1
|
Bender MJ, Lucas CL. Decoding Immunobiology Through Genetic Errors of Immunity. Annu Rev Immunol 2025; 43:285-311. [PMID: 39952637 DOI: 10.1146/annurev-immunol-082323-124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Throughout biology, the pursuit of genotype-phenotype relationships has provided foundational knowledge upon which new concepts and hypotheses are built. Genetic perturbation, whether occurring naturally or in experimental settings, is the mainstay of mechanistic dissection in biological systems. The unbiased discovery of causal genetic lesions via forward genetics in patients who have a rare disease elucidates a particularly impactful set of genotype-phenotype relationships. Here, we review the field of genetic errors of immunity, often termed inborn errors of immunity (IEIs), in a framework aimed at highlighting the powerful real-world immunology insights provided collectively and individually by these (approximately) 500 disorders. By conceptualizing essential immune functions in a model of the adaptive arsenal of rapid defenses, we organize IEIs based on immune circuits in which sensors, relays, and executioners cooperate to carry out pathogen clearance functions in an effective yet regulated manner. We review and discuss findings from IEIs that not only reinforce known immunology concepts but also offer surprising phenotypes, prompting an opportunity to refine our understanding of immune system function.
Collapse
Affiliation(s)
- Mackenzie J Bender
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| | - Carrie L Lucas
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
2
|
Salas-Ramirez M, Lassmann M, Eberlein U. In silico analysis of radiation-induced double-strand breaks by internal ex vivo irradiation of lymphocytes for 45 alpha- and beta/gamma-emitting radionuclides. EJNMMI Res 2025; 15:21. [PMID: 40063302 PMCID: PMC11893945 DOI: 10.1186/s13550-025-01214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The aim of this study is to evaluate the induction of DNA damage by 45 radionuclides, including those used in medical applications and others relevant to radiation protection. The research focuses on understanding the differential effects of irradiating lymphocytes with beta/gamma- and alpha-emitting radionuclides using Monte Carlo simulations. A validated Monte Carlo simulation model was used to assess radiation-induced DNA damage in lymphocytes. The model integrates GATE for macroscopic radiation transport and Geant4-DNA for microscopic simulations at the cellular level. For the study, 45 radionuclides were selected and their S-values and DNA double-strand break (DSB) induction were investigated. For beta- and gamma-emitting radionuclides, DSBs per cell per mGy were quantified, while for alpha-emitters, alpha tracks per cell per mGy, DSBs per cell per mGy, and DSBs per micrometer of alpha track were calculated. RESULT For beta/gamma emitters, the lowest number of DSBs was observed with 125I at 0.006 ± 0.003 DSBs·cell⁻¹·mGy⁻¹, while 99mTc had the highest at approximately 0.015 ± 0.005 DSBs·cell⁻¹·mGy⁻¹. The S-value for lymphocyte nuclei ranked from 0.91 ± 0.14 mGy∙h⁻¹∙MBq⁻¹ (63Ni) and 1.06 ± 0.15 mGy∙h⁻¹∙MBq⁻¹ (125I) to 61.83 ± 1.17 mGy∙h⁻¹∙MBq⁻¹ (90Sr). For alpha-emitting radionuclides, 213Bi produced 0.0677 ± 0.0005 DSB·cell⁻¹·mGy⁻¹ while 232Th yielded 0.0914 ± 0.0004 DSB·cell⁻¹·mGy⁻¹. The DSB linear density for alpha tracks ranged from 7.4 ± 0.1 DSBs/µm for 252Cf to 16.8 ± 0.1 DSBs/µm for 232Th. The S-values for lymphocyte nuclei for alpha emitters varied, from 232Th (0.29 ± 0.21 Gy∙h⁻¹∙MBq⁻¹) to 227Th having the highest at 2.22 ± 0.16 Gy∙h⁻¹∙MBq⁻¹, due to cumulative energy deposition. CONCLUSIONS Differences were observed in DNA damage induced by beta/gamma- and alpha-emitting radionuclides. High-energy beta emitters induced DSBs similarly to gamma emitters, but with greater fluctuations in low-energy beta and gamma emitters due to heterogeneous energy deposition and varying interaction probabilities at the cellular level. This study highlights that long half-life alpha-emitting radionuclides may cause more extensive DNA damage due to their higher LET. This work provides a comprehensive S-values database for future experimental studies on radiation-induced DNA damage in lymphocytes.
Collapse
Affiliation(s)
- Maikol Salas-Ramirez
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Leigh DM, Vandergast AG, Hunter ME, Crandall ED, Funk WC, Garroway CJ, Hoban S, Oyler-McCance SJ, Rellstab C, Segelbacher G, Schmidt C, Vázquez-Domínguez E, Paz-Vinas I. Best practices for genetic and genomic data archiving. Nat Ecol Evol 2024; 8:1224-1232. [PMID: 38789640 DOI: 10.1038/s41559-024-02423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Genetic and genomic data are collected for a vast array of scientific and applied purposes. Despite mandates for public archiving, data are typically used only by the generating authors. The reuse of genetic and genomic datasets remains uncommon because it is difficult, if not impossible, due to non-standard archiving practices and lack of contextual metadata. But as the new field of macrogenetics is demonstrating, if genetic data and their metadata were more accessible and FAIR (findable, accessible, interoperable and reusable) compliant, they could be reused for many additional purposes. We discuss the main challenges with existing genetic and genomic data archives, and suggest best practices for archiving genetic and genomic data. Recognizing that this is a longstanding issue due to little formal data management training within the fields of ecology and evolution, we highlight steps that research institutions and publishers could take to improve data archiving.
Collapse
Affiliation(s)
- Deborah M Leigh
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
| | - Amy G Vandergast
- US Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | - Margaret E Hunter
- US Geological Survey, Wetland & Aquatic Research Center, Gainesville, FL, USA
| | - Eric D Crandall
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | | | | | | | - Chloé Schmidt
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Ivan Paz-Vinas
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Universite Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne, France
| |
Collapse
|
4
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
5
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Salas-Ramirez M, Maigne L, Fois G, Scherthan H, Lassmann M, Eberlein U. Radiation-induced double-strand breaks by internal ex vivo irradiation of lymphocytes: Validation of a Monte Carlo simulation model using GATE and Geant4-DNA. Z Med Phys 2023:S0939-3889(23)00089-2. [PMID: 37599196 DOI: 10.1016/j.zemedi.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
This study describes a method to validate a radiation transport model that quantifies the number of DNA double-strand breaks (DSB) produced in the lymphocyte nucleus by internal ex vivo irradiation of whole blood with the radionuclides 90Y, 99mTc, 123I, 131I, 177Lu, 223Ra, and 225Ac in a test vial using the GATE/Geant4 code at the macroscopic level and the Geant4-DNA code at the microscopic level. METHODS The simulation at the macroscopic level reproduces an 8 mL cylindrical water-equivalent medium contained in a vial that mimics the geometry for internal ex vivo blood irradiation. The lymphocytes were simulated as spheres of 3.75 µm radius randomly distributed, with a concentration of 125 spheres/mL. A phase-space actor was attached to each sphere to register all the entering particles. The simulation at the microscopic level for each radionuclide was performed using the Geant4-DNA tool kit, which includes the clustering example centered on a density-based spatial clustering of applications with noise (DBSCAN) algorithm. The irradiation source was constructed by generating a single phase space from the sum of all phase spaces. The lymphocyte nucleus was defined as a water sphere of a 3.1 µm radius. The absorbed dose coefficients for lymphocyte nuclei (dLymph) were calculated and compared with macroscopic whole blood absorbed dose coefficients (dBlood). The DBSCAN algorithm was used to calculate the number of DSBs. Lastly, the number of DSB∙cell-1∙mGy-1 (simulation) was compared with the number of radiation-induced foci per cell and absorbed dose (RIF∙cell-1∙mGy-1) provided by experimental data for gamma and beta emitting radionuclides. For alpha emitters, dLymph and the number of α-tracks∙100 cell-1∙mGy-1 and DBSs∙µm-1 were calculated using experiment-based thresholds for the α-track lengths and DBSs/track values. The results were compared with the results of an ex vivo study with 223Ra. RESULTS The dLymph values differed from the dBlood values by -1.0% (90Y), -5.2% (99mTc), -22.3% (123I), 0.35% (131I), 2.4% (177Lu), -5.6% (223Ra) and -6.1% (225Ac). The number of DSB∙cell-1∙mGy-1 for each radionuclide was 0.015 DSB∙cell-1∙mGy-1 (90Y), 0.012 DSB∙cell-1∙mGy-1 (99mTc), 0.014DSB∙cell-1∙mGy-1 (123I), 0.012 DSB∙cell-1∙mGy-1 (131I), and 0.016 DSB∙cell-1∙mGy-1 (177Lu). These values agree very well with experimental data. The number of α-tracks∙100 cells-1∙mGy-1 for 223Ra and 225Ac where 0.144 α-tracks∙100 cells-1∙mGy-1 and 0.151 α-tracks∙100 cells-1∙mGy-1, respectively. These values agree very well with experimental data. Moreover, the linear density of DSBs per micrometer α-track length were 11.13 ± 0.04 DSB/µm and 10.86 ± 0.06 DSB/µm for 223Ra and 225Ac, respectively. CONCLUSION This study describes a model to simulate the DNA DSB damage in lymphocyte nuclei validated by experimental data obtained from internal ex vivo blood irradiation with radionuclides frequently used in diagnostic and therapeutic procedures in nuclear medicine.
Collapse
Affiliation(s)
| | - Lydia Maigne
- Laboratoire de Physique de Clermont, University of Clermont Auvergne, Clermont, France
| | - Giovanna Fois
- Laboratoire de Physique de Clermont, University of Clermont Auvergne, Clermont, France
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Narwani TJ, Sharma G, de Brevern AG. Editorial: Flexibility in the genome and proteome: an adaptive toolkit for organisms. Front Genet 2023; 14:1229315. [PMID: 37485333 PMCID: PMC10361655 DOI: 10.3389/fgene.2023.1229315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Tarun Jairaj Narwani
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, Paris, France
| | - Gaurav Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangāreddi, Telangana, India
| | - Alexandre G. de Brevern
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, Paris, France
| |
Collapse
|
8
|
Abdullah U, Saleh N, Shaw P, Jalal N. COVID-19: The Ethno-Geographic Perspective of Differential Immunity. Vaccines (Basel) 2023; 11:319. [PMID: 36851197 PMCID: PMC9966855 DOI: 10.3390/vaccines11020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the agent behind the worst global pandemic of the 21st century (COVID-19), is primarily a respiratory-disease-causing virus called SARS-CoV-2 that is responsible for millions of new cases (incidence) and deaths (mortalities) worldwide. Many factors have played a role in the differential morbidity and mortality experienced by nations and ethnicities against SARS-CoV-2, such as the quality of primary medical health facilities or enabling economies. At the same time, the most important variable, i.e., the subsequent ability of individuals to be immunologically sensitive or resistant to the infection, has not been properly discussed before. Despite having excellent medical facilities, an astounding issue arose when some developed countries experienced higher morbidity and mortality compared with their relatively underdeveloped counterparts. Hence, this investigative review attempts to analyze the issue from an angle of previously undiscussed genetic, epigenetic, and molecular immune resistance mechanisms in correlation with the pathophysiology of SARS-CoV-2 and varied ethnicity-based immunological responses against it. The biological factors discussed here include the overall landscape of human microbiota, endogenous retroviral genes spliced into the human genome, and copy number variation, and how they could modulate the innate and adaptive immune systems that put a certain ethnic genetic architecture at a higher risk of SARS-CoV-2 infection than others. Considering an array of these factors in their entirety may help explain the geographic disparity of disease incidence, severity, and subsequent mortality associated with the disease while at the same time encouraging scientists to design new experimental approaches to investigation.
Collapse
Affiliation(s)
- Usman Abdullah
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Mang, Haripur 22621, Pakistan
| | - Ned Saleh
- Synsal Inc., San Jose, CA 95138, USA
| | - Peter Shaw
- Oujiang Lab, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| | - Nasir Jalal
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Mang, Haripur 22621, Pakistan
- Oujiang Lab, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| |
Collapse
|
9
|
Nowoshilow S, Tanaka EM. Navigation and Use of Custom Tracks within the Axolotl Genome Browser. Methods Mol Biol 2023; 2562:273-289. [PMID: 36272083 DOI: 10.1007/978-1-0716-2659-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The availability of the chromosome-scale axolotl genome sequences has made it possible to explore genome evolution, perform cross-species comparisons, and use additional sequencing data to analyze both genome-wide features and individual genes. Here, we will focus on the UCSC genome browser and demonstrate in a step-by-step manner how to use it to integrate different data to approach a broad question of the Fgf8 locus evolution and analyze the neighborhood of a gene that was reported missing in axolotl - Pax3.
Collapse
Affiliation(s)
| | - Elly M Tanaka
- Research Institute of Molecular Pathology, Vienna, Austria.
| |
Collapse
|
10
|
Abstract
Natural genetic material may shed light on gene expression mechanisms and aid in the detection of genetic disorders. Single Nucleotide Polymorphism (SNP), small insertions and deletions (indels), and major chromosomal anomalies are all chromosomal abnormality-related disorders. As a result, several methods have been applied to analyze DNA sequences, which constitutes one of the most critical aspects of biological research. Thus, numerous mathematical and algorithmic contributions have been made to DNA analysis and computing. Cost minimization, deployment, and sensitivity analysis to many factors are all components of sequencing platforms built on a quantitative framework and their operating mechanisms. This study aims to investigate the role of DNA sequencing and its representation in the form of graphs in the analysis of different diseases by means of DNA sequencing.
Collapse
|
11
|
Heritability: What's the point? What is it not for? A human genetics perspective. Genetica 2022; 150:199-208. [DOI: 10.1007/s10709-022-00149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/20/2022] [Indexed: 11/04/2022]
|
12
|
Narayanaswami P, Živković S. Molecular and Genetic Therapies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
|
14
|
Abstract
More and more, the neurosciences and the sciences concerned with mind and cognition are burying fundamental questions under layers of professional methodology. I therefore welcome Biological Cybernetics' invitation to comment on two of my papers, (von der Malsburg 1973) and (von der Malsburg and Schneider 1986) (henceforth referred to as (I) and (II)) as an opportunity to address two fundamental questions about brain and mind: How is the brain's structure generated? and How is mental content expressed by the brain's physical states? Those two questions are deeply entangled with each other and play a kind of gateway role on the way to making progress with the issues of perception, intelligence, creativity and consciousness.
Collapse
|
15
|
Wray C, Cox G, Valle D. Victor McKusick and his short course. Am J Med Genet A 2021; 185:3242-3252. [PMID: 34402580 DOI: 10.1002/ajmg.a.62435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022]
Abstract
The Short Course in Human and Mammalian Genetics and Genomics (aka the "Short Course" or the "Bar Harbor course") is one of Victor McKusick's landmark contributions to medical genetics. Conceived in 1959 as a way to increase the contribution of genetic advances to medicine, it has directly affected more than 7000 students and 600 participating faculty from around the world. Now, more than 10 years after his death, it continues to be a vibrant disseminator of genetics, and genomics knowledge for medicine, a catalytic agent for ongoing research and a source of collegiality in our field. What an extraordinary gift!
Collapse
Affiliation(s)
- Charles Wray
- Genomic Education, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Gregory Cox
- Genomic Education, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - David Valle
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Moreau CA, Raznahan A, Bellec P, Chakravarty M, Thompson PM, Jacquemont S. Dissecting autism and schizophrenia through neuroimaging genomics. Brain 2021; 144:1943-1957. [PMID: 33704401 PMCID: PMC8370419 DOI: 10.1093/brain/awab096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroimaging genomic studies of autism spectrum disorder and schizophrenia have mainly adopted a 'top-down' approach, beginning with the behavioural diagnosis, and moving down to intermediate brain phenotypes and underlying genetic factors. Advances in imaging and genomics have been successfully applied to increasingly large case-control studies. As opposed to diagnostic-first approaches, the bottom-up strategy begins at the level of molecular factors enabling the study of mechanisms related to biological risk, irrespective of diagnoses or clinical manifestations. The latter strategy has emerged from questions raised by top-down studies: why are mutations and brain phenotypes over-represented in individuals with a psychiatric diagnosis? Are they related to core symptoms of the disease or to comorbidities? Why are mutations and brain phenotypes associated with several psychiatric diagnoses? Do they impact a single dimension contributing to all diagnoses? In this review, we aimed at summarizing imaging genomic findings in autism and schizophrenia as well as neuropsychiatric variants associated with these conditions. Top-down studies of autism and schizophrenia identified patterns of neuroimaging alterations with small effect-sizes and an extreme polygenic architecture. Genomic variants and neuroimaging patterns are shared across diagnostic categories suggesting pleiotropic mechanisms at the molecular and brain network levels. Although the field is gaining traction; characterizing increasingly reproducible results, it is unlikely that top-down approaches alone will be able to disentangle mechanisms involved in autism or schizophrenia. In stark contrast with top-down approaches, bottom-up studies showed that the effect-sizes of high-risk neuropsychiatric mutations are equally large for neuroimaging and behavioural traits. Low specificity has been perplexing with studies showing that broad classes of genomic variants affect a similar range of behavioural and cognitive dimensions, which may be consistent with the highly polygenic architecture of psychiatric conditions. The surprisingly discordant effect sizes observed between genetic and diagnostic first approaches underscore the necessity to decompose the heterogeneity hindering case-control studies in idiopathic conditions. We propose a systematic investigation across a broad spectrum of neuropsychiatric variants to identify putative latent dimensions underlying idiopathic conditions. Gene expression data on temporal, spatial and cell type organization in the brain have also considerable potential for parsing the mechanisms contributing to these dimensions' phenotypes. While large neuroimaging genomic datasets are now available in unselected populations, there is an urgent need for data on individuals with a range of psychiatric symptoms and high-risk genomic variants. Such efforts together with more standardized methods will improve mechanistically informed predictive modelling for diagnosis and clinical outcomes.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte Justine Research Center, University of Montréal, Montréal, Québec H3T 1C5, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, Québec H3W 1W5, Canada
- Human Genetics and Cognitive Functions, CNRS UMR 3571, Université de Paris, Institut Pasteur, Paris, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD 20892, USA
| | - Pierre Bellec
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, Québec H3W 1W5, Canada
| | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Hospital Mental Health University Institute, Verdun, Québec H4H 1R3, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Marina del Rey, CA 90033, USA
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montréal, Montréal, Québec H3T 1C5, Canada
| |
Collapse
|
17
|
Zhou Y, Liu L, Liu Y, Zhou P, Yan Q, Yu H, Chen X, Zhu F. Implication of human endogenous retrovirus W family envelope in hepatocellular carcinoma promotes MEK/ERK-mediated metastatic invasiveness and doxorubicin resistance. Cell Death Discov 2021; 7:177. [PMID: 34238921 PMCID: PMC8266889 DOI: 10.1038/s41420-021-00562-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retrovirus (HERVs), originating from exogenous retroviral infections of germ cells millions of years ago, have the potential for human diseases. Syncytin-1, an envelope protein encoded by the HERV W family, participates in the contexts of schizophrenia, multiple sclerosis, diabetes, and several types of cancers. Nevertheless, there is no report on the expression pattern and potential mechanism of Syncytin-1 in HCC. Here we found Syncytin-1 expression was up-regulated in HCC compared to adjacent non-tumorous tissues, especially in advanced HCC. Syncytin-1 was an independent risk factor to predict vascular invasion, metastasis, larger tumor size, and poor prognosis in HCC patients. Further analysis discovered that Syncytin-1 overexpression positively associated with HCC patients with serum HBsAg positive. Functional experiments in vitro and in vivo demonstrated that Syncytin-1 enhanced cell proliferation, metastasis, and tumorigenicity in HCC. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the mitogen-activated protein kinase (MEK)/extracellular signal-regulated protein kinase (ERK) pathway was involved in HCC. Our clinical data indicated that the levels of phosphorylation MEK1/2 and ERK1/2 were increased in HCC comparing with adjacent non-tumorous tissues. It showed the linear correlation between Syncytin-1 expression and upregulated MEK1/2 and ERK1/2 phosphorylation levels in HCC. Furthermore, Syncytin-1 activated MEK/ERK pathway in HCC cells. In-depth research showed that the inflammation-activated MEK/ERK pathway was essential in Syncytin-1 promoted hepatocarcinogenesis. Syncytin-1 suppressed doxorubicin-induced apoptosis via MEK/ERK cascade. In conclusion, Syncytin-1 promoted HCC progression and doxorubicin resistance via the inflammation-activated MEK/ERK pathway. Our findings revealed that Syncytin-1 was a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
| | - Lijuan Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
| | - Youyi Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
- Wuxi School of Medicine, Jiangnan University, 214000, Wuxi, P. R. China
| | - Ping Zhou
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
| | - Qiujin Yan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
| | - Honglian Yu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China
- Department of Biochemistry and Collaborative Innovation Center, Jining Medical University, 272067, Jining, P. R. China
| | - Xiaobei Chen
- Department of Infectious Diseases, Renmin Hospital, Wuhan University, 430071, Wuhan, P. R. China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, 430071, Wuhan, P. R. China.
| |
Collapse
|
18
|
Dervan E, Bhattacharyya DD, McAuliffe JD, Khan FH, Glynn SA. Ancient Adversary - HERV-K (HML-2) in Cancer. Front Oncol 2021; 11:658489. [PMID: 34055625 PMCID: PMC8155577 DOI: 10.3389/fonc.2021.658489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Human endogenous retroviruses (HERV), ancient integrations of exogenous viruses, make up 8% of our genome. Long thought of as mere vestigial genetic elements, evidence is now accumulating to suggest a potential functional role in numerous pathologies including neurodegenerative diseases, autoimmune disorders, and multiple cancers. The youngest member of this group of transposable elements is HERV-K (HML-2). Like the majority of HERV sequences, significant post-insertional mutations have disarmed HERV-K (HML-2), preventing it from producing infectious viral particles. However, some insertions have retained limited coding capacity, and complete open reading frames for all its constituent proteins can be found throughout the genome. For this reason HERV-K (HML-2) has garnered more attention than its peers. The tight epigenetic control thought to suppress expression in healthy tissue is lost during carcinogenesis. Upregulation of HERV-K (HML-2) derived mRNA and protein has been reported in a variety of solid and liquid tumour types, and while causality has yet to be established, progressively more data are emerging to suggest this phenomenon may contribute to tumour growth and metastatic capacity. Herein we discuss its potential utility as a diagnostic tool and therapeutic target in light of the current in vitro, in vivo and clinical evidence linking HERV-K (HML-2) to tumour progression.
Collapse
Affiliation(s)
- Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Dibyangana D Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland.,Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Jake D McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Faizan H Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
19
|
Del Giudice M, Peirone S, Perrone S, Priante F, Varese F, Tirtei E, Fagioli F, Cereda M. Artificial Intelligence in Bulk and Single-Cell RNA-Sequencing Data to Foster Precision Oncology. Int J Mol Sci 2021; 22:ijms22094563. [PMID: 33925407 PMCID: PMC8123853 DOI: 10.3390/ijms22094563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Artificial intelligence, or the discipline of developing computational algorithms able to perform tasks that requires human intelligence, offers the opportunity to improve our idea and delivery of precision medicine. Here, we provide an overview of artificial intelligence approaches for the analysis of large-scale RNA-sequencing datasets in cancer. We present the major solutions to disentangle inter- and intra-tumor heterogeneity of transcriptome profiles for an effective improvement of patient management. We outline the contributions of learning algorithms to the needs of cancer genomics, from identifying rare cancer subtypes to personalizing therapeutic treatments.
Collapse
Affiliation(s)
- Marco Del Giudice
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy
| | - Serena Peirone
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Department of Physics and INFN, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
| | - Sarah Perrone
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Department of Physics, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
| | - Francesca Priante
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Department of Physics, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
| | - Fabiola Varese
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Department of Life Science and System Biology, Università degli Studi di Torino, via Accademia Albertina 13, 10123 Turin, Italy
| | - Elisa Tirtei
- Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Turin, Italy; (E.T.); (F.F.)
| | - Franca Fagioli
- Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Turin, Italy; (E.T.); (F.F.)
- Department of Public Health and Paediatric Sciences, University of Torino, 10124 Turin, Italy
| | - Matteo Cereda
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy
- Correspondence: ; Tel.: +39-011-993-3969
| |
Collapse
|
20
|
Di Francia R, Crisci S, De Monaco A, Cafiero C, Re A, Iaccarino G, De Filippi R, Frigeri F, Corazzelli G, Micera A, Pinto A. Response and Toxicity to Cytarabine Therapy in Leukemia and Lymphoma: From Dose Puzzle to Pharmacogenomic Biomarkers. Cancers (Basel) 2021; 13:cancers13050966. [PMID: 33669053 PMCID: PMC7956511 DOI: 10.3390/cancers13050966] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary In this review, the authors propose a crosswise examination of cytarabine-related issues ranging from the spectrum of clinical activity and severe toxicities, through updated cellular pharmacology and drug formulations, to the genetic variants associated with drug-induced phenotypes. Cytarabine (cytosine arabinoside; Ara-C) in multiagent chemotherapy regimens is often used for leukemia or lymphoma treatments, as well as neoplastic meningitis. Chemotherapy regimens can induce a suboptimal clinical outcome in a fraction of patients. The individual variability in clinical response to Leukemia & Lymphoma treatments among patients appears to be associated with intracellular accumulation of Ara-CTP due to genetic variants related to metabolic enzymes. The review provides exhaustive information on the effects of Ara-C-based therapies, the adverse drug reaction will also be provided including bone pain, ocular toxicity (corneal pain, keratoconjunctivitis, and blurred vision), maculopapular rash, and occasional chest pain. Evidence for predicting the response to cytarabine-based treatments will be highlighted, pointing at their significant impact on the routine management of blood cancers. Abstract Cytarabine is a pyrimidine nucleoside analog, commonly used in multiagent chemotherapy regimens for the treatment of leukemia and lymphoma, as well as for neoplastic meningitis. Ara-C-based chemotherapy regimens can induce a suboptimal clinical outcome in a fraction of patients. Several studies suggest that the individual variability in clinical response to Leukemia & Lymphoma treatments among patients, underlying either Ara-C mechanism resistance or toxicity, appears to be associated with the intracellular accumulation and retention of Ara-CTP due to genetic variants related to metabolic enzymes. Herein, we reported (a) the latest Pharmacogenomics biomarkers associated with the response to cytarabine and (b) the new drug formulations with optimized pharmacokinetics. The purpose of this review is to provide readers with detailed and comprehensive information on the effects of Ara-C-based therapies, from biological to clinical practice, maintaining high the interest of both researcher and clinical hematologist. This review could help clinicians in predicting the response to cytarabine-based treatments.
Collapse
Affiliation(s)
- Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics, 60126 Ancona, Italy;
| | - Stefania Crisci
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Angela De Monaco
- Clinical Patology, ASL Napoli 2 Nord, “S.M. delle Grazie Hospital”, 80078 Pozzuoli, Italy;
| | - Concetta Cafiero
- Medical Oncology, S.G. Moscati, Statte, 74010 Taranto, Italy
- Correspondence: or (C.C.); (A.M.); Tel.:+39-34-0101-2002 (C.C.); +39-06-4554-1191 (A.M.)
| | - Agnese Re
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Giancarla Iaccarino
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Rosaria De Filippi
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | | | - Gaetano Corazzelli
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS—Fondazione Bietti, 00184 Rome, Italy
- Correspondence: or (C.C.); (A.M.); Tel.:+39-34-0101-2002 (C.C.); +39-06-4554-1191 (A.M.)
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| |
Collapse
|
21
|
Ansari I, Chaturvedi A, Chitkara D, Singh S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol 2021; 83:570-583. [PMID: 33421620 DOI: 10.1016/j.semcancer.2020.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
The understanding of the relationship between epigenetic alterations, their effects on gene expression and the knowledge that these epigenetic alterations are reversible, have opened up new therapeutic pathways for treating various diseases, including cancer. This has led the research for a better understanding of the mechanism and pathways of carcinogenesis and provided the opportunity to develop the therapeutic approaches by targeting such pathways. Epi-drugs, DNA methyl transferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors are the best examples of epigenetic therapies with clinical applicability. Moreover, precise genome editing technologies such as CRISPR/Cas has proven their efficacy in epigenome editing, including the alteration of epigenetic markers, such as DNA methylation or histone modification. The main disadvantage with DNA gene editing technologies is off-target DNA sequence alteration, which is not an issue with epigenetic editing. It is known that cancer is linked with epigenetic alteration, and thus CRISPR/Cas system shows potential for cancer therapy via epigenome editing. This review outlines the epigenetic therapeutic approach for cancer therapy using CRISPR/Cas, from the basic understanding of cancer epigenetics to potential applications of CRISPR/Cas in treating cancer.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
| | | | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India.
| | - Saurabh Singh
- Novartis Healthcare Pvt Ltd., Hyderabad 500032, Telangana, India.
| |
Collapse
|
22
|
Yu X, Weng T, Gu C, Yang H. Comparison of gene regulatory networks to identify pathogenic genes for lymphoma. J Bioinform Comput Biol 2020; 18:2050029. [PMID: 33131362 DOI: 10.1142/s0219720020500298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lymphoma is the most complicated cancer that can be divided into several tens of subtypes. It may occur in any part of body that has lymphocytes, and is closely correlated with diverse environmental factors such as the ionizing radiation, chemocarcinogenesis, and virus infection. All the environmental factors affect the lymphoma through genes. Identifying pathogenic genes for lymphoma is consequently an essential task to understand its complexity in a unified framework. In this paper, we propose a new method to expose high-confident edges in gene regulatory networks (GRNs) for a total of 32 organs, called Filtered GRNs (f-GRNs), comparison of which gives us a proper reference for the Lymphoma, i.e. the B-lymphocytes cells, whose f-GRN is closest with that for the Lymphoma. By using the Gene Ontology and Biological Process analysis we display the differences of the two networks' hubs in biological functions. Matching with the Genecards shows that most of the hubs take part in the genetic information transmission and expression, except a specific gene of Retinoic Acid Receptor Alpha (RARA) that encodes the retinoic acid receptor. In the lymphoma, the genes in the RARA ego-network are involved in two cancer pathways, and the RARA is present only in these cancer pathways. For the lymphoid B cells, however, the genes in the RARA ego-network do not participate in cancer-related pathways.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Systems Science, University of Shanghai for Science and Technology, Jungong Road No. 516, Shanghai 200093, P. R. China
| | - Tongfeng Weng
- Department of Systems Science, University of Shanghai for Science and Technology, Jungong Road No. 516, Shanghai 200093, P. R. China
| | - Changgui Gu
- Department of Systems Science, University of Shanghai for Science and Technology, Jungong Road No. 516, Shanghai 200093, P. R. China
| | - Huijie Yang
- Department of Systems Science, University of Shanghai for Science and Technology, Jungong Road No. 516, Shanghai 200093, P. R. China
| |
Collapse
|
23
|
Abstract
Pancreatic cancer remains among the deadliest forms of cancer with a 5 year survival rate less than 10%. With increasing numbers being observed, there is an urgent need to elucidate the pathogenesis of pancreatic cancer. While both contribute to disease progression, neither genetic nor environmental factors completely explain susceptibility or pathogenesis. Defining the links between genetic and environmental events represents an opportunity to understand the pathogenesis of pancreatic cancer. Epigenetics, the study of mitotically heritable changes in genome function without a change in nucleotide sequence, is an emerging field of research in pancreatic cancer. The main epigenetic mechanisms include DNA methylation, histone modifications and RNA interference, all of which are altered by changes to the environment. Epigenetic mechanisms are being investigated to clarify the underlying pathogenesis of pancreatic cancer including an increasing number of studies examining the role as possible diagnostic and prognostic biomarkers. These mechanisms also provide targets for promising new therapeutic approaches for this devastating malignancy.
Collapse
Affiliation(s)
- Murat Toruner
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.T.); (M.E.F.-Z.)
- Department of Gastroenterology, Ankara University School of Medicine, School of Medicine, 06100 Ankara, Turkey
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.T.); (M.E.F.-Z.)
| | - Christopher L. Pin
- Departments of Paediatrics, Oncology, and Physiology and Pharmacology, University of Western Ontario, Children’s Health Research Institute, London, ON N6C 2V5, Canada
- Correspondence:
| |
Collapse
|
24
|
Heintz N, Gong S. Working with Bacterial Artificial Chromosomes (BACs) and Other High-Capacity Vectors. Cold Spring Harb Protoc 2020; 2020:2020/10/pdb.top097998. [PMID: 33004554 DOI: 10.1101/pdb.top097998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetic targeting of specific cell types is fundamentally important for modern molecular-genetic studies. The development of simple methods to engineer high-capacity vectors-in particular, bacterial artificial chromosomes (BACs)-for the preparation of transgenic lines that accurately express a gene of interest has resulted in commonplace usage of transgenic techniques in a wide variety of experimental systems. Here we provide a brief description of each of the four major types of large-capacity vectors, with a focus on the use of BAC vectors.
Collapse
|
25
|
Shaikh MH, Barrett JW, Khan MI, Kim HAJ, Zeng PYF, Mymryk JS, Nichols AC. Chromosome 3p loss in the progression and prognosis of head and neck cancer. Oral Oncol 2020; 109:104944. [PMID: 32828022 DOI: 10.1016/j.oraloncology.2020.104944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by aggressive behavior with a tendency for recurrence and metastasis. Analyses of The Cancer Genome Atlas (TCGA) data and other cohort studies suggest that the loss of the chromosomal 3p arm is a frequent genetic event observed in both human papillomavirus positive and negative HNSCC. Early molecular analyses (i.e. RFLP, CGH) identified three common regions (3p14.2, 3p21.3 and 3p25) that frequently exhibited loss of genetic material on one arm of the 3p chromosome. More recently, next generation sequencing has revealed the loss of larger regions of this arm. Here we review the role of chromosomal 3p arm loss in early initiation and progression of HNSCC, and its relationship with poor patient prognosis.
Collapse
Affiliation(s)
- Mushfiq Hassan Shaikh
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada
| | - Mohammed I Khan
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada
| | - Hugh A J Kim
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Peter Y F Zeng
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada; Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada.
| |
Collapse
|
26
|
Improved reconstruction and comparative analysis of chromosome 12 to rectify Mis-assemblies in Gossypium arboreum. BMC Genomics 2020; 21:470. [PMID: 32640982 PMCID: PMC7346634 DOI: 10.1186/s12864-020-06814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated G. arboreum was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of G. arboreum chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of G. raimondii and G. hirsutum. RESULTS In this study, we generated a high quality assembly of the 94.64 Mb length of G. arboreum chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of G. arboreum particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of G. raimondii (D_D08) and G. arboreum (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton. CONCLUSION This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.
Collapse
|
27
|
Roodgar M, Babveyh A, Nguyen LH, Zhou W, Sinha R, Lee H, Hanks JB, Avula M, Jiang L, Jian R, Lee H, Song G, Chaib H, Weissman IL, Batzoglou S, Holmes S, Smith DG, Mankowski JL, Prost S, Snyder MP. Chromosome-level de novo assembly of the pig-tailed macaque genome using linked-read sequencing and HiC proximity scaffolding. Gigascience 2020; 9:giaa069. [PMID: 32649757 PMCID: PMC7350979 DOI: 10.1093/gigascience/giaa069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/27/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Macaque species share >93% genome homology with humans and develop many disease phenotypes similar to those of humans, making them valuable animal models for the study of human diseases (e.g., HIV and neurodegenerative diseases). However, the quality of genome assembly and annotation for several macaque species lags behind the human genome effort. RESULTS To close this gap and enhance functional genomics approaches, we used a combination of de novo linked-read assembly and scaffolding using proximity ligation assay (HiC) to assemble the pig-tailed macaque (Macaca nemestrina) genome. This combinatorial method yielded large scaffolds at chromosome level with a scaffold N50 of 127.5 Mb; the 23 largest scaffolds covered 90% of the entire genome. This assembly revealed large-scale rearrangements between pig-tailed macaque chromosomes 7, 12, and 13 and human chromosomes 2, 14, and 15. We subsequently annotated the genome using transcriptome and proteomics data from personalized induced pluripotent stem cells derived from the same animal. Reconstruction of the evolutionary tree using whole-genome annotation and orthologous comparisons among 3 macaque species, human, and mouse genomes revealed extensive homology between human and pig-tailed macaques with regards to both pluripotent stem cell genes and innate immune gene pathways. Our results confirm that rhesus and cynomolgus macaques exhibit a closer evolutionary distance to each other than either species exhibits to humans or pig-tailed macaques. CONCLUSIONS These findings demonstrate that pig-tailed macaques can serve as an excellent animal model for the study of many human diseases particularly with regards to pluripotency and innate immune pathways.
Collapse
Affiliation(s)
- Morteza Roodgar
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, 265 Campus Dr., Stanford University, Stanford, CA 94305, USA
| | - Afshin Babveyh
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - Lan H Nguyen
- Institute for computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Wenyu Zhou
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, 3165 Porter Dr. Palo Alto, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, 265 Campus Dr., Stanford University, Stanford, CA 94305, USA
| | - Hayan Lee
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - John B Hanks
- Stanford Research Computing Center, Stanford University, Stanford, CA 94305, USA
| | - Mohan Avula
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - Lihua Jiang
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
| | - Hoyong Lee
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Giltae Song
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Hassan Chaib
- Stanford Center for Genomics and Personalized Medicine, Stanford University, 3165 Porter Dr. Palo Alto, CA 94305, USA
| | - Irv L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, 265 Campus Dr., Stanford University, Stanford, CA 94305, USA
| | - Serafim Batzoglou
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - David G Smith
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberg 25, 60325 Frankfurt am Main, Germany
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, 0184, South Africa
| | - Michael P Snyder
- Department of Genetics, 300 Pasteur Dr, Stanford University, Stanford, CA 94305, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, 3165 Porter Dr. Palo Alto, CA 94305, USA
| |
Collapse
|
28
|
Abstract
BACKGROUND Postoperative nausea and vomiting (PONV) is the most frequent side effect following anaesthesia. Predisposition to developing PONV is multifactorial with patient risk factors and anaesthetic techniques both being contributory. However, there is also a genetic susceptibility to PONV, and several studies have aimed to identify polymorphisms contributing to a genetic PONV risk. OBJECTIVE We summarised previous published studies investigating genetic contribution to PONV risk. DESIGN Systematic review without meta-analysis. DATA SOURCE We searched MEDLINE until June 2019. ELIGIBILITY CRITERIA Articles were chosen for review when PONV and polymorphisms were included. Exclusion criteria were reviews/meta-analysis/comments, articles not in the English language, nonappropriate content (e.g. PONV not as primary aim of the study, study investigated opioid-induced nausea) or if articles were pharmacogenetic studies addressing treatment of PONV. RESULTS A total of 59 studies were screened and 14 articles were reviewed including one genome-wide association study (GWAS). Seven studies were performed in East Asians, and seven in Caucasians. Seventeen polymorphisms have been positively associated with PONV in at least one study. Allele frequency of the investigated polymorphisms differs widely between the ethnicities. Furthermore, the anaesthesia regimen and the postoperative time point at which the association with PONV was reported were quite different. Only two polymorphisms, the CHRM3 rs2165870 and the KCNB2 rs349358 (both first associated with PONV in a GWAS), have been significantly associated with PONV incidence in Caucasians in independent studies. CONCLUSION There is a genetic susceptibility to the development of PONV. Two single nucleotide polymorphisms (SNPs), the CHRM3 rs2165870 and the KCNB2 rs349358 SNP, seem to have a major influence on PONV incidence, at least in Caucasians. Both SNPs were primarily identified in a GWAS and this association may lead to a better understanding of the disease aetiology. Further high-quality studies are needed to reveal more insights in genetic PONV susceptibility, particularly so in non-Caucasian ethnicities.
Collapse
|
29
|
Van Nostrand EL, Pratt GA, Yee BA, Wheeler EC, Blue SM, Mueller J, Park SS, Garcia KE, Gelboin-Burkhart C, Nguyen TB, Rabano I, Stanton R, Sundararaman B, Wang R, Fu XD, Graveley BR, Yeo GW. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol 2020; 21:90. [PMID: 32252787 PMCID: PMC7137325 DOI: 10.1186/s13059-020-01982-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/03/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A critical step in uncovering rules of RNA processing is to study the in vivo regulatory networks of RNA binding proteins (RBPs). Crosslinking and immunoprecipitation (CLIP) methods enable mapping RBP targets transcriptome-wide, but methodological differences present challenges to large-scale analysis across datasets. The development of enhanced CLIP (eCLIP) enabled the mapping of targets for 150 RBPs in K562 and HepG2, creating a unique resource of RBP interactomes profiled with a standardized methodology in the same cell types. RESULTS Our analysis of 223 eCLIP datasets reveals a range of binding modalities, including highly resolved positioning around splicing signals and mRNA untranslated regions that associate with distinct RBP functions. Quantification of enrichment for repetitive and abundant multicopy elements reveals 70% of RBPs have enrichment for non-mRNA element classes, enables identification of novel ribosomal RNA processing factors and sites, and suggests that association with retrotransposable elements reflects multiple RBP mechanisms of action. Analysis of spliceosomal RBPs indicates that eCLIP resolves AQR association after intronic lariat formation, enabling identification of branch points with single-nucleotide resolution, and provides genome-wide validation for a branch point-based scanning model for 3' splice site recognition. Finally, we show that eCLIP peak co-occurrences across RBPs enable the discovery of novel co-interacting RBPs. CONCLUSIONS This work reveals novel insights into RNA biology by integrated analysis of eCLIP profiling of 150 RBPs with distinct functions. Further, our quantification of both mRNA and other element association will enable further research to identify novel roles of RBPs in regulating RNA processing.
Collapse
Affiliation(s)
- Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samuel S Park
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Keri E Garcia
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chelsea Gelboin-Burkhart
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Thai B Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ines Rabano
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rebecca Stanton
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Balaji Sundararaman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ruth Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
30
|
Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J, Li C, Muehlbauer GJ, Schulman AH, Waugh R, Braumann I, Pozniak C, Scholz U, Mayer KFX, Spannagl M, Stein N, Mascher M. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol 2019; 20:284. [PMID: 31849336 DOI: 10.1101/631648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/25/2019] [Indexed: 05/29/2023] Open
Abstract
Chromosome-scale genome sequence assemblies underpin pan-genomic studies. Recent genome assembly efforts in the large-genome Triticeae crops wheat and barley have relied on the commercial closed-source assembly algorithm DeNovoMagic. We present TRITEX, an open-source computational workflow that combines paired-end, mate-pair, 10X Genomics linked-read with chromosome conformation capture sequencing data to construct sequence scaffolds with megabase-scale contiguity ordered into chromosomal pseudomolecules. We evaluate the performance of TRITEX on publicly available sequence data of tetraploid wild emmer and hexaploid bread wheat, and construct an improved annotated reference genome sequence assembly of the barley cultivar Morex as a community resource.
Collapse
Affiliation(s)
- Cécile Monat
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Lux
- PGSB - Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Heidrun Gundlach
- PGSB - Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jennifer Ens
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Chengdao Li
- Western Barley Genetics Alliance, School of Veterinary and Life Sciences (VLS), Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Center for Grain Industry/School of Agriculture, Yangtze University, Jingzhou, China
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics & Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Alan H Schulman
- Green Technology, Natural Resources Institute (Luke), Viikki Plant Science Centre, and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Robbie Waugh
- The James Hutton Institute, Dundee, UK
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Curtis Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus F X Mayer
- PGSB - Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Manuel Spannagl
- PGSB - Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Department of Crop Sciences, Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen, Germany.
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
31
|
Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J, Li C, Muehlbauer GJ, Schulman AH, Waugh R, Braumann I, Pozniak C, Scholz U, Mayer KFX, Spannagl M, Stein N, Mascher M. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol 2019; 20:284. [PMID: 31849336 PMCID: PMC6918601 DOI: 10.1186/s13059-019-1899-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022] Open
Abstract
Chromosome-scale genome sequence assemblies underpin pan-genomic studies. Recent genome assembly efforts in the large-genome Triticeae crops wheat and barley have relied on the commercial closed-source assembly algorithm DeNovoMagic. We present TRITEX, an open-source computational workflow that combines paired-end, mate-pair, 10X Genomics linked-read with chromosome conformation capture sequencing data to construct sequence scaffolds with megabase-scale contiguity ordered into chromosomal pseudomolecules. We evaluate the performance of TRITEX on publicly available sequence data of tetraploid wild emmer and hexaploid bread wheat, and construct an improved annotated reference genome sequence assembly of the barley cultivar Morex as a community resource.
Collapse
Affiliation(s)
- Cécile Monat
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Lux
- PGSB - Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Heidrun Gundlach
- PGSB - Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jennifer Ens
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Chengdao Li
- Western Barley Genetics Alliance, School of Veterinary and Life Sciences (VLS), Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Center for Grain Industry/School of Agriculture, Yangtze University, Jingzhou, China
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics & Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Alan H Schulman
- Green Technology, Natural Resources Institute (Luke), Viikki Plant Science Centre, and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Robbie Waugh
- The James Hutton Institute, Dundee, UK
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Curtis Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus F X Mayer
- PGSB - Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Manuel Spannagl
- PGSB - Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Department of Crop Sciences, Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen, Germany.
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
32
|
Zhang X, Wu R, Wang Y, Yu J, Tang H. Unzipping haplotypes in diploid and polyploid genomes. Comput Struct Biotechnol J 2019; 18:66-72. [PMID: 31908732 PMCID: PMC6938933 DOI: 10.1016/j.csbj.2019.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/18/2022] Open
Abstract
Diploid genomes consist of two homologous copies of chromosomes with one from each parent while polyploid genomes contain more than two homologous sets of chromosomes. Most of the reference genome assemblies collapsed haplotypes that represent 'mosaic' sequences, ignoring allelic variants that may be involved in important cellular and biological functions. Unzipping haplotypes into distinct sets of sequences has been a growing trend in recent genome studies, as it is an essential tool towards resolving important clinical and biological questions, such as compound heterozygotes, heterosis, and evolution. Herein, we review existing methods for alignment-based and assembly-based haplotype phasing for heterozygous diploid and polyploid genomes, as well as recent advances of experimental approaches for improved genome phasing. We anticipate that full haplotype phasing could become a routine procedure in genome studies in the near future.
Collapse
Affiliation(s)
- Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruoxi Wu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Yu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Corresponding author.
| |
Collapse
|
33
|
Abstract
The placenta is essential for normal in utero development in mammals. In humans, defective placental formation underpins common pregnancy disorders such as pre-eclampsia and fetal growth restriction. The great variation in placental types across mammals means that animal models have been of limited use in understanding human placental development. However, new tools for studying human placental development, including 3D organoids, stem cell culture systems and single cell RNA sequencing, have brought new insights into this field. Here, we review the morphological, molecular and functional aspects of human placental formation, with a focus on the defining cell of the placenta - the trophoblast.
Collapse
Affiliation(s)
- Margherita Y Turco
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
34
|
Khalyfa A, Sanz-Rubio D. Genetics and Extracellular Vesicles of Pediatrics Sleep Disordered Breathing and Epilepsy. Int J Mol Sci 2019; 20:ijms20215483. [PMID: 31689970 PMCID: PMC6862182 DOI: 10.3390/ijms20215483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Sleep remains one of the least understood phenomena in biology, and sleep disturbances are one of the most common behavioral problems in childhood. The etiology of sleep disorders is complex and involves both genetic and environmental factors. Epilepsy is the most popular childhood neurological condition and is characterized by an enduring predisposition to generate epileptic seizures, and the neurobiological, cognitive, psychological, and social consequences of this condition. Sleep and epilepsy are interrelated, and the importance of sleep in epilepsy is less known. The state of sleep also influences whether a seizure will occur at a given time, and this differs considerably for various epilepsy syndromes. The development of epilepsy has been associated with single or multiple gene variants. The genetics of epilepsy is complex and disorders exhibit significant genetic heterogeneity and variability in the expressivity of seizures. Phenobarbital (PhB) is the most widely used antiepileptic drug. With its principal mechanism of action to prolong the opening time of the γ-aminobutyric acid (GABA)-A receptor-associated chloride channel, it enhances chloride anion influx into neurons, with subsequent hyperpolarization, thereby reducing excitability. Enzymes that metabolize pharmaceuticals including PhB are well known for having genetic polymorphisms that contribute to adverse drug–drug interactions. PhB metabolism is highly dependent upon the cytochrome P450 (CYP450) and genetic polymorphisms can lead to variability in active drug levels. The highly polymorphic CYP2C19 isozymes are responsible for metabolizing a large portion of routinely prescribed drugs and variants contribute significantly to adverse drug reactions and therapeutic failures. A limited number of CYP2C19 single nucleotide polymorphisms (SNPs) are involved in drug metabolism. Extracellular vesicles (EVs) are circular membrane fragments released from the endosomal compartment as exosomes are shed from the surfaces of the membranes of most cell types. Increasing evidence indicated that EVs play a pivotal role in cell-to-cell communication. Theses EVs may play an important role between sleep, epilepsy, and treatments. The discovery of exosomes provides potential strategies for the diagnosis and treatment of many diseases including neurocognitive deficit. The aim of this study is to better understand and provide further knowledge about the metabolism and interactions between phenobarbital and CYP2C19 polymorphisms in children with epilepsy, interplay between sleep, and EVs. Understanding this interplay between epilepsy and sleep is helpful in the optimal treatment of all patients with epileptic seizures. The use of genetics and extracellular vesicles as precision medicine for the diagnosis and treatment of children with sleep disorder will improve the prognosis and the quality of life in patients with epilepsy.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Section of Sleep Medicine, The University of Chicago, Chicago, IL 60637, USA.
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| | - David Sanz-Rubio
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| |
Collapse
|
35
|
|
36
|
Zhang YH. Digital heart for life. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:291-293. [PMID: 31496865 PMCID: PMC6717791 DOI: 10.4196/kjpp.2019.23.5.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Yin Hua Zhang
- Department of Physiology & Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,University Hospital Research Center, Yanbian University Hospital, Yanji, Jilin Province 133000, China.,Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
37
|
Deakin JE, Potter S, O'Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T. Chromosomics: Bridging the Gap between Genomes and Chromosomes. Genes (Basel) 2019; 10:genes10080627. [PMID: 31434289 PMCID: PMC6723020 DOI: 10.3390/genes10080627] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
The recent advances in DNA sequencing technology are enabling a rapid increase in the number of genomes being sequenced. However, many fundamental questions in genome biology remain unanswered, because sequence data alone is unable to provide insight into how the genome is organised into chromosomes, the position and interaction of those chromosomes in the cell, and how chromosomes and their interactions with each other change in response to environmental stimuli or over time. The intimate relationship between DNA sequence and chromosome structure and function highlights the need to integrate genomic and cytogenetic data to more comprehensively understand the role genome architecture plays in genome plasticity. We propose adoption of the term 'chromosomics' as an approach encompassing genome sequencing, cytogenetics and cell biology, and present examples of where chromosomics has already led to novel discoveries, such as the sex-determining gene in eutherian mammals. More importantly, we look to the future and the questions that could be answered as we enter into the chromosomics revolution, such as the role of chromosome rearrangements in speciation and the role more rapidly evolving regions of the genome, like centromeres, play in genome plasticity. However, for chromosomics to reach its full potential, we need to address several challenges, particularly the training of a new generation of cytogeneticists, and the commitment to a closer union among the research areas of genomics, cytogenetics, cell biology and bioinformatics. Overcoming these challenges will lead to ground-breaking discoveries in understanding genome evolution and function.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| | - Sally Potter
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
- Australian Museum Research Institute, Australian Museum, 1 William St Sydney, NSW 2010, Australia
| | - Rachel O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Marcelo B Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, 1 William St Sydney, NSW 2010, Australia
| | - Kichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan
| | - Jennifer A Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
- School of Life Sciences, LaTrobe University, Melbourne, VIC 3168, Australia
| | - Darren Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michail Rovatsos
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics & Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart 7000, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| |
Collapse
|
38
|
Løset M, Brown SJ, Saunes M, Hveem K. Genetics of Atopic Dermatitis: From DNA Sequence to Clinical Relevance. Dermatology 2019; 235:355-364. [PMID: 31203284 DOI: 10.1159/000500402] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is a complex disease that is thought to be triggered by environmental factors in genetically susceptible individuals. Twin studies have estimated the heritability of AD to be approximately 75%, with the null (loss-of-function) mutations of the gene encoding filaggrin (FLG) (chromosome 1q21.3) as the strongest known genetic risk factor. The discovery of the filaggrin gene was important in the emerging model for AD pathogenesis, combining skin barrier function with adaptive and innate immunity. Assisted by the recent development of large-scale high-throughput genomics, more than 30 genetic loci have been linked to AD across different populations. Identification of these loci, together with functional studies, has already provided new insights into disease biology and identified novel drug targets. Further, these susceptibility loci are laying the groundwork for phenome-wide association studies to test their multiple phenotype relationships and application of Mendelian randomization to investigate causal relationships. Despite many known genes, a majority of the genetic risk for AD is yet unexplored. Therefore, studies investigating refined phenotype groups, low-frequency and rare genetic variation, gene-gene and/or gene-environment interactions, epigenetic mechanisms and data from multi-omics technologies are warranted. In this review, we describe genetic discoveries for AD, including results from candidate gene studies, studies of AD-like genetic diseases, genome-wide association studies and genetic sequencing studies. We explain how some of these genetic discoveries have unraveled new mechanistic insights into the pathogenesis of AD and exemplify how personal genetic data could be used for preventive strategies and a tailored treatment regimen (i.e., precision medicine).
Collapse
Affiliation(s)
- Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway, .,Department of Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway,
| | - Sara J Brown
- Skin Research Group, School of Medicine, University of Dundee, Dundee, United Kingdom.,Department of Dermatology, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Marit Saunes
- Department of Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The purpose of this review was to summarize recent advances in the genomics of type 2 diabetes (T2D) and to highlight current initiatives to advance precision health. RECENT FINDINGS Generation of multi-omic data to measure each of the "biologic layers," developments in describing genomic function and annotation in T2D relevant tissue, along with the increasing recognition that T2D is a heterogeneous disease, and large-scale collaborations have all contributed to advancing our understanding of the molecular basis of T2D. Substantial advances have been made in understanding the molecular basis of T2D pathogenesis, such that precision health diabetes is increasingly becoming a reality. For precision diabetes to become a routine in clinical and public health, additional large-scale multi-omic initiatives are needed along with better assessment of our environment to delineate an individual's diabetes subtype for improved detection and management.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Jennifer Wessel
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Diabetes Translational Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
40
|
Abstract
Treatment outcomes for acute lymphoblastic leukemia (ALL), especially pediatric ALL, have greatly improved due to the risk-adapted therapy. Combination of drug development, clinical practice, as well as basic genetic researches has brought the survival rate of ALL from less than 10% to more than 90% today, not only increasing the treatment efficacy but also limiting adverse drug reactions (ADRs). In this review, we summarized the landscape identification of ALL genetic alterations, which provided the opportunity to increase the survival rate and especially minimize the relapse risk of ALL, and highlighted the importance of the development of new technologies of genomic investigation for translational medicine.
Collapse
|
41
|
Ahmad S, Fatima SS, Rukh G, Smith CE. Gene Lifestyle Interactions With Relation to Obesity, Cardiometabolic, and Cardiovascular Traits Among South Asians. Front Endocrinol (Lausanne) 2019; 10:221. [PMID: 31024458 PMCID: PMC6465946 DOI: 10.3389/fendo.2019.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/20/2019] [Indexed: 01/05/2023] Open
Abstract
The rapid rise of obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) during the last few decades among South Asians has been largely attributed to a major shift in lifestyles including physical inactivity, unhealthy dietary patterns, and an overall pattern of sedentary lifestyle. Genetic predisposition to these cardiometabolic risk factors may have interacted with these obesogenic environments in determining the higher cardiometabolic disease prevalence. Based on the premise that gene-environment interactions cause obesity and cardiometabolic diseases, we systematically searched the literature and considered the knowledge gaps that future studies might fulfill. We identified only seven published studies that focused specifically on gene-environment interactions for cardiometabolic traits in South Asians, most of which were limited by relatively small sample and lack of replication. Some studies reported that the differences in metabolic response to higher physical activity and low caloric diet might be modified by genetic risk related to these cardiometabolic traits. Although studies on gene lifestyle interactions in cardiometabolic traits report significant interactions, future studies must focus on more precise assessment of lifestyle factors, investigation of a larger set of genetic variants and the application of powerful statistical methods to facilitate translatable approaches. Future studies should also be integrated with findings both using mechanistic studies through laboratory settings and randomized clinical trials for clinical outcomes.
Collapse
Affiliation(s)
- Shafqat Ahmad
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
- Preventive Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- *Correspondence: Shafqat Ahmad
| | - Syeda Sadia Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Gull Rukh
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Caren E. Smith
- Nutrition and Genomics Laboratory, Jean Mayer U. S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| |
Collapse
|
42
|
Jarosławski S, Toumi M. Non-profit drug research and development: the case study of Genethon. JOURNAL OF MARKET ACCESS & HEALTH POLICY 2018; 7:1545514. [PMID: 30479703 PMCID: PMC6249613 DOI: 10.1080/20016689.2018.1545514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/09/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Non-profit drug research and development (R&D) has the potential to deliver innovative treatments at affordable prices. Using the case study methodology, we discuss some ethical and economic issues, including the possible impact of non-profit companies on innovation efforts from for-profit firms. Like other non-profits, Genethon is willing to adopt an ethical attitude toward their donors by pricing their products affordably. It remains to be seen if the approach to internalize the marketing authorization, manufacturing and distribution activities prove to be efficient and sustainable. Also, the firm faces an ethical dilemma because lower prices of innovative drugs can dry the for-profit R&D in the area and prevent patient access to future innovations.
Collapse
Affiliation(s)
- Szymon Jarosławski
- Public Health Department – Research Unit EA 3279, Aix-Marseille University, Marseille, France
| | - Mondher Toumi
- Public Health Department – Research Unit EA 3279, Aix-Marseille University, Marseille, France
| |
Collapse
|
43
|
Oldoni F, Kidd KK, Podini D. Microhaplotypes in forensic genetics. Forensic Sci Int Genet 2018; 38:54-69. [PMID: 30347322 DOI: 10.1016/j.fsigen.2018.09.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/28/2023]
Abstract
Microhaplotype loci (microhaps, MHs) are a novel type of molecular marker of less than 300 nucleotides, defined by two or more closely linked SNPs associated in multiple allelic combinations. The value of these markers is enhanced by massively parallel sequencing (MPS), which allows the sequencing of both parental haplotypes at each of the many multiplexed loci. This review describes the features of these multi-SNP markers and documents their value in forensic genetics, focusing on individualization, biogeographic ancestry inference, and mixture deconvolution. Foreseeable applications also include missing person identification, relationship testing, and medical diagnostic applications. The technique is not restricted to humans.
Collapse
Affiliation(s)
- Fabio Oldoni
- Department of Forensic Sciences, The George Washington University, 2100 Foxhall Road NW, Washington, DC, 20007, United States
| | - Kenneth K Kidd
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, New Haven, CT, 06520, United States
| | - Daniele Podini
- Department of Forensic Sciences, The George Washington University, 2100 Foxhall Road NW, Washington, DC, 20007, United States.
| |
Collapse
|
44
|
Thomsen SK, Raimondo A, Hastoy B, Sengupta S, Dai XQ, Bautista A, Censin J, Payne AJ, Umapathysivam MM, Spigelman AF, Barrett A, Groves CJ, Beer NL, Manning Fox JE, McCarthy MI, Clark A, Mahajan A, Rorsman P, MacDonald PE, Gloyn AL. Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nat Genet 2018; 50:1122-1131. [PMID: 30054598 PMCID: PMC6237273 DOI: 10.1038/s41588-018-0173-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human β-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in β-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.
Collapse
Affiliation(s)
- Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Vertex Pharmaceuticals Europe Ltd, Milton Park, Abingdon, UK
| | - Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- National Health and Medical Research Council, Canberra, Australia
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Xiao-Qing Dai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anthony J Payne
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
45
|
Genome sequence comparison between Chinese hamster ovary (CHO) DG44 cells and mouse using end sequences of CHO BAC clones based on BAC-FISH results. Cytotechnology 2018; 70:1399-1407. [PMID: 29987698 DOI: 10.1007/s10616-018-0233-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/16/2018] [Indexed: 11/26/2022] Open
Abstract
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology as a mammalian host cell platform for expressing genes of interest. Previously, we constructed a detailed physical chromosomal map of the CHO DG44 cell line by fluorescence in situ hybridization (FISH) imaging using 303 bacterial artificial chromosome (BAC) clones as hybridization probes (BAC-FISH). BAC-FISH results revealed that the two longest chromosomes were completely paired. However, other chromosomes featured partial deletions or rearrangements. In this study, we determined the end sequences of 303 BAC clones (BAC end sequences), which were used for BAC-FISH probes. Among 606 BAC-end sequences (BESs) (forward and reverse ends), 558 could be determined. We performed a comparison between all determined BESs and mouse genome sequences using NCBI BLAST. Among these 558 BESs, 465 showed high homology to mouse chromosomal sequences. We analyzed the locations of these BACs in chromosomes of the CHO DG44 cell line using a physical chromosomal map. From the obtained results, we investigated the regional similarities among CHO chromosomes (A-T) and mouse chromosomes (1-19 and sex) about 217 BESs (46.7% of 465 high homologous BESs). Twenty-three specific narrow regions in 13 chromosomes of the CHO DG44 cell line showed high homology to mouse chromosomes, but most of other regions did not show significant correlations with the mouse genome. These results contribute to accurate alignments of chromosomes of Chinese hamster and its genome sequence, analysis of chromosomal instability in CHO cells, and the development of target locations for gene and/or genome editing techniques.
Collapse
|
46
|
Abstract
Defects in chromatin modifiers and remodelers have been described both for hematological and solid malignancies, corroborating and strengthening the role of epigenetic aberrations in the etiology of cancer. Furthermore, epigenetic marks-DNA methylation, histone modifications, chromatin remodeling, and microRNA-can be considered potential markers of cancer development and progression. Here, we review whether altered epigenetic landscapes are merely a consequence of chromatin modifier/remodeler aberrations or a hallmark of cancer etiology. We critically evaluate current knowledge on causal epigenetic aberrations and examine to what extent the prioritization of (epi)genetic deregulations can be assessed in cancer as some type of genetic lesion characterizing solid cancer progression. We also discuss the multiple challenges in developing compounds targeting epigenetic enzymes (named epidrugs) for epigenetic-based therapies. The implementation of acquired knowledge of epigenetic biomarkers for patient stratification, together with the development of next-generation epidrugs and predictive models, will take our understanding and use of cancer epigenetics in diagnosis, prognosis, and treatment of cancer patients to a new level.
Collapse
Affiliation(s)
- Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli," Napoli, Italy
| | - Francesco Paolo Tambaro
- Struttura Semplice Dipartimentale Trapianto di Midollo Osseo-Azienda Ospedialiera di Rilievo Nazionale, Santobono-Pausilipon, Napoli, Italy
| | - Carmela Dell'Aversana
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli," Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli," Napoli, Italy
| |
Collapse
|
47
|
Cost-effective high-throughput single-haplotype iterative mapping and sequencing for complex genomic structures. Nat Protoc 2018; 13:787-809. [PMID: 29565902 DOI: 10.1038/nprot.2018.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The reference sequences of structurally complex regions can be obtained only through highly accurate clone-based approaches. We and others have successfully used single-haplotype iterative mapping and sequencing (SHIMS) 1.0 to assemble structurally complex regions across the sex chromosomes of several vertebrate species and to allow for targeted improvements to the reference sequences of human autosomes. However, SHIMS 1.0 is expensive and time consuming, requiring resources that only a genome center can provide. Here we introduce SHIMS 2.0, an improved SHIMS protocol that allows even a small laboratory to generate high-quality reference sequence from complex genomic regions. Using a streamlined and parallelized library-preparation protocol, and taking advantage of inexpensive high-throughput short-read-sequencing technologies, a small laboratory with both molecular biology and bioinformatics experience can sequence and assemble 192 large-insert bacterial artificial chromosome (BAC) or fosmid clones in 1 week. In SHIMS 2.0, in contrast to other pooling strategies, each clone is sequenced with a unique barcode, thus enabling clones containing nearly identical sequences to be multiplexed in a single sequencing run and assembled separately. Relative to SHIMS 1.0, SHIMS 2.0 decreases the required cost and time by two orders of magnitude while preserving high sequencing accuracy.
Collapse
|
48
|
Salina EA, Nesterov MA, Frenkel Z, Kiseleva AA, Timonova EM, Magni F, Vrána J, Šafář J, Šimková H, Doležel J, Korol A, Sergeeva EM. Features of the organization of bread wheat chromosome 5BS based on physical mapping. BMC Genomics 2018; 19:80. [PMID: 29504906 PMCID: PMC5836826 DOI: 10.1186/s12864-018-4470-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. RESULTS A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. CONCLUSION The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| | - Mikhail A Nesterov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Antonina A Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina M Timonova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Ekaterina M Sergeeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
49
|
Non-profit Drug Research and Development at a Crossroads. Pharm Res 2018; 35:52. [DOI: 10.1007/s11095-018-2351-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
|
50
|
Abstract
This chapter reviews both statistical and physiologic issues related to the pathophysiologic effects of genetic variation in the context of type 2 diabetes. The goal is to review current methodologies used to analyze disease-related quantitative traits for those who do not have extensive quantitative and physiologic background, as an attempt to bridge that gap. We leverage mathematical modeling to illustrate the strengths and weaknesses of different approaches and attempt to reinforce with real data analysis. Topics reviewed include phenotype selection, phenotype specificity, multiple variant analysis via the genetic risk score, and consideration of multiple disease-related phenotypes. Type 2 diabetes is used as the example, not only because of the extensive existing knowledge at the genetic, physiologic, clinical, and epidemiologic levels, but also because type 2 diabetes has been at the forefront of complex disease genetics, with many examples to draw from.
Collapse
Affiliation(s)
- Richard M Watanabe
- Departments of Preventive Medicine and Physiology & Biophysics, Keck School of Medicine of USC, 2250 Alcazar Street, CSC-204, Los Angeles, CA, 90089-9073, USA.
| |
Collapse
|