1
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
2
|
Zhao J, Zhou X, Qiu Y, Jia R. Characterization of the gut butyrate-producing bacteria and lipid metabolism in African green monkey as a natural host of simian immunodeficiency virus infection. AIDS 2024; 38:1617-1626. [PMID: 38819818 DOI: 10.1097/qad.0000000000003944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Natural hosts of simian immunodeficiency virus (SIV), such as the African green monkey (AGM), possess the ability to avoid acquired immune deficiency syndrome (AIDS) despite lifelong infection. The underlying mechanisms are not completely understood. This study aimed to characterize the gut microbiome and metabolite profiles of different nonhuman primates (NHPs) to provide potential insight into AIDS resistance. DESIGN AND METHODS Fresh feces from Cynomolgus macaques (CMs), and Rhesus macaques (RMs), SIV- AGMs (AGM_N), and SIV+ AGMs (AGM_P) were collected and used for metagenomic sequencing and metabonomic analysis. RESULTS Compared with CMs and RMs, significant decreases in the abundances of Streptococcus , Alistipes , Treponema , Bacteroides , and Methanobrevibacter ( P < 0.01), and significant increases in the abundances of Clostridium , Eubacterium , Blautia , Roseburia , Faecalibacterium , and Dialister ( P < 0.01) were detected in AGM_N. Compared with AGM_N, a trend toward increased abundances of Streptococcus and Roseburia were found in AGM_P. The levels of metabolites involved in lipid metabolism and butanoate metabolism significantly differed among AGM_P, AGM_N and CM ( P < 0.05). CONCLUSIONS Our data, for the first time, demonstrated distinguishing features in the abundances of butyrate-producing bacteria and lipid metabolism capacities between different NHP hosts of SIV infection. These findings may correlate with the different characteristics observed among these hosts in the maintenance of intestinal epithelial barrier integrity, regulation of inflammation, and provide insights into AIDS resistance in AGMs.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Infectious Disease and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University
| | - Xiaojun Zhou
- Department of biosafety, China Biotechnology Co. Ltd, Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences
| | - Rui Jia
- Department of biosafety, China Biotechnology Co. Ltd, Beijing, China
| |
Collapse
|
3
|
Zhou XJ, Wang J, Ye HH, Fa YZ. Signature MicroRNA expression profile is associated with lipid metabolism in African green monkey. Lipids Health Dis 2019; 18:55. [PMID: 30819205 PMCID: PMC6396449 DOI: 10.1186/s12944-019-0999-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 02/22/2019] [Indexed: 01/04/2023] Open
Abstract
Background Non-human primates (NHPs) are important models of medical research on obesity and cardiovascular diseases. As two of the most commonly used NHPs, cynomolgus macaque (CM) and African green monkey (AGM) own different capacities in lipid metabolism of which the mechanism is unknown. This study investigated the expression profiles of lipid metabolism-related microRNAs (miRNAs) in CM and AGM and their possible roles in controlling lipid metabolism-related gene expression. Methods By small RNA deep sequencing, the plasma miRNA expression patterns of CM and AGM were compared. The lipid metabolism-related miRNAs were validated through quantitative reverse-transcription (RT) polymerase chain reaction (PCR). Related-target genes were predicted by TargetScan and validated in Vero cells. Results Compared to CM, 85 miRNAs were upregulated with over 1.5-fold change in AGM of which 12 miRNAs were related to lipid metabolism. miR-122, miR-9, miR-185, miR-182 exhibited the greatest fold changes(fold changes are 51.2, 3.8, 3.7, 3.3 respectively; all P < 0.01). And 77 miRNAs were downregulated with over 1.5-fold change in AGM of which 3, miR-370, miR-26, miR-128 (fold changes are 9.3, 1.8, 1.7 respectively; all P < 0.05) were related to lipid metabolism. The lipid metabolism-related gene targets were predicted by TargetScan and confirmed in the Vero cells. Conclusion We report for the first time a circulating lipid metabolism-related miRNA profile for CM and AGM, which may add to knowledge of differences between these two non-human primate species and miRNAs’ roles in lipid metabolism. Electronic supplementary material The online version of this article (10.1186/s12944-019-0999-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Jun Zhou
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China.
| | - Jin Wang
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Hua-Hu Ye
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Yun-Zhi Fa
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| |
Collapse
|
4
|
|
5
|
Castro J, Puente P, Martínez R, Hernández A, Morera Y, Martínez L, Aldana L, Valdés I, Ayala M, Cosme K. Vaccine CIGB 247 is potentially safe for use as a novel therapeutic vaccine against cancer in Chlorocebus aethiops monkeys. Int Immunopharmacol 2017; 48:55-60. [PMID: 28463787 DOI: 10.1016/j.intimp.2017.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/31/2017] [Accepted: 04/22/2017] [Indexed: 01/22/2023]
Abstract
CIGB 247 is a novel cancer therapeutic vaccine based on human vascular endothelial growth factor (VEGF) variant molecule as antigen, in combination with a bacterial adjuvant. This vaccine candidate has previously demonstrated efficacy and safety in mice, rats, rabbits and non-human primates. In the present study we evaluated the effects on the clinical, hematological and biochemical parameters of CIGB 247 vaccine in Chlorocebus aethiops monkeys. Three groups of monkeys were immunized with three doses of vaccine formulation to measure physiological values of clinical, hematological and serum biochemical parameters. Monkeys' body weight and temperature were kept stable and close to standard values throughout the study. Variations in the levels of red blood cells and hemoglobin were observed among the different groups for all injected doses, but these hematological parameters recovered normal values at the end of the study. On the other hand, biochemical parameters such as the total bilirubin and total protein counts showed variations along the study, while they were not associated with the test substance. In summary, no negative effects on clinical, hematological and biochemical parameters were detected. Together, our results put forward the potential and support the safety of the CIGB 247 vaccine candidate for use in clinical applications. The data presented here can be used to estimate a human dosing regimen from preclinical data.
Collapse
Affiliation(s)
- Jorge Castro
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba.
| | - Pedro Puente
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba
| | - Rafael Martínez
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba
| | - Alexander Hernández
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba
| | - Yanelys Morera
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba
| | - Leticia Martínez
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba
| | - Lizet Aldana
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba
| | - Iris Valdés
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba
| | - Marta Ayala
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba
| | - Karelia Cosme
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, PO. Box 6162, Havana 6 10600, Cuba
| |
Collapse
|
6
|
Infection of rhesus macaques with a pool of simian immunodeficiency virus with the envelope genes from acute HIV-1 infections. AIDS Res Ther 2016; 13:41. [PMID: 27906032 PMCID: PMC5124249 DOI: 10.1186/s12981-016-0125-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/16/2016] [Indexed: 01/29/2023] Open
Abstract
Background New simian–human immunodeficiency chimeric viruses with an HIV-1 env (SHIVenv) are critical for studies on HIV pathogenesis, vaccine development, and microbicide testing. Macaques are typically exposed to single CCR5-using SHIVenv which in most instances does not reflect the conditions during acute/early HIV infection (AHI) in humans. Instead of individual and serial testing new SHIV constructs, a pool of SHIVenv_B derived from 16 acute HIV-1 infections were constructed using a novel yeast-based SHIV cloning approach and then used to infect macaques. Results Even though none of the 16 SHIVenvs contained the recently reported mutations in env genes that could significantly enhance their binding affinity to RhCD4, one SHIVenv (i.e. SHIVenv_B3-PRB926) established infection in macaques exposed to this pool. AHI SHIVenv_B viruses as well as their HIVenv_B counterparts were analyzed for viral protein content, function, and fitness to identify possible difference between SHIVenv_B3-PRB926 and the other 15 SHIVenvs in the pool. All of the constructs produced SHIV or HIV chimeric with wild type levels of capsid (p27 and p24) content, reverse transcriptase (RT) activity, and expressed envelope glycoproteins that could bind to cell receptors CD4/CCR5 and mediate virus entry. HIV-1env_B chimeric viruses were propagated in susceptible cell lines but the 16 SHIVenv_B variants showed only limited replication in macaque peripheral blood mononuclear cells (PBMCs) and 174×CEM.CCR5 cell line. AHI chimeric viruses including HIVenv_B3 showed only minor variations in cell entry efficiency and kinetics as well as replicative fitness in human PBMCs. Reduced number of N-link glycosylation sites and slightly greater CCR5 affinity/avidity was the only distinguishing feature of env_B3 versus other AHI env’s in the pool, a feature also observed in the HIV establishing new infections in humans. Conclusion Despite the inability to propagate in primary cells and cell lines, a pool of 16 SHIVenv viruses could establish infection but only one virus, SHIVenv_B3 was isolated in the macaque and then shown to repeatedly infected macaques. This SHIVenv_B3 virus did not show any distinct phenotypic property from the other 15 SHIVenv viruses but did have the fewest N-linked glycosylation sites. Electronic supplementary material The online version of this article (doi:10.1186/s12981-016-0125-8) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Isolation of a simian immunodeficiency virus from a malbrouck (Chlorocebus cynosuros). Arch Virol 2016; 162:543-548. [PMID: 27804019 DOI: 10.1007/s00705-016-3129-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
To investigate the diversity of simian immunodeficiency virus (SIV) among nonhuman primates (NHPs) in Zambia, next-generation sequencing was performed to determine the complete genome sequence of a novel SIV recovered by co-culturing African green monkey (AGM) peripheral blood lymphocytes with human CD4+ T-cell lines. We report the first described SIV (SIVagmMAL-ZMB) from a malbrouck (Chlorocebus cynosuros). SIVagmMAL-ZMB was detected by real-time PCR analysis of splenic RNA in 3.2% (3/94) of AGMs and was undetectable in baboons (0/105). SIVagmMAL-ZMB possessed <80% nucleotide sequence identity to known SIV isolates and was located basally to vervet monkey SIV strains in all phylogenies.
Collapse
|
8
|
Castro J, Puente P, Martínez R, Hernández A, Martínez L, Pichardo D, Aldana L, Valdés I, Cosme K. Measurement of hematological and serum biochemical normal values of captive housed Chlorocebus aethiops sabaeus monkeys and correlation with the age. J Med Primatol 2015; 45:12-20. [PMID: 26647919 DOI: 10.1111/jmp.12203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Some factors such as sex, age, and captivity conditions have a direct influence on the normal hematological and serum biochemical parameters of African green monkeys. On the other hand, reliability in reported values is in many cases limited by studied animal number (<200) and there is not report on the correlation of these parameters with the age in each sex animal group. Thus, this study sought determining normal hematological (11) and serum biochemical parameters (9) of 400 captive housed African green monkeys and also correlate them with the age of the animals. METHODS A total of 200 females and 200 males were grouped by the sex and age groups (1-2, 3-4, 5-6, and 7-8 years old) for measuring normal values of hematological and serum biochemical parameters and to study the correlation of these parameters with the age of the animals. RESULTS As key outcome, the main hematological and serum biochemical reference values of African green monkeys were determined. Significant differences (P < 0.05) were found among 95% of studied parameters between males and females. About 75% and 95% of the parameters were influenced by the age in the female and male groups, respectively. About 35% of hematological and serum biochemical parameters correlated positively (R(2) > 0.5) with the age in the female monkeys. On the contrary in the male monkeys, only 45% of parameters correlated positively with the age (R(2) > 0.5). CONCLUSIONS Thus, authors believe that results of this study are important for assisting researchers in the assessment of health status of captive housed African green monkeys for preclinical studies.
Collapse
Affiliation(s)
- Jorge Castro
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Pedro Puente
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Rafael Martínez
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Leticia Martínez
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Dagmara Pichardo
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Lizet Aldana
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Iris Valdés
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Karelia Cosme
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| |
Collapse
|
9
|
Simian Immunodeficiency Virus SIVagm Efficiently Utilizes Non-CCR5 Entry Pathways in African Green Monkey Lymphocytes: Potential Role for GPR15 and CXCR6 as Viral Coreceptors. J Virol 2015; 90:2316-31. [PMID: 26656714 DOI: 10.1128/jvi.02529-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED African green monkeys (AGM) are natural hosts of simian immunodeficiency virus (SIV), and infection in these animals is generally nonpathogenic, whereas infection of nonnatural hosts, such as rhesus macaques (RM), is commonly pathogenic. CCR5 has been described as the primary entry coreceptor for SIV in vivo, while human-derived CXCR6 and GPR15 also appear to be used in vitro. However, sooty mangabeys that are genetically deficient in CCR5 due to an out-of-frame deletion are infectible with SIVsmm, indicating that SIVsmm can use alternative coreceptors in vivo. In this study, we examined the CCR5 dependence of SIV strains derived from vervet AGM (SIVagmVer) and the ability of AGM-derived GPR15 and CXCR6 to serve as potential entry coreceptors. We found that SIVagmVer replicated efficiently in AGM and RM peripheral blood mononuclear cells (PBMC) in the presence of the CCR5 antagonist maraviroc, despite the fact that maraviroc was capable of blocking the CCR5-tropic strains SIVmac239, SIVsmE543-3, and simian-human immunodeficiency virus SHIV-AD8 in RM PBMC. We also found that AGM CXCR6 and AGM GPR15, to a lesser extent, supported entry of pseudotype viruses bearing SIVagm envelopes, including SIVagm transmitted/founder envelopes. Lastly, we found that CCR5, GPR15, and CXCR6 mRNAs were detected in AGM and RM memory CD4(+) T cells. These results suggest that GPR15 and CXCR6 are expressed on AGM CD4(+) T cells and are potential alternative coreceptors for SIVagm use in vivo. These data suggest that the use of non-CCR5 entry pathways may be a common feature of SIV replication in natural host species, with the potential to contribute to nonpathogenicity in these animals. IMPORTANCE African green monkeys (AGM) are natural hosts of SIV, and infection in these animals generally does not cause AIDS, whereas SIV-infected rhesus macaques (RM) typically develop AIDS. Although it has been reported that SIV generally uses CD4 and CCR5 to enter target cells in vivo, other molecules, such as GPR15 and CXCR6, also function as SIV coreceptors in vitro. In this study, we investigated whether SIV from vervet AGM can use non-CCR5 entry pathways, as has been observed in sooty mangabeys. We found that SIVagmVer efficiently replicated in AGM and RM peripheral blood mononuclear cells in the presence of the CCR5 antagonist maraviroc, suggesting that non-CCR5 entry pathways can support SIVagm entry. We found that AGM-derived GPR15 and CXCR6 support SIVagmVer entry in vitro and may serve as entry coreceptors for SIVagm in vivo, since their mRNAs were detected in AGM memory CD4(+) T cells, the preferred target cells of SIV.
Collapse
|
10
|
Warren WC, Jasinska AJ, García-Pérez R, Svardal H, Tomlinson C, Rocchi M, Archidiacono N, Capozzi O, Minx P, Montague MJ, Kyung K, Hillier LW, Kremitzki M, Graves T, Chiang C, Hughes J, Tran N, Huang Y, Ramensky V, Choi OW, Jung YJ, Schmitt CA, Juretic N, Wasserscheid J, Turner TR, Wiseman RW, Tuscher JJ, Karl JA, Schmitz JE, Zahn R, O'Connor DH, Redmond E, Nisbett A, Jacquelin B, Müller-Trutwin MC, Brenchley JM, Dione M, Antonio M, Schroth GP, Kaplan JR, Jorgensen MJ, Thomas GWC, Hahn MW, Raney BJ, Aken B, Nag R, Schmitz J, Churakov G, Noll A, Stanyon R, Webb D, Thibaud-Nissen F, Nordborg M, Marques-Bonet T, Dewar K, Weinstock GM, Wilson RK, Freimer NB. The genome of the vervet (Chlorocebus aethiops sabaeus). Genome Res 2015; 25:1921-33. [PMID: 26377836 PMCID: PMC4665013 DOI: 10.1101/gr.192922.115] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/10/2015] [Indexed: 01/20/2023]
Abstract
We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.
Collapse
Affiliation(s)
- Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA; Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Raquel García-Pérez
- ICREA at Institut de Biologia Evolutiva, (UPF-CSIC) and Centro Nacional de Analisis Genomico (CNAG), PRBB/PCB, 08003 Barcelona, Spain
| | - Hannes Svardal
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Chad Tomlinson
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Mariano Rocchi
- Department of Biology, University of Bari, Bari 70126, Italy
| | | | - Oronzo Capozzi
- Department of Biology, University of Bari, Bari 70126, Italy
| | - Patrick Minx
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Michael J Montague
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Kim Kyung
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - LaDeana W Hillier
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Milinn Kremitzki
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Tina Graves
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Colby Chiang
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | - Nam Tran
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yu Huang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Vasily Ramensky
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Oi-Wa Choi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yoon J Jung
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Christopher A Schmitt
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Nikoleta Juretic
- Department of Human Genetics, McGill University, Montreal QC H3A 1B1, Canada
| | | | - Trudy R Turner
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53705, USA; Department of Genetics Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| | - Roger W Wiseman
- Department of Laboratory Medicine and Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Jennifer J Tuscher
- Department of Laboratory Medicine and Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Julie A Karl
- Department of Laboratory Medicine and Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Jörn E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Roland Zahn
- Crucell Holland B.V., 2333 CN Leiden, The Netherlands
| | - David H O'Connor
- Department of Laboratory Medicine and Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Eugene Redmond
- St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Alex Nisbett
- St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Béatrice Jacquelin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, 75015 Paris, France
| | | | - Jason M Brenchley
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland 20892-9821, USA
| | | | | | | | - Jay R Kaplan
- Center for Comparative Medicine Research, Wake Forest School of Medicine, Winston-Salem 27157-1040, USA
| | - Matthew J Jorgensen
- Center for Comparative Medicine Research, Wake Forest School of Medicine, Winston-Salem 27157-1040, USA
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Brian J Raney
- University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Rishi Nag
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Juergen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, 48149 Münster, Germany
| | - Gennady Churakov
- Institute of Experimental Pathology (ZMBE), University of Münster, 48149 Münster, Germany; Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Angela Noll
- Institute of Experimental Pathology (ZMBE), University of Münster, 48149 Münster, Germany
| | - Roscoe Stanyon
- Department of Biology, University of Florence, 50122 Florence, Italy
| | - David Webb
- National Center for Biotechnology Information, Bethesda, Maryland 20894, USA
| | | | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tomas Marques-Bonet
- ICREA at Institut de Biologia Evolutiva, (UPF-CSIC) and Centro Nacional de Analisis Genomico (CNAG), PRBB/PCB, 08003 Barcelona, Spain
| | - Ken Dewar
- Department of Human Genetics, McGill University, Montreal QC H3A 1B1, Canada
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06001, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Lee A, Khiabanian H, Kugelman J, Elliott O, Nagle E, Yu GY, Warren T, Palacios G, Rabadan R. Transcriptome reconstruction and annotation of cynomolgus and African green monkey. BMC Genomics 2014; 15:846. [PMID: 25277458 PMCID: PMC4194418 DOI: 10.1186/1471-2164-15-846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/25/2014] [Indexed: 11/10/2022] Open
Abstract
Background Non-human primates (NHPs) and humans share major biological mechanisms, functions, and responses due to their close evolutionary relationship and, as such, provide ideal animal models to study human diseases. RNA expression in NHPs provides specific signatures that are informative of disease mechanisms and therapeutic modes of action. Unlike the human transcriptome, the transcriptomes of major NHP animal models are yet to be comprehensively annotated. Results In this manuscript, employing deep RNA sequencing of seven tissue samples, we characterize the transcriptomes of two commonly used NHP animal models: Cynomolgus macaque (Macaca fascicularis) and African green monkey (Chlorocebus aethiops). We present the Multi-Species Annotation (MSA) pipeline that leverages well-annotated primate species and annotates 99.8% of reconstructed transcripts. We elucidate tissue-specific expression profiles and report 13 experimentally validated novel transcripts in these NHP animal models. Conclusion We report comprehensively annotated transcriptomes of two non-human primates, which we have made publically available on a customized UCSC Genome Browser interface. The MSA pipeline is also freely available. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-846) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, New York, NY 10032, USA.
| |
Collapse
|
12
|
|
13
|
Ma D, Jasinska A, Kristoff J, Grobler JP, Turner T, Jung Y, Schmitt C, Raehtz K, Feyertag F, Martinez Sosa N, Wijewardana V, Burke DS, Robertson DL, Tracy R, Pandrea I, Freimer N, Apetrei C. SIVagm infection in wild African green monkeys from South Africa: epidemiology, natural history, and evolutionary considerations. PLoS Pathog 2013; 9:e1003011. [PMID: 23349627 PMCID: PMC3547836 DOI: 10.1371/journal.ppat.1003011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 10(4)-10(6) RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (10(7)-10(8) RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts.
Collapse
Affiliation(s)
- Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Glogowski S, Ward KW, Lawrence MS, Goody RJ, Proksch JW. The use of the African green monkey as a preclinical model for ocular pharmacokinetic studies. J Ocul Pharmacol Ther 2012; 28:290-8. [PMID: 22235843 DOI: 10.1089/jop.2011.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This investigation evaluated the ocular and systemic pharmacokinetics of besifloxacin in African green monkeys compared with cynomolgus monkeys following topical ocular dosing. METHODS A suspension formulation containing 0.6% besifloxacin was administered to African green and cynomolgus monkeys. Animals were euthanized at predetermined time intervals, and ocular tissue and systemic blood samples were collected and analyzed by LC/MS/MS. RESULTS In both African green and cynomolgus monkeys, high concentrations of besifloxacin were detected in anterior segment tissues, while levels in posterior segment tissues and plasma were low. Mean concentration versus time profiles of besifloxacin were generally similar between species, with rapid absorption into ocular tissues after a single dose. In anterior segment tissues, concentrations of besifloxacin were measurable throughout the 24-h sampling period in both species. Quantitatively, concentrations were consistently higher in the conjunctiva of African green monkeys compared with cynomolgus monkeys. Besifloxacin levels were also higher during the first 3 h following dosing in the tear fluid of African green monkeys, but lower in the iris/ciliary body during this timeframe. However after the 3-h time point, concentrations in the tear fluid and iris/ciliary body were similar between species. Exposure in cornea tended to be higher in African green monkeys, but the difference was less pronounced than for conjunctiva. Exposure in aqueous humor was comparable between species. In posterior segment tissues, exposure to besifloxacin tended to be higher in cynomolgus monkeys. Systemic exposure also tended to be higher in cynomolgus monkeys, but measurable levels were present in the plasma of both species throughout the 24-h sampling period. With the exception of iris/ciliary body and vitreous humor, mean ocular tissue weights were generally similar between species although a small, but statistically significant, difference was also observed in the choroid. CONCLUSIONS African green monkeys may be a suitable model for preclinical ocular pharmacokinetic studies. Additional studies using a variety of compounds would be useful in determining whether the quantitative differences in ocular exposures and ocular tissue weights observed in the present investigation reflect slight variations in the procedures used in these separate experiments, or true physiological and anatomical differences between species.
Collapse
Affiliation(s)
- Shellise Glogowski
- Global Pharmaceutical Research & Development, Bausch & Lomb, Rochester, New York 14609, USA.
| | | | | | | | | |
Collapse
|
15
|
Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 2011; 85:6263-74. [PMID: 21507971 DOI: 10.1128/jvi.00346-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lentiviral accessory protein Vpx is thought to facilitate the infection of macrophages and dendritic cells by counteracting an unidentified host restriction factor. Although human immunodeficiency virus type 1 (HIV-1) does not encode Vpx, the accessory protein can be provided to monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) in virus-like particles, dramatically enhancing their susceptibility to HIV-1. Vpx and the related accessory protein Vpr are packaged into virions through a virus-specific interaction with the p6 carboxy-terminal domain of Gag. We localized the minimal Vpx packaging motif of simian immunodeficiency virus SIVmac(239) p6 to a 10-amino-acid motif and introduced this sequence into an infectious HIV-1 provirus. The chimeric virus packaged Vpx that was provided in trans and was substantially more infectious on MDDC and MDM than the wild-type virus. We further modified the virus by introducing the Vpx coding sequence in place of nef. The resulting virus produced Vpx and replicated efficiently in MDDC and MDM. The virus also induced a potent type I interferon response in MDDC. In a coculture system, the Vpx-containing HIV-1 was more efficiently transmitted from MDDC to T cells. These findings suggest that in vivo, Vpx may facilitate transmission of the virus from dendritic cells to T cells. In addition, the chimeric virus could be used to design dendritic cell vaccines that induce an enhanced innate immune response. This approach could also be useful in the design of lentiviral vectors that transduce these relatively resistant cells.
Collapse
|
16
|
Genetic identity and biological phenotype of a transmitted/founder virus representative of nonpathogenic simian immunodeficiency virus infection in African green monkeys. J Virol 2010; 84:12245-54. [PMID: 20881048 DOI: 10.1128/jvi.01603-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding the lack of disease progression in nonpathogenic simian immunodeficiency virus (SIV) infections is essential for deciphering the immunopathogenesis of human AIDS. Yet, in vivo studies have been hampered by a paucity of infectious molecular clones (IMCs) of SIV suitable to dissect the viral and host factors responsible for the nonpathogenic phenotype. Here, we describe the identification, cloning, and biological analysis of the first transmitted/founder (T/F) virus representing a nonpathogenic SIV infection. Blood was collected at peak viremia from an acutely infected sabaeus monkey (Chlorocebus sabaeus) inoculated intravenously with an African green monkey SIV (SIVagm) strain (Sab92018) that had never been propagated in vitro. To generate IMCs, we first used conventional (bulk) PCR to amplify full-length viral genomes from peripheral blood mononuclear cell (PBMC) DNA. Although this yielded two intact SIVagmSab genomes, biological characterization revealed that both were replication defective. We then performed single-genome amplification (SGA) to generate partially overlapping 5' (n = 10) and 3' (n = 13) half genomes from plasma viral RNA. Analysis of these amplicons revealed clusters of nearly identical viral sequences representing the progeny of T/F viruses. Synthesis of the consensus sequence of one of these generated an IMC (Sab92018ivTF) that produced infectious CCR5-tropic virions and replicated to high titers in Molt-4 clone 8 cells and African green monkey PBMCs. Sab92018ivTF also initiated productive infection in sabaeus monkeys and faithfully recapitulated the replication kinetics and nonpathogenic phenotype of the parental Sab92018 strain. These results thus extend the T/F virus concept to nonpathogenic SIV infections and provide an important new tool to define viral determinants of disease nonprogression.
Collapse
|
17
|
Mitomo K, Griesenbach U, Inoue M, Somerton L, Meng C, Akiba E, Tabata T, Ueda Y, Frankel GM, Farley R, Singh C, Chan M, Munkonge F, Brum A, Xenariou S, Escudero-Garcia S, Hasegawa M, Alton EWFW. Toward gene therapy for cystic fibrosis using a lentivirus pseudotyped with Sendai virus envelopes. Mol Ther 2010; 18:1173-82. [PMID: 20332767 DOI: 10.1038/mt.2010.13] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transduce unconditioned airway epithelial cells from the apical side. This novel vector was evaluated in mice in vivo and in vitro directed toward CF gene therapy. Here, we show that (i) we can produce relevant titers of an SIV vector pseudotyped with SeV envelope proteins for in vivo use, (ii) this vector can transduce the respiratory epithelium of the murine nose in vivo at levels that may be relevant for clinical benefit in CF, (iii) this can be achieved in a single formulation, and without the need for preconditioning, (iv) expression can last for 15 months, (v) readministration is feasible, (vi) the vector can transduce human air-liquid interface (ALI) cultures, and (vii) functional CF transmembrane conductance regulator (CFTR) chloride channels can be generated in vitro. Our data suggest that this lentiviral vector may provide a step change in airway transduction efficiency relevant to a clinical programme of gene therapy for CF.
Collapse
|
18
|
Perković M, Norley S, Sanzenbacher R, Battenberg M, Panitz S, Coulibaly C, Flory E, Siegismund C, Münk C, Cichutek K. SIVagm containing the SHIV89.6P Envelope gene replicates poorly and is non-pathogenic. Virology 2010; 399:87-97. [DOI: 10.1016/j.virol.2009.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/03/2009] [Accepted: 12/22/2009] [Indexed: 11/25/2022]
|
19
|
Unfinished stories on viral quasispecies and Darwinian views of evolution. J Mol Biol 2010; 397:865-77. [PMID: 20152841 DOI: 10.1016/j.jmb.2010.02.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 11/22/2022]
Abstract
Experimental evidence that RNA virus populations consist of distributions of mutant genomes, termed quasispecies, was first published 31 years ago. This work provided the earliest experimental support for a theory to explain a system that replicated with limited fidelity and to understand the self-organization and adaptability of early life forms on Earth. High mutation rates and quasispecies dynamics of RNA viruses are intimately related to both viral disease and antiviral treatment strategies. Moreover, the quasispecies concept is being applied to other biological systems such as cancer research in which cellular mutant spectra can be also detected. This review addresses some of the unanswered questions regarding viral and theoretical quasispecies concepts as well as more practical aspects concerning resistance to antiviral treatments and pathogenesis.
Collapse
|
20
|
Gaston F, Babas T, Lakhdar-Ghazal F, Bahraoui E. Structure-antigenicity of the V3 region of SIVmac envelope glycoprotein. J Pept Sci 2009; 16:48-57. [PMID: 19908202 DOI: 10.1002/psc.1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this study was to analyze the immunogenicity and antigenicity of the V3 domain (Cys313-Cys346) of the external envelope glycoprotein gp125 of SIVmac251. The corresponding peptide was synthesized and characterized as linear and cyclic peptides. Our results showed that this region, as for HIV-1, contained an immunodominant epitope. The antigenicity was similar for the linear and cyclic peptides when tested against a panel of 15 sera from SIV infected macaques. Similarly, both peptide structures presented similar immunogenicity as shown by the characterization of the anti-peptide antibodies produced in rabbits against the cyclic and linear forms. But, unexpectedly, the antibodies produced against linear peptides recognized with a relatively higher intensity the native envelope gp140 than those produced against the cyclic structure. Furthermore, we showed that these antibodies recognized better the deglycosylated form of the glycoprotein. But, in contrast to the neutralizing activity obtained with anti-V3 peptides from HIV-1, no antiviral activity was obtained with antibodies generated against linear or cyclic SIVmac V3 peptides.
Collapse
Affiliation(s)
- Fabrice Gaston
- Laboratoire d'immuno-virologie, Université Paul Sabatier, UFR/SVT, 31062 Toulouse, France.
| | | | | | | |
Collapse
|
21
|
Virion-associated Vpr of human immunodeficiency virus type 1 triggers activation of apoptotic events and enhances fas-induced apoptosis in human T cells. J Virol 2009; 83:11283-97. [PMID: 19692467 DOI: 10.1128/jvi.00756-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpr protein exists in three different forms: soluble, intracellular, and virion associated. Previous studies showed that virion-associated Vpr induces apoptosis in activated peripheral blood mononuclear cells (PBMCs) and Jurkat T cells, but these studies were conducted in the presence of other de novo-expressed HIV proteins that may have had additive proapoptotic effects. In this report, we show that virion-associated Vpr triggers apoptosis through caspases 3/7 and 9 in human T cells independently of other HIV de novo-expressed proteins. In contrast to a previous study, we also detected the activation of caspase 8, the initiator caspase of the death receptor pathway. However, activation of all caspases by virion-associated Vpr was independent of the Fas death receptor pathway. Further analyses showed that virion-associated Vpr enhanced caspase activation in Fas-mediated apoptosis in Jurkat T cells and human activated PBMCs. Thus, our results indicate for the first time that viral particles that contain virion-associated Vpr can cause apoptosis in the absence of other de novo-expressed viral factors and can act in synergy with the Fas receptor pathway, thereby enhancing the apoptotic process in T cells. These findings suggest that virion-associated Vpr can contribute to the depletion of CD4(+) lymphocytes either directly or by enhancing Fas-mediated apoptosis during acute HIV-1 infection and in AIDS.
Collapse
|
22
|
Skasko M, Diamond TL, Kim B. Mechanistic variations among reverse transcriptases of simian immunodeficiency virus variants isolated from African green monkeys. Biochemistry 2009; 48:5389-95. [PMID: 19408961 DOI: 10.1021/bi900346m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report enzymatic variations among the reverse transcriptases (RTs) of five simian immunodeficiency virus (SIV) strains, Sab-1, 155-4, Gri-1, 9063-2, and Tan-1, which were isolated from four different species of naturally infected African green monkeys living in different regions across Africa. First, Sab-1 RT exhibits the most efficient dNTP incorporation efficiency at low dNTP concentrations, whereas the other four SIVagm RT proteins display different levels of reduced polymerase activity at low dNTP concentrations. Tan-1 RT exhibited the most restricted dNTP incorporation efficiency. Indeed, the pre-steady state analysis revealed that Sab-1 RT displays tight dNTP binding affinity (K(d) approximately 1-5 microM), comparable to values observed for NL4-3 and HXB2 HIV-1 RTs, whereas the dNTP binding affinity of Tan-1 RT is 6.2, approximately 34.8-fold lower than that of Sab-1 RT. Second, Tan-1 RT fidelity was significantly higher than that of Sab-1 RT. Indeed, Tan-1 RT enzymatically mimics oncoretroviral murine leukemia virus RT which is characterized by its low dNTP binding affinity and high fidelity. This study reports that simultaneous changes in dNTP binding affinity and fidelity of RTs appear to occur among natural SIV variants isolated from African green monkeys.
Collapse
Affiliation(s)
- Mark Skasko
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 672, Rochester, New York 14642, USA
| | | | | |
Collapse
|
23
|
Nomaguchi M, Doi N, Kamada K, Adachi A. Species barrier of HIV-1 and its jumping by virus engineering. Rev Med Virol 2008; 18:261-75. [PMID: 18386279 DOI: 10.1002/rmv.576] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monkey infection models are absolutely necessary for studies of human immunodeficiency virus type 1 (HIV-1) pathogenesis and of developing drugs/vaccines against HIV-1. In addition, currently unknown roles of its accessory proteins for in vivo replication await elucidation by experimental approaches. Due to the fact that HIV-1 is tropic only for chimpanzees and humans, studies of this line have been impeded for a long time, although various investigations have been carried out utilising genetically related SIV and SIV/HIV chimeric virus (SHIV) as pathogens. Recent findings of anti-HIV-1 innate factors such as tripartite motif protein 5alpha (TRIM5alpha) and APOBEC3G/F prompted us to re-initiate an old and vital research project which would, as a result, confer the capability to overcome the species barrier on the HIV-1. We currently have obtained, by virus engineering through genetic manipulation and adaptation, some new and promising HIV-1 clones for in vivo studies in macaque monkeys as mentioned above. In this review, we summarise the past, present and future of HIV-1/SIV chimeric viruses with special reference to relevant basic HIV-1/SIV studies.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Virology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|
24
|
Miura T, Matsuyama M, Ogatsu F, Hayami M. Whole genome sequence data of an infectious molecular clone of the SIVagm TYO-1 strain. AIDS Res Hum Retroviruses 2006; 22:1183-5. [PMID: 17147508 DOI: 10.1089/aid.2006.22.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We first sequenced a full genome of simian immunodeficiency virus isolated from African green monkey (SIVagm) but the clone sequenced was found not to be biologically active. We subsequently succeeded in reconstructing a full genome infectious molecular clone, named pSA212. The infectious pSA212 clone (known as the TYO-1 strain of SIVagm) has been distributed widely for research analysis of SIVagm but its genome has never been fully sequenced. Here, we report the whole genome sequence of the infectious pSA212.
Collapse
Affiliation(s)
- Tomoyuki Miura
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
25
|
Pandrea I, Apetrei C, Dufour J, Dillon N, Barbercheck J, Metzger M, Jacquelin B, Bohm R, Marx PA, Barre-Sinoussi F, Hirsch VM, Müller-Trutwin MC, Lackner AA, Veazey RS. Simian immunodeficiency virus SIVagm.sab infection of Caribbean African green monkeys: a new model for the study of SIV pathogenesis in natural hosts. J Virol 2006; 80:4858-67. [PMID: 16641277 PMCID: PMC1472068 DOI: 10.1128/jvi.80.10.4858-4867.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Caribbean-born African green monkeys (AGMs) were classified as Chlorocebus sabaeus by cytochrome b sequencing. Guided by these phylogenetic analyses, we developed a new model for the study of simian immunodeficiency virus (SIV) infection in natural hosts by inoculating Caribbean AGMs with their species-specific SIVagm.sab. SIVagm.sab replicated efficiently in Caribbean AGM peripheral blood mononuclear cells in vitro. During SIVagm.sab primary infection of six Caribbean AGMs, the virus replicated at high levels, with peak viral loads (VLs) of 10(7) to 10(8) copies/ml occurring by day 8 to 10 postinfection (p.i.). Set-point values of up to 2 x 10(5) copies/ml were reached by day 42 p.i. and maintained throughout follow-up (through day 450 p.i.). CD4(+) T-cell counts in the blood showed a transient depletion at the peak of VL, and then returned to near preinfection values by day 28 p.i. and remained relatively stable during the chronic infection. Preservation of CD4 T cells was also found in lymph nodes (LNs) of chronic SIVagm.sab-infected Caribbean AGMs. No activation of CD4(+) T cells was detected in the periphery in SIV-infected Caribbean AGMs. These virological and immunological profiles from peripheral blood and LNs were identical to those previously reported in African-born AGMs infected with the same viral strain (SIVagm.sab92018). Due to these similarities, we conclude that Caribbean AGMs are a useful alternative to AGMs of African origin as a model for the study of SIV infection in natural African hosts.
Collapse
Affiliation(s)
- Ivona Pandrea
- Tulane National Primate Research Center, Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Uma das características mais marcantes do HIV-1 é a imensa diversidade observada entre as cepas que compõem a pandemia de HIV/AIDS. Na última década, a classificação das variantes do vírus em grupos, subtipos e formas recombinantes circulantes (CRF) e a observação de padrões específicos de mutação têm provado serem ferramentas poderosas para os estudos da dinâmica molecular do vírus. O acompanhamento da distribuição mundial da diversidade do HIV-1 tem sido empregado, por exemplo, em programas de vigilância epidemiológica, bem como na reconstrução da história de epidemias regionais. Além disto, a observação de padrões específicos de distribuição espacial do vírus sugere a existência de diferenças na patogenia e transmissibilidade entre os diversos subtipos. A análise molecular das seqüências do vírus também permite a estimativa do tempo de divergência entre as variantes e das forças dinâmicas que modelam as árvores filogenéticas.
Collapse
Affiliation(s)
- Mônica Edelenyi Pinto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
27
|
Morellet N, Meudal H, Bouaziz S, Roques BP. Structure of the zinc finger domain encompassing residues 13-51 of the nucleocapsid protein from simian immunodeficiency virus. Biochem J 2006; 393:725-32. [PMID: 16229684 PMCID: PMC1360725 DOI: 10.1042/bj20051203] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/07/2005] [Accepted: 10/17/2005] [Indexed: 11/17/2022]
Abstract
The NCps (nucleocapsid proteins) of HIV-1 (HIV type 1), HIV-2 and SIV (simian immunodeficiency virus) are small highly basic proteins, characterized by the presence of two CCHC ZF (zinc finger) domains. NCps, closely associated with the dimeric RNA genome in the core of the virus particle, were shown to promote the specific encapsidation of the viral RNA and are implicated in reverse transcription. Solution structure of the HIV-1 NCp7 and complexes of NCp7 with RNA or DNA showed the critical relationships between the structure and its various functions. HIV-1 and HIV-2 have resulted respectively from transmissions of SIV from chimpanzees and sooty mangabeys. It has been shown that the SIVlhoest (SIV from l'Hoest monkeys) also has the potential to infect human populations. Since monkeys are of great interest for clinical studies of antiviral drugs, the structure of (13-51)NCp8 (zinc finger domain of NCp8, encompassing residues 13-51) from SIVlhoest was determined by NMR to appraise the influence of major differences in the sequence, since Glu21, Gly43 and Met46 in NCp7 are replaced by Pro, Glu and Phe respectively in this particular NCp8. The structure of (13-51)NCp8 is very well defined, and surprisingly the structure of each ZF is similar in NCp7 and NCp8. Moreover, contrary to NCp7, the two ZFs are strongly locked to each other in this NCp8. This first reported structure of a simian NCp8 compared with that of NCp7 shows that the main structural differences occur at the flexible linker between the two ZFs but the essential residues responsible for the interaction with oligonucleotides adopt the same orientation in the two proteins.
Collapse
Key Words
- hiv type 1
- nmr
- nucleocapsid protein
- simian immunodeficiency virus
- sivlhoest
- zinc finger domain
- blv, bovine leukaemia virus
- dqf, double-quantum-filtered
- hiv-1, hiv type 1
- htlv, human t-cell leukaemia virus
- mmlv, moloney-murine-leukaemia virus
- nc, nucleocapsid
- ncp, nc protein
- (13-51)ncp8, zinc finger domain of ncp8 encompassing residues 13–51
- noe, nuclear overhauser effect
- pbmc, peripheral blood mononuclear cells
- r.m.s.d., root mean square deviation
- rsv, rous sarcoma virus
- siv, simian immunodeficiency virus
- sivcpz, siv from chimpanzees
- sivlhoest, siv from l'hoest monkeys
- sivmnd, siv from mandrills
- sivmne, siv from pig-tailed macaques
- sivsm, siv from sooty mangabeys
- zf, zinc finger
Collapse
Affiliation(s)
- Nelly Morellet
- Unité de Pharmacologie Chimique et Génétique, INSERM U640-CNRS UMR 8151, UFR des Sciences Pharmaceutiques et Biologiques, 4, avenue de l'Observatoire, 75270 Paris cedex 06, France.
| | | | | | | |
Collapse
|
28
|
Takemura T, Ekwalanga M, Bikandou B, Ido E, Yamaguchi-Kabata Y, Ohkura S, Harada H, Takehisa J, Ichimura H, Parra HJ, Nende M, Mubwo E, Sepole M, Hayami M, Miura T. A novel simian immunodeficiency virus from black mangabey (Lophocebus aterrimus) in the Democratic Republic of Congo. J Gen Virol 2005; 86:1967-1971. [PMID: 15958675 DOI: 10.1099/vir.0.80697-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In order to understand primate lentivirus evolution, characterization of additional simian immunodeficiency virus (SIV) strains is essential. Here, an SIV from a black mangabey (Lophocebus aterrimus) originating from the Democratic Republic of Congo was analysed phylogenetically. The monkey had cross-reactive antibodies against human immunodeficiency virus type 1 (HIV-1) and HIV-2. The viral pol region sequence was amplified by nested PCR and sequence analysis confirmed that it was related to known SIV sequences. This is the first report to characterize genetically an SIV from the monkey genus Lophocebus. Phylogenetic analysis of the pol region revealed that this novel SIV, designated SIVbkm, fell into the SIVsyk and SIVgsn virus group, containing viruses isolated from the genus Cercopithecus, and suggests that cross-species transmission has occurred between species of the genera Lophocebus and Cercopithecus.
Collapse
Affiliation(s)
- Taichiro Takemura
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Michel Ekwalanga
- National Institute of Biomedical Research, Kinshasa, Democratic Republic of Congo
| | - Blaise Bikandou
- Cite Louis Pasteur-Laboratoire National de Sante Publique, Brazzaville 120, Republic of Congo
| | - Eiji Ido
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yumi Yamaguchi-Kabata
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Japan
| | - Sadayuki Ohkura
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hirotada Harada
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jun Takehisa
- Department of Viral Infection and International Health, Graduate School of Medical Science, Kanazawa University, Japan
| | - Hiroshi Ichimura
- Department of Viral Infection and International Health, Graduate School of Medical Science, Kanazawa University, Japan
| | - Henri-Joseph Parra
- Cite Louis Pasteur-Laboratoire National de Sante Publique, Brazzaville 120, Republic of Congo
| | - Monique Nende
- Kinshasa Zoo, Kinshasa, Democratic Republic of Congo
| | - Eric Mubwo
- Kinshasa Zoo, Kinshasa, Democratic Republic of Congo
| | | | - Masanori Hayami
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
29
|
Pandrea I, Kornfeld C, Ploquin MJY, Apetrei C, Faye A, Rouquet P, Roques P, Simon F, Barré-Sinoussi F, Müller-Trutwin MC, Diop OM. Impact of viral factors on very early in vivo replication profiles in simian immunodeficiency virus SIVagm-infected African green monkeys. J Virol 2005; 79:6249-59. [PMID: 15858009 PMCID: PMC1091729 DOI: 10.1128/jvi.79.10.6249-6259.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand which factors govern the levels of viral loads in early lentiviral infections of primates, we developed a model that allows distinguishing between the influences of host and viral factors on viremia. Herein we report that two species of African green monkeys (Chlorocebus sabaeus and C. pygerythrus) infected with their respective wild-type simian immunodeficiency virus SIVagm viruses (SIVagm.sab92018 and SIVagm.ver644) consistently showed reproducible differences in viremia during primary infection but not at later stages of infection. Cross-infections of SIVagm.sab92018 and SIVagm.ver644 into, respectively, C. pygerythrus and C. sabaeus revealed that the dynamics of viral replication during primary infection were dependent on the viral strain used for the infection but not on the host. Hence, the kinetics of SIVagm.sab92018 and SIVagm.ver644 were similar in both sabaeus and vervet animals, indicating that the difference in viremia levels between the two groups during the early phase of infection was not associated with the host. Coreceptor usage for these two strains showed a larger coreceptor repertoire for SIVagm.sab92018, which is able to efficiently use CXCR4 in addition to CCR5, than for SIVagm.ver644, which showed a classical CCR5 coreceptor usage pattern. These differences could not be explained by different charges of the V3 loop for SIVagm.sab92018 and for SIVagm.ver644. In conclusion, our study showed that the extent of virus replication during the primary infection is primarily dependent on viral determinants.
Collapse
Affiliation(s)
- Ivona Pandrea
- Division of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Lentiviruses consist of primate lentiviruses, ungulate lentiviruses and feline immunodeficiency virus (FIV). The primate lentiviruses utilize CD4 and chemokine receptors as a primary receptor and coreceptors, respectively. Recently we found that FIV utilizes CD134 and CXCR4 as a primary receptor and a coreceptor, respectively. FIV utilizes feline CD134 but not human CD134, whereas it can utilize both feline and human CXCR4. Exceptionally an FIV laboratory strain can infect human cells via CXCR4 only by the CD134-independent manner. Similarly several strains of primate lentiviruses also infect cells by the CD4-independent manner. In this review, the evolution of the lentiviruses and possible mechanism for lentiviral cross-species transmission is discussed.
Collapse
Affiliation(s)
- Takayuki Miyazawa
- Obihiro University of Agriculture and Veterinary Medicine, School of Veterinary Medicine, Department of Applied Veterinary Science, Hokkaido, Japan.
| |
Collapse
|
31
|
Bibollet-Ruche F, Bailes E, Gao F, Pourrut X, Barlow KL, Clewley JP, Mwenda JM, Langat DK, Chege GK, McClure HM, Mpoudi-Ngole E, Delaporte E, Peeters M, Shaw GM, Sharp PM, Hahn BH. New simian immunodeficiency virus infecting De Brazza's monkeys (Cercopithecus neglectus): evidence for a cercopithecus monkey virus clade. J Virol 2004; 78:7748-62. [PMID: 15220449 PMCID: PMC434087 DOI: 10.1128/jvi.78.14.7748-7762.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly complete sequences of simian immunodeficiency viruses (SIVs) infecting 18 different nonhuman primate species in sub-Saharan Africa have now been reported; yet, our understanding of the origins, evolutionary history, and geographic distribution of these viruses still remains fragmentary. Here, we report the molecular characterization of a lentivirus (SIVdeb) naturally infecting De Brazza's monkeys (Cercopithecus neglectus). Complete SIVdeb genomes (9,158 and 9227 bp in length) were amplified from uncultured blood mononuclear cell DNA of two wild-caught De Brazza's monkeys from Cameroon. In addition, partial pol sequences (650 bp) were amplified from four offspring of De Brazza's monkeys originally caught in the wild in Uganda. Full-length (9068 bp) and partial pol (650 bp) SIVsyk sequences were also amplified from Sykes's monkeys (Cercopithecus albogularis) from Kenya. Analysis of these sequences identified a new SIV clade (SIVdeb), which differed from previously characterized SIVs at 40 to 50% of sites in Pol protein sequences. The viruses most closely related to SIVdeb were SIVsyk and members of the SIVgsn/SIVmus/SIVmon group of viruses infecting greater spot-nosed monkeys (Cercopithecus nictitans), mustached monkeys (Cercopithecus cephus), and mona monkeys (Cercopithecus mona), respectively. In phylogenetic trees of concatenated protein sequences, SIVdeb, SIVsyk, and SIVgsn/SIVmus/SIVmon clustered together, and this relationship was highly significant in all major coding regions. Members of this virus group also shared the same number of cysteine residues in their extracellular envelope glycoprotein and a high-affinity AIP1 binding site (YPD/SL) in their p6 Gag protein, as well as a unique transactivation response element in their viral long terminal repeat; however, SIVdeb and SIVsyk, unlike SIVgsn, SIVmon, and SIVmus, did not encode a vpu gene. These data indicate that De Brazza's monkeys are naturally infected with SIVdeb, that this infection is prevalent in different areas of the species' habitat, and that geographically diverse SIVdeb strains cluster in a single virus group. The consistent clustering of SIVdeb with SIVsyk and the SIVmon/SIVmus/SIVgsn group also suggests that these viruses have evolved from a common ancestor that likely infected a Cercopithecus host in the distant past. The vpu gene appears to have been acquired by a subset of these Cercopithecus viruses after the divergence of SIVdeb and SIVsyk.
Collapse
|
32
|
Chiu CN, Mitra R, Chiu IM. Exchange of genetic sequences of long terminal repeat and the env gene by a promiscuous primate type D retrovirus. Virus Res 2003; 96:107-11. [PMID: 12951270 DOI: 10.1016/s0168-1702(03)00178-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Squirrel monkey retrovirus (SMRV) is a New World primate type D retrovirus. It was shown that SMRV-related sequences could be detected in another New World species, the skunk. It was further suggested that SMRV and an Old World primate type C retrovirus, baboon endogenous virus (BaEV), may have exchanged their env gene sequences. In this study, we sought to understand which sequences were exchanged between the genomic DNAs of SMRV and skunk. We also sought to determine the sequences exchanged between SMRV and BaEV. Here, we demonstrate that the long terminal repeat of SMRV is present in the skunk genome. We also show, by nucleotide sequence analysis, that the env gene that encodes the p15E glycoprotein of BaEV was most likely transduced from the corresponding gene of a primate type D retrovirus. Our results demonstrate that SMRV is a promiscuous virus with its pol gene homologous to the pol genes of type A, type B and avian type C viruses and a portion of its env gene homologous to the env genes of primate type C retroviruses. However, the primer binding sequence is unique to type D retroviruses. These kinds of recombination are likely to occur more than once in the evolution of retroviruses. The promiscuous nature of retroviruses and the recent incidence of unintended retroviral integration into a gene therapy patient underscore the importance of understanding how retroviral sequences are recombined among themselves and how they are integrated into the mammalian genome.
Collapse
Affiliation(s)
- Cindy N Chiu
- Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Davis Medical Research Center, 480 West 9th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
33
|
Salemi M, De Oliveira T, Courgnaud V, Moulton V, Holland B, Cassol S, Switzer WM, Vandamme AM. Mosaic genomes of the six major primate lentivirus lineages revealed by phylogenetic analyses. J Virol 2003; 77:7202-13. [PMID: 12805419 PMCID: PMC164811 DOI: 10.1128/jvi.77.13.7202-7213.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 04/03/2003] [Indexed: 11/20/2022] Open
Abstract
To clarify the origin and evolution of the primate lentiviruses (PLVs), which include human immunodeficiency virus types 1 and 2 as well as their simian relatives, simian immunodeficiency viruses (SIVs), isolated from several host species, we investigated the phylogenetic relationships among the six supposedly nonrecombinant PLV lineages for which the full genome sequences are available. Employing bootscanning as an exploratory tool, we located several regions in the PLV genome that seem to have uncertain or conflicting phylogenetic histories. Phylogeny reconstruction based on distance and maximum-likelihood algorithms followed by a number of statistical tests confirms the existence of at least five putative recombinant fragments in the PLV genome with different clustering patterns. Split decomposition analysis also shows that phylogenetic relationships among PLVs may be better represented by network-based graphs, such as the ones produced by SplitsTree. Our findings not only imply that the six so-called pure PLV lineages have in fact mosaic genomes but also make more unlikely the hypothesis of cospeciation of SIVs and their simian hosts.
Collapse
Affiliation(s)
- Marco Salemi
- Rega Institute for Medical Research, KULeuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bouzar AB, Guiguen F, Morin T, Villet S, Fornazero C, Garnier C, Gallay K, Gounel F, Favier C, Durand J, Balleydier S, Mornex JF, Narayan O, Chebloune Y. Specific G2 arrest of caprine cells infected with a caprine arthritis encephalitis virus expressing vpr and vpx genes from simian immunodeficiency virus. Virology 2003; 309:41-52. [PMID: 12726725 DOI: 10.1016/s0042-6822(03)00014-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primate lentivirus (HIV and SIV) vpr accessory genes encode 12- to 14-kDa proteins which induce cell cycle arrest at the G2 phase of infected cells, preventing them from going through mitosis. Members of the HIV-2/SIVmac/SIVsmm group also encode a second closely related accessory protein called Vpx. Vpx and HIV Vpr are critical for virus replication in nondividing cells due to their participation in nuclear import of the preintegration complex. Caprine arthritis encephalitis virus (CAEV) and maedi visna virus are the natural lentiviruses of domestic goat and sheep, respectively, and their genomes do not carry vpr and vpx genes. In this study, we generated chimeric CAEV-based genomes carrying vpr and vpx genes from SIVmac239 and tested their ability to induce G2 cell cycle arrest in infected caprine cells. CAEV-pBSCAvpxvpr is the chimeric genome that was shown to be infectious and replication competent. Our data demonstrated that CAEV-pBSCAvpxvpr-infected goat synovial membrane cell monolayer developed more cytopathic effects and a high proportion of cells remained in the G2 phase of cell cycle. This G2 arrest was observed both at the early and at the late stages of infection, while minimal effect was observed with the parental CAEV-pBSCA. These results, described for the first time in mammalian cells other than those of primates, indicate that Vpr-induced G2 cell cycle arrest is not restricted to only primate cells. Thus, conservation of Vpx/Vpr protein functions in caprine cells suggests a possible role for these proteins in the virus life cycle and its ability to adapt to new hosts. The data presented here thus raise a pertinent question about the biological significance of the conservation of Vpr and Vpx functions in caprine cells despite the high phylogenic distance between primates and small ruminants.
Collapse
Affiliation(s)
- Amel Baya Bouzar
- UMR 754 INRA/ENVL/UCBL Virologie Cellulaire, Moléculaire et Maladies Emergentes, Université Claude Bernard Lyon-1, Bâtiment B, 50, avenue Tony Garnier, 69366 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hu J, Switzer WM, Foley BT, Robertson DL, Goeken RM, Korber BT, Hirsch VM, Beer BE. Characterization and comparison of recombinant simian immunodeficiency virus from drill (Mandrillus leucophaeus) and mandrill (Mandrillus sphinx) isolates. J Virol 2003; 77:4867-80. [PMID: 12663793 PMCID: PMC152139 DOI: 10.1128/jvi.77.8.4867-4880.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since simian immunodeficiency virus (SIV) was found to be the source of the human AIDS pandemic, a major goal has been to characterize the diversity of SIV strains in the wild and to assess their potential for crossover into humans. In the present study, SIV was isolated from a seropositive drill (Mandrillus leucophaeus) and three seropositive mandrills (Mandrillus sphinx) by using macaque peripheral blood mononuclear cells (PBMC). Full-length sequences were obtained from a drill and mandrill and designated SIVdrl1FAO and SIVmnd5440, respectively. A 182-bp fragment of the pol genes of the two remaining mandrill SIV isolates was also analyzed. Phylogenetic analyses demonstrated that SIVdrl1FAO formed a monophyletic clade with SIVmnd5440 and SIVmndM14, recently designated SIVmnd type 2. Both the SIVdrl and SIVmnd type 2 genomes carried a vpx gene and appeared to share a common ancestor with SIVrcm in the 5' region of the genome and with SIVmndGB1 (type 1) in the 3' region of the genome. A statistically significant recombination breakpoint was detected at the beginning of envelope, suggesting that the viruses were descendents of the same recombinant. Phylogenetic analysis of vpx and vpr genes demonstrated that the vpx genes formed a monophyletic cluster that grouped with vpr from SIVagm. In addition, both SIVdrl1FAO and SIVmnd5440 replicated in human PBMC and therefore could pose a risk of transmission to the human population.
Collapse
Affiliation(s)
- Jinjie Hu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kobayashi M, Iida A, Ueda Y, Hasegawa M. Pseudotyped lentivirus vectors derived from simian immunodeficiency virus SIVagm with envelope glycoproteins from paramyxovirus. J Virol 2003; 77:2607-14. [PMID: 12551999 PMCID: PMC141089 DOI: 10.1128/jvi.77.4.2607-2614.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 11/14/2002] [Indexed: 11/20/2022] Open
Abstract
We describe the development of novel lentivirus vectors based on simian immunodeficiency virus from African green monkey (SIVagm) pseudotyped with Sendai virus (SeV) envelope glycoproteins. SeV fusion (F) and hemagglutinin-neuraminidase (HN) proteins were successfully incorporated into the SIVagm-based vector by truncation of the cytoplasmic tail of the F protein and by addition of the cytoplasmic tail of SIVagm transmembrane envelope protein to the N terminus of the HN protein. As with the vesicular stomatitis virus G glycoprotein-pseudotyped vector, the mutant SeV F- and HN-pseudotyped SIVagm vector was able to transduce various types of animal and human cell lines. Furthermore, the vector was able to transduce an enhanced green fluorescent protein reporter gene into polarized epithelial cells of rat trachea from the apical and basolateral sides. Therefore, SeV F- and HN-pseudotyped SIVagm vectors have considerable potential for effective use in gene therapy for various therapies, including respiratory diseases.
Collapse
Affiliation(s)
- Masanori Kobayashi
- DNAVEC Research Inc., 1-25-11 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | |
Collapse
|
37
|
Asano T, Hanazono Y, Ueda Y, Muramatsu SI, Kume A, Suemori H, Suzuki Y, Kondo Y, Harii K, Hasegawa M, Nakatsuji N, Ozawa K. Highly efficient gene transfer into primate embryonic stem cells with a simian lentivirus vector. Mol Ther 2002; 6:162-8. [PMID: 12161182 DOI: 10.1006/mthe.2002.0655] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to stably introduce genetic material into primate embryonic stem (ES) cells could allow their broader application. We previously derived ES cell lines from cynomolgus monkey blastocysts. In this study, we examined lentiviral gene transfer into cynomolgus ES cells. When cynomolgus ES cells were transduced once with a simian immunodeficiency virus (SIV)-based lentivirus vector encoding the green fluorescent protein (GFP) gene, most cells (around 90%) fluoresced, and high levels of GFP expression persisted for 5 months without selection procedures. In addition, high levels of GFP expression were observed during embryoid body formation. On the other hand, transduction of mouse ES cells with the SIV-based vector resulted in lower gene transfer rates, implying that SIV vectors can transduce primate ES cells more efficiently than mouse ES cells. The use of GFP as a reporter gene allows direct and simple detection of successfully transduced ES cells and facilitates monitoring of ES cell proliferation and differentiation both in vitro and potentially in vivo. Furthermore, this highly efficient gene transfer method allows faithful gene delivery to primate ES cells with potential for both research and therapeutic application.
Collapse
Affiliation(s)
- Takayuki Asano
- Division of Genetic Therapeutics, Jichi Medical School, Tochigi, 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Beer BE, Foley BT, Kuiken CL, Tooze Z, Goeken RM, Brown CR, Hu J, St Claire M, Korber BT, Hirsch VM. Characterization of novel simian immunodeficiency viruses from red-capped mangabeys from Nigeria (SIVrcmNG409 and -NG411). J Virol 2001; 75:12014-27. [PMID: 11711592 PMCID: PMC116097 DOI: 10.1128/jvi.75.24.12014-12027.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two novel simian immunodeficiency virus (SIV) strains from wild-caught red-capped mangabeys (Cercocebus torquatus torquatus) from Nigeria were characterized. Sequence analysis of the fully sequenced SIV strain rcmNG411 (SIVrcmNG411) and gag and pol sequence of SIVrcmNG409 revealed that they were genetically most closely related to the recently characterized SIVrcm from Gabon (SIVrcmGB1). Thus, red-capped mangabeys from distant geographic locations harbor a common lineage of SIV. SIVrcmNG411 carried a vpx gene in addition to vpr, suggesting a common evolutionary ancestor with SIVsm (from sooty mangabeys). However, SIVrcm was only marginally closer to SIVsm in that region than to any of the other lentiviruses. SIVrcm showed the highest similarity in pol with SIVdrl, isolated from a drill, a primate that is phylogenetically distinct from mangabey monkeys, and clustered with other primate lentiviruses (primarily SIVcpz [from chimpanzees] and SIVagmSab [from African green monkeys]) discordantly in different regions of the genome, suggesting a history of recombination. Despite the genetic relationship to SIVcpz in the pol gene, SIVrcmNG411 did not replicate in chimpanzee peripheral blood mononuclear cells (PBMC), although two other viruses unrelated to SIVcpz, SIVmndGB1 (from mandrills) and SIVlhoest (from L'Hoest monkeys), were able to grow in chimpanzee PBMC. The CCR5 24-bp deletion previously described in red-capped mangabeys from Gabon was also observed in Nigerian red-capped mangabeys, and SIVrcmNG411, like SIVrcmGB1, used CCR2B and STRL33 as coreceptors for virus entry. SIVrcm, SIVsm, SIVmndGB1, and all four SIVlhoest isolates but not SIVsun (from sun-tailed monkeys) replicated efficiently in human PBMC, suggesting that the ability to infect the human host can vary within one lineage.
Collapse
Affiliation(s)
- B E Beer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Takehisa J, Harada Y, Ndembi N, Mboudjeka I, Taniguchi Y, Ngansop C, Kuate S, Zekeng L, Ibuki K, Shimada T, Bikandou B, Yamaguchi-Kabata Y, Miura T, Ikeda M, Ichimura H, Kaptué L, Hayami M. Natural infection of wild-born mandrills (Mandrillus sphinx) with two different types of simian immunodeficiency virus. AIDS Res Hum Retroviruses 2001; 17:1143-54. [PMID: 11522184 DOI: 10.1089/088922201316912754] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
We found a novel primate lentivirus in mandrill (Mandrillus sphinx). To clarify the evolutionary relationships and transmission patterns of human/simian immunodeficiency virus (HIV/SIV), we screened blood samples from 30 wild-born healthy Cameroonian mandrills. Five (16.7%) of them were seropositive for SIV. Three SIV strains were isolated from the five seropositive mandrills by cocultivation of their peripheral blood mononuclear cells (PBMCs) with PBMCs of rhesus macaques, a human T cell line (M8166), and/or a cynomolgus macaque T cell line (HSC-F). One of the newly isolated SIV strains was intravenously inoculated into two rhesus macaques and resulted in chronic infection. In the SIV-infected macaques at 45 weeks after inoculation, we observed a mild decline in the number of peripheral CD4(+) lymphocytes, lymphadenopathy, and blastic follicular dendritic cells with mild follicular hyperplasia in the peripheral lymph nodes. A phylogenetic analysis based on the pol sequence showed that the newly found SIVs from Cameroonian mandrills did not cluster with SIVmndGB1, which is the former representative strain of SIVmnd. The SIVmnds from Cameroon formed a new, independent lineage that branched before the root of the HIV-1/SIVcpz lineage with 996 of 1000 bootstrap replications. They clustered host specifically, and exhibited about 16.9% diversity at the level of nucleotide sequence among Cameroonian SIVmnd strains. These results indicate that the SIVmnds isolated in Cameroon are a novel type of SIVmnd and have infected Cameroonian mandrills for a long time. We therefore designated the Cameroonian SIVmnd as SIVmnd type 2 and redesignated SIVmndGB1 as SIVmnd type 1. To date, M. sphinx is the only primate species other than humans that is naturally infected with two different types of SIV.
Collapse
Affiliation(s)
- J Takehisa
- Department of Viral Infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Souquière S, Bibollet-Ruche F, Robertson DL, Makuwa M, Apetrei C, Onanga R, Kornfeld C, Plantier JC, Gao F, Abernethy K, White LJ, Karesh W, Telfer P, Wickings EJ, Mauclère P, Marx PA, Barré-Sinoussi F, Hahn BH, Müller-Trutwin MC, Simon F. Wild Mandrillus sphinx are carriers of two types of lentivirus. J Virol 2001; 75:7086-96. [PMID: 11435589 PMCID: PMC114437 DOI: 10.1128/jvi.75.15.7086-7096.2001] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mandrillus sphinx, a large primate living in Cameroon and Gabon and belonging to the Papionini tribe, was reported to be infected by a simian immunodeficiency virus (SIV) (SIVmndGB1) as early as 1988. Here, we have identified a second, highly divergent SIVmnd (designated SIVmnd-2). Genomic organization differs between the two viral types; SIVmnd-2 has the additional vpx gene, like other SIVs naturally infecting the Papionini tribe (SIVsm and SIVrcm) and in contrast to the other SIVmnd type (here designated SIVmnd-1), which is more closely related to SIVs infecting l'hoest (Cercopithecus lhoesti lhoesti) and sun-tailed (Cercopithecus lhoesti solatus) monkeys. Importantly, our epidemiological studies indicate a high prevalence of both types of SIVmnd; all 10 sexually mature wild-living monkeys and 3 out of 17 wild-born juveniles tested were infected. The geographic distribution of SIVmnd seems to be distinct for the two types: SIVmnd-1 viruses were exclusively identified in mandrills from central and southern Gabon, whereas SIVmnd-2 viruses were identified in monkeys from northern and western Gabon, as well as in Cameroon. SIVmnd-2 full-length sequence analysis, together with analysis of partial sequences from SIVmnd-1 and SIVmnd-2 from wild-born or wild-living mandrills, shows that the gag and pol regions of SIVmnd-2 are closest to those of SIVrcm, isolated from red-capped mangabeys (Cercocebus torquatus), while the env gene is closest to that of SIVmnd-1. pol and env sequence analyses of SIV from a related Papionini species, the drill (Mandrillus leucophaeus), shows a closer relationship of SIVdrl to SIVmnd-2 than to SIVmnd-1. Epidemiological surveys of human immunodeficiency virus revealed a case in Cameroon of a human infected by a virus serologically related to SIVmnd, raising the possibility that mandrills represent a viral reservoir for humans similar to sooty mangabeys in Western Africa and chimpanzees in Central Africa.
Collapse
Affiliation(s)
- S Souquière
- Laboratoire de Virologie, UGENET, SEGC, Réserve de la Lopé, Centre International de Recherches Médicales, Franceville, Gabon
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Simon F, Souquière S, Damond F, Kfutwah A, Makuwa M, Leroy E, Rouquet P, Berthier JL, Rigoulet J, Lecu A, Telfer PT, Pandrea I, Plantier JC, Barré-Sinoussi F, Roques P, Müller-Trutwin MC, Apetrei C. Synthetic peptide strategy for the detection of and discrimination among highly divergent primate lentiviruses. AIDS Res Hum Retroviruses 2001; 17:937-52. [PMID: 11461679 DOI: 10.1089/088922201750290050] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We developed a simple, rapid, inexpensive, and highly sensitive and specific strategy for the detection and lineage differentiation of primate lentiviruses (PIV-ELISA). It is based on the use of two indirect ELISA methods using synthetic peptides mapping the gp41/36 region (detection component) and the V3 region (differentiation component) of four lentivirus lineages, namely SIVcpz/HIV-1 (groups M, O, N, and SIVcpz-gab), SIVmnd, SIVagm, and SIVsm/SIVmac/HIV-2. This strategy was evaluated with panels of sera originating from both humans and nonhuman primates. The human reference panel consisted of 144 HIV Western blot (WB)-positive sera in which the corresponding virus had been genotyped (HIV-1: 72 group M, 28 group O, and 6 group N; HIV-2: 21 subtype A and 10 subtype B; and 7 HIV-1+2) and 105 HIV WB-negative samples. The nonhuman primate reference panel consisted of 24 sera from monkeys infected by viruses belonging to the four lineages included in the PIV-ELISA strategy (5 chimpanzees, 5 macaques, 8 mandrills, and 6 vervets) and 42 samples from seronegative animals. Additional field evaluation panels consisted of 815 human sera from Gabon, Cameroon, and France and 537 samples from 25 nonhuman primate species. All the samples from the two reference panels were correctly detected and discriminated by PIV-ELISA. In the human field evaluation panel, the gp41/36 component correctly identified all the test samples, with 98% specificity. The V3 component discriminated 206 HIV-1 group M, 98 group O, 12 group M+O, and 128 HIV-2 sera. In the primate field evaluation panel, both gp41/36 and V3 detected and discriminated all the WB-positive samples originating from monkeys infected with SIVcpz, SIVagm-ver, SIVmnd-1, SIVmnd-2, SIVdrl, or SIVsun. These results were confirmed by genotyping in every case. Four SIV-infected red-capped mangabeys (confirmed by PCR) were correctly identified by gp41/36, but only two reacted with the V3 peptides in the absence of a specific SIVrcm V3 peptide. Addition of a V3 SIVrcm peptide discriminated all the SIVrcm-positive samples. Fourteen Papio papio samples were positive for SIVsm gp 36 and by WB, but negative by PCR, whereas three Papio cynocephalus samples were positive by gp41/36 but indeterminate by WB and negative by PCR. This combined ELISA system is thus highly sensitive and specific for antibodies directed against HIV and SIV. In addition, the V3-based serotyping results always agreed with genotyping results. This method should prove useful for studies of lentivirus prevalence and diversity in human and nonhuman primates, and may also have the potential to detect previously undescribed SIVs.
Collapse
Affiliation(s)
- F Simon
- Laboratoire de Virologie and Centre de Primatologie, Centre International de Recherches Médicales, Franceville, Gabon
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Marx PA, Alcabes PG, Drucker E. Serial human passage of simian immunodeficiency virus by unsterile injections and the emergence of epidemic human immunodeficiency virus in Africa. Philos Trans R Soc Lond B Biol Sci 2001; 356:911-20. [PMID: 11405938 PMCID: PMC1088484 DOI: 10.1098/rstb.2001.0867] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is compelling evidence that both human immunodeficiency virus (HIV) types emerged from two dissimilar simian immunodeficiency viruses (SIVs) in separate geographical regions of Africa. Each of the two HIVs has its own simian progenitor and specific genetic precursor, and all of the primates that carry these SIVs have been in close contact with humans for thousands of years without the emergence of epidemic HIV. To date no plausible mechanism has been identified to account for the sudden emergence in the mid-20th century of these epidemic HIVs. In this study we examine the conditions needed for SIV to complete the genetic transition from individual human SIV infections to epidemic HIV in humans. The genetic distance from SIV to HIV and the mutational activity needed to achieve this degree of adaptation to human hosts is placed within a mathematical model to estimate the probabilities of SIV completing this transition within a single SIV-infected human host. We found that the emergence of even one epidemic HIV strain, following a single human exposure to SIV, was very unlikely. And the probability of four or more such transitions (i.e. HIV-1 groups M, O and HIV-2 subtypes A and B) occurring in a brief period is vanishingly small. We conclude that SIV cannot become a zoonosis, but requires adaptive mutations to become HIV. Some modern event must have aided in the transition of SIV to HIV. Our research indicates that serial passage of partially adapted SIV between humans could produce the series of cumulative mutations sufficient for the emergence of epidemic HIV strains. We examined the rapid growth of unsterile injections in Africa beginning in the 1950s as a biologically plausible event capable of greatly increasing serial human passage of SIV and generating HIV by a series of multiple genetic transitions. We conclude that increased unsterile injecting in Africa during the period 1950-1970 provided the agent for SIV human infections to emerge as epidemic HIV in the modern era.
Collapse
Affiliation(s)
- P A Marx
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA.
| | | | | |
Collapse
|
43
|
Broussard SR, Staprans SI, White R, Whitehead EM, Feinberg MB, Allan JS. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J Virol 2001; 75:2262-75. [PMID: 11160730 PMCID: PMC114810 DOI: 10.1128/jvi.75.5.2262-2275.2001] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African green monkeys can maintain long-term persistent infection with simian immunodeficiency viruses (SIVagm) without developing AIDS and thus provide an important model for understanding mechanisms of natural host resistance to disease. This study assessed the levels and anatomic distribution of SIVagm in healthy, naturally infected monkeys. Quantitative competitive reverse transcriptase PCR assays developed to measure SIVagm from two African green monkey subspecies demonstrated high levels of SIV RNA in plasma (>6 x 10(6) RNA copies/ml) in sabaeus and vervet monkeys. Infectious virus was readily recovered from plasma and peripheral blood mononuclear cells and shown to be highly cytopathic in human cell lines and macrophages. SIVagm DNA levels were highest in the gastrointestinal tract, suggesting that the gut is a major site for SIVagm replication in vivo. Appreciable levels of virus were also found within the brain parenchyma and the cerebrospinal fluid (CSF), with lower levels detected in peripheral blood cells and lymph nodes. Virus isolates from the CSF and brain parenchyma readily infected macrophages in culture, whereas lymph node isolates were more restricted to growth in human T-cell lines. Comparison of env V2-C4 sequences showed extensive amino acid diversity between SIVagm recovered from the central nervous system and that recovered from lymphoid tissues. Homology between brain and CSF viruses, macrophage tropism, and active replication suggest compartmentalization in the central nervous system without associated neuropathology in naturally infected monkeys. These studies provide evidence that the nonpathogenic nature of SIVagm in the natural host can be attributed neither to more effective host control over viral replication nor to differences in the tissue and cell tropism from those for human immunodeficiency virus type 1-infected humans or SIV-infected macaques.
Collapse
Affiliation(s)
- S R Broussard
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA
| | | | | | | | | | | |
Collapse
|
44
|
Courgnaud V, Pourrut X, Bibollet-Ruche F, Mpoudi-Ngole E, Bourgeois A, Delaporte E, Peeters M. Characterization of a novel simian immunodeficiency virus from guereza colobus monkeys (Colobus guereza) in Cameroon: a new lineage in the nonhuman primate lentivirus family. J Virol 2001; 75:857-66. [PMID: 11134299 PMCID: PMC113982 DOI: 10.1128/jvi.75.2.857-866.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploration of the diversity among primate lentiviruses is necessary to elucidate the origins and evolution of immunodeficiency viruses. During a serological survey in Cameroon, we screened 25 wild-born guereza colobus monkeys (Colobus guereza) and identified 7 with HIV/SIV cross-reactive antibodies. In this study, we describe a novel lentivirus, named SIVcol, prevalent in guereza colobus monkeys. Genetic analysis revealed that SIVcol was very distinct from all other known SIV/HIV isolates, with average amino acid identities of 40% for Gag, 50% for Pol, 28% for Env, and around 25% for proteins encoded by five other genes. Phylogenetic analyses confirmed that SIVcol is genetically distinct from other previously characterized primate lentiviruses and clusters independently, forming a novel lineage, the sixth in the current classification. Cercopithecidae monkeys (Old World monkeys) are subdivided into two subfamilies, the Colobinae and the Cercopithecinae, and, so far, all Cercopithecidae monkeys from which lentiviruses have been isolated belong to the Cercopithecinae subfamily. Therefore, SIVcol from guereza colobus monkeys (C. guereza) is the first primate lentivirus identified in the Colobinae subfamily and the divergence of SIVcol may reflect divergence of the host lineage.
Collapse
Affiliation(s)
- V Courgnaud
- Institut de Recherche pour le Développement (IRD), Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Goldstein S, Ourmanov I, Brown CR, Beer BE, Elkins WR, Plishka R, Buckler-White A, Hirsch VM. Wide range of viral load in healthy african green monkeys naturally infected with simian immunodeficiency virus. J Virol 2000; 74:11744-53. [PMID: 11090174 PMCID: PMC112457 DOI: 10.1128/jvi.74.24.11744-11753.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution and levels of simian immunodeficiency virus (SIV) in tissues and plasma were assessed in naturally infected African green monkeys (AGM) of the vervet subspecies (Chlorocebus pygerythrus) by limiting-dilution coculture, quantitative PCR for viral DNA and RNA, and in situ hybridization for SIV expression in tissues. A wide range of SIV RNA levels in plasma was observed among these animals (<1,000 to 800,000 copies per ml), and the levels appeared to be stable over long periods of time. The relative numbers of SIV-expressing cells in tissues of two monkeys correlated with the extent of plasma viremia. SIV expression was observed in lymphoid tissues and was not associated with immunopathology. Virus-expressing cells were observed in the lamina propria and lymphoid tissue of the gastrointestinal tract, as well as within alveolar macrophages in the lung tissue of one AGM. The range of plasma viremia in naturally infected AGM was greater than that reported in naturally infected sooty mangabeys. However, the degree of viremia in some AGM was similar to that observed during progression to AIDS in human immunodeficiency virus-infected individuals. Therefore, containment of viremia is an unlikely explanation for the lack of pathogenicity of SIVagm in its natural host species, AGM.
Collapse
Affiliation(s)
- S Goldstein
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nakajima T, Nakamaru K, Ido E, Terao K, Hayami M, Hasegawa M. Development of novel simian immunodeficiency virus vectors carrying a dual gene expression system. Hum Gene Ther 2000; 11:1863-74. [PMID: 10986559 DOI: 10.1089/10430340050129486] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of highly efficient and safe gene transfer methods suitable for clinical use is required for human gene therapies. We have developed a novel lentiviral vector system, based on the nonpathogenic simian immunodeficiency virus from African green monkeys (SIVagm), that carries a unique dual gene expression system. This system utilizes the lentivirus Rev responsive element (RRE). Self-inactivating vectors were also developed by deleting a U3 region in the 3' long terminal repeat (3' LTR) of the virus. When pseudotyped with a vesicular stomatitis virus envelope glycoprotein G (VSV-G), the SIVagm-based vectors could transduce both growth-arrested human cells and terminally differentiated neuronal cell lines. Using these vectors, two reporter genes could be expressed simultaneously at equal levels, and expression levels of both genes could be altered by modifying the length of the RRE sequence. These SIVagm-based vectors might offer safety advantages over other lentivirus-based vectors. Furthermore, the novel dual gene expression system described here could increase the usefulness and value of both viral and nonviral vectors in gene therapy.
Collapse
Affiliation(s)
- T Nakajima
- DNAVEC Research, Inc., Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Hötzel I, Cheevers WP. Sequence similarity between the envelope surface unit (SU) glycoproteins of primate and small ruminant lentiviruses. Virus Res 2000; 69:47-54. [PMID: 10989185 DOI: 10.1016/s0168-1702(00)00173-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sequence similarity has been previously described in the transmembrane domain unit of envelope glycoproteins of primate and non-primate lentiviruses but similarity between the surface unit (SU) glycoprotein of these viruses is less clear or absent. Here we describe a consistent and significant sequence-similarity between the ovine/caprine lentivirus surface glycoprotein gp135 and the primate lentivirus gp120 in the region between variable loops V2 and V3. The biological relevance of this sequence similarity was indicated by clustering of conserved motifs in regions of structural importance in the human immunodeficiency virus type 1 gp120, conservation of cysteine residue pairs forming disulfide bonds and similar patterns of sequence variation in gp135 and gp120 between strains. The results indicate that SU glycoproteins from primate and small ruminant lentiviruses have structurally related domains.
Collapse
Affiliation(s)
- I Hötzel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | |
Collapse
|
48
|
Tokizawa S, Shimizu N, Hui-Yu L, Deyu F, Haraguchi Y, Oite T, Hoshino H. Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int 2000; 58:607-17. [PMID: 10916084 DOI: 10.1046/j.1523-1755.2000.00207.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mesangial cells are an important component of the glomerulus. Dysfunction of mesangial cells is thought to be involved in the development of human immunodeficiency virus type 1 (HIV-1)-associated nephropathy (HIVAN). HIVAN is a structural renal failure frequently observed in patients with acquired immune deficiency syndrome. However, the susceptibility of mesangial cells to HIV-1 is disputable. More than ten G protein-coupled receptors, including chemokine receptors, have been shown to act as HIV-1 coreceptors that determine the susceptibilities of cells to HIV-1 strains with specific cell tropisms. METHODS We examined the susceptibility of mesangial cells to various HIV-1, HIV type 2 (HIV-2) and simian immunodeficiency virus (SIV) strains. Expression of CD4 and HIV/SIV coreceptors was examined by Western blotting and polymerase chain reaction. RESULTS Mesangial cells were found to be susceptible to HIV-1 variant and mutants that infect brain-derived cells, but highly resistant to T-tropic (X4), M-tropic (R5) or dual-tropic (X4R5) HIV-1 strains. In addition, mesangial cells were also susceptible to HIV-2 and SIV strains that infect the brain-derived cells. Among HIV/SIV coreceptors we tested, the expression of GPR1 mRNA was detected in mesangial cells. Expression of CD4 mRNA and protein was also detected in them. Mesangial cells and GPR1-transduced CD4-positive cells showed similar susceptibilities to the HIV-1 variant and mutants and HIV-2 and SIV strains. CONCLUSIONS CD4 and GPR1 mRNAs were detected in mesangial cells. Mesangial cells were susceptible to HIV/SIV strains that use GPR1 as a coreceptor. Our findings suggest that an orphan G protein-coupled receptor, GPR1, is a coreceptor expressed in mesangial cells. It remains to be investigated whether the interaction of mesangial cells with specific HIV-1 strains through GPR1 plays a role in the development of HIVAN.
Collapse
Affiliation(s)
- S Tokizawa
- Department of Virology and Preventive Medicine, Gunma University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Beer BE, Bailes E, Dapolito G, Campbell BJ, Goeken RM, Axthelm MK, Markham PD, Bernard J, Zagury D, Franchini G, Sharp PM, Hirsch VM. Patterns of genomic sequence diversity among their simian immunodeficiency viruses suggest that L'Hoest monkeys (Cercopithecus lhoesti) are a natural lentivirus reservoir. J Virol 2000; 74:3892-8. [PMID: 10729165 PMCID: PMC111899 DOI: 10.1128/jvi.74.8.3892-3898.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we described a novel simian immunodeficiency virus (SIVlhoest) from a wild-caught L'Hoest monkey (Cercopithecus lhoesti) from a North American zoo. To investigate whether L'Hoest monkeys are the natural host for these viruses, we have screened blood samples from 14 wild animals from the Democratic Republic of Congo. Eight (57%) were found to be seropositive for SIV. Nearly full-length genome sequences were obtained for SIV isolates from three of these monkeys and compared to the original isolate and to other SIVs. The four samples of SIVlhoest formed a distinct cluster in phylogenetic trees. Two of these isolates differed on average at only about 5% of nucleotides, suggesting that they were epidemiologically linked; otherwise, the SIVlhoest isolates differed on average by 18%. Both the level of diversity and the pattern of its variation along the genome were very similar to those seen among isolates of SIVagm from vervet monkeys, pointing to similarities in the nature of, and constraints on, SIV evolution in these two species. Discordant phylogenetic relationships among the SIVlhoest isolates for different genomic regions indicated that mosaic viruses have been generated by recombination, implying that individual monkeys have been coinfected by more than one strain of SIV. Taken together, these observations provide strong evidence that L'Hoest monkeys constitute a natural reservoir for SIV.
Collapse
Affiliation(s)
- B E Beer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Evidence of simian immunodeficiency virus (SIV) infection has been reported for 26 different species of African nonhuman primates. Two of these viruses, SIVcpz from chimpanzees and SIVsm from sooty mangabeys, are the cause of acquired immunodeficiency syndrome (AIDS) in humans. Together, they have been transmitted to humans on at least seven occasions. The implications of human infection by a diverse set of SIVs and of exposure to a plethora of additional human immunodeficiency virus-related viruses are discussed.
Collapse
Affiliation(s)
- B H Hahn
- Department of Medicine, Howard Hughes Medical Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|