF-like autoantibodies from breast cancer sera is neurotrophic or neuroprotective. We now report that FGF-like autoantibodies (2-3 microg/mL) from breast cancer sera promoted neuritogenesis in DIV 12 embryonic day 18 rat hippocampal neurons and neurite extension in undifferentiated rat pheochromocytoma PC12 cells. The FGF-like autoantibodies from a breast cancer patient with lupus were unique in protecting rat hippocampal neurons from glutamate-induced cell loss and promoting long-lasting neurite extension and survival in PC-12 cells (up to 25 days in vitro). Breast cancer sera FGF-like autoantibodies induced large sustained increases in inward cationic current associated with depolarization in hippocampal neurons that exceeded the electrophysiological effects of substantial concentrations of basic FGF. These results suggest that differences in potency or other unknown factors contribute to whether subsets of FGF-like autoantibodies from breast cancer sera exhibit long-lasting neurotrophic and neuroprotective effects or an early neurotrophic effect followed by accelerated late neuron death.
Collapse
Affiliation(s)
- Mark B Zimering
- Medical Service, Department of Veterans Affairs New Jersey Health Care System, Lyons, NJ 07939, USA.
| | | | | |
Collapse
|
23
|
Lopashov GV. Regenerative capacity of retinal cells and the maintenance of their differentiation. CIBA FOUNDATION SYMPOSIUM 2007; 160:209-17; discussion 217-8. [PMID: 1752164 DOI: 10.1002/9780470514122.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mechanisms underlying cell type stability and the capacity of retinal cells for transdifferentiation are discussed. It is shown that cells of amphibian pigmented epithelium can be transformed into retina or lens cells depending on the inducing cell type: the influence of retina enables them to be transformed into retina, the influence of lens epithelium, to lens cells (lentoids or lenses). This led to an attempt to discover the molecular character of cell action by means of transfilter induction in early gastrula ectoderm of Xenopus laevis. The results show that the induced cell types correspond to the main inducing cell type, around which a range of neighbouring cell types is produced; this has been shown for five different cell types. The inducing factors involved seem to show qualitative differences. It is probable that they play a stabilizing role in the maintenance of the differentiated state of tissues, since temporary dissociation into cells leads eye tissues to transdifferentiate into other types. Such molecular factors can play a significant role in the maintenance of the type of differentiation and also in conversion into other cell types. These mechanisms of maintenance are not restricted to interactions between molecules and cells, since membranes on the surface of the retina and pigmented epithelium contribute to their shaping and consequently to the stability of the cell type.
Collapse
Affiliation(s)
- G V Lopashov
- Institute of Gene Biology, USSR Academy of Sciences, Moscow
| |
Collapse
|
24
|
Tuszynski MH, Gage FH. Somatic gene therapy for nervous system disease. CIBA FOUNDATION SYMPOSIUM 2007; 196:85-94; discussion 94-7. [PMID: 8866129 DOI: 10.1002/9780470514863.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurotrophic factors are target-derived molecules that prevent neuronal degeneration during development and, in some cases, during adulthood. They offer substantial promise as therapeutic agents in neurological disease by preventing cell loss and promoting axonal regeneration. However, the optimal means of delivering neurotrophic factors to the nervous system, and the CNS in particular, is an unresolved issue. Neurotrophic factors rarely influence only a single target neuronal population, hence broad delivery of neurotrophic factors to the nervous system may results in effects on multiple non-targeted neuronal populations. Ideally, neurotrophin delivery to the nervous system should be target-specific, regionally restricted, chronic, safe, well-tolerated and of sufficient concentration to elicit responses from target neurons. In this paper we discuss the use of somatic gene transfer methods to deliver neurotrophic factors to the CNS in a manner that seeks to meet the above criteria.
Collapse
Affiliation(s)
- M H Tuszynski
- Department of Neuroscience, University of California at San Diego, La Jolla 92093, USA
| | | |
Collapse
|
25
|
Fadda P, Bedogni F, Fresu A, Collu M, Racagni G, Riva MA. Reduction of corticostriatal glutamatergic fibers in basic fibroblast growth factor deficient mice is associated with hyperactivity and enhanced dopaminergic transmission. Biol Psychiatry 2007; 62:235-42. [PMID: 17161387 DOI: 10.1016/j.biopsych.2006.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/19/2006] [Accepted: 08/09/2006] [Indexed: 11/18/2022]
Abstract
BACKGROUND Basic fibroblast growth factor (FGF2) plays a crucial role during the development of the cerebral cortex. Mice with a knockout of the FGF2 gene have a reduced number of glutamatergic neurons within the deep layers of the cerebral cortex. METHODS We used molecular and behavioral analyses to investigate possible alterations in corticostriatal function in FGF2 -/- mice. RESULTS We found that FGF2 deficiency leads to decreased expression of presynaptic markers of integrity for glutamatergic fibers in the striatum, namely the membrane excitatory amino acid transporter 3 (EAAT3) and the vesicular glutamate transporter 1 (VGLUT1). The reduction of corticostriatal glutamatergic function in FGF2 -/- mice is associated with enhanced locomotor activity in a novel environment and increased responsiveness to dopaminergic drugs, such as cocaine or amphetamine. The behavioral alterations of FGF2 -/- can be normalized by injection of a low dose of the dopaminergic agonist apomorphine (.1 mg/kg) that reduces dopamine release by acting on presynaptic receptors. CONCLUSIONS Our data demonstrate that FGF2 -/- mice have an increased tone and responsiveness of the dopaminergic system and suggest that these animals might represent a model to study disorders that are characterized by an imbalance between glutamatergic and dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Paola Fadda
- Department of Neuroscience B.B. Brodie, Center for Excellence in Neurobiology of Dependence, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Nakajima K, Tohyama Y, Maeda S, Kohsaka S, Kurihara T. Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons. Neurochem Int 2007; 50:807-20. [PMID: 17459525 DOI: 10.1016/j.neuint.2007.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 02/09/2007] [Accepted: 02/15/2007] [Indexed: 11/25/2022]
Abstract
A phenomenon-in which microglia are activated in axotomized rat facial nucleus suggests that a certain neuronal stimulus triggers the activation of microglia. However, how the microglial characteristics are regulated by this neuronal stimulus has not previously been determined. In this study, therefore, the regulation of microglial properties by neurons was characterized in vitro from a neurotrophic perspective. To evaluate the neurotrophic effects of microglia stimulated with neurons, the effects of conditioned medium (CM) of microglia stimulated with neuronal CM (NCM) were assessed in neuronal cultures. The amounts of tyrosine hydroxylase (TH) in neuronal culture exposed to CM of microglia stimulated with NCM was much more than those in neurons exposed to CM of control microglia, suggesting that neuronal stimulus enhances the production of neurotrophic factors for catecholaminergic neurons in microglia. Therefore, the neurotrophic effects of CM of microglia stimulated with NCM were analyzed in detail. The immunocytochemical and biochemical experiments revealed that the CM of microglia stimulated with NCM enhances the survival/maturation of GABAergic and catecholaminergic neurons. The levels of choline acetyltransferase specific to cholinergic neurons also significantly increased in response to stimulation with the same microglial CM. These results allowed us to investigate the production of neurotrophic factors in the CM of microglia stimulated with NCM. The results indicated that NCM induces nerve growth factor (NGF), and enhances neurotrophin-4/5 (NT-4/5), transforming growth factor beta1 (TGFbeta1), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), interleukin-3 (IL-3), and IL-10 in microglia. The promoted neurotrophic effects of CM of microglia stimulated with NCM were significantly abrogated by deprivation of neurotrophic factors by means of an immunoprecipitation method. Taken together, neuronal stimulus was found to activate microglia to produce more neurotrophic factors as above, thereby changing microglia into more neurotrophic cells.
Collapse
Affiliation(s)
- Kazuyuki Nakajima
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Activin A is a growth factor composed of two betaA subunits belonging to the transforming growth factor beta (TGF-beta) superfamily of dimeric proteins. The biological activity of activin A is mediated by two different types of receptors, the type I (ARI and ARIB) and the type II receptors (ARII and ARIIB), and by two activin-binding proteins, follistatin and follistatin-related gene. These factors bind to activin A and thereby inhibit its biological effects. Activin A, its receptors, and binding proteins are widely distributed throughout the brain. Studies employing models of acute brain injury strongly implicate enhanced activin A expression as a common response to acute neuronal damage of various origins. Hypoxic/ischemic injury, mechanical irritation, and chemical damage of brain evoke a strong upregulation of activin A. Subsequent experimental studies have shown that activin A has a beneficial role to neuronal recovery and that, by activating different pathways, activin A has robust neuroprotective activities. Because activin A induction occurs early after brain injury, its measurement may provide a potential biochemical index of the presence, location, and extent of brain injury. This approach may also facilitate the diagnosis of subclinical lesions at stages when monitoring procedures are unable to detect brain lesion and furthermore establish a prognosis.
Collapse
Affiliation(s)
- Pasquale Florio
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | | | |
Collapse
|
28
|
Hirakawa CK, Grecco MAS, Santos OBGD, Leite VM, Faloppa F. Estudo comparativo da ação do fator de crescimento de fibroblastos e fragmentos de nervo na regeneração de nervo tibial em ratos. ACTA ORTOPEDICA BRASILEIRA 2007. [DOI: 10.1590/s1413-78522007000200012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Comparar quantitativamente, a estimulação da regeneração do nervo tibial de ratos pelo Fator de Crescimento de Fibroblastos e por fragmentos de nervo dentro tubos de silicone. MÉTODOS: Foram utilizados 18 ratos da raça Wistar. A cirurgia consistiu inicialmente na ressecção de um segmento de 8 mm do nervo tibial, seguida da interposição com tubos de silicone. No lado direito, o tubo foi preenchido com solução de Fator de Crescimento de Fibroblastos (FGF) e, no lado esquerdo, com segmentos do nervo cortados em fragmentos de 1 mm. Após três meses, os animais foram submetidos a nova cirurgia para exposição dos nervos tibiais ao marcador neuronal Fluro-Gold®. Quarenta e oito horas após a exposição ao corante, os ratos foram perfundidos com solução de paraformaldeído e o segmento medular entre L3 e S1 foi removido e cortado em fatias de 40 micrômetros de espessura. RESULTADOS E CONCLUSÃO: os resultados da contagem neuronal mostraram maior quantidade de neurônios no lado onde foi colocado FGF em relação ao lado onde foram colocados fragmentos nervosos, demonstrando que o fator de crescimento de fibroblastos é superior a fragmentos de nervos na estimulação da regeneração nervosa quando colocados no tubo de silicone.
Collapse
|
29
|
|
30
|
Naumann T, Steup A, Schnell O, Schubert KO, Zhi Q, Guijarro C, Kirsch M, Hofmann HD. Altered neuronal responses and regulation of neurotrophic proteins in the medial septum following fimbria-fornix transection in CNTF- and leukaemia inhibitory factor-deficient mice. Eur J Neurosci 2006; 24:2223-32. [PMID: 17074046 DOI: 10.1111/j.1460-9568.2006.05104.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Degeneration of axotomized GABAergic septohippocampal neurones has been shown to be enhanced in ciliary neurotrophic factor (CNTF)-deficient mice following fimbria-fornix transection (FFT), indicating a neuroprotective function of endogenous CNTF. Paradoxically, however, the cholinergic population of septohippocampal neurones was more resistant to axotomy in these mutants. As leukaemia inhibitory factor (LIF) has been identified as a potential neuroprotective factor for the cholinergic medial septum (MS) neurones, FFT-induced responses were compared in CNTF(-/-), LIF(-/-) and CNTF/LIF double knockout mice. In CNTF(-/-) mice, FFT-induced cholinergic degeneration was confirmed to be attenuated as compared with wildtype mice. The expression of both LIF and LIF receptor beta was increased in the MS providing a possible explanation for the enhanced neuronal resistance to FFT in these animals. However, ablation of the LIF gene also produced paradoxical effects; following FFT in LIF(-/-) mice no loss of GABAergic or cholinergic MS neurones was detectable during the first postlesional week, suggesting that other efficient neuroprotective mechanisms are activated in these animals. In fact, enhanced activation of astrocytes, a source of neurotrophic proteins, was indicated by increased up-regulation of glial fibrillary acidic protein and vimentin expression. In addition, mRNA levels for neurotrophin signalling components (e.g. nerve growth factor, p75(NTR)) were differentially regulated. The positive effect on axotomized cholinergic neurones seen in CNTF(-/-) and LIF(-/-) mice as well as the increased up-regulation of astrogliose markers was abolished in CNTF/LIF double knockout animals. Our results indicate that endogenous CNTF and LIF are involved in the regulation of neuronal survival following central nervous system lesion and are integrated into a network of neurotrophic signals that mutually influence their expression and function.
Collapse
Affiliation(s)
- Thomas Naumann
- Institute of Anatomy and Cell Biology, Center of Neuroscience, Albertstrasse 21, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mudo G, Belluardo N, Fuxe K. Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms. J Neural Transm (Vienna) 2006; 114:135-47. [PMID: 16906354 DOI: 10.1007/s00702-006-0561-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 07/11/2006] [Indexed: 11/29/2022]
Abstract
In the present work we reviewed recent advances concerning neuroprotective/neurotrophic effects of acute or chronic nicotine exposure, and the signalling pathways mediating these effects, including mechanisms implicated in nicotine addiction and nAChR desensitization. Experimental and clinical data largely indicate long-lasting effects of nicotine and nicotinic agonists that imply a neuroprotective/neurotrophic role of nAChR activation, involving mainly alpha7 and alpha4beta2 nAChR subtypes, as evidenced using selective nAChR agonists. Compounds interacting with neuronal nAChRs have the potential to be neuroprotective and treatment with nAChR agonists elicits long-lasting neurotrophic effects, e.g. improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Nicotine addiction, which is mediated by interaction with nACh receptors, is believed to involve the modification of signalling cascades that modulate synaptic plasticity and gene expression. Desensitization, in addition to protecting cells from uncontrolled excitation, is recently considered as a form of signal plasticity. nAChR can generate these longe-lasting effects by elaboration of complex intracellular signals that mediate medium to long-term events crucial for neuronal maintenance, survival and regeneration. Although a comprehensive survey of the gene-based molecular mechanisms that underlie nicotine effects has yet not been performed a growing amount of data is beginning to improve our understanding of signalling mechanisms that lead to neurotrophic/neuroprotective responses. Evidence for an involvement of the fibroblast growth factor-2 gene in nAChR mechanisms mediating neuronal survival, trophism and plasticity has been obtained. However, more work is needed to establish the mechanisms involved in the effects of nicotinic receptor subtype activation from cognition-enhancing and neurotrophic effects to smoking behaviour and to determine more precisely the therapeutic objectives in potential nicotinic drug treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- G Mudo
- Department of Experimental Medicine, Section of Human Physiology, University of Palermo, Palermo, Italy.
| | | | | |
Collapse
|
32
|
Ikeguchi R, Kakinoki R, Matsumoto T, Yamakawa T, Nakayama K, Morimoto Y, Tsuji H, Ishikawa J, Nakamura T. Basic fibroblast growth factor promotes nerve regeneration in a C- -ion-implanted silicon chamber. Brain Res 2006; 1090:51-7. [PMID: 16677621 DOI: 10.1016/j.brainres.2006.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 03/05/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
We reported previously that a silicone tube whose inner surface has been implanted with negatively charged carbon ions (C-) enables a nerve to regenerate across a 15-mm inter-stump gap. In this study, we investigated whether a C- -ion-implanted tube pretreated with basic fibroblast growth factor promotes peripheral nerve regeneration. The C- -ion-implanted tube significantly accelerated nerve regeneration, and this effect was enhanced by basic fibroblast growth factor.
Collapse
Affiliation(s)
- Ryosuke Ikeguchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Naumann T, Schnell O, Zhi Q, Kirsch M, Schubert KO, Sendtner M, Hofmann HD. Endogenous ciliary neurotrophic factor protects GABAergic, but not cholinergic, septohippocampal neurons following fimbria-fornix transection. Brain Pathol 2006; 13:309-21. [PMID: 12946020 PMCID: PMC8095902 DOI: 10.1111/j.1750-3639.2003.tb00030.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Application of neurotrophic proteins including ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF), members of the family of gp130-associated cytokines, can rescue CNS neurons from injury-induced degeneration. However, it is not clear so far if these effects reflect a physiological function of the endogenous cytokines. Using fimbria-fornix transection as a model, we examined whether responses of GABAergic and cholinergic septohippocampal neurons to axotomy are altered in mice lacking CNTF. In addition, we studied the cellular expression of CNTF, LIF and related cytokine receptor components in the septal complex following lesion. Degeneration of septohippocampal GABAergic neurons in the medial septum as indicated by the loss of parvalbumin-immunoreactive neurons was accelerated and permanently enhanced in CNTF(-/-) mice as compared to wild-type animals. Unexpectedly, the number of axotomized cholinergic MS neurons was significantly higher in CNTF-deficient mice during the first 2 weeks postlesion. Both in wild-type and in CNTF(-/-) mutants, expression of mRNA for the CNTF-specific alpha-subunit of the cytokine receptor complex was specifically upregulated in axotomized GABAergic septal neurons, whereas enhanced expression of the LIF-binding beta-subunit was specifically observed in axotomized cholinergic neurons. Following lesion, CNTF expression in wild-type mice was induced in activated astrocytes surrounding the axotomized neurons and at the lesion site. Expression of LIF mRNA was localized in the GABAergic and cholinergic septohippocampal neurons. These results strongly indicate that endogenous CNTF, supplied by reactive glia cells, acts as a neuroprotective factor for axotomized CNS neurons. In the septum, endogenous CNTF specifically supports lesioned GABAergic projection neurons, whereas LIF may play a similar role for the cholinergic counterparts.
Collapse
|
34
|
Cui Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 2006; 33:155-79. [PMID: 16603794 DOI: 10.1385/mn:33:2:155] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 11/30/1999] [Accepted: 08/15/2005] [Indexed: 02/05/2023]
Abstract
Adult axons in the mammalian central nervous system do not elicit spontaneous regeneration after injury, although many affected neurons have survived the neurotrauma. However, axonal regeneration does occur under certain conditions. These conditions include: (a) modification of regrowth environment, such as supply of peripheral nerve bridges and transplantation of Schwann cells or olfactory ensheathing glia to the injury site; (b) application of neurotrophic factors at the cell soma and axon tips; (c) blockade of growth-inhibitory molecules such as Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein; (d) prevention of chondroitin-sulfate-proteoglycans-related scar tissue formation at the injury site using chondroitinase ABC; and (e) elevation of intrinsic growth potential of injured neurons via increasing intracellular cyclic adenosine monophosphate level. A large body of evidence suggests that these conditions achieve enhanced neuronal survival and axonal regeneration through sometimes overlapping and sometimes distinct signal transduction mechanisms, depending on the targeted neuronal populations and intervention circumstances. This article reviews the available information on signal transduction pathways underlying neurotrophic-factor-mediated neuronal survival and neurite outgrowth/axonal regeneration. Better understanding of signaling transduction is important in helping us develop practical therapeutic approaches for encouraging neuronal survival and axonal regeneration after traumatic injury in clinical context.
Collapse
Affiliation(s)
- Qi Cui
- Laboratory for Neural Repair, Shantou University Medical College, China.
| |
Collapse
|
35
|
Soto I, Rosenthal JJC, Blagburn JM, Blanco RE. Fibroblast growth factor 2 applied to the optic nerve after axotomy up-regulates BDNF and TrkB in ganglion cells by activating the ERK and PKA signaling pathways. J Neurochem 2006; 96:82-96. [PMID: 16269011 DOI: 10.1111/j.1471-4159.2005.03510.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Application of basic fibroblast growth factor (FGF-2) to the optic nerve after axotomy promotes the survival of retinal ganglion cells (RGCs) in the frog, Rana pipiens. Here we investigate the effects of FGF-2 treatment upon the synthesis of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine receptor kinase B (TrkB). Axotomy alone increased the amounts of BDNF and TrkB mRNA in RGCs after 1 week and 48 h, respectively; FGF-2 treatment to the nerve accelerated and increased this up-regulation of both. FGF-2 also increased the amounts of phosphorylated cAMP response element binding protein (pCREB) in the retina. Blocking extracellular-regulated kinase (ERK) activation with PD98059 or U0126 prevented the FGF-2-induced up-regulation of BDNF transcription but had no effect on TrkB. However, blocking protein kinase A (PKA) with H89 or Rp-8-Cl-cAMPS reduced the up-regulation of both BDNF and TrkB, and reduced pCREB. In addition, H89 inhibited ERK activation, indicating cross-talk between the pathways. Finally, axonal application of blocking antibody against the FGF receptor 1 (FGFR1) prevented the FGF-2-induced up-regulation of BDNF and TrkB. Our results suggest that FGF-2 acts on RGCs via FGFR1, activating the ERK pathway and CREB to increase BDNF synthesis, and PKA and CREB to increase TrkB synthesis.
Collapse
Affiliation(s)
- Ileana Soto
- Institute of Neurobiology and Department of Anatomy, University of Puerto Rico Medical Sciences Campus, 201 Boulevard del Valle, Old San Juan, Puerto Rico 00901
| | | | | | | |
Collapse
|
36
|
Fumagalli F, Bedogni F, Slotkin TA, Racagni G, Riva MA. Prenatal stress elicits regionally selective changes in basal FGF-2 gene expression in adulthood and alters the adult response to acute or chronic stress. Neurobiol Dis 2005; 20:731-7. [PMID: 15967670 DOI: 10.1016/j.nbd.2005.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/16/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022] Open
Abstract
Exposure to stress during pregnancy influences the trajectory of brain development resulting in permanent alterations that may contribute to increased susceptibility to subsequent cognitive or neuropsychiatric disorders. In this manuscript, we examined the effects of prenatal stress on the expression of basic fibroblast growth factor (FGF-2), an important molecular regulator of development and plasticity, in adult male rats under basal conditions as well as in response to acute or chronic stress. Baseline FGF-2 mRNA levels were differentially influenced by gestational stress in a variety of brain regions, with significant decreases in prefrontal cortex and increases in entorhinal cortex and striatum. By itself, postnatal stress similarly decreased trophic factor expression in prefrontal cortex while evoking stimulation elsewhere. Gestational stress altered the pattern of FGF-2 expression in response to adult stress, completely reversing the pattern in the prefrontal cortex (stimulatory instead of inhibitory), blunting the response in the entorhinal cortex and desensitizing the response in the striatum. These effects point to a unique interference of chronic prenatal stress with both ongoing FGF-2 expression and its responses to subsequent stressors, lasting into adulthood. Given the multifaceted role of FGF-2 in synaptic development, maintenance and plasticity, these data provide detailed mechanistic evidence as to how prenatal stress elicits lifelong effects on synaptic function. The abnormal modulation of FGF-2 gene expression in specific brain regions in response to subsequent stress in adulthood may impair the normal adaptive responses of the cell to challenging situations.
Collapse
Affiliation(s)
- Fabio Fumagalli
- Center of Neuropharmacology, Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases (CEND), University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
37
|
Belluardo N, Mudò G, Blum M, Itoh N, Agnati L, Fuxe K. Nicotine-induced FGF-2 mRNA in rat brain is preserved during aging. Neurobiol Aging 2004; 25:1333-42. [PMID: 15465631 DOI: 10.1016/j.neurobiolaging.2004.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 12/16/2003] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
Indirect trophic actions of nicotine on brain during aging are suggested from observations describing nicotine as a cognitive enhancer, increasing vigilance and improving learning and memory, and both in vitro and in vivo models have demonstrated neuroprotective effects of nAChR agonists. Previously, we have reported that an acute intermittent (-)nicotine treatment significantly increases fibroblast growth factor-2 (FGF-2) mRNA and protein in several brain regions of rat brain. The present study was designed to analyse if nicotine-induced FGF-2 expression in the rat brain was preserved during aging. Using in situ hybridization and quantitative RNase protection assay the present paper reports that during aging (12- and 24-month-old rats) the response of FGF-2 gene expression in the rat brain to nAChR stimulation by (-)nicotine is fully effective and involves both neurons and glial cells. The investigation was extended to other members of the FGF family, such as FGF-5 and -20, but this expression was not influenced by the (-)nicotine treatment at any age studied. Similarly following (-)nicotine treatment no changes were observed in FGF receptors (FGFR 1-3) mRNA levels in adult and aged rats. Taken together, the present and previous data support the hypothesis that neuroprotective effects of (-)nicotine and the potential beneficial effects of (-)nicotine agonists in the treatment of Alzheimer's and Parkinson's diseases, may at least in part involve an activation of the neuronal and glial FGF-2 signalling. Work is in progress to analyse the mechanism(s) linking nAChR activation to the up-regulation of FGF-2.
Collapse
Affiliation(s)
- Natale Belluardo
- Department of Experimental Medicine, Division of Human Physiology, University of Palermo, Corso Tukory 129, I-91134 Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Shah RB, Nutan M, Khan MA. An Enteric Dual‐Controlled Gastrointestinal Therapeutic System of Salmon Calcitonin‐I: Preparation, Characterization, and Preclinical Bioavailability in Rats. ACTA ACUST UNITED AC 2004. [DOI: 10.1081/crp-120039558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Motoyoshi K, Hyodo M, Yamagata T, Gyo K. Restoring Vocal Fold Movement after Transection and Immediate Suturing of the Recurrent Laryngeal Nerve with Local Application of Basic Fibroblast Growth Factor: An Experimental Study in the Rat. Laryngoscope 2004; 114:1247-52. [PMID: 15235355 DOI: 10.1097/00005537-200407000-00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To evaluate the effects of basic fibro-blast growth factor (bFGF) on the recovery of vocal fold movement and the attenuation of laryngeal muscle atrophy after transection of the recurrent laryngeal nerve (RLN). STUDY DESIGN Quantitative assessment of vocal fold movement using the video cassette recorder (VCR) image-analysis method and histologic examination of the laryngeal muscle. METHODS Fifty-eight Wistar rats underwent RLN transection and one of the following three procedures: 1) transection of the RLN alone (transection group, n = 18), 2) suture of the nerve stumps followed by local administration of phosphate-buffered saline (PBS) solution using an osmotic pump (PBS group, n =20), or 3) suture of the nerve stumps followed by local administration of bFGF (FGF group, n = 20). Vocal fold movements were recorded with VCR by way of a rigid endoscope, and the VCR images were analyzed on a computer. Histologic changes in the thyroarytenoid (TA) muscle were evaluated by measuring the cross-sectional area of the muscle and average size of muscle fibers. RESULTS In the transection group, vocal fold movement did not recover, and atrophy of the TA muscle gradually progressed after sectioning the nerve. In contrast, vocal fold movement as assessed by VCR image-analysis recovered in some cases in the immediate suturing groups, more markedly in the FGF group (34.1 +/- 29.1%) than in the PBS group (5.5 +/- 7.9%) (P <.05). Histologically, atrophy of the laryngeal muscle was significantly attenuated by the local administration of bFGF. CONCLUSION bFGF facilitates regeneration of the transected RLN and attenuation of intrinsic laryngeal muscle atrophy, thereby restoring laryngeal function.
Collapse
Affiliation(s)
- Kazumi Motoyoshi
- Department of Otolaryngology, Ehime University School of Medicine, Shigenobu-cho, Onsen-gun, Ehime, Japan
| | | | | | | |
Collapse
|
40
|
Skaper SD, Facci L, Williams G, Williams EJ, Walsh FS, Doherty P. A dimeric version of the short N-cadherin binding motif HAVDI promotes neuronal cell survival by activating an N-cadherin/fibroblast growth factor receptor signalling cascade. Mol Cell Neurosci 2004; 26:17-23. [PMID: 15121175 DOI: 10.1016/j.mcn.2003.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 12/11/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022] Open
Abstract
The HAVDI and INPISGQ sequences have been identified as functional binding motifs in extracellular domain 1 (ECD1) of N-cadherin. Cyclic peptides containing a tandem repeat of the individual motifs function as N-cadherin agonists and stimulate neurite outgrowth. We now show that the cyclic peptide N-Ac-CHAVDINGHAVDIC-NH2 (SW4) containing the HAVDI sequence in tandem is efficacious also in promoting the in vitro survival of several populations of central nervous system neurons in paradigms where fibroblast growth factor-2 (FGF-2) is active. SW4 supported the survival of rat postnatal cerebellar granule neurons plated in serum-free medium and limited the death of differentiated granule neurons induced to die by switch to low K+ medium. In addition, SW4 rescued embryonic hippocampal and cortical neurons from injury caused by glutamic acid excitotoxicity. The neuroprotective effects of SW4 displayed a concentration dependence similar to those inducing neuritogenesis, were inhibited by a monomeric version of the same motif and by a specific FGF receptor antagonist (PD173074), and were not mimicked by the linear peptide. Inhibitors of the phosphatidylinositol 3-kinase (PI 3-kinase), MAP kinase, and p38 kinase signalling pathways did not interfere with SW4 function. These data suggest that SW4 functions by binding to and clustering N-cadherin in neurons and thereby activating and N-cadherin/FGF receptor signalling cascade, and propose that such agonists may represent a starting point for the development of therapeutic agents promoting neuronal cell survival and regeneration.
Collapse
Affiliation(s)
- Stephen D Skaper
- Neurology & GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Limited, New Frontiers Science Park, Harlow CM19 5AW, Essex, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Semba J, Akanuma N, Wakuta M, Tanaka N, Suhara T. Alterations in the expressions of mRNA for GDNF and its receptors in the ventral midbrain of rats exposed to subchronic phencyclidine. ACTA ACUST UNITED AC 2004; 124:88-95. [PMID: 15093689 DOI: 10.1016/j.molbrainres.2004.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2004] [Indexed: 11/18/2022]
Abstract
Phencyclidine (PCP) produces schizophrenia-like symptoms in normal humans. This suggests that the dysfunction of glutamatergic neurotransmission may play an important role in the pathology of schizophrenia. However, PCP also exerts its effect on the mesolimbic dopamine (DA) system and modulates DA function in the brain, the abnormality of which is proposed to be a main pathology of schizophrenia. Recently, glial cell-line derived neurotrophic factor (GDNF) has been shown to play a protective role for DA neurons against neurotoxic injuries and maintaining DA function in the brain. We hypothesized that subchronic PCP may alter the function of GDNF in the ventral midbrain, where DA cell bodies are localized. Male Wistar rats were injected intraperitoneally with PCP daily for 10 days at 5 or 10 mg/kg, and their brains were removed 24 h after the last injection. The expressions of GDNF and its receptor (GFRalpha-1 and c-ret) mRNAs in the substantia nigra compacta (SNC) and ventral tegmental area (VTA) were determined by non-radioactive in situ hybridization, and those of GDNF and c-ret mRNA were found to be increased after the PCP subchronic administration. No significant changes, however, were observed in the expressions of GFRalpha-1 and basic fibroblast growth factor. These results suggest that subchronic PCP may modulate the function of the GDNF system, which exerts a trophic action on DA neurons in the ventral midbrain.
Collapse
Affiliation(s)
- Jun'ichi Semba
- Division of Health Sciences, University of the Air, Wakaba, Mihama, Chiba, Japan.
| | | | | | | | | |
Collapse
|
42
|
Mattson MP. Adventures in neural plasticity, aging, and neurodegenerative disorders aboard the CWC beagle. Neurochem Res 2004; 28:1631-7. [PMID: 14584817 DOI: 10.1023/a:1026000703290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This article recounts some of the scientific endeavors of Carl W. Cotman (CWC) during his journeys through the cellular circuitry of the mammalian brain. I have selected for consideration his findings that have been an important impetus for my own research; in several cases our different experiments have provided complementary data to support an hypothesis. Three examples are (i) Carl's studies of the roles of glutamate in synaptic transmission and plasticity in the adult brain and my studies of how glutamate regulates neurite outgrowth and cell survival in brain development; (ii) his and our studies of the mechanisms whereby amyloid beta-peptide damages and kills neurons; and (iii) Carl's evidence that physical activity regulates neurotrophin levels in the brain and our evidence that dietary restriction has similar effects and is neuroprotective. In case you have not yet realized how I chose a title for this article it is because Carl has a (very distant) connection with Charles Darwin-Darwin sailed on a vessel called the Beagle and Carl has studied beagle dogs, establishing them as a model for understanding the neurobiology of human brain aging.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, Maryland, USA.
| |
Collapse
|
43
|
Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res 2004; 28:1757-69. [PMID: 14584829 DOI: 10.1023/a:1026025408742] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Voluntary exercise, treadmill activity, skills training, and forced limb use have been utilized in animal studies to promote brain plasticity and functional change. Motor enrichment may prime the brain to respond more adaptively to injury, in part by upregulating trophic factors such as GDNF, FGF-2, or BDNF. Discontinuation of exercise in advance of brain injury may cause levels of trophic factor expression to plummet below baseline, which may leave the brain more vulnerable to degeneration. Underfeeding and motor enrichment induce remarkably similar molecular and cellular changes that could underlie their beneficial effects in the aged or injured brain. Exercise begun before focal ischemic injury increases BDNF and other defenses against cell death and can maintain or expand motor representations defined by cortical microstimulation. Interfering with BDNF synthesis causes the motor representations to recede or disappear. Injury to the brain, even in sedentary rats, causes a small, gradual increase in astrocytic expression of neurotrophic factors in both local and remote brain regions. The neurotrophic factors may inoculate those areas against further damage and enable brain repair and use-dependent synaptogenesis associated with recovery of function or compensatory motor learning. Plasticity mechanisms are particularly active during time-windows early after focal cortical damage or exposure to dopamine neurotoxins. Motor and cognitive impairments may contribute to self-imposed behavioral impoverishment, leading to a reduced plasticity. For slow degenerative models, early forced forelimb use or exercise has been shown to halt cell loss, whereas delayed rehabilitation training is ineffective and disuse is prodegenerative. However, it is possible that, in the chronic stages after brain injury, a regimen of exercise would reactivate mechanisms of plasticity and thus enhance rehabilitation targeting residual functional deficits.
Collapse
Affiliation(s)
- Jeffrey A Kleim
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | |
Collapse
|
44
|
Golden JP, Milbrandt J, Johnson EM. Neurturin and persephin promote the survival of embryonic basal forebrain cholinergic neurons in vitro. Exp Neurol 2004; 184:447-55. [PMID: 14637114 DOI: 10.1016/j.expneurol.2003.07.999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The GDNF family ligands (GFLs) are a group of neurotrophic factors that influence the development, survival, and maintenance of specific populations of neurons in the central and peripheral nervous systems. The cholinergic neurons of the basal forebrain provide cholinergic innervation to cortical structures and their integrity is vital to normal cognitive function. GDNF, the original member of the GFL family promotes the survival of developing basal forebrain cholinergic neurons in vitro. We have now found that neurturin (NRTN) and persephin (PSPN) also promote the survival of basal forebrain neurons including both cholinergic neurons and a population of non-cholinergic neurons with an efficacy comparable to NGF. We also demonstrate that developing and mature basal forebrain cholinergic neurons (BFCN) express GFL receptors. Ret, the signaling component of the GFL-receptor complex, is expressed in most adult rat BFCN. In addition, Ret and the GFL co-receptors GFRalpha1 and GFRalpha2 are expressed in developing cholinergic neurons in cultures of embryonic basal forebrain. Our results suggest that the GFLs may be effective as neuroprotective agents for BFCNs in vivo.
Collapse
Affiliation(s)
- Judith P Golden
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
45
|
Fumagalli F, Bedogni F, Maragnoli ME, Gennarelli M, Perez J, Racagni G, Riva MA. Dopaminergic D2 receptor activation modulates FGF-2 gene expression in rat prefrontal cortex and hippocampus. J Neurosci Res 2003; 74:74-80. [PMID: 13130508 DOI: 10.1002/jnr.10733] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have investigated the role of dopaminergic receptors in modulation of basic fibroblast growth factor (FGF-2) expression in rat prefrontal cortex and hippocampus, two brain regions important for cognition. We found that FGF-2 expression is upregulated by quinpirole, a D2 agonist, in prefrontal cortex and to a lesser extent in hippocampus. This modulation was specific for dopamine D2 receptors because no effect was observed when the dopamine D1 and D3 agonists, SKF38393 and 7-OH-DPAT, respectively, were administered. Our findings show that activation of dopaminergic D2 receptors modulates FGF-2 expression in rat prefrontal cortex and hippocampus. Our data highlight the complex modulation of FGF-2 expression in limbic areas pointing to this trophic molecule as a putative target of drugs used against acute and chronic neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Fabio Fumagalli
- Center of Neuropharmacology, Center of Excellence for Neurodegenerative Diseases, Department of Pharmacological Sciences University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Rieck PW, von Stockhausen RM, Metzner S, Hartmann C, Courtois Y. Fibroblast growth factor-2 protects endothelial cells from damage after corneal storage at 4 degrees C. Graefes Arch Clin Exp Ophthalmol 2003; 241:757-64. [PMID: 13680247 DOI: 10.1007/s00417-003-0687-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Revised: 03/31/2003] [Accepted: 04/02/2003] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Since the introduction of cold corneoscleral segment storage prior to keratoplasty there have been continuous efforts to ameliorate the preservation media in order to better maintain the quality of the corneal epi- and endothelium. Recent studies have shown that basic fibroblast growth factor (FGF-2) preserves the viability of, for example, retinal ganglion cells and pigment epithelium cells. Therefore, we investigated the effect of different concentrations of FGF-2 added to a modified Optisol storage medium on endothelial damage after corneal storage at 4 degrees C. METHODS . Bovine corneas were stored at 4 degrees C for 14 days and for another 24 h at 34 degrees C. Various FGF-2 concentrations (4, 20 and 40 ng/ml) were added to the medium either at day (D) 1, D14, or both D1 and D14. Quantitative evaluation of corneal damage after 14+1 days of storage was conducted by means of the Janus green photometry assay. Histological and ultrastructural investigations of the preserved endothelium were also performed. Bovine cell culture experiments using the TUNEL assay aimed to elucidate the role of FGF-2 on prevention of endothelial apoptosis. RESULTS The mean endothelial damage in control corneas increased from 4.9 +/- 1.8% (fresh corneas) to 13.4 +/- 2.4% after 14+1 days of storage. FGF-2 at 20 ng/ml or 40 ng/ml added at any of the indicated time points significantly reduced the overall endothelial damage by 5.1-7.3%, corresponding to 38-54% less endothelial damage than in control corneas (P<0.001). Light- and electron microscopic investigations confirmed this protective effect of FGF-2 on corneal endothelial cells. The TUNEL assay revealed a true anti-apoptotic effect of FGF-2 on endothelial cells in culture. CONCLUSION Our study clearly demonstrates the effectiveness of FGF-2 to enhance cell survival of the corneal endothelium after storage at 4 degrees C. A clinical interest could be seen in the potential future application of FGF-2 as an adjuvant to corneal preservation media in order to better maintain endothelial viability during corneal storage.
Collapse
Affiliation(s)
- Peter W Rieck
- Department of Ophthalmology, Charité Medical Faculty, Campus Virchow Hospital, Humboldt University Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
47
|
Qi ML, Wakabayashi Y, Haro H, Shinomiya K. Changes in FGF-2 expression in the distal spinal cord stump after complete cord transection: a comparison between infant and adult rats. Spine (Phila Pa 1976) 2003; 28:1934-40. [PMID: 12973137 DOI: 10.1097/01.brs.0000083323.38962.2a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Expression patterns of fibroblast growth factor-2 (FGF-2) in distal transected spinal cord in infant and adult rats were determined by reverse-transcription polymerase chain reaction (RT-PCR) and immunostaining. OBJECTIVE To reveal the expression pattern of FGF-2 in distal transected cord of infant and adult rats. SUMMARY OF BACKGROUND DATA Descending fibers in the spinal cord of infant and adult rats show different regenerative capacity. One explanation is that different levels of FGF-2, an important neurotrophic factor for promoting neurite outgrowth and repair, are expressed in the distal transected cords of the rats, providing different levels of support for severed axons. MATERIALS AND METHODS Spinal cords of infant and adult rats were completely transected. At 12, 24, and 72 hours and at 1 week, segments of distal spinal cord tissues were removed and expression of FGF-2 mRNA was evaluated by RT-PCR. The distribution of FGF-2 and the phenotype of FGF-2-positive cells were determined by immunostaining. RESULTS Expression of FGF-2 mRNA was shown to be up-regulated in the distal cord of infant rats but not adult rats. Immunohistochemical analysis showed that neurons in distal cord of infant rats were rich in FGF-2 immunoreactivity (IR), whereas in adult rat neurons FGF-2 IR was hardly observed at all, although a few FGF-2-positive astrocytes were observed in the white matter. CONCLUSION After complete spinal cord transection, the expression of FGF-2 in the distal cord of infant rats was high compared with that of adults. This may provide neurotrophic support for axonal extension and functional recovery.
Collapse
Affiliation(s)
- Mei-Ling Qi
- Department of Frontier Surgical Therapeutics, Division of Advanced Therapeutical Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
48
|
Alzheimer C, Werner S. Fibroblast growth factors and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:335-51. [PMID: 12575827 DOI: 10.1007/978-1-4615-0123-7_12] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several members of the FGF family, in particular FGF2, are intimately involved in neuronal protection and repair after ischemic, metabolic or traumatic brain injury. Expression of Fgf2 mRNA and protein is strongly upregulated after neuronal damage, with glial cells as the predominant source. Given its survival-promoting effects on cultured neurons, exogenous FGF2 was tested in several animal models of stroke and excitotoxic damage, in which it consistently proved protective against neuronal loss. FGF2 affords neuroprotection by interfering with a number of signaling pathways, including expression and gating of NMDA receptors, maintenance of Ca2+ homeostasis and regulation of ROS detoxifying enzymes. FGF2 prevents apoptosis by strengthening anti-apoptotic pathways and promotes neurogenesis in adult hippocampus after injury. The protective action of FGF2 has been linked to its augmenting effect on the lesion-induced upregulation of activin A, a member of the TGF-beta superfamily. Despite the well-documented benefits of FGF2 in animal models of stroke, there is currently no clinical development in stroke, after a phase II/III trial with FGF2 in acute stroke patients was discontinued because of an unfavorable risk-to-benefit ratio. As the molecular targets of FGF2 are going to be unraveled over the next years, new therapeutic strategies will hopefully emerge that enable us to influence the various protective mechanisms of FGF2 in a more specific fashion.
Collapse
Affiliation(s)
- Christian Alzheimer
- Institute of Physiology, University of Munich, Pettenkoferstr. 12, D-80336 Munich, Germany
| | | |
Collapse
|
49
|
Schallert T, Woodlee MT, Fleming SM. Experimental focal ischemic injury: behavior-brain interactions and issues of animal handling and housing. ILAR J 2003; 44:130-43. [PMID: 12652008 DOI: 10.1093/ilar.44.2.130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In experimental neurological models of brain injury, behavioral manipulations before and after the insult can have a major impact on molecular, anatomical, and functional outcome. Investigators using animals for preclinical research should keep in mind that people with brain injury have lived in, and will continue to live in, an environment that is far more complex than that of the typical laboratory rodent. To yield more reliable and relevant behavioral assessment, it may be appropriate in some cases to house animals in environments that allow for motor enrichment and to handle animals in ways that promote tameness. Experience can affect mechanisms of plasticity and degeneration beneficially or adversely. Behavioral interventions that have been found to modulate postinjury brain events are reviewed. The timing and interaction of biological and motor therapies and the potential contribution of experience-dependent and drug-induced trophic factor expression are discussed.
Collapse
Affiliation(s)
- Tim Schallert
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, USA
| | | | | |
Collapse
|
50
|
Dono R. Fibroblast growth factors as regulators of central nervous system development and function. Am J Physiol Regul Integr Comp Physiol 2003; 284:R867-81. [PMID: 12626354 DOI: 10.1152/ajpregu.00533.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factors (FGFs) are multifunctional signaling proteins that regulate developmental processes and adult physiology. Over the last few years, important progress has been made in understanding the function of FGFs in the embryonic and adult central nervous system. In this review, I will first discuss studies showing that FGF signaling is already required during formation of the neural plate. Next, I will describe how FGF signaling centers control growth and patterning of specific brain structures. Finally, I will focus on the function of FGF signaling in the adult brain and in regulating maintenance and repair of damaged neural tissues.
Collapse
Affiliation(s)
- Rosanna Dono
- Faculty of Biology, Department of Developmental Biology, Utrecht University, NL-3584CH Utrecht, The Netherlands.
| |
Collapse
|