1
|
Ning Y, Basu S, Hsu FF, Feng M, Wang MZ, Zhang K. Molecular Characterization of Sterol C4-Methyl Oxidase in Leishmania major. Int J Mol Sci 2024; 25:10908. [PMID: 39456689 PMCID: PMC11507432 DOI: 10.3390/ijms252010908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Sterol biosynthesis requires the oxidative removal of two methyl groups from the C-4 position by sterol C-4-demethylase and one methyl group from the C-14 position by sterol C-14-demethylase. In Leishmania donovani, a CYP5122A1 (Cytochrome P450 family 5122A1) protein was recently identified as the bona fide sterol C-4 methyl oxidase catalyzing the initial steps of C-4-demethylation. Besides CYP5122A1, Leishmania parasites possess orthologs to ERG25 (ergosterol pathway gene 25), the canonical sterol C-4 methyl oxidase in Saccharomyces cerevisiae. To determine the contribution of CYP5122A1 and ERG25 in sterol biosynthesis, we assessed the essentiality of these genes in Leishmania major, which causes cutaneous leishmaniasis. Like in L. donovani, CYP5122A1 in L. major could only be deleted in the presence of a complementing episome. Even with strong negative selection, L. major chromosomal CYP5122A1-null mutants retained the complementing episome in both promastigote and amastigote stages, demonstrating its essentiality. In contrast, the L. major ERG25-null mutants were fully viable and replicative in culture and virulent in mice. Deletion and overexpression of ERG25 did not affect the sterol composition, indicating that ERG25 is not required for C-4-demethylation. These findings suggest that CYP5122A1 is the dominant and possibly only sterol C-4 methyl oxidase in Leishmania, and inhibitors of CYP5122A1 may have strong therapeutic potential against multiple Leishmania species.
Collapse
Affiliation(s)
- Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (Y.N.); (S.B.)
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (Y.N.); (S.B.)
| | - Fong-fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA; (M.F.); (M.Z.W.)
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA; (M.F.); (M.Z.W.)
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (Y.N.); (S.B.)
| |
Collapse
|
2
|
Gangwar U, Choudhury H, Shameem R, Singh Y, Bansal A. Recent development in CRISPR-Cas systems for human protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:109-160. [PMID: 39266180 DOI: 10.1016/bs.pmbts.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.
Collapse
Affiliation(s)
- Utkarsh Gangwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Risha Shameem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yashi Singh
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Abdi Ghavidel A, Aghamiri S, Raee P, Mohammadi-Yeganeh S, Noori E, Bandehpour M, Kazemi B, Jajarmi V. Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Leishmania Strains. Acta Parasitol 2024; 69:121-134. [PMID: 38127288 DOI: 10.1007/s11686-023-00756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Genome manipulation of Leishmania species and the creation of modified strains are widely employed strategies for various purposes, including gene function studies, the development of live attenuated vaccines, and the engineering of host cells for protein production. OBJECTIVE Despite the introduction of novel manipulation approaches like CRISPR/Cas9 technology with significant advancements in recent years, the development of a reliable protocol for efficiently and precisely altering the genes of Leishmania strains remains a challenging endeavor. Following the successful adaptation of the CRISPR/Cas9 system for higher eukaryotic cells, several research groups have endeavored to apply this system to manipulate the genome of Leishmania. RESULTS Despite the substantial differences between Leishmania and higher eukaryotes, the CRISPR/Cas9 system has been effectively tested and applied in Leishmania. CONCLUSION: This comprehensive review summarizes all the CRISPR/Cas9 systems that have been employed in Leishmania, providing details on their methods and the expression systems for Cas9 and gRNA. The review also explores the various applications of the CRISPR system in Leishmania, including the deletion of multicopy gene families, the development of the Leishmania vaccine, complete gene deletions, investigations into chromosomal translocations, protein tagging, gene replacement, large-scale gene knockout, genome editing through cytosine base replacement, and its innovative use in the detection of Leishmania. In addition, the review offers an up-to-date overview of all double-strand break repair mechanisms in Leishmania.
Collapse
Affiliation(s)
- Afshin Abdi Ghavidel
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kumari P, Mamud A, Jha AN. Review on the Drug Intolerance and Vaccine Development for the Leishmaniasis. Curr Drug Targets 2023; 24:1023-1031. [PMID: 37823567 DOI: 10.2174/0113894501254585230927100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Leishmaniasis is one of the Neglected Tropical Diseases (NTDs), a zoonotic disease of vector-borne nature that is caused by a protozoan parasite Leishmania. This parasite is transmitted by the vector sandfly into the human via a bite. Visceral leishmaniasis (VL), also called kala-azar, is the most fatal among the types of leishmaniasis, with high mortality mostly spread in the East Africa and South Asia regions. WHO report stated that approximately 3.3 million disabilities occur every year due to the disease along with approximately 50,000 annual deaths. The real matter of concern is that there is no particular effective medicine/vaccine available against leishmaniasis to date except a few approved drugs and chemotherapy for the infected patient. The current selection of small compounds was constrained, and their growing drug resistance had been a major worry. Additionally, the serious side effects on humans of the available therapy or drugs have made it essential to discover efficient and low-cost methods to speed up the development of new drugs against leishmaniasis. Ideally, the vaccine could be a low risk and effective alternative for both CL and VL and elicit long-lasting immunity against the disease. There are a number of vaccine candidates at various stages of clinical development and preclinical stage. However, none has successfully passed all clinical trials. But, the successful development and approval of commercially available vaccines for dogs against canine leishmaniasis (CanL) provides evidence that it can be possible for humans in distant future. In the present article, the approaches used for the development of vaccines for leishmaniasis are discussed and the progress being made is briefly reviewed.
Collapse
Affiliation(s)
- Priya Kumari
- Centre of Sustainable Polymers, Indian Institute of Technology, Guwahati, Assam, India
| | - Afrin Mamud
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
5
|
Alpizar-Sosa EA, Kumordzi Y, Wei W, Whitfield PD, Barrett MP, Denny PW. Genome deletions to overcome the directed loss of gene function in Leishmania. Front Cell Infect Microbiol 2022; 12:988688. [PMID: 36211960 PMCID: PMC9539739 DOI: 10.3389/fcimb.2022.988688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
With the global reach of the Neglected Tropical Disease leishmaniasis increasing, coupled with a tiny armory of therapeutics which all have problems with resistance, cost, toxicity and/or administration, the validation of new drug targets in the causative insect vector borne protozoa Leishmania spp is more important than ever. Before the introduction of CRISPR Cas9 technology in 2015 genetic validation of new targets was carried out largely by targeted gene knockout through homologous recombination, with the majority of genes targeted (~70%) deemed non-essential. In this study we exploit the ready availability of whole genome sequencing technology to reanalyze one of these historic cell lines, a L. major knockout in the catalytic subunit of serine palmitoyltransferase (LCB2), which causes a complete loss of sphingolipid biosynthesis but remains viable and infective. This revealed a number of Single Nucleotide Polymorphisms, but also the complete loss of several coding regions including a gene encoding a putative ABC3A orthologue, a putative sterol transporter. Hypothesizing that the loss of such a transporter may have facilitated the directed knockout of the catalytic subunit of LCB2 and the complete loss of de novo sphingolipid biosynthesis, we re-examined LCB2 in a L. mexicana line engineered for straightforward CRISPR Cas9 directed manipulation. Strikingly, LCB2 could not be knocked out indicating essentiality. However, simultaneous deletion of LCB2 and the putative ABC3A was possible. This indicated that the loss of the putative ABC3A facilitated the loss of sphingolipid biosynthesis in Leishmania, and suggested that we should re-examine the many other Leishmania knockout lines where genes were deemed non-essential.
Collapse
Affiliation(s)
| | - Yasmine Kumordzi
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Phillip D. Whitfield
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom,Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom,*Correspondence: Paul W. Denny,
| |
Collapse
|
6
|
Espada CR, Quilles JC, Albuquerque-Wendt A, Cruz MC, Beneke T, Lorenzon LB, Gluenz E, Cruz AK, Uliana SRB. Effective Genome Editing in Leishmania ( Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Front Cell Infect Microbiol 2021; 11:772311. [PMID: 34858879 PMCID: PMC8631273 DOI: 10.3389/fcimb.2021.772311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Until 2015, loss-of-function studies to elucidate protein function in Leishmania relied on gene disruption through homologous recombination. Then, the CRISPR/Cas9 revolution reached these protozoan parasites allowing efficient genome editing with one round of transfection. In addition, the development of LeishGEdit, a PCR-based toolkit for generating knockouts and tagged lines using CRISPR/Cas9, allowed a more straightforward and effective genome editing. In this system, the plasmid pTB007 is delivered to Leishmania for episomal expression or integration in the β-tubulin locus and for the stable expression of T7 RNA polymerase and Cas9. In South America, and especially in Brazil, Leishmania (Viannia) braziliensis is the most frequent etiological agent of tegumentary leishmaniasis. The L. braziliensis β-tubulin locus presents significant sequence divergence in comparison with Leishmania major, which precludes the efficient integration of pTB007 and the stable expression of Cas9. To overcome this limitation, the L. major β-tubulin sequences, present in the pTB007, were replaced by a Leishmania (Viannia) β-tubulin conserved sequence generating the pTB007_Viannia plasmid. This modification allowed the successful integration of the pTB007_Viannia cassette in the L. braziliensis M2903 genome, and in silico predictions suggest that this can also be achieved in other Viannia species. The activity of Cas9 was evaluated by knocking out the flagellar protein PF16, which caused a phenotype of immobility in these transfectants. Endogenous PF16 was also successfully tagged with mNeonGreen, and an in-locus complementation strategy was employed to return a C-terminally tagged copy of the PF16 gene to the original locus, which resulted in the recovery of swimming capacity. The modified plasmid pTB007_Viannia allowed the integration and stable expression of both T7 RNA polymerase and Cas9 in L. braziliensis and provided an important tool for the study of the biology of this parasite.
Collapse
Affiliation(s)
- Caroline R. Espada
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - José Carlos Quilles
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Andreia Albuquerque-Wendt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHTM), Universidade de Lisboa (UNL), Lisbon, Portugal
| | - Mario C. Cruz
- Centro de Facilidades para Apoio à Pesquisa, Universidade de São Paulo (CEFAP-USP), São Paulo, Brazil
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Lucas B. Lorenzon
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Angela K. Cruz
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Silvia R. B. Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum. PLoS Negl Trop Dis 2021; 15:e0009377. [PMID: 33905412 PMCID: PMC8104401 DOI: 10.1371/journal.pntd.0009377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/07/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of folate metabolism in Leishmania has greatly benefited from studies of resistance to the inhibitor methotrexate (MTX). Folates are reduced in Leishmania by the bifunctional dihydrofolate reductase thymidylate synthase (DHFR-TS) and by pteridine reductase (PTR1). To further our understanding of folate metabolism in Leishmania, a Cos-seq genome-wide gain of function screen was performed against MTX and against the two thymidylate synthase (TS) inhibitors 5-fluorouracil and pemetrexed. The screen revealed DHFR-TS and PTR1 but also the nucleoside transporter NT1 and one hypothetical gene derived from chromosome 31. For MTX, the concentration of folate in the culture medium affected the enrichment pattern for genes retrieved by Cos-seq. We generated a L. infantum DHFR-TS null mutant that was thymidine auxotroph, a phenotype that could be rescued by the addition of thymidine or by transfection of the flavin dependent bacterial TS gene ThyX. In these DHFR-TS null mutants it was impossible to obtain a chromosomal null mutant of PTR1 except if DHFR-TS or PTR1 were provided episomally. The transfection of ThyX however did not allow the elimination of PTR1 in a DHFR-TS null mutant. Leishmania can survive without copies of either DHFR-TS or PTR1 but not without both. Provided that our results observed with the insect stage parasites are also replicated with intracellular parasites, it would suggest that antifolate therapy in Leishmania would only work if both DHFR-TS and PTR1 would be targeted simultaneously. The protozoan parasite Leishmania is auxotroph for folate and unconjugated pterins and salvages both from the mammalian host. Two enzymes of the folate metabolism pathway, namely the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) and the pteridine reductase 1 (PTR1), are being evaluated for drug discovery and repurposing of existing anti-metabolites. Despite their apparent potential, development of DHFR-TS and PTR1 targeted chemotherapy against Leishmania is still awaiting. Here we revisited folate metabolism at the genomic level and report on the identification of known resistance genes alongside some new ones. Through gene disruption studies we found that L. infantum DHFR-TS null mutants are thymidine auxotroph and that these can be rescued by the bacterial flavin dependent thymidylate synthase ThyX. We also found that PTR1 is essential in the absence of a functional DHFR-TS even in the presence of ThyX or thymidine supplementation, indicating the essential role of reduced pterins or folate beyond thymidine synthesis. This study indicates that simultaneous targeting of DHFR-TS and PTR1 will be required for the development of anti-folate chemotherapy against Leishmania.
Collapse
|
8
|
Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes (Basel) 2020; 11:genes11101159. [PMID: 33007987 PMCID: PMC7601497 DOI: 10.3390/genes11101159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/18/2023] Open
Abstract
The protozoan parasite Leishmania (Viannia) braziliensis (L. braziliensis) is the main cause of human tegumentary leishmaniasis in the New World, a disease affecting the skin and/or mucosal tissues. Despite its importance, the study of the unique biology of L. braziliensis through reverse genetics analyses has so far lagged behind in comparison with Old World Leishmania spp. In this study, we successfully applied a cloning-free, PCR-based CRISPR–Cas9 technology in L. braziliensis that was previously developed for Old World Leishmania major and New World L. mexicana species. As proof of principle, we demonstrate the targeted replacement of a transgene (eGFP) and two L. braziliensis single-copy genes (HSP23 and HSP100). We obtained homozygous Cas9-free HSP23- and HSP100-null mutants in L. braziliensis that matched the phenotypes reported previously for the respective L. donovani null mutants. The function of HSP23 is indeed conserved throughout the Trypanosomatida as L. majorHSP23 null mutants could be complemented phenotypically with transgenes from a range of trypanosomatids. In summary, the feasibility of genetic manipulation of L. braziliensis by CRISPR–Cas9-mediated gene editing sets the stage for testing the role of specific genes in that parasite’s biology, including functional studies of virulence factors in relevant animal models to reveal novel therapeutic targets to combat American tegumentary leishmaniasis.
Collapse
|
9
|
Beneke T, Gluenz E. Bar-seq strategies for the LeishGEdit toolbox. Mol Biochem Parasitol 2020; 239:111295. [PMID: 32659298 DOI: 10.1016/j.molbiopara.2020.111295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022]
Abstract
The number of fully sequenced genomes increases steadily but the function of many genes remains unstudied. To accelerate dissection of gene function in Leishmania spp. and other kinetoplastids we previously developed a streamlined pipeline for CRISPR-Cas9 gene editing, which we termed LeishGEdit. To facilitate high-throughput mutant screens we have adapted this pipeline by barcoding mutants with unique 17-nucleotide barcodes, allowing loss-of-function screens in mixed populations. Here we present primer design and analysis tools that facilitate these bar-seq strategies. We have developed a standalone easy-to-use pipeline to design CRISPR primers suitable for the LeishGEdit toolbox for any given genome and have generated a list of 14,995 barcodes. Barcodes and oligo sequences are now accessible through our website www.leishgedit.net allowing researchers to pursue bar-seq experiments in all currently available TriTrypDB genomes (release 41). This will streamline CRISPR bar-seq assays in kinetoplastids, enabling pooled mutant screens across the community.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK; The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
10
|
Lathosterol Oxidase (Sterol C-5 Desaturase) Deletion Confers Resistance to Amphotericin B and Sensitivity to Acidic Stress in Leishmania major. mSphere 2020; 5:5/4/e00380-20. [PMID: 32611698 PMCID: PMC7333571 DOI: 10.1128/msphere.00380-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sterols are essential membrane components in eukaryotes, and sterol synthesis inhibitors can have potent effects against pathogenic fungi and trypanosomatids. Understanding the roles of sterols will facilitate the development of new drugs and counter drug resistance. LSO is required for the formation of the C-5–C-6 double bond in the sterol core structure in mammals, fungi, protozoans, plants, and algae. Functions of this C-5–C-6 double bond are not well understood. In this study, we generated and characterized a lathosterol oxidase-null mutant in Leishmania major. Our data suggest that LSO is vital for the structure and membrane-stabilizing functions of leishmanial sterols. In addition, our results imply that while mutations in lathosterol oxidase can confer resistance to amphotericin B, an important antifungal and antiprotozoal agent, the alteration in sterol structure leads to significant defects in stress response that could be exploited for drug development. Lathosterol oxidase (LSO) catalyzes the formation of the C-5–C-6 double bond in the synthesis of various types of sterols in mammals, fungi, plants, and protozoa. In Leishmania parasites, mutations in LSO or other sterol biosynthetic genes are associated with amphotericin B resistance. To investigate the biological roles of sterol C-5–C-6 desaturation, we generated an LSO-null mutant line (lso−) in Leishmania major, the causative agent for cutaneous leishmaniasis. lso− parasites lacked the ergostane-based sterols commonly found in wild-type L. major and instead accumulated equivalent sterol species without the C-5–C-6 double bond. These mutant parasites were replicative in culture and displayed heightened resistance to amphotericin B. However, they survived poorly after reaching the maximal density and were highly vulnerable to the membrane-disrupting detergent Triton X-100. In addition, lso− mutants showed defects in regulating intracellular pH and were hypersensitive to acidic conditions. They also had potential alterations in the carbohydrate composition of lipophosphoglycan, a membrane-bound virulence factor in Leishmania. All these defects in lso− were corrected upon the restoration of LSO expression. Together, these findings suggest that the C-5–C-6 double bond is vital for the structure of the sterol core, and while the loss of LSO can lead to amphotericin B resistance, it also makes Leishmania parasites vulnerable to biologically relevant stress. IMPORTANCE Sterols are essential membrane components in eukaryotes, and sterol synthesis inhibitors can have potent effects against pathogenic fungi and trypanosomatids. Understanding the roles of sterols will facilitate the development of new drugs and counter drug resistance. LSO is required for the formation of the C-5–C-6 double bond in the sterol core structure in mammals, fungi, protozoans, plants, and algae. Functions of this C-5–C-6 double bond are not well understood. In this study, we generated and characterized a lathosterol oxidase-null mutant in Leishmania major. Our data suggest that LSO is vital for the structure and membrane-stabilizing functions of leishmanial sterols. In addition, our results imply that while mutations in lathosterol oxidase can confer resistance to amphotericin B, an important antifungal and antiprotozoal agent, the alteration in sterol structure leads to significant defects in stress response that could be exploited for drug development.
Collapse
|
11
|
Alves-Ferreira EVC, Ferreira TR, Walrad P, Kaye PM, Cruz AK. Leishmania braziliensis prostaglandin F 2α synthase impacts host infection. Parasit Vectors 2020; 13:9. [PMID: 31915065 PMCID: PMC6950890 DOI: 10.1186/s13071-020-3883-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background Prostaglandins (PG) are lipid mediators derived from arachidonic acid metabolism. They are involved in cellular processes such as inflammation and tissue homeostasis. PG production is not restricted to multicellular organisms. Trypanosomatids also synthesize several metabolites of arachidonic acid. Nevertheless, their biological role in these early-branching parasites and their role in host-parasite interaction are not well elucidated. Prostaglandin F2α synthase (PGF2S) has been observed in the Leishmania braziliensis secreted proteome and in L. donovani extracellular vesicles. Furthermore, we previously reported a positive correlation between L. braziliensis PGF2S (LbrPGF2S) expression and pathogenicity in mice. Methods LbrPGF2S gene expression and PGF2α synthesis in promastigotes were detected and quantified by western blotting and EIA assay kit, respectively. To investigate LbrPGF2S localization in amastigotes during bone marrow-derived macrophage infection, parasites expressing mCherry-LbrPGF2S were generated and followed by time-lapse imaging for 48 h post-infection. PGF2S homolog sequences from Leishmania and humans were analyzed in silico using ClustalW on Geneious v6 and EMBOSS Needle. Results Leishmania braziliensis promastigotes synthesize prostaglandin F2α in the presence of arachidonic acid, with peak production in the stationary growth phase under heat stress. LbrPGF2S is a cytoplasmic protein enriched in the secretory site of the parasite cell body, the flagellar pocket. It is an enzyme constitutively expressed throughout promastigote development, but overexpression of LbrPGF2S leads to an increase of infectivity in vitro. The data suggest that LbrPGF2S may be released from intracellular amastigotes into the cytoplasm of bone marrow-derived macrophages over a 48-hour infection period, using time-lapse microscopy and mCherry-PGF2S (mChPGF2S)-expressing parasites. Conclusions LbrPGF2S, a parasite-derived protein, is targeted to the host cell cytoplasm. The putative transfer of this enzyme, involved in pro-inflammatory lipid mediator synthesis, to the host cell suggests a potential role in host-parasite interaction and may partially explain the increased pathogenicity associated with overexpression of LbrPGF2S in L. braziliensis. Our data provide valuable insights to help understand the importance of parasite-derived lipid mediators in pathogenesis.![]()
Collapse
Affiliation(s)
| | - Tiago Rodrigues Ferreira
- Department of Cell and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, Brazil
| | - Pegine Walrad
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | - Paul M Kaye
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | - Angela Kaysel Cruz
- Department of Cell and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, Brazil.
| |
Collapse
|
12
|
Zhang WW, Lypaczewski P, Matlashewski G. Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania. Methods Mol Biol 2020; 2116:199-224. [PMID: 32221923 DOI: 10.1007/978-1-0716-0294-2_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas9 is an RNA guided endonuclease derived from the bacterium Streptococcus pyogenes. Due to its simplicity, versatility, and high efficiency, it has been widely used for genome editing in a variety of organisms including the protozoan parasite Leishmania, the causative agent of human leishmaniasis. Compared to the traditional homologous recombination gene targeting method, CRISPR-Cas9 has been shown to be a more efficient method to delete or disrupt Leishmania genes, generate point mutations, and add tags to endogenous genes. Notably, the stable CRISPR expression systems were shown to delete multicopy family Leishmania genes and genes present in multiploid chromosomes, identify essential Leishmania genes, and create specific chromosome translocations. In this chapter, we describe detailed procedures on using the stable CRISPR expression system for genome editing in Leishmania. These procedures include CRISPR targeting site selection, gRNA design, cloning single and double gRNA coding sequences into the Leishmania CRISPR vector pLdCN, oligonucleotide donor and drug resistance selection donor design, Leishmania cell transfection, screening, and isolation of CRISPR-edited mutants. As the principles of gene editing are generally similar, many of these procedures could also apply to the transient Leishmania CRISPR systems described by other labs.
Collapse
Affiliation(s)
- Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Grewal JS, Catta-Preta CM, Brown E, Anand J, Mottram JC. Evaluation of clan CD C11 peptidase PNT1 and other Leishmania mexicana cysteine peptidases as potential drug targets. Biochimie 2019; 166:150-160. [DOI: 10.1016/j.biochi.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
14
|
Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. mSphere 2019; 4:4/4/e00408-19. [PMID: 31434745 PMCID: PMC6706467 DOI: 10.1128/msphere.00408-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CRISPR-Cas9 genome editing relies on an efficient double-strand DNA break (DSB) and repair. Contrary to mammalian cells, the protozoan parasite Leishmania lacks the most efficient nonhomologous end-joining pathway and uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair to repair DSBs. Here, we reveal that Leishmania predominantly uses single-strand annealing (SSA) (>90%) instead of MMEJ (<10%) for DSB repair (DSBR) following CRISPR targeting of the miltefosine transporter gene, resulting in 9-, 18-, 20-, and 29-kb sequence deletions and multiple gene codeletions. Strikingly, when targeting the Leishmania donovani LdBPK_241510 gene, SSA even occurred by using direct repeats 77 kb apart, resulting in the codeletion of 15 Leishmania genes, though with a reduced frequency. These data strongly indicate that DSBR is not efficient in Leishmania, which explains why more than half of DSBs led to cell death and why the CRISPR gene-targeting efficiency is low compared with that in other organisms. Since direct repeat sequences are widely distributed in the Leishmania genome, we predict that many DSBs created by CRISPR are repaired by SSA. It is also revealed that DNA polymerase theta is involved in both MMEJ and SSA in Leishmania Collectively, this study establishes that DSBR mechanisms and their competence in an organism play an important role in determining the outcome and efficacy of CRISPR gene targeting. These observations emphasize the use of donor DNA templates to improve gene editing specificity and efficiency in Leishmania In addition, we developed a novel Staphylococcus aureus Cas9 constitutive expression vector (pLdSaCN) for gene targeting in Leishmania IMPORTANCE Due to differences in double-strand DNA break (DSB) repair mechanisms, CRISPR-Cas9 gene editing efficiency can vary greatly in different organisms. In contrast to mammalian cells, the protozoan parasite Leishmania uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair (HDR) to repair DSBs but lacks the nonhomologous end-joining pathway. Here, we show that Leishmania predominantly uses single-strand annealing (SSA) instead of MMEJ for DSB repairs (DSBR), resulting in large deletions that can include multiple genes. This strongly indicates that the overall DSBR in Leishmania is inefficient and therefore can influence the outcome of CRISPR-Cas9 gene editing, highlighting the importance of using a donor DNA to improve gene editing fidelity and efficiency in Leishmania.
Collapse
|
15
|
Zirpel H, Clos J. Gene Replacement by Homologous Recombination. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 1971:169-188. [PMID: 30980303 DOI: 10.1007/978-1-4939-9210-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
While homologous recombination-based gene replacement is about to be supplanted by more modern approaches, it is still retaining usefulness for genes that prove to be poor targets for CRISPR/cas-based approaches. Homologous recombination has proven to be relatively robust to minor sequence mismatches between GOI-flanking sequences and the gene replacement constructs, and the faithfulness of recombination events is easily verified by whole-genome sequencing. Moreover, the availability of custom synthetic gene production by numerous service providers should allow for a relatively quick generation of null mutants without the need to introduce additional protein-coding genes beyond the selection markers.
Collapse
Affiliation(s)
- Henner Zirpel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
16
|
Mukherjee S, Basu S, Zhang K. Farnesyl pyrophosphate synthase is essential for the promastigote and amastigote stages in Leishmania major. Mol Biochem Parasitol 2019; 230:8-15. [PMID: 30926449 DOI: 10.1016/j.molbiopara.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/24/2023]
Abstract
Isoprenoid synthesis provides a diverse class of biomolecules including sterols, dolichols, ubiquinones and prenyl groups. The enzyme farnesyl pyrophosphate synthase (FPPS) catalyzes the formation of farnesyl pyrophosphate, a key intermediate for the biosynthesis of all isoprenoids. In Leishmania, FPPS is considered the main target of nitrogen containing bisphosphonates, yet the essentiality of this enzyme remains untested. Using a facilitated knockout approach, we carried out the genetic analysis of FPPS in Leishmania major. Our data indicated that chromosomal null mutants for FPPS could only be generated in presence of an episomally expressed FPPS. Long-term retention of the episome by the chromosomal FPPS-null mutants in culture and in infected BALB/c mice suggests that FPPS is indispensable. In addition, applying negative selection pressure failed to induce the loss of ectopic FPPS in the chromosomal FPPS-null mutants, although it led to significant growth delay in culture and in mice. Together, our findings have confirmed the essentiality of FPPS in both promastigotes and amastigotes in L. major and thus validate its potential as a drug target for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
17
|
Abstract
Postgenomic analyses of Leishmania biology benefit from rapid and precise methods for gene manipulation. Traditional methods of gene knockout or tagging by homologous recombination have limitations: they tend to be slow and require successive transfection and selection rounds to knock out multiple alleles of a gene. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems overcome these limitations. We describe here in detail a simple, rapid, and scalable method for CRISPR-Cas9-mediated gene knockout and tagging in Leishmania. This method details how to use simple PCR to generate (1) templates for single guide RNA (sgRNA) transcription in cells expressing Cas9 and T7 RNA polymerase and (2) drug-selectable editing cassettes, using a modular set of plasmids as templates. pT plasmids allow for amplification of drug resistance genes for knockouts and pPLOT plasmids provide a choice of different tags to generate N- or C-terminally tagged proteins. We describe how to use an online platform ( LeishGEdit.net ) for automated primer design and how to perform PCRs and transfections in small batches or on 96-well plates for large-scale knockout or tagging screens. This method allows generation of knockout mutants or tagged cell lines within 1 week.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Sharma R, Terrão MC, Castro FF, Breitling R, Faça V, Oliveira EB, Cruz AK. Insights on a putative aminoacyl-tRNA-protein transferase of Leishmania major. PLoS One 2018; 13:e0203369. [PMID: 30208112 PMCID: PMC6135404 DOI: 10.1371/journal.pone.0203369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
Abstract
The N-end rule pathway leads to regulated proteolysis as an adaptive response to external stress and is ubiquitous from bacteria to mammals. In this study, we investigated a gene coding for a putative core enzyme of this post-translational regulatory pathway in Leishmania major, which may be crucial during cytodifferentiation and the environment adaptive responses of the parasite. Leucyl, phenylalanyl-tRNA protein transferase and arginyl-tRNA protein transferase are key components of this pathway in E. coli and eukaryotes, respectively. They catalyze the specific conjugation of leucine, phenylalanine or arginine to proteins containing exposed N-terminal amino acid residues, which are recognized by the machinery for the targeted proteolysis. Here, we characterized a conserved hypothetical protein coded by the LmjF.21.0725 gene in L. major. In silico analysis suggests that the LmjF.21.0725 protein is highly conserved among species of Leishmania and might belong to the Acyl CoA-N-acyltransferases (NAT) superfamily of proteins. Immunofluorescence cell imaging indicates that the cytosolic localization of the studied protein and the endogenous levels of the protein in promastigotes are barely detectable by western blotting assay. The knockout of the two alleles of LmjF.21.0725 by homologous recombination was only possible in the heterozygous transfectant expressing LmjF.21.0725 as a transgene from a plasmid. Moreover, the kinetics of loss of the plasmid in the absence of drug pressure suggests that maintenance of the gene is essential for promastigote survival. Here, evidence is provided that this putative aminoacyl tRNA-protein transferase is essential for parasite survival. The enzyme activity and corresponding post-translational regulatory pathway are yet to be investigated.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Monica Cristina Terrão
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Freitas Castro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Vitor Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Brandt Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angela Kaysel Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
19
|
Growth arrested live-attenuated Leishmania infantum KHARON1 null mutants display cytokinesis defect and protective immunity in mice. Sci Rep 2018; 8:11627. [PMID: 30072701 PMCID: PMC6072785 DOI: 10.1038/s41598-018-30076-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/24/2018] [Indexed: 01/30/2023] Open
Abstract
There is no safe and efficacious vaccine against human leishmaniasis available and live attenuated vaccines have been used as a prophylactic alternative against the disease. In order to obtain an attenuated Leishmania parasite for vaccine purposes, we generated L. infantum KHARON1 (KH1) null mutants (ΔLikh1). This gene was previously associated with growth defects in L. mexicana. ΔLikh1 was obtained and confirmed by PCR, qPCR and Southern blot. We also generate a KH1 complemented line with the introduction of episomal copies of KH1. Although ΔLikh1 promastigote forms exhibited a growth pattern similar to the wild-type line, they differ in morphology without affecting parasite viability. L. infantum KH1-deficient amastigotes were unable to sustain experimental infection in macrophages, forming multinucleate cells which was confirmed by in vivo attenuation phenotype. The cell cycle analysis of ΔLikh1 amastigotes showed arrested cells at G2/M phase. ΔLikh1-immunized mice presented reduced parasite burden upon challenging with virulent L. infantum, when compared to naïve mice. An effect associated with increased Li SLA-specific IgG serum levels and IL-17 production. Thus, ΔLikh1 parasites present an infective-attenuated phenotype due to a cytokinesis defect, whereas it induces immunity against visceral leishmaniasis in mouse model, being a candidate for antileishmanial vaccine purposes.
Collapse
|
20
|
Vadloori B, Sharath AK, Prabhu NP, Maurya R. Homology modelling, molecular docking, and molecular dynamics simulations reveal the inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase enzyme by Withaferin-A. BMC Res Notes 2018; 11:246. [PMID: 29661206 PMCID: PMC5902840 DOI: 10.1186/s13104-018-3354-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/11/2018] [Indexed: 01/21/2023] Open
Abstract
Objective Present in silico study was carried out to explore the mode of inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase (Ld DHFR-TS) enzyme by Withaferin-A, a withanolide isolated from Withania somnifera. Withaferin-A (WA) is known for its profound multifaceted properties, but its antileishmanial activity is not well understood. The parasite’s DHFR-TS enzyme is diverse from its mammalian host and could be a potential drug target in parasites. Results A 3D model of Ld DHFR-TS enzyme was built and verified using Ramachandran plot and SAVES tools. The protein was docked with WA-the ligand, methotrexate (MTX)-competitive inhibitor of DHFR, and dihydrofolic acid (DHFA)-substrate for DHFR-TS. Molecular docking studies reveal that WA competes for active sites of both Hu DHFR and TS enzymes whereas it binds to a site other than active site in Ld DHFR-TS. Moreover, Lys 173 residue of DHFR-TS forms a H-bond with WA and has higher binding affinity to Ld DHFR-TS than Hu DHFR and Hu TS. The MD simulations confirmed the H-bonding interactions were stable. The binding energies of WA with Ld DHFR-TS were calculated using MM-PBSA. Homology modelling, molecular docking and MD simulations of Ld DHFR-TS revealed that WA could be a potential anti-leishmanial drug. Electronic supplementary material The online version of this article (10.1186/s13104-018-3354-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharadwaja Vadloori
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - A K Sharath
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
21
|
Jones NG, Catta-Preta CMC, Lima APCA, Mottram JC. Genetically Validated Drug Targets in Leishmania: Current Knowledge and Future Prospects. ACS Infect Dis 2018; 4:467-477. [PMID: 29384366 PMCID: PMC5902788 DOI: 10.1021/acsinfecdis.7b00244] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
There has been a very limited number
of high-throughput screening campaigns carried out with Leishmania drug targets. In part, this is due to the small number of suitable
target genes that have been shown by genetic or chemical methods to
be essential for the parasite. In this perspective, we discuss the
state of genetic target validation in the field of Leishmania research and review the 200 Leishmania genes and
36 Trypanosoma cruzi genes for which gene deletion
attempts have been made since the first published case in 1990. We
define a quality score for the different genetic deletion techniques
that can be used to identify potential drug targets. We also discuss
how the advances in genome-scale gene disruption techniques have been
used to assist target-based and phenotypic-based drug development
in other parasitic protozoa and why Leishmania has
lacked a similar approach so far. The prospects for this scale of
work are considered in the context of the application of CRISPR/Cas9
gene editing as a useful tool in Leishmania.
Collapse
Affiliation(s)
- Nathaniel G. Jones
- Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, U.K
| | - Carolina M. C. Catta-Preta
- Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, U.K
| | - Ana Paula C. A. Lima
- Instituto de Biofisica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jeremy C. Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, U.K
| |
Collapse
|
22
|
Duncan SM, Jones NG, Mottram JC. Recent advances in Leishmania reverse genetics: Manipulating a manipulative parasite. Mol Biochem Parasitol 2017. [DOI: 10.1016/j.molbiopara.2017.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Guo H, Novozhilova NM, Bandini G, Turco SJ, Ferguson MAJ, Beverley SM. Genetic metabolic complementation establishes a requirement for GDP-fucose in Leishmania. J Biol Chem 2017; 292:10696-10708. [PMID: 28465349 PMCID: PMC5481574 DOI: 10.1074/jbc.m117.778480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/01/2017] [Indexed: 01/10/2023] Open
Abstract
To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eventually it must detach for transmission by the next bite. In Leishmania major strain Friedlin, this is controlled by modifications of the stage-specific adhesin lipophosphoglycan (LPG). During differentiation to infective metacyclics, d-arabinopyranose (d-Arap) caps the LPG side-chain galactose residues, blocking interaction with the midgut lectin PpGalec, thereby leading to parasite detachment and transmission. Previously, we characterized two closely related L. major genes (FKP40 and AFKP80) encoding bifunctional proteins with kinase/pyrophosphorylase activities required for salvage and conversion of l-fucose and/or d-Arap into the nucleotide-sugar substrates required by glycosyltransferases. Whereas only AFKP80 yielded GDP-d-Arap from exogenous d-Arap, both proteins were able to salvage l-fucose to GDP-fucose. We now show that Δafkp80− null mutants ablated d-Arap modifications of LPG as predicted, whereas Δfkp40− null mutants resembled wild type (WT). Fucoconjugates had not been reported previously in L. major, but unexpectedly, we were unable to generate fkp40−/afkp80− double mutants, unless one of the A/FKPs was expressed ectopically. To test whether GDP-fucose itself was essential for Leishmania viability, we employed “genetic metabolite complementation.” First, the trypanosome de novo pathway enzymes GDP-mannose dehydratase (GMD) and GDP-fucose synthetase (GMER) were expressed ectopically; from these cells, the Δfkp40−/Δafkp80− double mutant was now readily obtained. As expected, the Δfkp40−/Δafkp80−/+TbGMD-GMER line lacked the capacity to generate GDP-Arap, while synthesizing abundant GDP-fucose. These results establish a requirement for GDP-fucose for L. major viability and predict the existence of an essential fucoconjugate(s).
Collapse
Affiliation(s)
- Hongjie Guo
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Natalia M Novozhilova
- the Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40536, and
| | - Giulia Bandini
- the Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Salvatore J Turco
- the Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40536, and
| | - Michael A J Ferguson
- the Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Stephen M Beverley
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110,
| |
Collapse
|
24
|
Arginase Is Essential for Survival of Leishmania donovani Promastigotes but Not Intracellular Amastigotes. Infect Immun 2016; 85:IAI.00554-16. [PMID: 27795357 PMCID: PMC5203656 DOI: 10.1128/iai.00554-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Studies of Leishmania donovani have shown that both ornithine decarboxylase and spermidine synthase, two enzymes of the polyamine biosynthetic pathway, are critical for promastigote proliferation and required for maximum infection in mice. However, the importance of arginase (ARG), the first enzyme of the polyamine pathway in Leishmania, has not been analyzed in L. donovani. To test ARG function in intact parasites, we generated Δarg null mutants in L. donovani and evaluated their ability to proliferate in vitro and trigger infections in mice. The Δarg knockout was incapable of growth in the absence of polyamine supplementation, but the auxotrophic phenotype could be bypassed by addition of either millimolar concentrations of ornithine or micromolar concentrations of putrescine or by complementation with either glycosomal or cytosolic versions of ARG. Spermidine supplementation of the medium did not circumvent the polyamine auxotrophy of the Δarg line. Although ARG was found to be essential for ornithine and polyamine synthesis, ornithine decarboxylase appeared to be the rate-limiting enzyme for polyamine production. Mouse infectivity studies revealed that the Δarg lesion reduced parasite burdens in livers by an order of magnitude but had little impact on the numbers of parasites recovered from spleens. Thus, ARG is essential for proliferation of promastigotes but not intracellular amastigotes. Coupled with previous studies, these data support a model in which L. donovani amastigotes readily salvage ornithine and have some access to host spermidine pools, while host putrescine appears to be unavailable for salvage by the parasite.
Collapse
|
25
|
Waters AP, Van Dijk MR, Ramesar J, Janse CJ. Stable transfection of the blood stages of malarial parasites. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Soumya N, Panara MN, Neerupudi KB, Singh S. Functional analysis of an AMP forming acetyl CoA synthetase from Leishmania donovani by gene overexpression and targeted gene disruption approaches. Parasitol Int 2016; 66:992-1002. [PMID: 27825908 DOI: 10.1016/j.parint.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Leishmaniasis, a neglected tropical disease is endemic in 98 countries and >350 million people are at risk of getting the infection. The existing chemotherapy of Leishmaniasis is limited due to adverse effects, resistance to existing drugs and increasing cases of HIV-Leishmaniasis co-infection. Hence, there is a need to identify novel metabolic pathways for design of new chemical entities. Acetyl-CoA synthetase (AceCS) is an enzyme of acetate metabolic pathway whose functions are unknown in Leishmania parasite. AceCS from Leishmania donovani (LdAceCS) is significantly different from human host to be explored as a potential drug candidate to develop parasite specific inhibitors. To dissect the functions of LdAceCS in Leishmania promastigotes, two approaches were followed. LdAceCS overexpressing parasites were generated by episomal expression of LdAceCS in promastigotes and single knockout (SKO) cell lines of LdAceCS were generated by targeted gene disruption. An insight into the phenotypic changes undergone by the overexpressors revealed an increase in LdAceCS activity, total lipid content, infectivity and ergosterol levels by ~2.2, 2.2, 1.65 and 3 fold respectively with respect to wild type. Similarly SKO transgenic parasites exhibited ~2.5, 3, 1.5 and 3 fold decrease in activity, total lipid content, infectivity and ergosterol respectively. Repeated attempts to generate null mutants failed thus indicating that LdAceCS is essential for the parasite and can be selectively targeted to combat Leishmania infection. The present study demonstrates that LdAceCS is important for in vitro macrophage infection and is also essential for biosynthesis of total lipids and ergosterol.
Collapse
Affiliation(s)
- Neelagiri Soumya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, India
| | - Mitesh N Panara
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, India
| | - Kishore Babu Neerupudi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, India.
| |
Collapse
|
27
|
Henriques C, Miller MP, Catanho M, de Carvalho TMU, Krieger MA, Probst CM, de Souza W, Degrave W, Amara SG. Identification and functional characterization of a novel arginine/ornithine transporter, a member of a cationic amino acid transporter subfamily in the Trypanosoma cruzi genome. Parasit Vectors 2015; 8:346. [PMID: 26109388 PMCID: PMC4486710 DOI: 10.1186/s13071-015-0950-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 06/13/2015] [Indexed: 01/03/2023] Open
Abstract
Background Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for arginine. It obtains this amino acid from the host through transporters expressed on the plasma membrane and on the membranes of intracellular compartments. A few cationic amino acid transporters have been characterized at the molecular level, such as the novel intracellular arginine/ornithine transporter, TcCAT1.1, a member of the TcCAT subfamily that is composed of four almost identical open reading frames in the T. cruzi genome. Methods The functional characterization of the TcCAT1.1 isoform was performed in two heterologous expression systems. TcCAT subfamily expression was evaluated by real-time PCR in polysomal RNA fractions, and the cellular localization of TcCAT1.1 fused to EGFP was performed by confocal and immunoelectron microscopy. Results In the S. cerevisiae expression system, TcCAT1.1 showed high affinity for arginine (Km = 0.085 ± 0.04 mM) and low affinity for ornithine (Km = 1.7 ± 0.2 mM). Xenopus laevis oocytes expressing TcCAT1.1 showed a 7-fold increase in arginine uptake when they were pre-loaded with arginine, indicating that transport is enhanced by substrates on the trans side of the membrane (trans-stimulation). Oocytes that were pre-loaded with [3H]-arginine displayed a 16-fold higher efflux of [3H]-arginine compared with that of the control. Analysis of polysomal RNA fractions demonstrated that the expression of members of the arginine transporter TcCAT subfamily is upregulated under nutritional stress and that this upregulation precedes metacyclogenesis. To investigate the cellular localization of the transporter, EGFP was fused to TcCAT1.1, and fluorescence microscopy and immunocytochemistry revealed the intracellular labeling of vesicles in the anterior region, in a network of tubules and vesicles. Conclusions TcCAT1.1 is a novel arginine/ornithine transporter, an exchanger expressed in intracellular compartments that is physiologically involved in arginine homeostasis throughout the T. cruzi life cycle. The properties and estimated kinetic parameters of TcCAT1.1 can be extended to other members of the TcCAT subfamily.
Collapse
Affiliation(s)
- Cristina Henriques
- Fundação Oswaldo Cruz, Fiocruz-Mato Grosso do Sul, Rua Gabriel Abrão 92-Jardim das Nações, Campo Grande, MS, 89081-746, Brazil. .,Instituto de Biofísica Carlos Chagas Filho-UFRJ, CCS-Bloco G-Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, 21949-900, Brazil. .,Nucleo de Biologia Estrutural e Biomagens, Universidade Federal do Rio de Janeiro-CENABIO, Rio de Janeiro, RJ, Brazil.
| | - Megan P Miller
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
| | - Marcos Catanho
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Técia Maria Ulisses de Carvalho
- Instituto de Biofísica Carlos Chagas Filho-UFRJ, CCS-Bloco G-Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, 21949-900, Brazil.
| | | | | | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho-UFRJ, CCS-Bloco G-Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, 21949-900, Brazil. .,Nucleo de Biologia Estrutural e Biomagens, Universidade Federal do Rio de Janeiro-CENABIO, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens-INBEB, Rio de Janeiro, Brazil.
| | - Wim Degrave
- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| | - Susan Gaye Amara
- National Institute of Mental Health, NIH Building 10 Center Driver, Room 4N222, MSC 1381, Bethesda, MD, 20892-1381, USA. .,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
28
|
Gittins JR. Cloning of a copper resistance gene cluster from the cyanobacteriumSynechocystissp. PCC 6803 by recombineering recovery. FEBS Lett 2015; 589:1872-8. [DOI: 10.1016/j.febslet.2015.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/18/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
29
|
Damasceno JD, Beverley SM, Tosi LRO. A transposon-based tool for transformation and mutagenesis in trypanosomatid protozoa. Methods Mol Biol 2015; 1201:235-245. [PMID: 25388118 PMCID: PMC4287265 DOI: 10.1007/978-1-4939-1438-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability of transposable elements to mobilize across genomes and affect the expression of genes makes them exceptional tools for genetic manipulation methodologies. Several transposon-based systems have been modified and incorporated into shuttle mutagenesis approaches in a variety of organisms. We have found that the Mos1 element, a DNA transposon from Drosophila mauritiana, is suitable and readily adaptable to a variety of strategies to the study of trypanosomatid parasitic protozoa. Trypanosomatids are the causative agents of a wide range of neglected diseases in underdeveloped regions of the globe. In this chapter we describe the basic elements and the available protocols for the in vitro use of Mos1 derivatives in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | |
Collapse
|
30
|
Xu W, Hsu FF, Baykal E, Huang J, Zhang K. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania. PLoS Pathog 2014; 10:e1004427. [PMID: 25340392 PMCID: PMC4207814 DOI: 10.1371/journal.ppat.1004427] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Eda Baykal
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Juyang Huang
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Henriques C, Henriques-Pons A, Meuser-Batista M, Ribeiro AS, de Souza W. In vivo imaging of mice infected with bioluminescent Trypanosoma cruzi unveils novel sites of infection. Parasit Vectors 2014; 7:89. [PMID: 24589192 PMCID: PMC3973021 DOI: 10.1186/1756-3305-7-89] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background The development of techniques that allow the imaging of animals infected with parasites expressing luciferase opens up new possibilities for following the fate of parasites in infected mammals. Methods D-luciferin potassium salt stock solution was prepared in phosphate-buffered saline (PBS) at 15 mg/ml. To produce bioluminescence, infected and control mice received an intraperitoneal injection of luciferin stock solution (150 mg/kg). All mice were immediately anesthetized with 2% isofluorane, and after 10 minutes were imaged. Ex vivo evaluation of infected tissues and organs was evaluated in a 24-well plate in 150 μg/ml D-luciferin diluted in PBS. Images were captured using the IVIS Lumina image system (Xenogen). Dissected organs were also evaluated by microscopy of hematoxylin-eosin stained sections. Results Here we describe the results obtained using a genetically modified Dm28c strain of T. cruzi expressing the firefly luciferase to keep track of infection by bioluminescence imaging. Progression of infection was observed in vivo in BALB/c mice at various intervals after infection with transgenic Dm28c-luc. The bioluminescent signal was immediately observed at the site of T. cruzi inoculation, and one day post infection (dpi) it was disseminated in the peritoneal cavity. A similar pattern in the cavity was observed on 7 dpi, but the bioluminescence was more intense in the terminal region of the large intestine, rectum, and gonads. On 14 and 21 dpi, bioluminescent parasites were also observed in the heart, snout, paws, hind limbs, and forelimbs. From 28 dpi to 180 dpi in chronically infected mice, bioluminescence declined in regions of the body but was concentrated in the gonad region. Ex vivo evaluation of dissected organs and tissues by bioluminescent imaging confirmed the in vivo bioluminescent foci. Histopathological analysis of dissected organs demonstrated parasite nests at the rectum and snout, in muscle fibers of mice infected with Dm28c-WT and with Dm28c-luc, corroborating the bioluminescent imaging. Conclusion Bioluminescence imaging is accurate for tracking parasites in vivo, and this methodology is important to gain a better understanding of the infection, tissue inflammation, and parasite biology regarding host cell interaction, proliferation, and parasite clearance to subpatent levels.
Collapse
Affiliation(s)
| | | | | | | | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-Bloco G, Ilha do Fundão, 21941-900 Rio de Janeiro-RJ, Brazil.
| |
Collapse
|
32
|
Ritt JF, Raymond F, Leprohon P, Légaré D, Corbeil J, Ouellette M. Gene amplification and point mutations in pyrimidine metabolic genes in 5-fluorouracil resistant Leishmania infantum. PLoS Negl Trop Dis 2013; 7:e2564. [PMID: 24278495 PMCID: PMC3836990 DOI: 10.1371/journal.pntd.0002564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/15/2013] [Indexed: 12/02/2022] Open
Abstract
Background The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines. Methodology/Principal Findings Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import. Conclusion/Significance This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania. The human protozoan parasites Leishmania present the ability of both de novo biosynthesis and uptake of pyrimidines. The pyrimidine pathway is not well understood in these parasites. In the hope to better understand the pyrimidine pathway in Leishmania, five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU). Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed the amplification of the main target enzyme DHFR-TS, and point mutations in three important metabolic enzymes. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies also revealed that one resistant mutant was defective for uracil and 5-FU import. Overall, this study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in these protozoa.
Collapse
Affiliation(s)
- Jean-François Ritt
- Centre de recherche en Infectiologie du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Québec City, Québec, Canada
| | - Frédéric Raymond
- Centre de recherche en Infectiologie du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Québec City, Québec, Canada
| | - Philippe Leprohon
- Centre de recherche en Infectiologie du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Québec City, Québec, Canada
| | - Danielle Légaré
- Centre de recherche en Infectiologie du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Québec City, Québec, Canada
| | - Jacques Corbeil
- Centre de recherche en Infectiologie du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Québec City, Québec, Canada
| | - Marc Ouellette
- Centre de recherche en Infectiologie du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
33
|
Tran KD, Rodriguez-Contreras D, Vieira DP, Yates PA, David L, Beatty W, Elferich J, Landfear SM. KHARON1 mediates flagellar targeting of a glucose transporter in Leishmania mexicana and is critical for viability of infectious intracellular amastigotes. J Biol Chem 2013; 288:22721-33. [PMID: 23766511 PMCID: PMC3829357 DOI: 10.1074/jbc.m113.483461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/12/2012] [Indexed: 01/05/2023] Open
Abstract
The LmxGT1 glucose transporter is selectively targeted to the flagellum of the kinetoplastid parasite Leishmania mexicana, but the mechanism for targeting this and other flagella-specific membrane proteins among the Kinetoplastida is unknown. To address the mechanism of flagellar targeting, we employed in vivo cross-linking, tandem affinity purification, and mass spectrometry to identify a novel protein, KHARON1 (KH1), which is important for the flagellar trafficking of LmxGT1. Kh1 null mutant parasites are strongly impaired in flagellar targeting of LmxGT1, and trafficking of the permease was arrested in the flagellar pocket. Immunolocalization revealed that KH1 is located at the base of the flagellum, within the flagellar pocket, where it associates with the proximal segment of the flagellar axoneme. We propose that KH1 mediates transit of LmxGT1 from the flagellar pocket into the flagellar membrane via interaction with the proximal portion of the flagellar axoneme. KH1 represents the first component involved in flagellar trafficking of integral membrane proteins among parasitic protozoa. Of considerable interest, Kh1 null mutants are strongly compromised for growth as amastigotes within host macrophages. Thus, KH1 is also important for the disease causing stage of the parasite life cycle.
Collapse
Affiliation(s)
- Khoa D. Tran
- From the Departments of Molecular Microbiology and Immunology
| | | | | | | | - Larry David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Wandy Beatty
- the Molecular Microbiology Imaging Facility, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
34
|
Zelensky AN, Sanchez H, Ristic D, Vidic I, van Rossum-Fikkert SE, Essers J, Wyman C, Kanaar R. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucleic Acids Res 2013; 41:6475-89. [PMID: 23666627 PMCID: PMC3711438 DOI: 10.1093/nar/gkt375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair.
Collapse
Affiliation(s)
- Alex N Zelensky
- Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Feng X, Rodriguez-Contreras D, Polley T, Lye LF, Scott D, Burchmore RJS, Beverley SM, Landfear SM. 'Transient' genetic suppression facilitates generation of hexose transporter null mutants in Leishmania mexicana. Mol Microbiol 2012; 87:412-29. [PMID: 23170981 DOI: 10.1111/mmi.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 11/26/2022]
Abstract
The genome of Leishmania mexicana encompasses a cluster of three glucose transporter genes designated LmxGT1, LmxGT2 and LmxGT3. Functional and genetic studies of a cluster null mutant (Δlmxgt1-3) have dissected the roles of these proteins in Leishmania metabolism and virulence. However, null mutants were recovered at very low frequency, and comparative genome hybridizations revealed that Δlmxgt1-3 mutants contained a linear extrachromosomal 40 kb amplification of a region on chromosome 29 not amplified in wild type parasites. These data suggested a model where this 29-40k amplicon encoded a second site suppressor contributing to parasite survival in the absence of GT1-3 function. To test this, we quantified the frequency of recovery of knockouts in the presence of individual overexpressed open reading frames covering the 29-40k amplicon. The data mapped the suppressor activity to PIFTC3, encoding a component of the intraflagellar transport pathway. We discuss possible models by which PIFTC3 might act to facilitate loss of GTs specifically. Surprisingly, by plasmid segregation we showed that continued PIFTC3 overexpression was not required for Δlmxgt1-3 viability. These studies provide the first evidence that genetic suppression can occur by providing critical biological functions transiently. This novel form of genetic suppression may extend to other genes, pathways and organisms.
Collapse
Affiliation(s)
- Xiuhong Feng
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Guerrieri D, Ferrari S, Costi MP, Michels PAM. Biochemical effects of riluzole on Leishmania parasites. Exp Parasitol 2012. [PMID: 23206955 DOI: 10.1016/j.exppara.2012.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously shown that riluzole (6-(trifluoromethoxy)benzothiazol-2-amine), an agent used to treat CNS disorders, possesses inhibitory activity against pteridine reductase (PTR1) in pathogenic protists at low micromolar concentrations. Therefore, the potential use of this drug in anti-parasitic chemotherapy deserves evaluation. In this study, we report the effect of this compound on cell cultures of Leishmania mexicana and L. major. The anti-parasitic activity of riluzole was confirmed, with the largest effect observed when the drug was administered to cells during their exponential growth phase. Moreover, a remarkable decrease in PTR1 activity was observed in the lysates of cells pretreated with the compound, which is due to impairment of the enzyme's preferential reaction with biopterin as a cofactor. In addition, the treatment increased the parasites' susceptibility to oxidative stress, affecting the ability of Leishmania to survive under severe oxidative conditions. These results suggest that the inhibitory effect of riluzole on PTR1 is not the only mechanism through which it induces the death of Leishmania parasites.
Collapse
Affiliation(s)
- Davide Guerrieri
- Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy.
| | | | | | | |
Collapse
|
37
|
Henriques C, Castro DP, Gomes LHF, Garcia ES, de Souza W. Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus. Parasit Vectors 2012; 5:214. [PMID: 23013827 PMCID: PMC3481367 DOI: 10.1186/1756-3305-5-214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/19/2012] [Indexed: 12/11/2022] Open
Abstract
Background Usually the analysis of the various developmental stages of Trypanosoma cruzi in the experimentally infected vertebrate and invertebrate hosts is based on the morphological observations of tissue fragments from animals and insects. The development of techniques that allow the imaging of animals infected with parasites expressing luciferase open up possibilities to follow the fate of bioluminescent parasites in infected vectors. Methods D-luciferin (60 μg) was injected into the hemocoel of the whole insect before bioluminescence acquisition. In dissected insects, the whole gut was incubated with D-luciferin in PBS (300 μg/ml) for ex vivo bioluminescence acquisition in the IVIS® Imaging System, Xenogen. Results Herein, we describe the results obtained with the luciferase gene integrated into the genome of the Dm28c clone of T. cruzi, and the use of these parasites to follow, in real time, the infection of the insect vector Rhodnius prolixus, by a non- invasive method. The insects were evaluated by in vivo bioluminescent imaging on the feeding day, and on the 7 th, 14 th, 21 st and 28 th days after feeding. To corroborate the bioluminescent imaging made in vivo, and investigate the digestive tract region, the insects were dissected. The bioluminescence emitted was proportional to the number of protozoans in regions of the gut. The same digestive tracts were also macerated to count the parasites in distinct morphological stages with an optical microscope, and for bioluminescence acquisition in a microplate using the IVIS® Imaging System. A positive correlation of parasite numbers and bioluminescence in the microplate was obtained. Conclusions This is the first report of bioluminescent imaging in Rhodnius prolixus infected with trypomastigotes of the Dm28c-luc stable strain, expressing firefly luciferase. In spite of the distribution limitations of the substrate (D-luciferin) in the insect body, longitudinal evaluation of infected insects by bioluminescent imaging is a valuable tool. Bioluminescent imaging of the digestive tract infected with Dm28c-luc is highly sensitive and accurate method to track the fate of the parasite in the vector, in the crop, intestine and rectum. This methodology is useful to gain a better understanding of the parasite – insect vector interactions.
Collapse
Affiliation(s)
- Cristina Henriques
- Laboratório de Ultraestrutura Celular Hertha Meyer, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
38
|
Boitz JM, Ullman B, Jardim A, Carter NS. Purine salvage in Leishmania: complex or simple by design? Trends Parasitol 2012; 28:345-52. [PMID: 22726696 DOI: 10.1016/j.pt.2012.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022]
Abstract
Purine nucleotides function in a variety of vital cellular and metabolic processes including energy production, cell signaling, synthesis of vitamin-derived cofactors and nucleic acids, and as determinants of cell fate. Unlike their mammalian and insect hosts, Leishmania cannot synthesize the purine ring de novo and are absolutely dependent upon them to meet their purine requirements. The obligatory nature of purine salvage in these parasites, therefore, offers an attractive paradigm for drug targeting and, consequently, the delineation of the pathway has been under scientific investigation for over 30 years. Here, we review recent developments that reveal how purines flux in Leishmania and offer a potential 'Achilles' heel' for future validation.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.
Collapse
|
40
|
Leishmania amazonensis arginase compartmentalization in the glycosome is important for parasite infectivity. PLoS One 2012; 7:e34022. [PMID: 22479507 PMCID: PMC3316525 DOI: 10.1371/journal.pone.0034022] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
In Leishmania, de novo polyamine synthesis is initiated by the cleavage of L-arginine to urea and L-ornithine by the action of arginase (ARG, E.C. 3.5.3.1). Previous studies in L. major and L. mexicana showed that ARG is essential for in vitro growth in the absence of polyamines and needed for full infectivity in animal infections. The ARG protein is normally found within the parasite glycosome, and here we examined whether this localization is required for survival and infectivity. First, the localization of L. amazonensis ARG in the glycosome was confirmed in both the promastigote and amastigote stages. As in other species, arg− L. amazonensis required putrescine for growth and presented an attenuated infectivity. Restoration of a wild type ARG to the arg− mutant restored ARG expression, growth and infectivity. In contrast, restoration of a cytosol-targeted ARG lacking the glycosomal SKL targeting sequence (argΔSKL) restored growth but failed to restore infectivity. Further study showed that the ARGΔSKL protein was found in the cytosol as expected, but at very low levels. Our results indicate that the proper compartmentalization of L. amazonensis arginase in the glycosome is important for enzyme activity and optimal infectivity. Our conjecture is that parasite arginase participates in a complex equilibrium that defines the fate of L-arginine and that its proper subcellular location may be essential for this physiological orchestration.
Collapse
|
41
|
Ogungbe IV, Singh M, Setzer WN. Antileishmanial Natural Products from Plants. BIOACTIVE NATURAL PRODUCTS 2012. [DOI: 10.1016/b978-0-444-53836-9.00027-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Abstract
Leishmania parasites cause a variety of devastating diseases in tropical areas around the world. Due to the lack of vaccines and limited availability of drugs, new therapeutic targets are urgently needed. A variety of genetic tools have been developed to investigate the complex biology of this parasite and its interactions with the host. One of the main techniques is the generation of knock-out parasites via targeted gene replacement, a process that takes advantage of the parasites ability to undergo homologous recombination. Studying the effect of gene deletions in vitro and in infectivity models in vivo allows understanding the function of a target gene and its potential as a therapeutic target. Other genetic manipulations available include episomal and chromosomal complementation and the generation of overproducer strains. However, there are also limitations, such as the lack of RNA interference machinery in most Leishmania species and limited options for inducible expression systems. The genomes of several Leishmania species have now been sequenced and will provide powerful resources in combination with the genetic tools that are available. The increasing knowledge of parasite biology and host parasite interactions derived from these studies will raise the number of potential therapeutic targets, which are sorely needed to combat leishmaniasis.
Collapse
|
43
|
Generating knock-in parasites: integration of an ornithine decarboxylase transgene into its chromosomal locus in Leishmania donovani. Exp Parasitol 2011; 128:166-9. [PMID: 21354142 DOI: 10.1016/j.exppara.2011.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 11/23/2022]
Abstract
Leishmania null mutants created by targeted gene replacement are typically complemented with chimeric episomes harboring the replaced gene in order to validate that the observed phenotype is due to the specific gene deletion. However, the current inventory of available episomes for complementation of genetic lesions in Leishmania is unstable in the absence of drug selection, and levels of gene expression cannot be controlled, especially in vivo. To circumvent this impediment, a strategy to re-introduce the targeted gene into the original chromosomal locus to generate "knock-in" parasites within selectable null backgrounds has been developed. A genomic fragment encompassing the ornithine decarboxylase locus and lacking heterologous DNA sequences was transfected into ornithine decarboxylase-deficient Leishmania donovani. The construct randomly integrated into either chromosomal allele by homologous recombination restoring polyamine prototrophy and revealing that LdODC was functionally expressed in the knock-in clones. This strategy offers a mechanism for complementing a genetic lesion amenable to positive selection in a manner that facilitates stable gene expression from its original locus in the absence of continuous drug pressure.
Collapse
|
44
|
Abstract
It is almost 20 years since genetic manipulation of Trypanosoma cruzi was first reported. In this time, there have been steady improvements in the available vector systems, and the applications of the technology have been extended into new areas. Episomal vectors have been modified to enhance the level of expression of transfected genes and to facilitate the sub-cellular location of their products. Integrative vectors have been adapted to allow the development of inducible expression systems and the construction of vectors which enable genome modification through telomere-associated chromosome fragmentation. The uses of reverse genetic approaches to dissect peroxide metabolism and the mechanisms of drug activity and resistance in T. cruzi are illustrated in this chapter as examples of how the technology has been used to investigate biological function. Although there remains scope to improve the flexibility of these systems, they have made valuable contributions towards exploiting the genome sequence data and providing a greater understanding of parasite biology and the mechanisms of infection.
Collapse
Affiliation(s)
- Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | |
Collapse
|
45
|
Fulwiler AL, Soysa DR, Ullman B, Yates PA. A rapid, efficient and economical method for generating leishmanial gene targeting constructs. Mol Biochem Parasitol 2010; 175:209-12. [PMID: 21055426 DOI: 10.1016/j.molbiopara.2010.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022]
Abstract
Targeted gene replacement is a powerful tool in Leishmania genetics that can be time-consuming to implement. One tedious aspect that delays progress is the multi-step construction of gene targeting vectors. To accelerate this process, we developed a streamlined method that allows the assembly of a complete targeting vector from all its constituent parts in a single-step multi-fragment ligation. The individual components to be assembled are flanked by sites for the restriction endonuclease SfiI that generates non-identical, non-palindromic three base 3'-overhangs designed to allow annealing and ligation of the parts only in the proper order. The method was optimized by generating constructs for targeting the Leishmania donovani inosine monophosphate dehydrogenase gene (LdIMPDH) encoding six different drug resistance markers, and was found to be rapid and efficient. These constructs were successfully employed to generate heterozygous LdIMPDH gene replacement mutants. This method is adaptable for generating targeting vectors for a variety of species.
Collapse
Affiliation(s)
- Audrey L Fulwiler
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
46
|
Murray AS, Lynn MA, McMaster WR. The Leishmania mexicana A600 genes are functionally required for amastigote replication. Mol Biochem Parasitol 2010; 172:80-9. [DOI: 10.1016/j.molbiopara.2010.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 03/10/2010] [Accepted: 03/14/2010] [Indexed: 12/17/2022]
|
47
|
Colpitts S, Scott P. Memory T-cell subsets in parasitic infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:145-54. [PMID: 20795546 DOI: 10.1007/978-1-4419-6451-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Parasitic infections remain a major health problem throughout the world and unlike many viral or bacterial diseases, there are no vaccines to help control parasitic diseases. While several important advances have been made that will contribute to the development of parasite vaccines, such as cloning of dominant parasite antigens and a better understanding of the effector T-cell subsets needed for immunity, fundamental questions remain about how to induce long-term immunologic memory in vaccines. Here we examine a few of the experimental models that have been used to elucidate the nature of the memory T cells that are generated during parasitic infections. Although significant hurdles remain in the development of parasite vaccines, studies with both protozoa and gastrointestinal nematodes suggest that long-term immunity induced by vaccination is a realistic goal for control of parasitic infections.
Collapse
Affiliation(s)
- Sara Colpitts
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Room 310 Hill Pavilion, 380 South University Avenue, Philadelphia, Pennslyvania 19104-4539, USA
| | | |
Collapse
|
48
|
Zhang O, Wilson MC, Xu W, Hsu FF, Turk J, Kuhlmann FM, Wang Y, Soong L, Key P, Beverley SM, Zhang K. Degradation of host sphingomyelin is essential for Leishmania virulence. PLoS Pathog 2009; 5:e1000692. [PMID: 20011126 PMCID: PMC2784226 DOI: 10.1371/journal.ppat.1000692] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 11/13/2009] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, sphingolipids (SLs) are important membrane components and powerful signaling molecules. In Leishmania, the major group of SLs is inositol phosphorylceramide (IPC), which is common in yeast and Trypanosomatids but absent in mammals. In contrast, sphingomyelin is not synthesized by Leishmania but is abundant in mammals. In the promastigote stage in vitro, Leishmania use SL metabolism as a major pathway to produce ethanolamine (EtN), a metabolite essential for survival and differentiation from non-virulent procyclics to highly virulent metacyclics. To further probe SL metabolism, we identified a gene encoding a putative neutral sphingomyelinase (SMase) and/or IPC hydrolase (IPCase), designated ISCL (Inositol phosphoSphingolipid phospholipase C-Like). Despite the lack of sphingomyelin synthesis, L. major promastigotes exhibited a potent SMase activity which was abolished upon deletion of ISCL, and increased following over-expression by episomal complementation. ISCL-dependent activity with sphingomyelin was about 20 fold greater than that seen with IPC. Null mutants of ISCL (iscl(-)) showed modest accumulation of IPC, but grew and differentiated normally in vitro. Interestingly, iscl(-) mutants did not induce lesion pathology in the susceptible BALB/c mice, yet persisted indefinitely at low levels at the site of infection. Notably, the acute virulence of iscl(-) was completely restored by the expression of ISCL or heterologous mammalian or fungal SMases, but not by fungal proteins exhibiting only IPCase activity. Together, these findings strongly suggest that degradation of host-derived sphingomyelin plays a pivotal role in the proliferation of Leishmania in mammalian hosts and the manifestation of acute disease pathology.
Collapse
Affiliation(s)
- Ou Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Mattie C. Wilson
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Turk
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - F. Matthew Kuhlmann
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yingwei Wang
- Department of Microbiology and Immunology, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Phillip Key
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Cavalli A, Bolognesi ML. Neglected Tropical Diseases: Multi-Target-Directed Ligands in the Search for Novel Lead Candidates against Trypanosoma and Leishmania. J Med Chem 2009; 52:7339-59. [DOI: 10.1021/jm9004835] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrea Cavalli
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Maria Laura Bolognesi
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
50
|
Nare B, Garraway LA, Vickers TJ, Beverley SM. PTR1-dependent synthesis of tetrahydrobiopterin contributes to oxidant susceptibility in the trypanosomatid protozoan parasite Leishmania major. Curr Genet 2009; 55:287-99. [PMID: 19396443 PMCID: PMC2759280 DOI: 10.1007/s00294-009-0244-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 04/04/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Leishmania must survive oxidative stress, but lack many classical antioxidant enzymes and rely heavily on trypanothione-dependent pathways. We used forward genetic screens to recover loci mediating oxidant resistance via overexpression in Leishmania major, which identified pteridine reductase 1 (PTR1). Comparisons of isogenic lines showed ptr1 (-) null mutants were 18-fold more sensitive to H(2)O(2) than PTR1-overproducing lines, and significant three- to fivefold differences were seen with a broad panel of oxidant-inducing agents. The toxicities of simple nitric oxide generators and other drug classes (except antifolates) were unaffected by PTR1 levels. H(2)O(2) susceptibility could be modulated by exogenous biopterin but not folate, in a PTR1- but not dihydrofolate reductase-dependent manner, implicating H(4)B metabolism specifically. Neither H(2)O(2) consumption nor the level of intracellular oxidative stress was affected by PTR1 levels. Coupled with the fact that reduced pteridines are at least 100-fold less abundant than cellular thiols, these data argue strongly that reduced pteridines act through a mechanism other than scavenging. The ability of unconjugated pteridines to counter oxidative stress has implications to infectivity and response to chemotherapy. Since the intracellular pteridine levels of Leishmania can be readily manipulated, these organisms offer a powerful setting for the dissection of pteridine-dependent oxidant susceptibility in higher eukaryotes.
Collapse
Affiliation(s)
- Bakela Nare
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Levi A. Garraway
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Tim J. Vickers
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis MO 63110
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis MO 63110
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| |
Collapse
|