1
|
Singh G, Manivannan A, Pandey V, Bhatia S. Global identification of metal ion transporters in chickpea and delineating the role of CaYSL4 in orchestrating iron content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109292. [PMID: 39626526 DOI: 10.1016/j.plaphy.2024.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 02/05/2025]
Abstract
Metal ion transporters (MITs) are vital to maintain proper metal homeostasis during growth and development of plants thereby necessitating their identification and characterization. Considering the economic importance of chickpea in human nutrition, the molecular behaviour and biological functions of the metal ion transporters (MIT) encoding gene families remains highly relevant in recent times. Global identification of MITs revealed a total of 12 CAXs, 6 CTRs, 11 MGTs, 15 MTPs, 9 NRAMPs, 16 OPTs, and 14 ZIPs responsible for metal ion transport. Assessment of phylogenetic relationships, chromosomal distribution, gene structure and motif analysis of MITs suggested their diverse functions. The yellow stripe-like (YSL) family of transporters is an important family whose members have been suggested to have a role in metal ion translocation and assimilation. Expression analysis of key YSLs including CaYSL1, CaYSL4, CaYSL6 and CaYSL16 indicated their significant involvement in conferring tolerance to Fe starvation. Notable was the expression of CaYSL4 that showed specific expression in flower, leaf, shoot, seed at 30 DAA and 40DAA after 7 and 10 day of Fe-deficiency treatment. It was found to be localized in the plasma membrane. RNAi-mediated silencing of CaYSL4 demonstrated its critical role in orchestrating Fe, Zn, Cu and Mn translocation in chickpea seeds. Collectively, the comprehensive analysis of MITs coupled with the functional role of CaYSL4 provides critical insight into the complex regulation of Fe ion transport and distribution that will enable breeding of nutritionally enhanced chickpea varieties.
Collapse
Affiliation(s)
- Gourav Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India.
| | - Abinaya Manivannan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India.
| | - Vimal Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India.
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India.
| |
Collapse
|
2
|
Wang L, Ju C, Han C, Yu Z, Bai MY, Wang C. The interaction of nutrient uptake with biotic and abiotic stresses in plants FA. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39783785 DOI: 10.1111/jipb.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025]
Abstract
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency. Understanding how plants maintain nutrient uptake and use efficiency under biotic and abiotic stress conditions is crucial for improving crop resilience and sustainability. This review explores the recent advancements in elucidating the mechanisms underlying nutrient uptake and utilization efficiency in plants under such stress conditions. Our aim is to offer a comprehensive perspective that can guide the breeding of stress-tolerant and nutrition-efficient crop varieties, ultimately contributing to the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhenghao Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Chao ZF, Chao DY. Barriers and carriers for transition metal homeostasis in plants. PLANT COMMUNICATIONS 2024:101235. [PMID: 39731291 DOI: 10.1016/j.xplc.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/25/2024] [Indexed: 12/29/2024]
Abstract
Transition metals are types of metals with high chemical activity. They play critical roles in plant growth, development, reproduction, and environmental adaptation, as well as in human health. However, the acquisition, transport, and storage of these metals pose specific challenges due to their high reactivity and poor solubility. In addition, distinct yet interconnected apoplastic and symplastic diffusion barriers impede their movement throughout plants. To overcome these obstacles, plants have evolved sophisticated carrier systems to facilitate metal transport, relying on the tight coordination of vesicles, enzymes, metallochaperones, low-molecular-weight metal ligands, and membrane transporters for metals, ligands, and metal-ligand complexes. This review highlights recent advances in the homeostasis of transition metals in plants, focusing on the barriers to transition metal transport and the carriers that facilitate their passage through these barriers.
Collapse
Affiliation(s)
- Zhen-Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
De A, Hoang CV, Escudero V, Armas AM, Echavarri-Erasun C, González-Guerrero M, Jordá L. Combating plant diseases through transition metal allocation. THE NEW PHYTOLOGIST 2024. [PMID: 39707630 DOI: 10.1111/nph.20366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Understanding how plants fend-off invading microbes is essential for food security and the economy of large parts of the world. Consequently, a sustained and dedicated effort has been directed at unveiling how plants protect themselves from invading microbes. Major defense hormone signaling pathways have been characterized, the identity of many immune response-triggering molecules as well as many of their receptors have been determined, and the mechanisms of pathogen-host arms race are being studied. In recent years, evidence for a new layer of plant innate immunity involving transition metals has been brought forward. This would link plant metal nutrition with plant immune responses and open up possible new strategies for pathogen control involving metal fertilizers instead of pesticides. In this review, we outline our current understanding of metal-mediated plant immune response and indicate the future avenues of exploration of this topic.
Collapse
Affiliation(s)
- Aishee De
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Cuong V Hoang
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Alejandro M Armas
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Carlos Echavarri-Erasun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| |
Collapse
|
5
|
Pan L, Huang C, Li R, Li Y. The bHLH Transcription Factor PhbHLH121 Regulates Response to Iron Deficiency in Petunia hybrida. PLANTS (BASEL, SWITZERLAND) 2024; 13:3429. [PMID: 39683222 DOI: 10.3390/plants13233429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Iron (Fe) is an essential micronutrient for plants. Due to the low Fe bioavailability in cultivated soils, Fe deficiency is a widespread agricultural problem. In this study, we present the functional characterization of a petunia (Petunia hybrida) basic-helix-loop-helix transcription factor PhbHLH121 in response to Fe shortage. Real-time PCR revealed that the expression of PhbHLH121 in petunia roots and shoots was downregulated under Fe-limited conditions. CRISPR/Cas9-edited phbhlh121 mutant plants were generated to investigate the functions of PhbHLH121 in petunia. Loss-of-function of PhbHLH121 enhanced petunia tolerance to Fe deficiency. Further investigations revealed that the expression level of several structural genes involved in Fe uptake in petunia, such as IRT1 and FRO2, was higher in phbhlh121 mutants compared to that in wild-type under Fe-limited conditions, and the expression level of several genes involved in Fe storage and Fe transport, such as VTL2, FERs and ZIF1, was lower in phbhlh121 mutants compared to that in wild-type under Fe-deficient conditions. Yeast one-hybrid assays revealed that PhbHLH121 binds to the G-box element in the promoter of genes involved in Fe homeostasis. Yeast two-hybrid assays revealed that PhbHLH121 interacts with petunia bHLH IVc proteins. Taken together, PhbHLH121 plays an important role in the Fe deficiency response in petunia.
Collapse
Affiliation(s)
- Liru Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengcheng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Dutta A, Dracatos PM, Khan GA. Balancing act: The dynamic relationship between nutrient availability and plant defence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1724-1734. [PMID: 39446893 DOI: 10.1111/tpj.17098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Plants depend heavily on soil nutrients for growth, development and defence. Nutrient availability is crucial not only for sustaining vital biochemical processes but also for mounting effective defences against a diverse array of pathogens. Macronutrients such as nitrogen, phosphorus and potassium significantly influence plant defence mechanisms by providing essential building blocks for the synthesis of defence compounds, immune signalling and physiological responses like stomatal regulation. Micronutrients like zinc, copper and iron are essential for balancing reactive oxygen species and other reactive compounds in plant immune responses. Although substantial circumstantial evidence links nutrient availability to plant defence, the molecular mechanisms underlying this process have only recently started to be understood. This review focuses on summarizing recent advances in understanding the molecular mechanisms by which nitrogen, phosphorus and iron interact with plant defence mechanisms and explores the potential for engineering nutritional immunity in crops to enhance their resilience against pathogens.
Collapse
Affiliation(s)
- Arka Dutta
- La Trobe Institute of Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Peter M Dracatos
- La Trobe Institute of Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Ghazanfar Abbas Khan
- La Trobe Institute of Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
- School of Life and Environmental Sciences & Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
7
|
Khan A, Pudhuvai B, Shrestha A, Mishra AK, Shah MP, Koul B, Dey N. CRISPR-mediated iron and folate biofortification in crops: advances and perspectives. Biotechnol Genet Eng Rev 2024; 40:4138-4168. [PMID: 37092872 DOI: 10.1080/02648725.2023.2205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Micronutrient deficiency conditions, such as anemia, are the most prevalent global health problem due to inadequate iron and folate in dietary sources. Biofortification advancements can propel the rapid amelioration of nutritionally beneficial components in crops that are required to combat the adverse effects of micronutrient deficiencies on human health. To date, several strategies have been proposed to increase micronutrients in plants to improve food quality, but very few approaches have intrigued `clustered regularly interspaced short palindromic repeats' (CRISPR) modules for the enhancement of iron and folate concentration in the edible parts of plants. In this review, we discuss two important approaches to simultaneously enhance the bioavailability of iron and folate concentrations in rice endosperms by utilizing advanced CRISPR-Cas9-based technology. This includes the 'tuning of cis-elements' and 'enhancer re-shuffling' in the regulatory components of genes that play a vital role in iron and folate biosynthesis/transportation pathways. In particular, base-editing and enhancer re-installation in native promoters of selected genes can lead to enhanced accumulation of iron and folate levels in the rice endosperm. The re-distribution of micronutrients in specific plant organs can be made possible using the above-mentioned contemporary approaches. Overall, the present review discusses the possible approaches for synchronized iron and folate biofortification through modification in regulatory gene circuits employing CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Ankita Shrestha
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maulin P Shah
- Division of Applied and Environmental Microbiology, Enviro Technology Ltd, Ankleshwar, Gujarat, India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Suzuki M, Suzuki Y, Hosoda K, Namba K, Kobayashi T. The phytosiderophore analogue proline-2′-deoxymugineic acid is more efficient than conventional chelators for improving iron nutrition in maize. SOIL SCIENCE AND PLANT NUTRITION 2024; 70:435-446. [DOI: 10.1080/00380768.2024.2385401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/12/2024] [Indexed: 01/04/2025]
Affiliation(s)
| | - Yutaro Suzuki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | | | - Kosuke Namba
- Department of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| |
Collapse
|
9
|
Senoura T, Nozoye T, Yuki R, Yamamoto M, Maeda K, Sato-Izawa K, Ezura H, Itai RN, Bashir K, Masuda H, Kobayashi T, Nakanishi H, Nishizawa NK. Molecular-based characterization and bioengineering of Sorghum bicolor to enhance iron deficiency tolerance in iron-limiting calcareous soils. PLANT MOLECULAR BIOLOGY 2024; 114:117. [PMID: 39448407 DOI: 10.1007/s11103-024-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear. Here, we explored the sorghum genome to identify genes involved in iron uptake and translocation. Iron deficiency-responsive gene expression was comparable to that in other graminaceous plants. A nicotianamine synthase gene, SbNAS1, was induced in response to iron deficiency, and SbNAS1 showed enzyme activity. Sorghum secreted 2'-deoxymugineic acid and other phytosiderophores under iron deficiency, but their levels were relatively low. Intercropping of sorghum with barley or rice rescued iron deficiency symptoms of sorghum. To produce bioengineered sorghum with enhanced tolerance to iron deficiency, we introduced four cassettes into sorghum: 35S promoter-OsIRO2 for activation of iron acquisition-related gene expression, SbIRT1 promoter-Refre1/372 for enhanced ferric-chelate reductase activity, and barley IDS3, and HvNAS1 genomic fragments for enhanced production of phytosiderophores and nicotianamine. The resultant single sorghum line exhibited enhanced secretion of phytosiderophores, increased ferric-chelate reductase activity, and improved iron uptake and leaf greenness compared with non-transformants under iron-limiting conditions. Similar traits were also conferred to rice by introducing the four cassettes. Moreover, these rice lines showed similar or better tolerance in calcareous soils and increased grain iron accumulation compared with previous rice lines carrying two or three comparable cassettes. These results provide a molecular basis for the bioengineering of sorghum tolerant of low iron availability in calcareous soils.
Collapse
Affiliation(s)
- Takeshi Senoura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Tomoko Nozoye
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Center for Liberal Arts, Meiji Gakuin University, 1518 Kamikurata-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8539, Japan
| | - Rintaro Yuki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Mayu Yamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Keisuke Maeda
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Kanna Sato-Izawa
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Setagaya, Japan
| | - Hiroshi Ezura
- Insitute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Reiko Nakanishi Itai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Khurram Bashir
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hiroshi Masuda
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Shimoshinjo-Nakano, Akita, 010-0195, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| |
Collapse
|
10
|
Zhang P, Li J, Li T, Li X, Lu Y, Wu J. Transcriptome analysis of potassium-mediated cadmium accumulation in sweet sorghum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109064. [PMID: 39191042 DOI: 10.1016/j.plaphy.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Cadmium (Cd) pollution in the soil is a serious environmental issue worldwide. Phytoextraction of Cd-polluted soil is a cost-effective, sustainable and environmentally-friendly strategy. Agricultural fertilizer management is beneficial for promoting the Cd phytoremediation efficiency. Potassium (K) is the nutrient required in the largest amount cation by plants. Sweet sorghum exhibits a substantial phytoremediation potential of Cd-polluted soil. Clarifying the mechanism of K-mediated Cd accumulation in sweet sorghum is imperative. Sweet sorghum plants were grown hydroponically with an extra K supply in the presence or absence of Cd treatment. An extra K application significantly increased plant growth under non-Cd addition, while K lost the profitable effect under Cd stress. K supplementation remarkably enhanced Cd concentrations and Cd accumulation in shoots and roots of sweet sorghum. Transcriptome analysis demonstrated that zinc ion transport, cysteine and methionine metabolism, flavonoid biosynthesis and phenylpropanoid biosynthesis pathways might contribute to the increased Cd accumulation as affected by an extra K supply. Furthermore, SbZIP9, SbSTP8, SbYS1, SbMAG and SbFOMT-like were targeted as they closely correlated with both plant growth and Cd stress in sweet sorghum. SbFOMT-like showed an independent pathway, while SbZIP9, SbSTP8, SbYS1 and SbMAG displayed positive correlations mutually. Notably, SbZIP9 and SbFOMT-like were highly expressed when compared with other target genes. Taken together, SbZIP9 and SbFOMT-like were upregulated and downregulated by an extra K supply under Cd stress, suggesting that SbZIP9 and SbFOMT-like enhances and declines Cd accumulation as regulated by K addition in sweet sorghum respectively.
Collapse
Affiliation(s)
- Pan Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Juan Li
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources of the People's Republic of China, Xi'an, 710075, China
| | - Ting Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Xiaoxiao Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yuan Lu
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China.
| |
Collapse
|
11
|
Carey-Fung O, Beasley JT, Broad RC, Hellens RP, Johnson AAT. Discovery of a conserved translationally repressive upstream open reading frame within the iron-deficiency response regulator IDEF2. BMC PLANT BIOLOGY 2024; 24:891. [PMID: 39343926 PMCID: PMC11440899 DOI: 10.1186/s12870-024-05473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Iron (Fe) deficiency affects 30-50% of the world's population. Genetic biofortification of staple crops is a promising strategy for improving human nutrition, but the number of effective precision breeding targets for Fe biofortification is small. Upstream open reading frames (uORFs) are cis-regulatory elements within the 5' leader sequence (LS) of genes that generally repress translation of the main open reading frame (mORF). RESULTS We aligned publicly available rice (Oryza sativa L.) ribo-seq datasets and transcriptomes to identify putative uORFs within important Fe homeostasis genes. A dual luciferase assay (DLA) was used to determine whether these uORFs cause repression of mORF translation and pinpoint LS regions that can be mutated for mORF derepression. A translationally repressive uORF region was identified in two positive regulators of the Fe-deficiency response: IDEF1 and IDEF2. The IDEF2-uORF peptide was highly conserved among monocots and a mutation series in the 5' LS of the wheat (Triticum aestivum L.) TaIDEF2-A1 gene demonstrated variable mORF derepression. CONCLUSIONS Together these results reveal a possible regulatory mechanism by which IDEF2 transcription factors modulate the Fe deficiency response in monocots, and highlight novel precision breeding targets to improve crop nutrition and abiotic stress tolerance.
Collapse
Affiliation(s)
- Oscar Carey-Fung
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jesse T Beasley
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ronan C Broad
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | | | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
12
|
Feiz L, Shyu C, Wu S, Ahern KR, Gull I, Rong Y, Artymowicz CJ, Piñeros MA, Fei Z, Brutnell TP, Jander G. COI1 F-box proteins regulate DELLA protein levels, growth, and photosynthetic efficiency in maize. THE PLANT CELL 2024; 36:3237-3259. [PMID: 38801745 PMCID: PMC11371192 DOI: 10.1093/plcell/koae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
The F-box protein Coronatine Insensitive (COI) is a receptor for the jasmonic acid signaling pathway in plants. To investigate the functions of the 6 maize (Zea mays) COI proteins (COI1a, COI1b, COI1c, COI1d, COI2a, and COI2b), we generated single, double, and quadruple loss-of-function mutants. The pollen of the coi2a coi2b double mutant was inviable. The coi1 quadruple mutant (coi1-4x) exhibited shorter internodes, decreased photosynthesis, leaf discoloration, microelement deficiencies, and accumulation of DWARF8 and/or DWARF9, 2 DELLA family proteins that repress the gibberellic acid (GA) signaling pathway. Coexpression of COI and DELLA in Nicotiana benthamiana showed that the COI proteins trigger proteasome-dependent DELLA degradation. Many genes that are downregulated in the coi1-4x mutant are GA-inducible. In addition, most of the proteins encoded by the downregulated genes are predicted to be bundle sheath- or mesophyll-enriched, including those encoding C4-specific photosynthetic enzymes. Heterologous expression of maize Coi genes in N. benthamiana showed that COI2a is nucleus-localized and interacts with maize jasmonate zinc-finger inflorescence meristem domain (JAZ) proteins, the canonical COI repressor partners. However, maize COI1a and COI1c showed only partial nuclear localization and reduced binding efficiency to the tested JAZ proteins. Together, these results show the divergent functions of the 6 COI proteins in regulating maize growth and defense pathways.
Collapse
Affiliation(s)
- Leila Feiz
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Christine Shyu
- Crop Genome Editing, Regulatory Science, Bayer Crop Science, Chesterfield, MO 63017, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Kevin R Ahern
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Iram Gull
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Ying Rong
- KWS Gateway Research Center, St. Louis, MO 63132, USA
| | | | - Miguel A Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
13
|
Yousaf N, Sardar MF, Ishfaq M, Yu B, Zhong Y, Zaman F, Zhang F, Zou C. Insights in to iron-based nanoparticles (hematite and magnetite) improving the maize growth (Zea mays L.) and iron nutrition with low environmental impacts. CHEMOSPHERE 2024; 362:142781. [PMID: 38972262 DOI: 10.1016/j.chemosphere.2024.142781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The possible potential application of Fe-NPs on Fe nutrition, heavy metals uptake and soil microbial community needs to be investigated. In the current research, a pot experiment was used to examine the implications of Fe-NPs (α-Fe2O3 and Fe3O4) on maize growth, Fe uptake and transportation, soil microbial community, and environmental risk. Fe3O4, α-Fe2O3, FeSO4 at a rate of 800 mg Fe kg-1 were applied in soils with four replications under a completely randomized design for a period of 60 days. Results showed that Fe uptake by maize roots were increased by 107-132% than control, with obvious variations across different treatments (Fe3O4> α-Fe2O3> FeSO4> control). Similarly, plant height, leaf surface area, and biomass were increased by 40-64%, 52-91% and 38-109% respectively, with lower values by FeSO4 application. The elevated level of chlorophyll contents and carotenoids and significant effects with control on antioxidant enzymes activities (i.e., catalase, and superoxide dismutase) suggested that application of Fe-NPs improved overall biochemical processes. The differential expression of important Fe transporters (i.e., ZmYS1 and ZmFER1) as compared to control indicated the plant strategic response for efficient uptake and distribution of Fe. Importantly, Fe-NPs reduced the heavy metals uptake (i.e., chromium, cadmium, arsenic, nickel, copper) by complex formation, and showed no toxicity to the soil microbial community. In summary, the application of Fe-NPs can be a promising approach for improving crop productivity and Fe nutrition without negatively affecting soil microbial community, and fostering sustainable agricultural production.
Collapse
Affiliation(s)
- Nauman Yousaf
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Muhammad Ishfaq
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518061, China
| | - Baogang Yu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Faisal Zaman
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Chunqin Zou
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
14
|
Wu S, Qi Y, Guo Y, Zhu Q, Pan W, Wang C, Sun H. The role of iron materials in the abiotic transformation and biotransformation of polybrominated diphenyl ethers (PBDEs): A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134594. [PMID: 38754233 DOI: 10.1016/j.jhazmat.2024.134594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs), widely used as flame retardants, easily enter the environment, thus posing environmental and health risks. Iron materials play a key role during the migration and transformation of PBDEs. This article reviews the processes and mechanisms of adsorption, degradation, and biological uptake and transformation of PBDEs affected by iron materials in the environment. Iron materials can effectively adsorb PBDEs through hydrophobic interactions, π-π interactions, hydrogen/halogen bonds, electrostatic interactions, coordination interactions, and pore filling interactions. In addition, they are beneficial for the photodegradation, reduction debromination, and advanced oxidation degradation and debromination of PBDEs. The iron material-microorganism coupling technology affects the uptake and transformation of PBDEs. In addition, iron materials can reduce the uptake of PBDEs in plants, affecting their bioavailability. The species, concentration, and size of iron materials affect plant physiology. Overall, iron materials play a bidirectional role in the biological uptake and transformation of PBDEs. It is necessary to strengthen the positive role of iron materials in reducing the environmental and health risks caused by PBDEs. This article provides innovative ideas for the rational use of iron materials in controlling the migration and transformation of PBDEs in the environment.
Collapse
Affiliation(s)
- Sai Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yaxin Guo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Weijie Pan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Zhu H, Wang J, Huang R, Yang Z, Fan W, Huang L, Yang J, Chen W. Epigenetic modification of a pectin methylesterase gene activates apoplastic iron reutilization in tomato roots. PLANT PHYSIOLOGY 2024; 195:2339-2353. [PMID: 38506490 DOI: 10.1093/plphys/kiae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/21/2024]
Abstract
Iron (Fe) distribution and reutilization are crucial for maintaining Fe homeostasis in plants. Here, we demonstrate that the tomato (Solanum lycopersicum) Colorless nonripening (Cnr) epimutant exhibits increased Fe retention in cell wall pectin due to an increase in pectin methylesterase (PME) activity. This ultimately leads to Fe deficiency responses even under Fe-sufficient conditions when compared to the wild type (WT). Whole-genome bisulfite sequencing revealed that modifications to cell wall-related genes, especially CG hypermethylation in the intron region of PECTIN METHYLESTERASE53 (SlPME53), are involved in the Cnr response to Fe deficiency. When this intron hypermethylation of SlPME53 was artificially induced in WT, we found that elevated SlPME53 expression was accompanied by increased PME activity and increased pectin-Fe retention. The manipulation of SlPME53, either through overexpression in WT or knockdown in Cnr, influenced levels of pectin methylesterification and accumulation of apoplast Fe in roots. Moreover, CG hypermethylation mediated by METHYLTRANSFERASE1 (SlMET1) increased SlPME53 transcript abundance, resulting in greater PME activity and higher Fe retention in cell wall pectin. Therefore, we conclude that the Cnr mutation epigenetically modulates SlPME53 expression by SlMET1-mediated CG hypermethylation, and thus the capacity of the apoplastic Fe pool, creating opportunities for genetic improvement of crop mineral nutrition.
Collapse
Affiliation(s)
- Huihui Zhu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Wang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ru'nan Huang
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zheng'an Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Wei Fan
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jianli Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwei Chen
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
16
|
Ji C, Li H, Ding J, Yu L, Jiang C, Wang C, Wang S, Ding G, Shi L, Xu F, Cai H. Rice transcription factor OsWRKY37 positively regulates flowering time and grain fertility under copper deficiency. PLANT PHYSIOLOGY 2024; 195:2195-2212. [PMID: 38589996 DOI: 10.1093/plphys/kiae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 04/10/2024]
Abstract
Efficient uptake, translocation, and distribution of Cu to rice (Oryza sativa) spikelets is crucial for flowering and yield production. However, the regulatory factors involved in this process remain unidentified. In this study, we isolated a WRKY transcription factor gene induced by Cu deficiency, OsWRKY37, and characterized its regulatory role in Cu uptake and transport in rice. OsWRKY37 was highly expressed in rice roots, nodes, leaf vascular bundles, and anthers. Overexpression of OsWRKY37 promoted the uptake and root-to-shoot translocation of Cu in rice under -Cu condition but not under +Cu condition. While mutation of OsWRKY37 significantly decreased Cu concentrations in the stamen, the root-to-shoot translocation and distribution ratio in brown rice affected pollen development, delayed flowering time, decreased fertility, and reduced grain yield under -Cu condition. yeast one-hybrid, transient co-expression and EMSAs, together with in situ RT-PCR and RT-qPCR analysis, showed that OsWRKY37 could directly bind to the upstream promoter region of OsCOPT6 (copper transporter) and OsYSL16 (yellow stripe-like protein) and positively activate their expression levels. Analyses of oscopt6 mutants further validated its important role in Cu uptake in rice. Our study demonstrated that OsWRKY37 acts as a positive regulator involved in the uptake, root-to-shoot translocation, and distribution of Cu through activating the expression of OsCOPT6 and OsYSL16, which is important for pollen development, flowering, fertility, and grain yield in rice under Cu deficient conditions. Our results provide a genetic strategy for improving rice yield under Cu deficient condition.
Collapse
Affiliation(s)
- Chenchen Ji
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Haixing Li
- Department of Research and Development, Kenfeng Changjiang Seed Technology Co., Ltd., 430070 Wuhan, China
| | - Jingli Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuncang Jiang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Research Center of Microelement, Huazhong Agricultural University, Wuhan 430070, China
- Department of Soil and Plant Nutrition, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
18
|
Kayano K, Tsutsumi T, Murata Y, Ogasa C, Watanabe T, Sato R, Karanjit S, Namba K. Epoxide Ring-Opening Reactions for Abundant Production of Mugineic Acids and Nicotianamine Probes. Angew Chem Int Ed Engl 2024; 63:e202401411. [PMID: 38500479 DOI: 10.1002/anie.202401411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
A succinct synthetic approach to mugineic acids and 2'-hydroxynicotianamine was established. Unlike all other synthetic methods, this approach utilized epoxide ring-opening reactions to form two C-N bonds and is characterized by the absence of redox reactions. Mugineic acid was synthesized from three readily available fragments on a gram scale in 6 steps. The protected 2'-hydroxynicotianamine was also synthesized in 4 steps, and the dansyl group, serving as a fluorophore, was introduced through a click reaction after propargylation of the 2'-hydroxy group. The dansyl-labeled nicotianamine (NA) iron complexes were internalized by oocytes overexpressing ZmYS1 (from maize) or PAT1 (from human) transporters, indicating successful transport of the synthesized NA-probe through these transporters.
Collapse
Affiliation(s)
- Kimika Kayano
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Tomohiro Tsutsumi
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yoshiko Murata
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Chie Ogasa
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Takehiro Watanabe
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Ryota Sato
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Sangita Karanjit
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Kosuke Namba
- Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| |
Collapse
|
19
|
Li J, Chen W, Xu K, Xie W, Qi H, Tang Y, Wang S, Deng T, Morel JL, Qiu R. Fe(III) transporter OsYSL15 may play a key role in the uptake of Cr(III) in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133531. [PMID: 38447361 DOI: 10.1016/j.jhazmat.2024.133531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
Due to the widely discharge of chromium (Cr) by mining and smelting industries, etc., contamination of paddy soils and rice has become serious problems. Therefore it is crucial to explore how rice takes up Cr. Cr(III) is the most common Cr form in the long-term water flooding paddy soils. Here, we demonstrate that OsYSL15, a key gene for Fe(III) uptake, is equally applicable for Cr(III) uptake in rice. Firstly, the antagonistic effect of Cr(III) and Fe(III) in the uptake process was found. Rice could accumulate more Cr(III) under Fe-deficient conditions. And the Fe(III) content in the protoplasts of rice root cells gradually decreased with the increase exposure of Cr(III). Knockdown of OsYSL15 in rice significantly reduced the Cr(III) uptake rate. Compared with wild type rice, the accumulation of Cr(III) in OsYSL15 mutant was decreased by 40.7%- 70.6% after gene editing. These results indicate that OsYSL15 is a key gene responsible for Cr(III) uptake in rice, which can guide the screening or genetic modification for low-Cr-accumulation rice varieties.
Collapse
Affiliation(s)
- Jingjing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wenzhen Chen
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kairan Xu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Xie
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hua Qi
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jean-Louis Morel
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Laboratoire Sols et Environnement, INRAE-Université de Lorraine, Vandoeuvre-lès-Nancy F-54518, France
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
20
|
Sharma M, Tisarum R, Kohli RK, Batish DR, Cha-Um S, Singh HP. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. PLANTA 2024; 259:130. [PMID: 38647733 DOI: 10.1007/s00425-024-04368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world. Saline-alkaline stress, which occurs in an environment with high concentrations of salts and a high pH, negatively impacts plant metabolism to a greater extent than either stress alone. Of late, saline stress has been the focus of the majority of investigations, and saline-alkaline mixed studies are largely lacking. Therefore, a thorough understanding and integration of how plants and crops rewire metabolic pathways to repair damage caused by saline-alkaline stress is of particular interest. This review discusses the multitude of resistance mechanisms that plants develop to cope with saline-alkaline stress, including morphological and physiological adaptations as well as molecular regulation. We examine the role of various ion transporters, transcription factors (TFs), differentially expressed genes (DEGs), microRNAs (miRNAs), or quantitative trait loci (QTLs) activated under saline-alkaline stress in achieving opportunistic modes of growth, development, and survival. The review provides a background for understanding the transport of micronutrients, specifically iron (Fe), in conditions of iron deficiency produced by high pH. Additionally, it discusses the role of calcium in enhancing stress tolerance. The review highlights that to encourage biomolecular architects to reconsider molecular responses as auxiliary for developing tolerant crops and raising crop production, it is essential to (a) close the major gaps in our understanding of saline-alkaline resistance genes, (b) identify and take into account crop-specific responses, and (c) target stress-tolerant genes to specific crops.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Department of Environmental Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160014, India
- Amity University, Mohali Campus, Sector 82A, Mohali, 140306, Punjab, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
21
|
Kabir AH, Bennetzen JL. Molecular insights into the mutualism that induces iron deficiency tolerance in sorghum inoculated with Trichoderma harzianum. Microbiol Res 2024; 281:127630. [PMID: 38295681 DOI: 10.1016/j.micres.2024.127630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Iron (Fe) deficiency is a common mineral stress in plants, including sorghum. Although the soil fungus Trichoderma harzianum has been shown to mitigate Fe deficiency in some circumstances, neither the range nor mechanism(s) of this process are well understood. In this study, high pH-induced Fe deficiency in sorghum cultivated in pots with natural field soil exhibited a significant decrease in biomass, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and Fe-uptake in both the root and shoot. However, the establishment of T. harzianum colonization in roots of Fe-deprived sorghum showed significant improvements in morpho-physiological traits, Fe levels, and redox status. Molecular detection of the fungal ThAOX1 (L-aminoacid oxidase) gene showed the highest colonization of T. harzianum in the root tips of Fe-deficient sorghum, a location thus targeted for further analysis. Expression studies by RNA-seq and qPCR in sorghum root tips revealed a significant upregulation of several genes associated with Fe uptake (SbTOM2), auxin synthesis (SbSAURX15), nicotianamine synthase 3 (SbNAS3), and a phytosiderophore transporter (SbYS1). Also induced was the siderophore synthesis gene (ThSIT1) in T. harzianum, a result supported by biochemical evidence for elevated siderophore and IAA (indole acetic acid) levels in roots. Given the high affinity of fungal siderophore to chelate insoluble Fe3+ ions, it is likely that elevated siderophore released by T. harzianum led to Fe(III)-siderophore complexes in the rhizosphere that were then transported into roots by the induced SbYS1 (yellow-stripe 1) transporter. In addition, the observed induction of several plant peroxidase genes and ABA (abscisic acid) under Fe deficiency after inoculation with T. harzianum may have helped induce tolerance to Fe-deficiency-induced oxidative stress and adaptive responses. This is the first mechanistic explanation for T. harzianum's role in helping alleviate Fe deficiency in sorghum and suggests that biofertilizers using T. harzianum will improve Fe availability to crops in high pH environments.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, LA 71209, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
22
|
Jia W, Guo Z, Lv S, Lin K, Li Y. SbYS1 and SbWRKY72 regulate Cd tolerance and accumulation in sweet sorghum. PLANTA 2024; 259:100. [PMID: 38536457 DOI: 10.1007/s00425-024-04388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
MAIN CONCLUSION SbYS1 and its upstream transcription factor SbWRKY72 were involved in Cd tolerance and accumulation and are valuable for developing sweet sorghum germplasm with high-Cd tolerance or accumulation ability through genetic manipulation. Cadmium (Cd) is highly toxic and can severely affect human health. Sweet sorghum, as an energy crop, shows great potential in extracting cadmium from Cd-contaminated soils. However, its molecular mechanisms of Cd-tolerance and -accumulation remain largely unknown. Here, we isolated a YSL family gene SbYS1 from the sweet sorghum genotype with high Cd accumulation ability and the expression of SbYS1 in roots was induced by cadmium. GUS staining experiment exhibited that SbYS1 was expressed in the epidermis and parenchyma tissues of roots. Further subcellular localization analysis suggested that SbYS1 was localized in the endoplasmic reticulum and plasma membrane. Yeast transformed with SbYS1 exhibited a sensitive phenotype compared to the control when exposed to Cd-NA (chelates of cadmium and nicotianamine), indicating that SbYS1 may absorb cadmium in the form of Cd-NA. Arabidopsis overexpressing SbYS1 had a longer root length and accumulated less Cd in roots and shoots. SbWRKY72 bound to the promoter of SbYS1 and negatively regulated the expression of SbYS1. Transgenic Arabidopsis of SbWRKY72 showed higher sensitivity to cadmium and increased cadmium accumulation in roots. Our results provide references for improving the phytoremediation efficiency of sweet sorghum by genetic manipulation in the future.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 401122, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
23
|
DeLoose M, Cho H, Bouain N, Choi I, Prom-U-Thai C, Shahzad Z, Zheng L, Rouached H. PDR9 allelic variation and MYB63 modulate nutrient-dependent coumarin homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1716-1727. [PMID: 38361338 DOI: 10.1111/tpj.16678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Plant roots release phytochemicals into the soil environment to influence nutrient availability and uptake. Arabidopsis thaliana roots release phenylpropanoid coumarins in response to iron (Fe) deficiency, likely to enhance Fe uptake and improve plant health. This response requires sufficient phosphorus (P) in the root environment. Nonetheless, the regulatory interplay influencing coumarin production under varying availabilities of Fe and P is not known. Through genome-wide association studies, we have pinpointed the influence of the ABC transporter G family member, PDR9, on coumarin accumulation and trafficking (homeostasis) under combined Fe and P deficiency. We show that genetic variation in the promoter of PDR9 regulates its expression in a manner associated with coumarin production. Furthermore, we find that MYB63 transcription factor controls dedicated coumarin production by regulating both COUMARIN SYNTHASE (COSY) and FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) expression while orchestrating secretion through PDR9 genes under Fe and P combined deficiency. This integrated approach illuminates the intricate connections between nutrient signaling pathways in coumarin response mechanisms.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Nadia Bouain
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48823, USA
| | - Ilyeong Choi
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | - Zaigham Shahzad
- Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
24
|
Paffrath V, Tandron Moya YA, Weber G, von Wirén N, Giehl RFH. A major role of coumarin-dependent ferric iron reduction in strategy I-type iron acquisition in Arabidopsis. THE PLANT CELL 2024; 36:642-664. [PMID: 38016103 PMCID: PMC10896297 DOI: 10.1093/plcell/koad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
Many non-graminaceous species release various coumarins in response to iron (Fe) deficiency. However, the physiological relevance of these coumarins remains poorly understood. Here, we show that the three enzymes leading to sideretin biosynthesis co-exist in Arabidopsis (Arabidopsis thaliana) epidermal and cortical cells and that the shift to fraxetin at alkaline pH depends on MYB72-mediated repression of CYTOCHROME P450, FAMILY 82, SUBFAMILY C, POLYPEPTIDE 4 (CYP82C4). In vitro, only fraxetin and sideretin can reduce part of the Fe(III) that they mobilize. We demonstrate that coumarin-mediated Fe(III) reduction is critical under acidic conditions, as fraxetin and sideretin can complement the Fe(III)-chelate reductase mutant ferric reduction oxidase 2 (fro2), and disruption of coumarin biosynthesis in fro2 plants impairs Fe acquisition similar to in the Fe(II) uptake-deficient mutant iron-regulated transporter 1 (irt1). Disruption of sideretin biosynthesis in a fro2 cyp82C4-1 double mutant revealed that sideretin is the dominant chemical reductant that functions with FRO2 to mediate Fe(II) formation for root uptake. At alkaline pH, Fe(III) reduction by coumarins becomes almost negligible but fraxetin still sustains high Fe(III) mobilization, suggesting that its main function is to provide chelated Fe(III) for FRO2. Our study indicates that strategy-I plants link sideretin and fraxetin biosynthesis and secretion to external pH to recruit distinct coumarin chemical activities to maximize Fe acquisition according to prevailing soil pH conditions.
Collapse
Affiliation(s)
- Vanessa Paffrath
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Yudelsy A Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Günther Weber
- Leibniz-Institut für Analytische Wissenschaften (ISAS) e.V., Bunsen-Kirchhoff-Str 11, 44139 Dortmund, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Ricardo F H Giehl
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| |
Collapse
|
25
|
Zhu J, Li J, Hu X, Wang J, Fang J, Wang S, Shou H. Role of transcription factor complex OsbHLH156-OsIRO2 in regulating manganese, copper, and zinc transporters in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1112-1127. [PMID: 37935444 DOI: 10.1093/jxb/erad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) are essential micronutrients that are necessary for plant growth and development, but can be toxic at supra-optimal levels. Plants have evolved a complex homeostasis network that includes uptake, transport, and storage of these metals. It was shown that the transcription factor (TF) complex OsbHLH156-OsIRO2 is activated under Fe deficient conditions and acts as a central regulator on Strategy II Fe acquisition. In this study, the role of the TF complex on Mn, Cu, and Zn uptake was evaluated. While Fe deficiency led to significant increases in shoot Mn, Cu, and Zn concentrations, the increases of these divalent metal concentrations were significantly suppressed in osbhlh156 and osiro2 mutants, suggesting that the TF complex plays roles on Mn, Cu, and Zn uptake and transport. An RNA-sequencing assay showed that the genes associated with Mn, Cu, and Zn uptake and transport were significantly suppressed in the osbhlh156 and osiro2 mutants. Transcriptional activation assays demonstrated that the TF complex could directly bind to the promoters of OsIRT1, OsYSL15, OsNRAMP6, OsHMA2, OsCOPT1/7, and OsZIP5/9/10, and activate their expression. In addition, the TF complex is required to activate the expression of nicotianamine (NA) and 2'-deoxymugineic acid (DMA) synthesis genes, which in turn facilitate the uptake and transport of Mn, Cu, and Zn. Furthermore, OsbHLH156 and OsIRO2 promote Cu accumulation to partially restore the Fe-deficiency symptoms. Taken together, OsbHLH156 and OsIRO2 TF function as core regulators not only in Fe homeostasis, but also in Mn, Cu, and Zn accumulation.
Collapse
Affiliation(s)
- Jiamei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Hu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Fang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shoudong Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Zhejiang Lab, Hangzhou 310012, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Lab, Hangzhou 310012, China
| |
Collapse
|
26
|
Meena V, Kaur G, Joon R, Shukla V, Choudhary P, Roy JK, Singh B, Pandey AK. Transcriptome and biochemical analysis in hexaploid wheat with contrasting tolerance to iron deficiency pinpoints multi-layered molecular process. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108336. [PMID: 38245990 DOI: 10.1016/j.plaphy.2024.108336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Iron (Fe) is an essential plant nutrient that is indispensable for many physiological activities. This study is an effort to identify the molecular and biochemical basis of wheat genotypes with contrasting tolerance towards Fe deficiency. Our physiological experiments performed at the early growth stage in cv. Kanchan (KAN) showed Fe deficiency tolerance, whereas cv. PBW343 (PBW) was susceptible. Under Fe deficient condition, KAN showed delayed chlorosis, high SPAD values, and low malondialdehyde content compared to PBW, indicative of Fe deficient condition. Comparative shoot transcriptomics revealed increased expression of photosynthetic pathway genes in PBW, further suggesting its sensitivity to Fe fluctuations. Under Fe deficiency, both the cultivars showed distinct molecular re-arrangements such as high expression of genes involved in Fe uptake (including membrane transporters) and its remobilization. Specifically, in KAN these changes lead to high root phytosiderophores (PS) biosynthesis and its release, resulting in enhanced Fe translocation index. Utilizing the non-transgenic TILLING (Targeting Induced Lesions in Genomes) technology, we identified TaZIFL4.2D as a putative PS efflux transporter. Characterization of the wheat TILLING lines indicated that TaZIFL4.2 functions in PS release and Fe acquisition, thereby imparting tolerance to Fe deficiency. Altogether, this work highlights the mechanistic insight into Fe deficiency tolerance of hexaploid wheat, thus enabling breeders to select suitable genotypes to utilize nutrients for maximum yields.
Collapse
Affiliation(s)
- Varsha Meena
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Riya Joon
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Vishnu Shukla
- Indian Institute of Science Education and Research, Tirupati, India
| | - Promila Choudhary
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Joy K Roy
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Bhupinder Singh
- Nutrio-Physiology and Radiation Biology Laboratory, Division of Environment Science, ICAR-Indian Agriculture Research Institute, New Delhi 110012, India
| | - Ajay K Pandey
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, 140306, Punjab, India.
| |
Collapse
|
27
|
Yang S, Chen N, Qi J, Salam A, Khan AR, Azhar W, Yang C, Xu N, Wu J, Liu Y, Liu B, Gan Y. OsUGE2 Regulates Plant Growth through Affecting ROS Homeostasis and Iron Level in Rice. RICE (NEW YORK, N.Y.) 2024; 17:6. [PMID: 38212485 PMCID: PMC10784444 DOI: 10.1186/s12284-024-00685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND The growth and development of rice (Oryza sativa L.) are affected by multiple factors, such as ROS homeostasis and utilization of iron. Here, we demonstrate that OsUGE2, a gene encoding a UDP-glucose 4-epimerase, controls growth and development by regulating reactive oxygen species (ROS) and iron (Fe) level in rice. Knockout of this gene resulted in impaired growth, such as dwarf phenotype, weakened root growth and pale yellow leaves. Biochemical analysis showed that loss of function of OsUGE2 significantly altered the proportion and content of UDP-Glucose (UDP-Glc) and UDP-Galactose (UDP-Gal). Cellular observation indicates that the impaired growth may result from decreased cell length. More importantly, RNA-sequencing analysis showed that knockout of OsUGE2 significantly influenced the expression of genes related to oxidoreductase process and iron ion homeostasis. Consistently, the content of ROS and Fe are significantly decreased in OsUGE2 knockout mutant. Furthermore, knockout mutants of OsUGE2 are insensitive to both Fe deficiency and hydrogen peroxide (H2O2) treatment, which further confirmed that OsUGE2 control rice growth possibly through Fe and H2O2 signal. Collectively, these results reveal a new pathway that OsUGE2 could affect growth and development via influencing ROS homeostasis and Fe level in rice.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Nana Chen
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Jiaxuan Qi
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Chunyan Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Nuo Xu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Junyu Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, Shandong, China
| | - Bohan Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
28
|
Wang Y, Zhang X, Yan Y, Niu T, Zhang M, Fan C, Liang W, Shu Y, Guo C, Guo D, Bi Y. GmABCG5, an ATP-binding cassette G transporter gene, is involved in the iron deficiency response in soybean. FRONTIERS IN PLANT SCIENCE 2024; 14:1289801. [PMID: 38250443 PMCID: PMC10796643 DOI: 10.3389/fpls.2023.1289801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Iron deficiency is a major nutritional problem causing iron deficiency chlorosis (IDC) and yield reduction in soybean, one of the most important crops. The ATP-binding cassette G subfamily plays a crucial role in substance transportation in plants. In this study, we cloned the GmABCG5 gene from soybean and verified its role in Fe homeostasis. Analysis showed that GmABCG5 belongs to the ABCG subfamily and is subcellularly localized at the cell membrane. From high to low, GmABCG5 expression was found in the stem, root, and leaf of young soybean seedlings, and the order of expression was flower, pod, seed stem, root, and leaf in mature soybean plants. The GUS assay and qRT-PCR results showed that the GmABCG5 expression was significantly induced by iron deficiency in the leaf. We obtained the GmABCG5 overexpressed and inhibitory expressed soybean hairy root complexes. Overexpression of GmABCG5 promoted, and inhibition of GmABCG5 retarded the growth of soybean hairy roots, independent of nutrient iron conditions, confirming the growth-promotion function of GmABCG5. Iron deficiency has a negative effect on the growth of soybean complexes, which was more obvious in the GmABCG5 inhibition complexes. The chlorophyll content was increased in the GmABCG5 overexpression complexes and decreased in the GmABCG5 inhibition complexes. Iron deficiency treatment widened the gap in the chlorophyll contents. FCR activity was induced by iron deficiency and showed an extraordinary increase in the GmABCG5 overexpression complexes, accompanied by the greatest Fe accumulation. Antioxidant capacity was enhanced when GmABCG5 was overexpressed and reduced when GmABCG5 was inhibited under iron deficiency. These results showed that the response mechanism to iron deficiency is more actively mobilized in GmABCG5 overexpression seedlings. Our results indicated that GmABCG5 could improve the plant's tolerance to iron deficiency, suggesting that GmABCG5 might have the function of Fe mobilization, redistribution, and/or secretion of Fe substances in plants. The findings provide new insights into the ABCG subfamily genes in the regulation of iron homeostasis in plants.
Collapse
Affiliation(s)
- Yu Wang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Xuemeng Zhang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yuhan Yan
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Tingting Niu
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Miao Zhang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chao Fan
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Wenwei Liang
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yongjun Shu
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Changhong Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Donglin Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yingdong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
29
|
Song Z, Li S, Li Y, Zhou X, Liu X, Yang W, Chen R. Identification and characterization of yellow stripe-like genes in maize suggest their roles in the uptake and transport of zinc and iron. BMC PLANT BIOLOGY 2024; 24:3. [PMID: 38163880 PMCID: PMC10759363 DOI: 10.1186/s12870-023-04691-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Yellow Stripe-Like (YSL) proteins are involved in the uptake and transport of metal ions. They play important roles in maintaining the zinc and iron homeostasis in Arabidopsis, rice (Oryza sativa), and barley (Hordeum vulgare). However, proteins in this family have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS In this study, we identified 19 ZmYSLs in the maize genome and analyzed their structural features. The results of a phylogenetic analysis showed that ZmYSLs are homologous to YSLs of Arabidopsis and rice, and these proteins are divided into four independent branches. Although their exons and introns have structural differences, the motif structure is relatively conserved. Analysis of the cis-regulatory elements in the promoters indicated that ZmYSLs might play a role in response to hypoxia and light. The results of RNA sequencing and quantitative real-time PCR analysis revealed that ZmYSLs are expressed in various tissues and respond differently to zinc and iron deficiency. The subcellular localization of ZmYSLs in the protoplast of maize mesophyll cells showed that they may function in the membrane system. CONCLUSIONS This study provided important information for the further functional analysis of ZmYSL, especially in the spatio-temporal expression and adaptation to nutrient deficiency stress. Our findings provided important genes resources for the maize biofortification.
Collapse
Affiliation(s)
- Zizhao Song
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
30
|
Avoscan L, Lurthy T, Lherminier J, Arnould C, Loria PM, Wu TD, Guerquin-Kern JL, Pivato B, Lemaître JP, Lemanceau P, Mazurier S. Iron status and root cell morphology of Arabidopsis thaliana as modified by a bacterial ferri-siderophore. PHYSIOLOGIA PLANTARUM 2024; 176:e14223. [PMID: 38383937 DOI: 10.1111/ppl.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
We previously provided evidence for the contribution of pyoverdine to the iron nutrition of Arabidopsis. In the present article, we further analyze the mechanisms and physiology of the adaptations underlying plant iron nutrition through Fe(III)-pyoverdine (Fe(III)-pvd). An integrated approach combining microscopy and nanoscale secondary ion mass spectrometry (NanoSIMS) on plant samples was adopted to localize pyoverdine in planta and assess the impact of this siderophore on the plant iron status and root cellular morphology. The results support a possible plant uptake mechanism of the Fe(III)-pvd complex by epidermal root cells via a non-reductive process associated with the presence of more vesicles. Pyoverdine was transported to the central cylinder via the symplastic and/or trans-cellular pathway(s), suggesting a possible root-to-shoot translocation. All these processes led to enhanced plant iron nutrition, as previously shown. Overall, these findings suggest that bacterial siderophores contribute to plant iron uptake and homeostasis.
Collapse
Affiliation(s)
- Laure Avoscan
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Agroécologie, Plateforme DimaCell, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Tristan Lurthy
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jeannine Lherminier
- Agroécologie, Plateforme DimaCell, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Christine Arnould
- Agroécologie, Plateforme DimaCell, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Manuel Loria
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Ting-Di Wu
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UAR2016, Inserm US43, Multimodal Imaging Center, Orsay, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UAR2016, Inserm US43, Multimodal Imaging Center, Orsay, France
| | - Barbara Pivato
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Lemaître
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Philippe Lemanceau
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Mazurier
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
31
|
Lin L, Li Z, Wu C, Xu Y, Wang J, Lv X, Xia H, Liang D, Huang Z, Tang Y. Melatonin Promotes Iron Reactivation and Reutilization in Peach Plants under Iron Deficiency. Int J Mol Sci 2023; 24:16133. [PMID: 38003323 PMCID: PMC10671042 DOI: 10.3390/ijms242216133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The yellowing of leaves due to iron deficiency is a prevalent issue in peach production. Although the capacity of exogenous melatonin (MT) to promote iron uptake in peach plants has been demonstrated, its underlying mechanism remains ambiguous. This investigation was carried out to further study the effects of exogenous MT on the iron absorption and transport mechanisms of peach (Prunus persica) plants under iron-deficient conditions through transcriptome sequencing. Under both iron-deficient and iron-supplied conditions, MT increased the content of photosynthetic pigments in peach leaves and decreased the concentrations of pectin, hemicellulose, cell wall iron, pectin iron, and hemicellulose iron in peach plants to a certain extent. These effects stemmed from the inhibitory effect of MT on the polygalacturonase (PG), cellulase (Cx), phenylalanine ammonia-lyase (PAL), and cinnamoyl-coenzyme A reductase (CCR) activities, as well as the promotional effect of MT on the cinnamic acid-4-hydroxylase (C4H) activity, facilitating the reactivation of cell wall component iron. Additionally, MT increased the ferric-chelate reductase (FCR) activity and the contents of total and active iron in various organs of peach plants under iron-deficient and iron-supplied conditions. Transcriptome analysis revealed that the differentially expressed genes (DEGs) linked to iron metabolism in MT-treated peach plants were primarily enriched in the aminoacyl-tRNA biosynthesis pathway under iron-deficient conditions. Furthermore, MT influenced the expression levels of these DEGs, regulating cell wall metabolism, lignin metabolism, and iron translocation within peach plants. Overall, the application of exogenous MT promotes the reactivation and reutilization of iron in peach plants.
Collapse
Affiliation(s)
- Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
| | - Zhiyu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
| | - Caifang Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
- Yazhou College, Hainan University, Sanya 570228, China
| | - Yaxin Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.L.); (C.W.); (Y.X.); (J.W.); (X.L.); (H.X.); (Z.H.); (Y.T.)
| |
Collapse
|
32
|
Zhang Z, Cheng J, Wang W, Gao Y, Xian X, Li C, Wang Y. Transcription factors dealing with Iron-deficiency stress in plants: focus on the bHLH transcription factor family. PHYSIOLOGIA PLANTARUM 2023; 175:e14091. [PMID: 38148182 DOI: 10.1111/ppl.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
Iron (Fe), as an important micronutrient element necessary for plant growth and development, not only participates in multiple physiological and biochemical reactions in cells but also exerts a crucial role in respiration and photosynthetic electron transport. Since Fe is mainly present in the soil in the form of iron hydroxide, Fe deficiency exists universally in plants and has become an important factor triggering crop yield reduction and quality decline. It has been shown that transcription factors (TFs), as an important part of plant signaling pathways, not only coordinate the internal signals of different interaction partners during plant development, but also participate in plant responses to biological and abiotic stresses, such as Fe deficiency stress. Here, the role of bHLH transcription factors in the regulation of Fe homeostasis (mainly Fe uptake) is discussed with emphasis on the functions of MYB, WRKY and other TFs in the maintenance of Fe homeostasis. This review provides a theoretical basis for further studies on the regulation of TFs in Fe deficiency stress response.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jiao Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wanxia Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Cailong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
33
|
Lin Y, Amkul K, Laosatit K, Liu J, Yimram T, Chen J, Yuan X, Chen X, Somta P. Fine mapping of QTL conferring resistance to calcareous soil in mungbean reveals VrYSL3 as candidate gene for the resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111698. [PMID: 37028455 DOI: 10.1016/j.plantsci.2023.111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
Iron is a crucial nutrient for biological functions in plants. High-pH and calcareous soil is a major stress causing iron deficiency chlorosis (IDC) symptoms and yield losses in crops. Use of calcareous soil-tolerance genetic resources is the most effective preventative method to combat the effects of high-pH and calcareous soils. A previous study using a mungbean recombinant inbred line (RIL) population of the cross Kamphaeg Saen 2 (KPS2; IDC susceptible) × NM-10-12 identified a major quantitative trait locus (QTL), qIDC3.1, which controls resistance and explains more than 40% of IDC variation. In this study, we fine-mapped qIDC3.1 and identified an underlying candidate gene. A genome wide association analysis (GWAS) using 162 mungbean accessions identified single nucleotide polymorphisms (SNPs) on chromosome 6; several SNPs were associated with soil plant analysis development (SPAD) values and IDC visual scores of mungbeans planted on calcareous soil, respectively. These SNPs corresponded to qIDC3.1. Using the same RIL population as in the previous study and an advanced backcross population developed from KPS2 and IDC-resistant inbred line RIL82, qIDC3.1 was further confirmed and fine-mapped to an interval of 217 kilobases harboring five predicted genes, including LOC106764181 (VrYSL3), which encodes a yellow stripe1-like-3 (YSL3) protein, YSL3 is involved in iron deficiency resistance. Gene expression analysis revealed that VrYSL3 was highly expressed in mungbean roots. In calcareous soil, expression of VrYSL3 was significantly up-regulated, and it was more obviously upregulated in the roots of RIL82, than in those of KPS2. Sequence comparison of VrYSL3 between the RIL82 and KPS2 revealed four SNPs that result in amino acid changes in the VrYSL3 protein and a 20-bp insertion/deletion in the promoter where a cis-regulatory element resides. Transgenic Arabidopsis thaliana plants overexpressing VrYSL3 showed enhanced iron and zinc contents in the leaves. Taken together, these results indicate that VrYSL3 is a strong candidate gene responsible for calcareous soil resistance in mungbean.
Collapse
Affiliation(s)
- Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Tarika Yimram
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
34
|
Seregin IV, Kozhevnikova AD. Nicotianamine: A Key Player in Metal Homeostasis and Hyperaccumulation in Plants. Int J Mol Sci 2023; 24:10822. [PMID: 37446000 DOI: 10.3390/ijms241310822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Nicotianamine (NA) is a low-molecular-weight N-containing metal-binding ligand, whose accumulation in plant organs changes under metal deficiency or excess. Although NA biosynthesis can be induced in vivo by various metals, this non-proteinogenic amino acid is mainly involved in the detoxification and transport of iron, zinc, nickel, copper and manganese. This review summarizes the current knowledge on NA biosynthesis and its regulation, considers the mechanisms of NA secretion by plant roots, as well as the mechanisms of intracellular transport of NA and its complexes with metals, and its role in radial and long-distance metal transport. Its role in metal tolerance is also discussed. The NA contents in excluders, storing metals primarily in roots, and in hyperaccumulators, accumulating metals mainly in shoots, are compared. The available data suggest that NA plays an important role in maintaining metal homeostasis and hyperaccumulation mechanisms. The study of metal-binding compounds is of interdisciplinary significance, not only regarding their effects on metal toxicity in plants, but also in connection with the development of biofortification approaches to increase the metal contents, primarily of iron and zinc, in agricultural plants, since the deficiency of these elements in food crops seriously affects human health.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| |
Collapse
|
35
|
Zhang NC, A D, Chao YQ, Li HY, Li C, Lin QQ, Li YY, Qiu RL. Mechanism of polycyclic aromatic hydrocarbons degradation in the rhizosphere of Phragmites australis: Organic acid co-metabolism, iron-driven, and microbial response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121608. [PMID: 37044257 DOI: 10.1016/j.envpol.2023.121608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Microbial co-metabolism is crucial for the efficient biodegradation of polycyclic aromatic hydrocarbons (PAHs); however, their intrinsic mechanisms remain unclear. To explore the co-metabolic degradation of PAHs, root organic acids (ROAs) (phenolic ROAs: caffeic acid [CA] and ferulic acid [FA]; non-phenolic ROAs: oxalic acid [OA]) were exogenously added as co-metabolic substrates under high (HFe) and low (LFe) iron levels in this study. The results demonstrated that more than 90% of PAHs were eliminated from the rhizosphere of Phragmites australis. OA can promote the enrichment of unrelated degrading bacteria and non-specific dioxygenases. FA with a monohydroxy structure can activate hydroxylase; however, it relies on phytosiderophores released by plants (such as OA) to adapt to stress. Therefore, non-specific co-metabolism occurred in these units. The best performance for PAH removal was observed in the HFe-CA unit because: (a) HFe concentrations enriched the Fe-reducing and denitrifying bacteria and promoted the rate-limiting degradation for PAHs as the enzyme cofactor; (b) CA with a dihydroxyl structure enriched the related degrading bacteria, stimulated specific dioxygenase, and activated Fe to concentrate around the rhizosphere simultaneously to perform the specific co-metabolism. Understanding the co-metabolic degradation of PAHs will help improve the efficacy of rhizosphere-mediated remediation.
Collapse
Affiliation(s)
- Ni-Chen Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Dan A
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuan-Qing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Yan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Charles Li
- Department of Public Health, California State University, East Bay, CA, 94542, USA
| | - Qing-Qi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Ying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
36
|
Liu Y, Xiong Z, Wu W, Ling HQ, Kong D. Iron in the Symbiosis of Plants and Microorganisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1958. [PMID: 37653875 PMCID: PMC10223382 DOI: 10.3390/plants12101958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron is an essential element for most organisms. Both plants and microorganisms have developed different mechanisms for iron uptake, transport and storage. In the symbiosis systems, such as rhizobia-legume symbiosis and arbuscular mycorrhizal (AM) symbiosis, maintaining iron homeostasis to meet the requirements for the interaction between the host plants and the symbiotic microbes is a new challenge. This intriguing topic has drawn the attention of many botanists and microbiologists, and many discoveries have been achieved so far. In this review, we discuss the current progress on iron uptake and transport in the nodules and iron homeostasis in rhizobia-legume symbiosis. The discoveries with regard to iron uptake in AM fungi, iron uptake regulation in AM plants and interactions between iron and other nutrient elements during AM symbiosis are also summarized. At the end of this review, we propose prospects for future studies in this fascinating research area.
Collapse
Affiliation(s)
- Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| | - Zimo Xiong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| | - Weifeng Wu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| | - Hong-Qing Ling
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China;
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| |
Collapse
|
37
|
Molnár Z, Solomon W, Mutum L, Janda T. Understanding the Mechanisms of Fe Deficiency in the Rhizosphere to Promote Plant Resilience. PLANTS (BASEL, SWITZERLAND) 2023; 12:1945. [PMID: 37653862 PMCID: PMC10224236 DOI: 10.3390/plants12101945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 09/02/2023]
Abstract
One of the most significant constraints on agricultural productivity is the low availability of iron (Fe) in soil, which is directly related to biological, physical, and chemical activities in the rhizosphere. The rhizosphere has a high iron requirement due to plant absorption and microorganism density. Plant roots and microbes in the rhizosphere play a significant role in promoting plant iron (Fe) uptake, which impacts plant development and physiology by influencing nutritional, biochemical, and soil components. The concentration of iron accessible to these live organisms in most cultivated soil is quite low due to its solubility being limited by stable oxyhydroxide, hydroxide, and oxides. The dissolution and solubility rates of iron are also significantly affected by soil pH, microbial population, organic matter content, redox processes, and particle size of the soil. In Fe-limiting situations, plants and soil microbes have used active strategies such as acidification, chelation, and reduction, which have an important role to play in enhancing soil iron availability to plants. In response to iron deficiency, plant and soil organisms produce organic (carbohydrates, amino acids, organic acids, phytosiderophores, microbial siderophores, and phenolics) and inorganic (protons) chemicals in the rhizosphere to improve the solubility of poorly accessible Fe pools. The investigation of iron-mediated associations among plants and microorganisms influences plant development and health, providing a distinctive prospect to further our understanding of rhizosphere ecology and iron dynamics. This review clarifies current knowledge of the intricate dynamics of iron with the end goal of presenting an overview of the rhizosphere mechanisms that are involved in the uptake of iron by plants and microorganisms.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Plant Sciences, Albert Kázmér Faculty of Mosonmagyaróvár, Széchenyi István University, H-9200 Mosonmagyaróvár, Hungary
| | - Wogene Solomon
- Department of Plant Sciences, Albert Kázmér Faculty of Mosonmagyaróvár, Széchenyi István University, H-9200 Mosonmagyaróvár, Hungary
| | - Lamnganbi Mutum
- Department of Plant Sciences, Albert Kázmér Faculty of Mosonmagyaróvár, Széchenyi István University, H-9200 Mosonmagyaróvár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, H-2462 Martonvásár, Hungary
| |
Collapse
|
38
|
Li S, Zhang Y, Wu Q, Huang J, Shen RF, Zhu XF. Decrease in hemicellulose content and its retention of iron contributes to phosphorus deficiency alleviated iron deficiency in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111605. [PMID: 36702178 DOI: 10.1016/j.plantsci.2023.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The physiological and molecular mechanisms between phosphorus (P) and iron (Fe) interactions are still elusive although they have been extensively investigated. In this study, we uncovered that limiting P supply could alleviate Fe deficiency in Arabidopsis (Col-0). Under Fe deficiency, P deficiency (-Fe-P) decreased cell wall Fe accumulation in root, but elevated Fe accumulation in the shoot, implying that the reduced Fe retention in the root cell wall may contribute to the P-deficiency-alleviated Fe deficiency in the shoot. On the other hand, increasing P supply could mimic the degree of Fe deficiency in terms of the expressions of genes induced after Fe deficient treatment. The components of the root cell wall showed that there was no distinction in the pectin content and the Fe retention in pectin between -Fe and -Fe-P treatments, while hemicellulose 1 content and Fe retained in it were decreased significantly in -Fe-P treatment as compared with -Fe treatment. The time-course experiment showed that decreasing cell wall retained Fe was mainly from the corresponding decrease in hemicellulose 1 retained Fe. Furthermore, the up-regulation of IRT1 expression in -Fe-P was obviously lower than -Fe. All these suggest that the P deficiency-induced decrease of hemicellulose 1 component leads to reutilization of root cell wall Fe and improvement of Fe nutrition in shoot in Fe deficient Arabidopsis. Our results provide a novel explanation of the interplay between Fe and P in Arabidopsis.
Collapse
Affiliation(s)
- Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Yue Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210008, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China.
| |
Collapse
|
39
|
Montejano-Ramírez V, Valencia-Cantero E. Cross-Talk between Iron Deficiency Response and Defense Establishment in Plants. Int J Mol Sci 2023; 24:ijms24076236. [PMID: 37047208 PMCID: PMC10094134 DOI: 10.3390/ijms24076236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Plants are at risk of attack by various pathogenic organisms. During pathogenesis, microorganisms produce molecules with conserved structures that are recognized by plants that then initiate a defense response. Plants also experience iron deficiency. To address problems caused by iron deficiency, plants use two strategies focused on iron absorption from the rhizosphere. Strategy I is based on rhizosphere acidification and iron reduction, whereas Strategy II is based on iron chelation. Pathogenic defense and iron uptake are not isolated phenomena: the antimicrobial phenols are produced by the plant during defense, chelate and solubilize iron; therefore, the production and secretion of these molecules also increase in response to iron deficiency. In contrast, phytohormone jasmonic acid and salicylic acid that induce pathogen-resistant genes also modulate the expression of genes related to iron uptake. Iron deficiency also induces the expression of defense-related genes. Therefore, in the present review, we address the cross-talk that exists between the defense mechanisms of both Systemic Resistance and Systemic Acquired Resistance pathways and the response to iron deficiency in plants, with particular emphasis on the regulation genetic expression.
Collapse
|
40
|
Vélez-Bermúdez IC, Schmidt W. Iron sensing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145510. [PMID: 36968364 PMCID: PMC10032465 DOI: 10.3389/fpls.2023.1145510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The ease of accepting or donating electrons is the raison d'être for the pivotal role iron (Fe) plays in a multitude of vital processes. In the presence of oxygen, however, this very property promotes the formation of immobile Fe(III) oxyhydroxides in the soil, which limits the concentration of Fe that is available for uptake by plant roots to levels well below the plant's demand. To adequately respond to a shortage (or, in the absence of oxygen, a possible surplus) in Fe supply, plants have to perceive and decode information on both external Fe levels and the internal Fe status. As a further challenge, such cues have to be translated into appropriate responses to satisfy (but not overload) the demand of sink (i.e., non-root) tissues. While this seems to be a straightforward task for evolution, the multitude of possible inputs into the Fe signaling circuitry suggests diversified sensing mechanisms that concertedly contribute to govern whole plant and cellular Fe homeostasis. Here, we review recent progress in elucidating early events in Fe sensing and signaling that steer downstream adaptive responses. The emerging picture suggests that Fe sensing is not a central event but occurs in distinct locations linked to distinct biotic and abiotic signaling networks that together tune Fe levels, Fe uptake, root growth, and immunity in an interwoven manner to orchestrate and prioritize multiple physiological readouts.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Identification and Functional Analysis of Two Mitoferrins, CsMIT1 and CsMIT2, Participating in Iron Homeostasis in Cucumber. Int J Mol Sci 2023; 24:ijms24055050. [PMID: 36902490 PMCID: PMC10003640 DOI: 10.3390/ijms24055050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Mitochondria are one of the major iron sinks in plant cells. Mitochondrial iron accumulation involves the action of ferric reductase oxidases (FRO) and carriers located in the inner mitochondrial membrane. It has been suggested that among these transporters, mitoferrins (mitochondrial iron transporters, MITs) belonging to the mitochondrial carrier family (MCF) function as mitochondrial iron importers. In this study, two cucumber proteins, CsMIT1 and CsMIT2, with high homology to Arabidopsis, rice and yeast MITs were identified and characterized. CsMIT1 and CsMIT2 were expressed in all organs of the two-week-old seedlings. Under Fe-limited conditions as well as Fe excess, the mRNA levels of CsMIT1 and CsMIT2 were altered, suggesting their regulation by iron availability. Analyses using Arabidopsis protoplasts confirmed the mitochondrial localization of cucumber mitoferrins. Expression of CsMIT1 and CsMIT2 restored the growth of the Δmrs3Δmrs4 mutant (defective in mitochondrial Fe transport), but not in mutants sensitive to other heavy metals. Moreover, the altered cytosolic and mitochondrial Fe concentrations, observed in the Δmrs3Δmrs4 strain, were recovered almost to the levels of WT yeast by expressing CsMIT1 or CsMIT2. These results indicate that cucumber proteins are involved in the iron transport from the cytoplasm to the mitochondria.
Collapse
|
42
|
Krishna TPA, Ceasar SA, Maharajan T. Biofortification of Crops to Fight Anemia: Role of Vacuolar Iron Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3583-3598. [PMID: 36802625 DOI: 10.1021/acs.jafc.2c07727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plant-based foods provide all the crucial nutrients for human health. Among these, iron (Fe) is one of the essential micronutrients for plants and humans. A lack of Fe is a major limiting factor affecting crop quality, production, and human health. There are people who suffer from various health problems due to the low intake of Fe in their plant-based foods. Anemia has become a serious public health issue due to Fe deficiency. Enhancing Fe content in the edible part of food crops is a major thrust area for scientists worldwide. Recent progress in nutrient transporters has provided an opportunity to resolve Fe deficiency or nutritional problems in plants and humans. Understanding the structure, function, and regulation of Fe transporters is essential to address Fe deficiency in plants and to improve Fe content in staple food crops. In this review, we summarized the role of Fe transporter family members in the uptake, cellular and intercellular movement, and long-distance transport of Fe in plants. We draw insights into the role of vacuolar membrane transporters in the crop for Fe biofortification. We also provide structural and functional insights into cereal crops' vacuolar iron transporters (VITs). This review will help highlight the importance of VITs for improving the Fe biofortification of crops and alleviating Fe deficiency in humans.
Collapse
Affiliation(s)
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| |
Collapse
|
43
|
Singh G, Ambreen H, Jain P, Chakraborty A, Singh B, Manivannan A, Bhatia S. Comparative transcriptomic and metabolite profiling reveals genotype-specific responses to Fe starvation in chickpea. PHYSIOLOGIA PLANTARUM 2023; 175:e13897. [PMID: 36960640 DOI: 10.1111/ppl.13897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Iron deficiency is a major nutritional stress that severely impacts crop productivity worldwide. However, molecular intricacies and subsequent physiological and metabolic changes in response to Fe starvation, especially in leguminous crops like chickpea, remain elusive. In the present study, we investigated physiological, transcriptional, and metabolic reprogramming in two chickpea genotypes (H6013 and L4958) with contrasting seed iron concentrations upon Fe deficiency. Our findings revealed that iron starvation affected growth and physiological parameters of both chickpea genotypes. Comparative transcriptome analysis led to the identification of differentially expressed genes between the genotypes related to strategy I uptake, metal ions transporters, reactive oxygen species-associated genes, transcription factors, and protein kinases that could mitigate Fe deficiency. Our gene correlation network discovered several putative candidate genes like CIPK25, CKX3, WRKY50, NAC29, MYB4, and PAP18, which could facilitate the investigation of the molecular rationale underlying Fe tolerance in chickpea. Furthermore, the metabolite analysis also illustrated the differential accumulation of organic acids, amino acids and other metabolites associated with Fe mobilization in chickpea genotypes. Overall, our study demonstrated the comparative transcriptional dynamics upon Fe starvation. The outcomes of the current endeavor will enable the development of Fe deficiency tolerant chickpea cultivars.
Collapse
Affiliation(s)
- Gourav Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Heena Ambreen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Priyanka Jain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Anirban Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Abinaya Manivannan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
44
|
Phillips SH, Donaher SE, Powell BA, Tharayil N, Martinez NE. The Influence of Iron and Ligand Type on Plutonium Uptake in Two Strains of Hydroponically Grown Corn ( Zea Mays ). HEALTH PHYSICS 2023; 124:97-105. [PMID: 36487184 DOI: 10.1097/hp.0000000000001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This work investigates the uptake and root-shoot transport of plutonium (Pu) and iron (Fe) in corn ( Zea mays ) to gain insight into the Pu uptake pathway. Plutonium has no known biological function in plants yet may feasibly enter plants through the uptake pathway used by Fe (an essential nutrient), as these two elements have similar chemical properties. A series of experiments was conducted in which two hydroponically grown corn strains (one normal and one deficient in the transporter protein for Fe) were exposed to varying concentrations of complexed Pu and Fe. Results suggest that while Fe did inhibit Pu uptake to a certain extent, Pu was able to use alternative uptake pathways. In a 10 ppb Pu:1 ppb Fe hydroponic solution, all shoots had detectable shoot Pu concentrations compared to only 22% of plants when the Fe concentration was raised to 10 ppb. While root Pu accumulation was reduced for the corn strain deficient in the Fe transporter protein at lower Pu media concentrations, there were no differences at higher Pu concentrations, signifying the existence of substitute transport routes. A comparison of citrate and deferoxamine B (DFOB) ligand influence found that Pu complexed with DFOB remained in the roots of the plant, while movement of Pu into the shoots of the plant was more prevalent with the Pu-citrate complex. This study advances understanding of the behavior and mobility of Pu in the terrestrial environment and specifically the interactions between Pu and an essential nutrient in a common crop species.
Collapse
Affiliation(s)
| | - Sarah E Donaher
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC
| | | | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC
| | | |
Collapse
|
45
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
46
|
Chao Z, Chen Y, Ji C, Wang Y, Huang X, Zhang C, Yang J, Song T, Wu J, Guo L, Liu C, Han M, Wu Y, Yan J, Chao D. A genome-wide association study identifies a transporter for zinc uploading to maize kernels. EMBO Rep 2023; 24:e55542. [PMID: 36394374 PMCID: PMC9827554 DOI: 10.15252/embr.202255542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
The Zn content in cereal seeds is an important trait for crop production as well as for human health. However, little is known about how Zn is loaded to plant seeds. Here, through a genome-wide association study (GWAS), we identify the Zn-NA (nicotianamine) transporter gene ZmYSL2 that is responsible for loading Zn to maize kernels. High promoter sequence variation in ZmYSL2 most likely drives the natural variation in Zn concentrations in maize kernels. ZmYSL2 is specifically localized on the plasma membrane facing the maternal tissue of the basal endosperm transfer cell layer (BETL) and functions in loading Zn-NA into the BETL. Overexpression of ZmYSL2 increases the Zn concentration in the kernels by 31.6%, which achieves the goal of Zn biofortification of maize. These findings resolve the mystery underlying the loading of Zn into plant seeds, providing an efficient strategy for breeding or engineering maize varieties with enriched Zn nutrition.
Collapse
Affiliation(s)
- Zhen‐Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuan‐Yuan Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ya‐Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chu‐Ying Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Life Science, Henan UniversityKaifengChina
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jia‐Chen Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liang‐Xing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chu‐Bin Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mei‐Ling Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yong‐Rui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Dai‐Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
47
|
Krishna TPA, Maharajan T, Ceasar SA. The Role of Membrane Transporters in the Biofortification of Zinc and Iron in Plants. Biol Trace Elem Res 2023; 201:464-478. [PMID: 35182385 DOI: 10.1007/s12011-022-03159-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/11/2022] [Indexed: 01/11/2023]
Abstract
Over three billion people suffer from various health issues due to the low supply of zinc (Zn) and iron (Fe) in their food. Low supply of micronutrients is the main cause of malnutrition and biofortification could help to solve this issue. Understanding the molecular mechanisms of biofortification is challenging. The membrane transporters are involved in the uptake, transport, storage, and redistribution of Zn and Fe in plants. These transporters are also involved in biofortification and help to load the Zn and Fe into the endosperm of the seeds. Very little knowledge is available on the role and functions of membrane transporters involved in seed biofortification. Understanding the mechanism and role of membrane transporters could be helpful to improve biofortification. In this review, we provide the details on membrane transporters involved in the uptake, transport, storage, and redistribution of Zn and Fe. We also discuss available information on transporters involved in seed biofortification. This review will help plant breeders and molecular biologists understand the importance and implications of membrane transporters for seed biofortification.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India
| | - T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India.
| |
Collapse
|
48
|
Kermeur N, Pédrot M, Cabello-Hurtado F. Iron Availability and Homeostasis in Plants: A Review of Responses, Adaptive Mechanisms, and Signaling. Methods Mol Biol 2023; 2642:49-81. [PMID: 36944872 DOI: 10.1007/978-1-0716-3044-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Iron is an essential element for all living organisms, playing a major role in plant biochemistry as a redox catalyst based on iron redox properties. Iron is the fourth most abundant element of the Earth's crust, but its uptake by plants is complex because it is often in insoluble forms that are not easily accessible for plants to use. The physical and chemical speciation of iron, as well as rhizosphere activity, are key factors controlling the bioavailability of Fe. Iron can be under reduced (Fe2+) or oxidized (Fe3+) ionic forms, adsorbed onto mineral surfaces, forming complexes with organic molecules, precipitated to form poorly crystalline hydroxides to highly crystalline iron oxides, or included in crystalline Fe-rich mineral phases. Plants must thus adapt to a complex and changing iron environment, and their response is finely regulated by multiple signaling pathways initiated by a diversity of stimulus perceptions. Higher plants possess two separate strategies to uptake iron from rhizosphere soil: the chelation strategy and the reduction strategy in grass and non-grass plants, respectively. Molecular actors involved in iron uptake and mobilization through the plant have been characterized for both strategies. All these processes that contribute to iron homeostasis in plants are highly regulated in response to iron availability by downstream signaling responses, some of which are characteristic signaling signatures of iron dynamics, while others are shared with other environmental stimuli. Recent research has thus revealed key transcription factors, cis-acting elements, post-translational regulators, and other molecular mechanisms controlling these genes or their encoded proteins in response to iron availability. In addition, the most recent research is increasingly highlighting the crosstalk between iron homeostasis and nutrient response regulation. These regulatory processes help to avoid plant iron concentrations building up to potential cell functioning disruptions that could adversely affect plant fitness. Indeed, when iron is in excess in the plant, it can lead to the production and accumulation of dangerous reactive oxygen species and free radicals (H2O2, HO•, O2•-, HO•2) that can cause considerable damages to most cellular components. To cope with iron oxidative stress, plants have developed defense systems involving the complementary action of antioxidant enzymes and molecular antioxidants, safe iron-storage mechanisms, and appropriate morphological adaptations.
Collapse
Affiliation(s)
- Nolenn Kermeur
- University of Rennes, CNRS, Ecobio, UMR 6553, Rennes, France
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Mathieu Pédrot
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | | |
Collapse
|
49
|
Wu X, Wang Y, Ni Q, Li H, Wu X, Yuan Z, Xiao R, Ren Z, Lu J, Yun J, Wang Z, Li X. GmYSL7 controls iron uptake, allocation, and cellular response of nodules in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:167-187. [PMID: 36107150 DOI: 10.1111/jipb.13364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) is essential for DNA synthesis, photosynthesis and respiration of plants. The demand for Fe substantially increases during legumes-rhizobia symbiotic nitrogen fixation because of the synthesis of leghemoglobin in the host and Fe-containing proteins in bacteroids. However, the mechanism by which plant controls iron transport to nodules remains largely unknown. Here we demonstrate that GmYSL7 serves as a key regulator controlling Fe uptake from root to nodule and distribution in soybean nodules. GmYSL7 is Fe responsive and GmYSL7 transports iron across the membrane and into the infected cells of nodules. Alterations of GmYSL7 substantially affect iron distribution between root and nodule, resulting in defective growth of nodules and reduced nitrogenase activity. GmYSL7 knockout increases the expression of GmbHLH300, a transcription factor required for Fe response of nodules. Overexpression of GmbHLH300 decreases nodule number, nitrogenase activity and Fe content in nodules. Remarkably, GmbHLH300 directly binds to the promoters of ENOD93 and GmLbs, which regulate nodule number and nitrogenase activity, and represses their transcription. Our data reveal a new role of GmYSL7 in controlling Fe transport from host root to nodule and Fe distribution in nodule cells, and uncover a molecular mechanism by which Fe affects nodule number and nitrogenase activity.
Collapse
Affiliation(s)
- Xinying Wu
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongliang Wang
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaohan Ni
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haizhen Li
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuesong Wu
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanxin Yuan
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Renhao Xiao
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyin Ren
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Lu
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxia Yun
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Wang
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Li
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Road, Guangzhou, 510642, China
| |
Collapse
|
50
|
Pagani MA, Gomez-Casati DF. Advances in Iron Retrograde Signaling Mechanisms and Uptake Regulation in Photosynthetic Organisms. Methods Mol Biol 2023; 2665:121-145. [PMID: 37166598 DOI: 10.1007/978-1-0716-3183-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Iron (Fe) is an essential metal for the growth and development of different organisms, including plants and algae. This metal participates in different biological processes, among which are cellular respiration and photosynthesis. Fe is found associated with heme groups and as part of inorganic Fe-S groups as cofactors of numerous cellular proteins. Although Fe is abundant in soils, it is often not bioavailable due to soil pH. For this reason, photosynthetic organisms have developed different strategies for the uptake, the sensing of Fe intracellular levels but also different mechanisms that maintain and regulate adequate concentrations of this metal in response to physiological needs. This work focuses on discussing recent advances in the characterization of the mechanisms of Fe homeostasis and Fe retrograde signaling in photosynthetic organisms.
Collapse
Affiliation(s)
- Maria A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|