1
|
Gehlhaar P, Schaper-Gerhardt K, Gutzmer R, Hasler F, Röhn TA, Werfel T, Mommert S. Histamine and TH2 cytokines regulate the biosynthesis of cysteinyl-leukotrienes and expression of their receptors in human mast cells. Inflamm Res 2025; 74:32. [PMID: 39890627 PMCID: PMC11785601 DOI: 10.1007/s00011-024-01974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 02/03/2025] Open
Abstract
INTRODUCTION In skin lesions of atopic dermatitis (AD), a chronic inflammatory skin disease, mast cells beyond other immune cells are present in increasing numbers. Upon activation, mast cells release a plethora of mediators, in particular histamine and leukotrienes, as well as chemokines and cytokines, which modulate the immune response of cells in their microenvironment and may influence mast cells in an autocrine loop. This study investigated the effects of histamine and TH2 cytokines on the biosynthesis of cysteinyl leukotrienes (CysLTs) as well as CysLT receptor expression on human mast cells from healthy volunteers and patients with AD. METHODS Human mast cells were generated from CD34+ progenitor cells from peripheral blood. The cultured mast cells were stimulated with IL-4, IL-13, histamine and different histamine receptor selective ligands. Expression of enzymes in the biosynthesis of leukotrienes and expression of CysLT receptors were quantified by real-time PCR. The release of CysLTs was measured by ELISA. RESULTS Mast cells from AD patients showed higher expression of 5-Lipoxygenase (5-LO) and 5-Lipoxygenase activating protein (FLAP) compared to mast cells from healthy volunteers at baseline and in presence of histamine and TH2 cytokines. Expression of leukotriene C4 synthase (LTC4S), the biosynthesis of CysLTs, and mRNA expression of both CysLT receptors were induced by histamine and TH2 cytokines in mast cells from healthy volunteers and AD patients. CONCLUSION We provide evidence that in an acute allergic situation histamine and TH2 cytokines may activate the biosynthesis of pro-allergic cysteinyl leukotrienes and up-regulation of CysLT receptor expression in human mast cells. This suggests a novel mechanism for sustaining mast cell activation through a possible autocrine signalling loop under these conditions.
Collapse
Affiliation(s)
- Patricia Gehlhaar
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Katrin Schaper-Gerhardt
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Franziska Hasler
- Immunology Disease Area, Novartis BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Novartis BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Charlton RL, Escrivani DO, Brown C, Thota N, Agostino VS, Porta EOJ, Avkiran T, Merritt AT, Denny PW, Rossi-Bergmann B, Steel PG. Simple accessible clemastine fumarate analogues as effective antileishmanials. RSC Med Chem 2025:d4md01004c. [PMID: 40017824 PMCID: PMC11862611 DOI: 10.1039/d4md01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Current therapeutic options for leishmaniasis are severely limited, highlighting an urgent need to develop more effective and less toxic drugs to combat a major global public health challenge. Clemastine fumarate displays good levels of antileishmanial efficacy, but further optimisation is challenged by its difficult synthesis. Here, we demonstrate that simple N-linked analogues are easier to access, can exhibit higher selectivity and show comparable efficacy in a mouse model of Leishmania amazonensis infection.
Collapse
Affiliation(s)
- Rebecca L Charlton
- Department of Chemistry, Durham University Lower Mountjoy, South Rd Durham DH1 3LE UK
- Institute of Biophysics, Carlos Chagas Filho, Universidade Federal do Rio de Janeiro 21941-902 Rio de Janeiro - RJ Brazil
| | - Douglas O Escrivani
- Department of Chemistry, Durham University Lower Mountjoy, South Rd Durham DH1 3LE UK
- Institute of Biophysics, Carlos Chagas Filho, Universidade Federal do Rio de Janeiro 21941-902 Rio de Janeiro - RJ Brazil
| | - Christopher Brown
- Department of Chemistry, Durham University Lower Mountjoy, South Rd Durham DH1 3LE UK
| | - Niranjan Thota
- Department of Chemistry, Durham University Lower Mountjoy, South Rd Durham DH1 3LE UK
| | - Victor S Agostino
- Department of Chemistry, Durham University Lower Mountjoy, South Rd Durham DH1 3LE UK
| | - Exequiel O J Porta
- Department of Chemistry, Durham University Lower Mountjoy, South Rd Durham DH1 3LE UK
| | - Timur Avkiran
- LifeArc Accelerator Building, Open Innovation Campus Stevenage SG1 2FX UK
| | - Andrew T Merritt
- LifeArc Accelerator Building, Open Innovation Campus Stevenage SG1 2FX UK
| | - Paul W Denny
- Department of Biosciences, Durham University Lower Mountjoy, South Rd Durham DH1 3LE UK
| | - Bartira Rossi-Bergmann
- Institute of Biophysics, Carlos Chagas Filho, Universidade Federal do Rio de Janeiro 21941-902 Rio de Janeiro - RJ Brazil
| | - Patrick G Steel
- Department of Chemistry, Durham University Lower Mountjoy, South Rd Durham DH1 3LE UK
| |
Collapse
|
3
|
Guo Z, Zhang Z, Huang W, Xia H, Huang S, Lan X, Ning Y, Zhou Y, Shang D. Interpretation of the pathogenesis and therapeutic mechanisms of first-episode major depressive disorder based on multiple amino acid metabolic pathways: a metabolomics study. Metab Brain Dis 2024; 40:37. [PMID: 39576355 DOI: 10.1007/s11011-024-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVES Given the unclear etiology and treatment mechanisms of depression, we aim to explore the metabolic differences between patients with major depressive disorder (MDD) and the healthy population, as well as before and after treatment with escitalopram (ESC). METHODS Recruit first-episode drug-naïve MDD (DN-MDD) patients and healthy controls (HCs). Clinical data and serum samples from all subjects were collected at baseline and patients' samples were collected again after ESC monotherapy for four weeks. Perform non-targeted metabolomic analysis and apply MetaboAnalyst 5.0 to identify differential metabolites and execute KEGG pathway enrichment. RESULTS Through metabolomic analysis of serum samples, 904 differential metabolites were identified in the DN-MDD group compared to the HCs, and 455 metabolites in treated patients compared to DN-MDD patients. In the pathway analysis, DN-MDD state regulated functions of histidine, beta-alanine, aspartate, and tryptophan metabolism, while ESC treatment produced an influence on the biological process of aspartate and sphingolipid. CONCLUSION We respectively depicted metabolism-related biomolecular changes in the serum of patients suffering from MDD and undergoing ESC treatment. Multiple amino acid metabolism pathways were adjusted in MDD patients, and levels of aspartate, arginine and sphingolipids were regulated after ESC monotherapy. These biomolecular changes may bring new insights into the biology and treatment of MDD from the perspective of the serum metabolites.
Collapse
Affiliation(s)
- Zhihao Guo
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Guangzhou Medical University, 1 Xinzao Road, Guangzhou, China
| | - Zi Zhang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Guangzhou Medical University, 1 Xinzao Road, Guangzhou, China
| | - Wanting Huang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Guangzhou Medical University, 1 Xinzao Road, Guangzhou, China
| | - Hui Xia
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Guangzhou Medical University, 1 Xinzao Road, Guangzhou, China
| | - Shanqing Huang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Yanling Zhou
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Dewei Shang
- The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Tiligada E, Stefanaki C, Ennis M, Neumann D. Opportunities and challenges in the therapeutic exploitation of histamine and histamine receptor pharmacology in inflammation-driven disorders. Pharmacol Ther 2024; 263:108722. [PMID: 39306197 DOI: 10.1016/j.pharmthera.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Inflammation-driven diseases encompass a wide array of pathological conditions characterised by immune system dysregulation leading to tissue damage and dysfunction. Among the myriad of mediators involved in the regulation of inflammation, histamine has emerged as a key modulatory player. Histamine elicits its actions through four rhodopsin-like G-protein-coupled receptors (GPCRs), named chronologically in order of discovery as histamine H1, H2, H3 and H4 receptors (H1-4R). The relatively low affinity H1R and H2R play pivotal roles in mediating allergic inflammation and gastric acid secretion, respectively, whereas the high affinity H3R and H4R are primarily linked to neurotransmission and immunomodulation, respectively. Importantly, however, besides the H4R, both H1R and H2R are also crucial in driving immune responses, the H2R tending to promote yet ill-defined and unexploited suppressive, protective and/or resolving processes. The modulatory action of histamine via its receptors on inflammatory cells is described in detail. The potential therapeutic value of the most recently discovered H4R in inflammatory disorders is illustrated via a selection of preclinical models. The clinical trials with antagonists of this receptor are discussed and possible reasons for their lack of success described.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Sakr AA, Mohamed AA, Ahmed AE, Abdelhaleem AA, Samir HH, Elkady MA, Hasona NA. Biochemical implication of acetylcholine, histamine, IL-18, and interferon-alpha as diagnostic biomarkers in hepatitis C virus, coronavirus disease 2019, and dual hepatitis C virus-coronavirus disease 2019 patients. J Med Virol 2024; 96:e29857. [PMID: 39145590 DOI: 10.1002/jmv.29857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Globally, hepatitis C virus (HCV) and coronavirus disease 2019 (COVID-19) are the most common causes of death due to the lack of early predictive and diagnostic tools. Therefore, research for a new biomarker is crucial. Inflammatory biomarkers are critical central players in the pathogenesis of viral infections. IL-18, produced by macrophages in early viral infections, triggers inflammatory biomarkers and interferon production, crucial for viral host defense. Finding out IL-18 function can help understand COVID-19 pathophysiology and predict disease prognosis. Histamine and its receptors regulate allergic lung responses, with H1 receptor inhibition potentially reducing inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. angiotensin-converting enzyme 2 (ACE-2) receptors on cholangiocytes suggest liver involvement in SARS-CoV-2 infection. The current study presents the potential impact of circulating acetylcholine, histamine, IL-18, and interferon-Alpha as diagnostic tools in HCV, COVID-19, and dual HCV-COVID-19 pathogenesis. The current study was a prospective cross-section conducted on 188 participants classified into the following four groups: Group 1 COVID-19 (n = 47), Group 2 HCV (n = 47), and Group 3 HCV-COVID-19 patients (n = 47), besides the healthy control Group 4 (n = 47). The levels of acetylcholine, histamine, IL-18, and interferon-alpha were assayed using the ELISA method. Liver and kidney functions within all groups showed a marked alteration compared to the healthy control group. Our statistical analysis found that individuals with dual infection with HCV-COVID-19 had high ferritin levels compared to other biomarkers while those with COVID-19 infection had high levels of D-Dimer. The histamine, acetylcholine, and IL-18 biomarkers in both COVID-19 and dual HCV-COVID-19 groups have shown discriminatory power, making them potential diagnostic tests for infection. These three biomarkers showed satisfactory performance in identifying HCV infection. The IFN-Alpha test performed well in the HCV-COVID-19 group and was fair in the COVID-19 group, but it had little discriminative value in the HCV group. Moreover, our findings highlighted the pivotal role of acetylcholine, histamine, IL-18, and interferon-Alpha in HCV, COVID-19, and dual HCV-COVID-19 infection. Circulating levels of acetylcholine, histamine, IL-18, and interferon-Alpha can be potential early indicators for HCV, COVID-19, and dual HCV-COVID-19 infection. We acknowledge that further large multicenter experimental studies are needed to further investigate the role biomarkers play in influencing the likelihood of infection to confirm and extend our observations and to better understand and ultimately prevent or treat these diseases.
Collapse
Affiliation(s)
- Amany Awad Sakr
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Amal Ahmed Mohamed
- Biochemistry and Molecular Biology Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Amr E Ahmed
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Abdelhaleem
- Tropical Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Hussein H Samir
- Nephrology Unit, Internal Medicine Department, School of Medicine, Cairo University, Giza, Egypt
| | | | - Nabil A Hasona
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Mohamad NA, Galarza TE, Martín GA. H2 antihistamines: May be useful for combination therapies in cancer? Biochem Pharmacol 2024; 223:116164. [PMID: 38531422 DOI: 10.1016/j.bcp.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.
Collapse
Affiliation(s)
- Nora A Mohamad
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Tamara E Galarza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Gabriela A Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Morris KM, Sutton K, Girma M, Sánchez-Molano E, Solomon B, Esatu W, Dessie T, Vervelde L, Psifidi A, Hanotte O, Banos G. Phenotypic and genomic characterisation of performance of tropically adapted chickens raised in smallholder farm conditions in Ethiopia. Front Genet 2024; 15:1383609. [PMID: 38706792 PMCID: PMC11066160 DOI: 10.3389/fgene.2024.1383609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Background In sub-Saharan Africa, 80% of poultry production is on smallholder village farms, where chickens are typically reared outdoors in free-ranging conditions. There is limited knowledge on chickens' phenotypic characteristics and genetics under these conditions. Objective The present is a large-scale study set out to phenotypically characterise the performance of tropically adapted commercial chickens in typical smallholder farm conditions, and to examine the genetic profile of chicken phenotypes associated with growth, meat production, immunity, and survival. Methods A total of 2,573 T451A dual-purpose Sasso chickens kept outdoors in emulated free-ranging conditions at the poultry facility of the International Livestock Research Institute in Addis Ababa, Ethiopia, were included in the study. The chickens were raised in five equally sized batches and were individually monitored and phenotyped from the age of 56 days for 8 weeks. Individual chicken data collected included weekly body weight, growth rate, body and breast meat weight at slaughter, Newcastle Disease Virus (NDV) titres and intestinal Immunoglobulin A (IgA) levels recorded at the beginning and the end of the period of study, and survival rate during the same period. Genotyping by sequencing was performed on all chickens using a low-coverage and imputation approach. Chicken phenotypes and genotypes were combined in genomic association analyses. Results We discovered that the chickens were phenotypically diverse, with extensive variance levels observed in all traits. Batch number and sex of the chicken significantly affected the studied phenotypes. Following quality assurance, genotypes consisted of 2.9 million Single Nucleotide Polymorphism markers that were used in the genomic analyses. Results revealed a largely polygenic mode of genetic control of all phenotypic traits. Nevertheless, 15 distinct markers were identified that were significantly associated with growth, carcass traits, NDV titres, IgA levels, and chicken survival. These markers were located in regions harbouring relevant annotated genes. Conclusion Results suggest that performance of chickens raised under smallholder farm conditions is amenable to genetic improvement and may inform selective breeding programmes for enhanced chicken productivity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Katrina M. Morris
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Kate Sutton
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mekonnen Girma
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | | | - Bersabhe Solomon
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Wondmeneh Esatu
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Lonneke Vervelde
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Androniki Psifidi
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Royal Veterinary College, Hatfield, United Kingdom
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Georgios Banos
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Scotland’s Rural College (SRUC), Animal and Veterinary Sciences, Midlothian, United Kingdom
| |
Collapse
|
8
|
Yu ZN, Fan YJ, Nguyen TV, Piao CH, Lee B, Lee S, Shin HS, Song CH, Chai OH. Undaria pinnatifida ameliorates nasal inflammation by inhibiting eosinophil and mast cell activation and modulating the NF-κB/MAPKs signaling pathway. Immun Inflamm Dis 2024; 12:e1215. [PMID: 38488697 PMCID: PMC10941681 DOI: 10.1002/iid3.1215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is the most prevalent form of atopic disease. Undaria pinnatifida has potent antioxidative, antidiabetic, and anti-inflammatory properties. AIMS We investigated the immunomodulatory effect of Undaria pinnatifida extract (UPE) on allergic inflammation in an AR mouse model. MATERIALS & METHODS Mice were sensitized and intranasally challenged with ovalbumin (OVA), and the Th1/Th2 and Th17/Treg-related cytokines and histopathology were exanimated after UPE treatments. Enzyme-linked immunosorbent assay was performed using serum samples and NALF to detect OVA-specific immunoglobulins and inflammatory cytokines. Mitogen-activated protein kinases (MAPKs) were measured by western blotting analysis, and an in vitro study measured mast cell activation induced by compound 48/80. RESULTS After UPE treatment, nasal and lung allergy symptoms, nasal mucosal swelling, and goblet cell hyperplasia were ameliorated. Oral UPE regulated the balance of Th1/Th2 and Th17/Treg cell differentiation in AR mice in a dose-dependent manner. In addition, UPE attenuated the migration of eosinophils and mast cells to the nasal mucosa by suppressing nuclear factor kappa B (NF-κB)/MAPKs. The levels of anti-OVA IgE and IgG1 were also decreased. DISCUSSION UPE inhibited inflammation by regulating the NF-κB/MAPKs signaling pathway and supressing the activation of critical immune cells such as eosinophils and mast cells. CONCLUSION UPE may have therapeutic potential for AR.
Collapse
Affiliation(s)
- Zhen Nan Yu
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
| | - Yan Jing Fan
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Department of Basic Medicine, School of MedicineLiaocheng UniversityLiaochengShandongChina
| | - Thi Van Nguyen
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
| | - Chun Hua Piao
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Department of Pulmonary and Critical Care MedicineYantai Yuhuangding HospitalYantaiChina
| | - Byung‐Hoo Lee
- Department of Food Science and BiotechnologyGachon UniversitySeongnamSouth Korea
| | - So‐Young Lee
- Division of Food Functionality ResearchKorea Food Research InstituteWanjuSouth Korea
- Division of Food Biotechnology ProgramKorea University of Science and TechnologyDaejeonSouth Korea
| | - Hee Soon Shin
- Division of Food Functionality ResearchKorea Food Research InstituteWanjuSouth Korea
- Division of Food Biotechnology ProgramKorea University of Science and TechnologyDaejeonSouth Korea
| | - Chang Ho Song
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Institute for Medical SciencesJeonbuk National UniversityJeonjuSouth Korea
| | - Ok Hee Chai
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Institute for Medical SciencesJeonbuk National UniversityJeonjuSouth Korea
| |
Collapse
|
9
|
Chang I, Kaushik A, Satitsuksanoa P, Yang M, Buergi L, Schneider SR, Babayev H, Akdis CA, Nadeau K, van de Veen W, Akdis M. Distinct and mutually exclusive Ca 2+ flux- and adenylyl cyclase-inducing gene expression profiles of G-protein-coupled receptors on human antigen-specific B cells. Allergy 2023; 78:3016-3019. [PMID: 37615338 DOI: 10.1111/all.15858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, California, USA
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Abhinav Kaushik
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, California, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Minglin Yang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Laura Buergi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Department of Microbiology, Institute of Graduate Studies, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, California, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| |
Collapse
|
10
|
Jutel M, Agache I, Zemelka-Wiacek M, Akdis M, Chivato T, Del Giacco S, Gajdanowicz P, Gracia IE, Klimek L, Lauerma A, Ollert M, O'Mahony L, Schwarze J, Shamji MH, Skypala I, Palomares O, Pfaar O, Torres MJ, Bernstein JA, Cruz AA, Durham SR, Galli SJ, Gómez RM, Guttman-Yassky E, Haahtela T, Holgate ST, Izuhara K, Kabashima K, Larenas-Linnemann DE, von Mutius E, Nadeau KC, Pawankar R, Platts-Mills TAE, Sicherer SH, Park HS, Vieths S, Wong G, Zhang L, Bilò MB, Akdis CA. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy 2023; 78:2851-2874. [PMID: 37814905 DOI: 10.1111/all.15889] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
The exponential growth of precision diagnostic tools, including omic technologies, molecular diagnostics, sophisticated genetic and epigenetic editing, imaging and nano-technologies and patient access to extensive health care, has resulted in vast amounts of unbiased data enabling in-depth disease characterization. New disease endotypes have been identified for various allergic diseases and triggered the gradual transition from a disease description focused on symptoms to identifying biomarkers and intricate pathogenetic and metabolic pathways. Consequently, the current disease taxonomy has to be revised for better categorization. This European Academy of Allergy and Clinical Immunology Position Paper responds to this challenge and provides a modern nomenclature for allergic diseases, which respects the earlier classifications back to the early 20th century. Hypersensitivity reactions originally described by Gell and Coombs have been extended into nine different types comprising antibody- (I-III), cell-mediated (IVa-c), tissue-driven mechanisms (V-VI) and direct response to chemicals (VII). Types I-III are linked to classical and newly described clinical conditions. Type IVa-c are specified and detailed according to the current understanding of T1, T2 and T3 responses. Types V-VI involve epithelial barrier defects and metabolic-induced immune dysregulation, while direct cellular and inflammatory responses to chemicals are covered in type VII. It is notable that several combinations of mixed types may appear in the clinical setting. The clinical relevance of the current approach for allergy practice will be conferred in another article that will follow this year, aiming at showing the relevance in clinical practice where various endotypes can overlap and evolve over the lifetime.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Tomás Chivato
- School of Medicine, University CEU San Pablo, Madrid, Spain
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Allergy and Clinical Immunology, University Hospital "Duilio Casula", Monserrato, Italy
| | - Pawel Gajdanowicz
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Ibon Eguiluz Gracia
- Allergy Unit, UMA-Regional University Hospital of Malaga, IBIMA-BIONAND, Malaga, Spain
| | - Ludger Klimek
- Department of Otolaryngology, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, Germany
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Jürgen Schwarze
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Isabel Skypala
- Department of Inflammation and Repair, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Part of Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Maria Jose Torres
- Allergy Unit, UMA-Regional University Hospital of Malaga, IBIMA-BIONAND, Malaga, Spain
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro A Cruz
- Fundaçao ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Bahia, Brazil
| | - Stephen R Durham
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Stephen J Galli
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Emma Guttman-Yassky
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Stephen T Holgate
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Kenji Izuhara
- Department of Biomolecular Sciences, Division of Medical Biochemistry, Saga Medical School, Saga, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Erica von Mutius
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Centre Munich, Munich, Germany
- German Center for Lung Research (DZL), Giesen, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Tomas A E Platts-Mills
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott H Sicherer
- Division of Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | | | - Gary Wong
- Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - M Beatrice Bilò
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona and Allergy Unit, Department of Internal Medicine, University Hospital of Marche, Ancona, Italy
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
11
|
Yao F, An Y, Lai X, Li X, Yu Z, Yang XD. Novel nanotherapeutics for cancer immunotherapy by CTLA-4 aptamer-functionalized albumin nanoparticle loaded with antihistamine. J Cancer Res Clin Oncol 2023; 149:7515-7527. [PMID: 36966395 DOI: 10.1007/s00432-023-04698-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
INTRODUCTION Immune checkpoint blockade (ICB) is a promising strategy for cancer treatment and has generated remarkable clinical results against multiple malignancies. Exploration of new technical approaches to further boost the therapeutic efficacy of ICB is of potential medical importance. In this study, we designed a novel nanotherapeutics for ICB immunotherapy. METHODS CTLA-4 aptamers were conjugated to the surface of albumin nanoparticle to construct an aptamer-modified nanostructure (Apt-NP). To improve ICB efficacy, fexofenadine (FEXO), an antihistamine, was encapsulated into Apt-NP to make a drug-loaded nanoparticle (Apt-NP-FEXO). The antitumor efficacies of Apt-NP and Apt-NP-FEXO were evaluated in vitro and in vivo. RESULTS Apt-NP and Apt-NP-FEXO had average diameters of 149 nm and 159 nm, respectively. Similar to free CTLA-4 aptamers, Apt-modified NPs could selectively bind with CTLA-4 positive cells and improve lymphocyte-mediated antitumor cytotoxicity in vitro. In animal studies, compared with free CTLA-4 aptamer, Apt-NP significantly enhanced antitumor immunity. Moreover, Apt-NP-FEXO further improved antitumor efficacy vs. Apt-NP in vivo. CONCLUSION The results suggest that Apt-NP-FEXO represents a novel strategy to improve ICB outcome and may have application potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Fengjiao Yao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Yacong An
- Peking University First Hospital, Beijing, 100034, China
| | - Xialian Lai
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Xundou Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Zhen Yu
- Department of Clinical Laboratory, Third Central Hospital of Tianjin Affiliated to Nankai University, Tian-Jin, 300170, China
| | - Xian-Da Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.
| |
Collapse
|
12
|
Dawodu D, Sand S, Nikolouli E, Werfel T, Mommert S. The mRNA expression and secretion of granzyme B are up-regulated via the histamine H2 receptor in human CD4 + T cells. Inflamm Res 2023; 72:1525-1538. [PMID: 37470818 PMCID: PMC10499701 DOI: 10.1007/s00011-023-01759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Granzyme B (GZMB), a serine protease with cytotoxic and immunomodulatory functions, shows elevated levels in blood plasma of patients with atopic dermatitis (AD). It has been observed that GZMB expression in CD4+ and CD8+ T cells is higher in lesional skin in AD than in healthy skin. Since histamine is present in high concentration in the skin of AD patients, we investigated the regulation of GZMB in human CD4+ T cells by histamine. METHODS Naïve CD4+ T cells polarized into Th2 cells, total CD4+ T cells treated with IL-4 for 72 h and CD4+ T cells isolated from healthy donors and AD patients were investigated. The cells were stimulated with histamine or with different histamine-receptor agonists. Gene expression was evaluated by RNA-Seq. GZMB mRNA expression was detected by quantitative real time PCR, whereas GZMB secretion was measured by ELISpot and ELISA. T cell degranulation was evaluated by flow cytometry using CD107a surface expression as a degranulation marker. RESULTS By RNA-Seq, we identified the up-regulation of various genes of the cytotoxic pathway, in particular of GZMB, by histamine in Th2-polarized CD4+ T cells. In Th2-polarized CD4+ T cells and in CD4+ T cells activated by IL-4 the mRNA expression of GZMB was significantly up-regulated by histamine and by histamine H2 receptor (H2R) agonists. The induction of GZMB secretion by histamine was significantly higher in CD4+ T cells from AD patients than in those from healthy donors. CD107a surface expression was up-regulated by trend in response to histamine in Th2-polarized CD4+ T cells. CONCLUSION Our findings may help to elucidate novel mechanisms of the H2R and to achieve a better understanding of the role of GZMB in the pathogenesis of AD.
Collapse
Affiliation(s)
- Damilola Dawodu
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Sophie Sand
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Eirini Nikolouli
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
13
|
Mihele DM, Nistor PA, Bruma G, Mitran CI, Mitran MI, Condrat CE, Tovaru M, Tampa M, Georgescu SR. Mast Cell Activation Syndrome Update-A Dermatological Perspective. J Pers Med 2023; 13:1116. [PMID: 37511729 PMCID: PMC10381535 DOI: 10.3390/jpm13071116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Mast cells (MCs) are infamous for their role in potentially fatal anaphylaxis reactions. In the last two decades, a more complex picture has emerged, as it has become obvious that MCs are much more than just IgE effectors of anaphylaxis. MCs are defenders against a host of infectious and toxic aggressions (their interactions with other components of the immune system are not yet fully understood) and after the insult has ended, MCs continue to play a role in inflammation regulation and tissue repair. Unfortunately, MC involvement in pathology is also significant. Apart from their role in allergies, MCs can proliferate clonally to produce systemic mastocytosis. They have also been implicated in excessive fibrosis, keloid scaring, graft rejection and chronic inflammation, especially at the level of the skin and gut. In recent years, the term MC activation syndrome (MCAS) was proposed to account for symptoms caused by MC activation, and clear diagnostic criteria have been defined. However, not all authors agree with these criteria, as some find them too restrictive, potentially leaving much of the MC-related pathology unaccounted for. Here, we review the current knowledge on the physiological and pathological roles of MCs, with a dermatological emphasis, and discuss the MCAS classification.
Collapse
Affiliation(s)
- Dana Mihaela Mihele
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Paul Andrei Nistor
- Internal Medicine Department, Emergency University Hospital Bucharest, 169 Independence Blvd, 050098 Bucharest, Romania
| | - Gabriela Bruma
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Madalina Irina Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Mihaela Tovaru
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Simona Roxana Georgescu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| |
Collapse
|
14
|
Fiorani M, Del Vecchio LE, Dargenio P, Kaitsas F, Rozera T, Porcari S, Gasbarrini A, Cammarota G, Ianiro G. Histamine-producing bacteria and their role in gastrointestinal disorders. Expert Rev Gastroenterol Hepatol 2023; 17:709-718. [PMID: 37394958 DOI: 10.1080/17474124.2023.2230865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Gut microbiota produces thousands of metabolites, which have a huge impact on the host health. Specific microbial strains are able to synthesize histamine, a molecule with a crucial role in many physiologic and pathologic mechanisms of the host. This function is mediated by the histidine decarboxylase enzyme (HDC) that converts the amino acid histidine to histamine. AREAS COVERED This review summarizes the emerging data on histamine production by gut microbiota, and the effect of bacterial-derived histamine in different clinical contexts, including cancer, irritable bowel syndrome, and other gastrointestinal and extraintestinal pathologies. This review will also outline the impact of histamine on the immune system and the effect of probiotics that can secrete histamine. Search methodology: we searched the literature on PubMed up to February 2023. EXPERT OPINION The potential of modulating gut microbiota to influence histamine production is a promising area of research, and although our knowledge of histamine-secreting bacteria is still limited, recent advances are exploring their diagnostic and therapeutical potential. Diet, probiotics, and pharmacological treatments directed to the modulation of histamine-secreting bacteria may in the future potentially be employed in the prevention and management of several gastrointestinal and extraintestinal disorders.
Collapse
Affiliation(s)
- Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Livio Enrico Del Vecchio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Pasquale Dargenio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tommaso Rozera
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
15
|
Sulsenti R, Jachetti E. Frenemies in the Microenvironment: Harnessing Mast Cells for Cancer Immunotherapy. Pharmaceutics 2023; 15:1692. [PMID: 37376140 DOI: 10.3390/pharmaceutics15061692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor development, progression, and resistance to therapies are influenced by the interactions between tumor cells and the surrounding microenvironment, comprising fibroblasts, immune cells, and extracellular matrix proteins. In this context, mast cells (MCs) have recently emerged as important players. Yet, their role is still controversial, as MCs can exert pro- or anti-tumor functions in different tumor types depending on their location within or around the tumor mass and their interaction with other components of the tumor microenvironment. In this review, we describe the main aspects of MC biology and the different contribution of MCs in promoting or inhibiting cancer growth. We then discuss possible therapeutic strategies aimed at targeting MCs for cancer immunotherapy, which include: (1) targeting c-Kit signaling; (2) stabilizing MC degranulation; (3) triggering activating/inhibiting receptors; (4) modulating MC recruitment; (5) harnessing MC mediators; (6) adoptive transferring of MCs. Such strategies should aim to either restrain or sustain MC activity according to specific contexts. Further investigation would allow us to better dissect the multifaceted roles of MCs in cancer and tailor novel approaches for an "MC-guided" personalized medicine to be used in combination with conventional anti-cancer therapies.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
16
|
Dvornikova KA, Platonova ON, Bystrova EY. Inflammatory Bowel Disease: Crosstalk between Histamine, Immunity, and Disease. Int J Mol Sci 2023; 24:9937. [PMID: 37373085 DOI: 10.3390/ijms24129937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is increasingly recognized as a serious, worldwide public health concern. It is generally acknowledged that a variety of factors play a role in the pathogenesis of this group of chronic inflammatory diseases. The diversity of molecular actors involved in IBD does not allow us to fully assess the causal relationships existing in such interactions. Given the high immunomodulatory activity of histamine and the complex immune-mediated nature of inflammatory bowel disease, the role of histamine and its receptors in the gut may be significant. This paper has been prepared to provide a schematic of the most important and possible molecular signaling pathways related to histamine and its receptors and to assess their relevance for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Olga N Platonova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| | - Elena Y Bystrova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| |
Collapse
|
17
|
Cela L, Brindisi G, Gravina A, Pastore F, Semeraro A, Bringheli I, Marchetti L, Morelli R, Cinicola B, Capponi M, Gori A, Pignataro E, Piccioni MG, Zicari AM, Anania C. Molecular Mechanism and Clinical Effects of Probiotics in the Management of Cow's Milk Protein Allergy. Int J Mol Sci 2023; 24:9781. [PMID: 37372929 DOI: 10.3390/ijms24129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cow's milk protein allergy (CMPA) is the most common food allergy (FA) in infancy, affecting approximately 2% of children under 4 years of age. According to recent studies, the increasing prevalence of FAs can be associated with changes in composition and function of gut microbiota or "dysbiosis". Gut microbiota regulation, mediated by probiotics, may modulate the systemic inflammatory and immune responses, influencing the development of allergies, with possible clinical benefits. This narrative review collects the actual evidence of probiotics' efficacy in the management of pediatric CMPA, with a specific focus on the molecular mechanisms of action. Most studies included in this review have shown a beneficial effect of probiotics in CMPA patients, especially in terms of achieving tolerance and improving symptoms.
Collapse
Affiliation(s)
- Ludovica Cela
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Gravina
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesca Pastore
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Semeraro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Ivana Bringheli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Lavinia Marchetti
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Rebecca Morelli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Bianca Cinicola
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Martina Capponi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Elia Pignataro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
18
|
Wang H, Wei Y, Hung CT, Jiang X, Li C, Jia KM, Leung EYM, Yam CHK, Chow TY, Zhao S, Guo Z, Li K, Wang Z, Yeoh EK, Chong KC. Relationship between antidepressants and severity of SARS-CoV-2 Omicron infection: a retrospective cohort study using real-world data. THE LANCET REGIONAL HEALTH: WESTERN PACIFIC 2023; 34:100716. [PMCID: PMC9970034 DOI: 10.1016/j.lanwpc.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/02/2023]
Abstract
Background Few studies have used real-world data to evaluate the impact of antidepressant use on the risk of developing severe outcomes after SARS-CoV-2 Omicron infection. Methods This is a retrospective cohort study using propensity-score matching to examine the relationship between antidepressant use and COVID-19 severity. Inpatient and medication records of all adult COVID-19 patients in Hong Kong during the Omicron-predominated period were obtained. Severe clinical outcomes including intensive care unit admission and inpatient death after the first positive results of reverse transcription polymerase chain reaction as well as a composite outcome of both were studied. Cox proportional hazard models were applied to estimate the crude and adjusted hazard ratios (HR). Findings Of 60,903 hospitalised COVID-19 patients admitted, 40,459 were included for matching, among which 3821 (9.4%) were prescribed antidepressants. The rates of intensive care unit admission, inpatient death, and the composite event were 3.9%, 25.5%, and 28.3% respectively in the unexposed group, 1.3%, 20.0%, and 21.1% respectively in the exposed group, with adjusted HR equal to 0.332 (95% CI, 0.245–0.449), 0.868 (95% CI, 0.800–0.942), and 0.786 (95% CI, 0.727–0.850) respectively. The result was generally consistent when stratified by selective serotonin reuptake inhibitors (SSRIs) and non-SSRIs. Antidepressants with functional inhibition of acid sphingomyelinase activity, specifically fluoxetine, were also negatively associated with the outcomes. The effect of antidepressants was more apparent in female and fully vaccinated COVID-19 patients. Interpretation Antidepressant use was associated with a lower risk of severe COVID-19. The findings support the continuation of antidepressants in patients with COVID-19, and provide evidence for the treatment potential of antidepressants for severe COVID-19. Funding This research was supported by Health and Medical Research Fund [grant numbers COVID190105, COVID19F03, INF-CUHK-1], Collaborative Research Fund of University Grants Committee [grant numbers C4139-20G], 10.13039/501100001809National Natural Science Foundation of China (NSFC) [71974165], and Group Research Scheme from The 10.13039/501100004853Chinese University of Hong Kong.
Collapse
Affiliation(s)
- Huwen Wang
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuchen Wei
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Tim Hung
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Jiang
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Conglu Li
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Katherine Min Jia
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Eman Yee Man Leung
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Carrie Ho Kwan Yam
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Yu Chow
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi Zhao
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Zihao Guo
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Kehang Li
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ziqing Wang
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Eng Kiong Yeoh
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China,Corresponding author. Centre for Health Systems and Policy Research, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Chun Chong
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China,Corresponding author. Centre for Health Systems and Policy Research, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Bakhtiari E, Moazzen N, Amirabadi A, Ahanchian H. The clinical relationship between histamine-1 receptor antagonists and risk of cancer: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2023; 23:87-94. [PMID: 36503360 DOI: 10.1080/14737140.2023.2157265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND A systematic research was performed to review the relationship between use of histamine-1 receptor antagonists and cancer risk. METHOD Databases were searched up to December 2021. Case-control and cohort studies evaluating the relationship between use of histamine-1 receptor antagonists and risk of cancer were selected. The major outcome was cancer risk. Odds ratio (OR) with 95% confidence intervals (CIs) was calculated. Subgroup, cumulative, and sensitivity analysis and Egger test were performed. RESULTS Five case-controls and one cohort study were included. According to cohort study, use of antihistamines were not associated with cancer risk (RR = 0.92, 95% CI = (0.78-1.07). In case-controls, the frequency of antihistamine use in cases and controls was 11.28% and 14.82% respectively which was associated with decreased cancer risk (p value = 0.02, OR = 0.93, 95%CI = (0.87, 0.99)). Sensitivity analysis showed a change in direction of pooled OR by omitting some studies. Sub-group analysis according to type of cancer showed a decrease in cancer risk in antihistamine users in glioma (p value = 0.03). CONCLUSION Antihistamines might reduce the risk of certain cancers. More studies with defined background of allergy are needed which can clarify the relevancy of different types of cancer with anti-H1 receptors.
Collapse
Affiliation(s)
- Elham Bakhtiari
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Moazzen
- Clinical Research Development Unit of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Amirabadi
- Department of Internal Medicine, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Hamid Ahanchian
- Clinical Research Development Unit of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O'Mahony L. Immunomodulation by foods and microbes: Unravelling the molecular tango. Allergy 2022; 77:3513-3526. [PMID: 35892227 PMCID: PMC10087875 DOI: 10.1111/all.15455] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Metabolic health and immune function are intimately connected via diet and the microbiota. Nearly 90% of all immune cells in the body are associated with the gastrointestinal tract and these immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important systemic ramifications. Microbial dysbiosis has consistently been observed in patients with atopic dermatitis, food allergy and asthma and the molecular mechanisms linking changes in microbial populations with disease risk and disease endotypes are being intensively investigated. The discovery of novel bacterial metabolites that impact immune function is at the forefront of host-microbe research. Co-evolution of microbial communities within their hosts has resulted in intertwined metabolic pathways that affect physiological and pathological processes. However, recent dietary and lifestyle changes are thought to negatively influence interactions between microbes and their host. This review provides an overview of some of the critical metabolite-receptor interactions that have been recently described, which may underpin the immunomodulatory effects of the microbiota, and are of relevance for allergy, asthma and infectious diseases.
Collapse
Affiliation(s)
- Brian Forde
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Lu Yao
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Rupin Shaha
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | | | - Nonhlanhla Lunjani
- APC Microbiome Ireland, UCC, Cork, Ireland.,University of Cape Town, Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland.,Department of Medicine, UCC, Cork, Ireland
| |
Collapse
|
21
|
Berger SN, Baumberger B, Samaranayake S, Hersey M, Mena S, Bain I, Duncan W, Reed MC, Nijhout HF, Best J, Hashemi P. An In Vivo Definition of Brain Histamine Dynamics Reveals Critical Neuromodulatory Roles for This Elusive Messenger. Int J Mol Sci 2022; 23:14862. [PMID: 36499189 PMCID: PMC9738190 DOI: 10.3390/ijms232314862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.
Collapse
Affiliation(s)
- Shane N. Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Physiology, Pharmacology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Ian Bain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - William Duncan
- Department of Mathematics, Montana State University, Bozeman, MT 59717, USA
| | - Michael C. Reed
- Department of Mathematics, Duke University, Durham, NC 27710, USA
| | | | - Janet Best
- Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
22
|
Abstract
Allergen immunotherapy is a form of therapeutic vaccination for established IgE-mediated hypersensitivity to common allergen sources such as pollens, house dust mites and the venom of stinging insects. The classical protocol, introduced in 1911, involves repeated subcutaneous injection of increasing amounts of allergen extract, followed by maintenance injections over a period of 3 years, achieving a form of allergen-specific tolerance that provides clinical benefit for years after its discontinuation. More recently, administration through the sublingual route has emerged as an effective, safe alternative. Oral immunotherapy for peanut allergy induces effective ‘desensitization’ but not long-term tolerance. Research and clinical trials over the past few decades have elucidated the mechanisms underlying immunotherapy-induced tolerance, involving a reduction of allergen-specific T helper 2 (TH2) cells, an induction of regulatory T and B cells, and production of IgG and IgA ‘blocking’ antibodies. To better harness these mechanisms, novel strategies are being explored to achieve safer, effective, more convenient regimens and more durable long-term tolerance; these include alternative routes for current immunotherapy approaches, novel adjuvants, use of recombinant allergens (including hypoallergenic variants) and combination of allergens with immune modifiers or monoclonal antibodies targeting the TH2 cell pathway. Durham and Shamji review the history and future of allergen immunotherapy for established IgE-mediated hypersensitivity to common allergens. They describe the mechanisms of immunotherapy-induced tolerance and the new strategies being explored to achieve safer, more effective, long-term tolerance.
Collapse
|
23
|
Pal S, Gashev A, Roy D. Nuclear localization of histamine receptor 2 in primary human lymphatic endothelial cells. Biol Open 2022; 11:bio059191. [PMID: 35776777 PMCID: PMC9257380 DOI: 10.1242/bio.059191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Histamine exerts its physiological functions through its four receptor subtypes. In this work, we report the subcellular localization of histamine receptor 2 (H2R), a G protein-coupled receptor (GPCR), which is expressed in a wide variety of cell and tissue types. A growing number of GPCRs have been shown to be localized in the nucleus and contribute toward transcriptional regulation. In this study, for the first time, we demonstrate the nuclear localization of H2R in lymphatic endothelial cells. In the presence of its ligand, we show significant upregulation of H2R nuclear translocation kinetics. Using fluorescently tagged histamine, we explored H2R-histamine binding interaction, which exhibits a critical role in this translocation event. Altogether, our results highlight the previously unrecognized nuclear localization pattern of H2R. At the same time, H2R as a GPCR imparts many unresolved questions, such as the functional relevance of this localization, and whether H2R can contribute directly to transcriptional regulation and can affect lymphatic specific gene expression. H2R blockers are commonly used medications that recently have shown significant side effects. Therefore, it is imperative to understand the precise molecular mechanism of H2R biology. In this aspect, our present data shed new light on the unexplored H2R signaling mechanisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, USA
| | - Anatoliy Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, USA
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, USA
| |
Collapse
|
24
|
Kimura S, Noguchi H, Yoshida K, Sato H, Nanbu U, Niino D, Shimajiri S, Nakayama T. Relationship of histamine expression with chemokine balance in the tumor microenvironment of squamous cell carcinoma of the tongue. Head Neck 2022; 44:1554-1562. [PMID: 35411649 DOI: 10.1002/hed.27056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor-associated macrophages in the tumor microenvironment (TME), as a factor affecting lymphocytes, have received much attention. Both lymphocytes and macrophages can switch the expression of histamine receptors. In this study, we investigated the role of histamine in the TME of tongue squamous cell carcinoma (SCC). METHODS Sixty-seven patients with stage I tongue SCC were studied. Histamine was evaluated by the expression of L-histidine decarboxylase (HDC). Macrophages, T lymphocytes, and lymph vessel density, as well as the Ki-67 labeling index (LI) and depth of invasion (DOI), were compared with HDC expression. RESULTS HDC expression was significantly affected by the TME. The DOI, worst pattern of invasion, and Ki-67 LI were associated with histamine expression. C-C motif chemokine ligand (CCL) 2 and CCL22 were co-expressed with histamine H1 and H2 receptors. Histamine expression was most affected by the DOI. CONCLUSIONS Tongue SCC expressing histamine affected the TME via histamine receptors and chemokines.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Clinical Pathology, Kitakyushu City Yahata Hospital, Kitakyushu, Japan.,Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hirotsugu Noguchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kosho Yoshida
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Uki Nanbu
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Internal Medicine, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Daisuke Niino
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Shimajiri
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
25
|
Pashaei S, Yarani R, Mohammadi P, Emami Aleagha MS. The potential roles of amino acids and their major derivatives in the management of multiple sclerosis. Amino Acids 2022; 54:841-858. [PMID: 35471671 DOI: 10.1007/s00726-022-03162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Recently, we reviewed the important role of carbohydrates and lipids metabolism in different clinical aspects of multiple sclerosis (MS) disease. In the current paper, we aimed to review the contribution of amino acids and their major derivatives to different clinical outcomes of the disease, including etiology, pathogenesis, diagnosis, prognosis, and treatment. In this line, Thr (threonine), Phe (phenylalanine), Glu (glutamate), Trp (tryptophan), and Sero (serotonin) are the main examples of biomolecules that have been suggested for MS therapy. It has been concluded that different amino acids and their derivatives might be considered prominent tools for the clinical management of MS disease.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark.,Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran.
| |
Collapse
|
26
|
Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19. Curr Issues Mol Biol 2022; 44:1597-1609. [PMID: 35723367 PMCID: PMC9164076 DOI: 10.3390/cimb44040109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
Antihistamines have potent efficacy to alleviate COVID-19 (Coronavirus disease 2019) symptoms such as anti-inflammation and as a pain reliever. However, the pharmacological mechanism(s), key target(s), and drug(s) are not documented well against COVID-19. Thus, we investigated to decipher the most significant components and how its research methodology was utilized by network pharmacology. The list of 32 common antihistamines on the market were retrieved via drug browsing databases. The targets associated with the selected antihistamines and the targets that responded to COVID-19 infection were identified by the Similarity Ensemble Approach (SEA), SwissTargetPrediction (STP), and PubChem, respectively. We described bubble charts, the Pathways-Targets-Antihistamines (PTA) network, and the protein–protein interaction (PPI) network on the RPackage via STRING database. Furthermore, we utilized the AutoDock Tools software to perform molecular docking tests (MDT) on the key targets and drugs to evaluate the network pharmacological perspective. The final 15 targets were identified as core targets, indicating that Neuroactive ligand–receptor interaction might be the hub-signaling pathway of antihistamines on COVID-19 via bubble chart. The PTA network was constructed by the RPackage, which identified 7 pathways, 11 targets, and 30 drugs. In addition, GRIN2B, a key target, was identified via topological analysis of the PPI network. Finally, we observed that the GRIN2B-Loratidine complex was the most stable docking score with −7.3 kcal/mol through molecular docking test. Our results showed that Loratadine might exert as an antagonist on GRIN2B via the neuroactive ligand–receptor interaction pathway. To sum up, we elucidated the most potential antihistamine, a key target, and a key pharmacological pathway as alleviating components against COVID-19, supporting scientific evidence for further research.
Collapse
|
27
|
Cucca V, Ramirez GA, Pignatti P, Asperti C, Russo M, Della-Torre E, Breda D, Burastero SE, Dagna L, Yacoub MR. Basal Serum Diamine Oxidase Levels as a Biomarker of Histamine Intolerance: A Retrospective Cohort Study. Nutrients 2022; 14:nu14071513. [PMID: 35406126 PMCID: PMC9003468 DOI: 10.3390/nu14071513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Histamine Intolerance (HIT) is a multifaceted pseudoallergic disorder possibly due to defective histamine metabolism. Diamine oxidase (DAO) contributes to histamine degradation and can be measured in the serum. The role of DAO measurement in the diagnostic work-up of HIT still remains unclear, and conflicting results have been reported in the literature. Therefore, we aimed to evaluate the possible clinical usefulness and consistency of DAO value ranges as provided by the assay manufacturer and verify whether they could predict the response to treatment. Methods: We retrospectively analyzed 192 outpatients with HIT symptoms and measured serum DAO values at baseline. Patients were prescribed either with low-histamine diet and/or enzymatic supplementation according to symptom severity and re-evaluated six to eight months later. Patients were stratified into three groups according to DAO levels: <3 U/mL, 3−10 U/mL, and >10 U/mL. HIT severity was assessed on a scale of 1 to 5 before and after treatment. Results: A total of 146 patients completed the study. Gastrointestinal and cutaneous symptoms, often associated with headache, were more frequent in subjects with DAO < 10 U/mL. Symptom severity and DAO ranges were correlated. Patients with intermediate DAO levels (3−10 U/mL) showed a more complex clinical phenotype but also a more significant improvement in symptom severity (score reduction 50%, interquartile range (IQR) = 33−60%) when compared to patients with low DAO (40%, IQR = 20−60%; p = 0.045) or high DAO (33%, IQR = 0−50%; p < 0.001). Complex clinical phenotypes were also more frequent in patients with intermediate DAO levels. Conclusions: HIT is characterized by typical symptoms and low levels of DAO activity. Symptom severity was associated with the degree of DAO deficiency. Patients with DAO values between 3 and 10 U/mL show the best response to treatment (low-histamine diet and/or DAO supplementation). DAO value could arguably be considered as a predictor of clinical response to treatment. Prospective studies are needed to confirm these data.
Collapse
Affiliation(s)
- Valentina Cucca
- Division of Immunology, Transplants and Infectious Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (V.C.); (G.A.R.); (C.A.); (M.R.); (E.D.-T.); (L.D.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Giuseppe A. Ramirez
- Division of Immunology, Transplants and Infectious Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (V.C.); (G.A.R.); (C.A.); (M.R.); (E.D.-T.); (L.D.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, 27100 Pavia, Italy;
| | - Chiara Asperti
- Division of Immunology, Transplants and Infectious Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (V.C.); (G.A.R.); (C.A.); (M.R.); (E.D.-T.); (L.D.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Marco Russo
- Division of Immunology, Transplants and Infectious Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (V.C.); (G.A.R.); (C.A.); (M.R.); (E.D.-T.); (L.D.)
| | - Emanuel Della-Torre
- Division of Immunology, Transplants and Infectious Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (V.C.); (G.A.R.); (C.A.); (M.R.); (E.D.-T.); (L.D.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Daniela Breda
- Laboratory of Cellular and Molecular Allergology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Samuele E. Burastero
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
- Laboratory of Cellular and Molecular Allergology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Lorenzo Dagna
- Division of Immunology, Transplants and Infectious Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (V.C.); (G.A.R.); (C.A.); (M.R.); (E.D.-T.); (L.D.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Mona-Rita Yacoub
- Division of Immunology, Transplants and Infectious Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (V.C.); (G.A.R.); (C.A.); (M.R.); (E.D.-T.); (L.D.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
- Correspondence: ; Tel.: +39-02-2643-6895
| |
Collapse
|
28
|
Zheng P, Zhang K, Lv X, Liu C, Wang Q, Bai X. Gut Microbiome and Metabolomics Profiles of Allergic and Non-Allergic Childhood Asthma. J Asthma Allergy 2022; 15:419-435. [PMID: 35418758 PMCID: PMC8995180 DOI: 10.2147/jaa.s354870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose This study aimed to investigate the characteristics of gut bacteria and the derived metabolites among allergic asthmatic children, non-allergic asthmatic children and healthy children without asthma. Methods Fecal samples were collected from 57 participants, including 20 healthy children, 27 allergic asthmatic children, and 10 non-allergic asthmatic children. 16S rRNA gene sequencing was conducted for analyzing gut bacterial compositions and untargeted metabolomics was used to analyze the alterations of gut microbe-derived metabolites. The associations between gut bacterial compositions and metabolites were analyzed by the method of Spearman correlation. Results The results showed that the compositions and metabolites of gut microbiome were altered both in allergic and non-allergic asthmatics compared with healthy controls. Chao1 (p = 0.025) index reflected a higher bacterial richness and Simpson (p = 0.024) index showed a lower diversity in asthma group. PERMANOVA analysis showed significant differences among the three groups based on unweighted UniFrac distance (p = 0.001). Both allergic and non-allergic asthmatics showed a higher relative abundance of Proteobacteria and a lower relative abundance of genera from Clostridia. More bacteria were altered in non-allergic asthmatics compared with allergic asthmatics. Metabolomics analysis identified that 42 metabolites were significantly associated with allergic asthma, and 58 metabolites were significantly associated with non-allergic asthma (multiple linear regression, p < 0.05). Histamine was 4 folds up-regulated only in the non-allergic asthma group. The relative abundance of Candidatus Accumulib was significantly correlated with the upregulation of histamine. The relative abundance of genera from Clostridia was significantly correlated with the downregulation of lipid and tryptophan metabolism. Conclusion The altered gut microbes was associated with the mechanism of asthma attack through metabolites in allergic and non-allergic asthma group, respectively. The result suggested that gut microbiome had an impact on the development of both allergic and non-allergic asthma. The distinct gut microbiome and microbiome-derived metabolites in non-allergic asthma children suggested that gut microbiome might play a critical role in modulation of asthma phenotype.
Collapse
Affiliation(s)
- Ping Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Kexing Zhang
- Department of Immunization Program, Xinwu District Center for Disease Control and Prevention, Wuxi, People’s Republic of China
| | - Xifang Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Chuanhe Liu
- Children’s Hospital, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Qiang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Correspondence: Qiang Wang; Xuetao Bai, China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xicheng District, Beijing, 100050, People’s Republic of China, Tel +86 10 50930251, Email ;
| | - Xuetao Bai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
29
|
Guo CJ, Grabinski NS, Liu Q. Peripheral Mechanisms of Itch. J Invest Dermatol 2021; 142:31-41. [PMID: 34838258 DOI: 10.1016/j.jid.2021.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022]
Abstract
Itch is a universally experienced sensation, and chronic itch can be as diabolically debilitating as pain. Recent advances have not only identified the neuronal itch sensing circuitry, but also have uncovered the intricate interactions between skin and immune cells that work together with neurons to identify itch-inducing irritants. In this review, we will summarize the fundamental mechanisms of acute itch detection in the skin, as well as highlight the recent discoveries relating to this topic.
Collapse
Affiliation(s)
- Changxiong J Guo
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Nathaniel S Grabinski
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qin Liu
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
30
|
Kwiatkowska D, Reich A. Role of Mast Cells in the Pathogenesis of Pruritus in Mastocytosis. Acta Derm Venereol 2021; 101:adv00583. [PMID: 34642766 DOI: 10.2340/actadv.v101.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pruritus can be defined as an unpleasant sensation that evokes a desire to scratch and significantly impairs patients' quality of life. Pruritus is widely observed in many dermatoses, including mastocytosis, a rare disease characterized by abnormal accumulation of mast cells, which can involve skin, bone marrow, and other organs. Increasing evidence highlights the role of mast cells in neurogenic inflammation and itching. Mast cells release various pruritogenic mediators, initiating subsequent mutual communication with specific nociceptors on sensory nerve fibres. Among important mediators released by mast cells that induce pruritus, one can distinguish histamine, serotonin, proteases, as well as various cytokines. During neuronal-induced inflammation, mast cells may respond to numerous mediators, including neuropeptides, such as substance P, neurokinin A, calcitonin gene-related peptide, endothelin 1, and nerve growth factor. Currently, treatment of pruritus in mastocytosis is focused on alleviating the effects of mediators secreted by mast cells. However, a deeper understanding of the intricacies of the neurobiology of this disease could help to provide better treatment options for patients.
Collapse
Affiliation(s)
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Ul. Szopena 2, PL-35-055 Rzeszów, Poland.
| |
Collapse
|
31
|
Zhao X, Liu R, Chen Y, Hettinghouse A, Liu C. Cytosolic Phospholipase A2 Is Required for Fexofenadine's Therapeutic Effects against Inflammatory Bowel Disease in Mice. Int J Mol Sci 2021; 22:11155. [PMID: 34681815 PMCID: PMC8539349 DOI: 10.3390/ijms222011155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is an autoimmune condition with complicated pathology and diverse clinical signs. TNFα is believed to play a crucial role in the pathogenesis of IBD. We recently identified fexofenadine, a well-known antagonist of histamine H1 receptor, as a novel inhibitor of TNFα signaling. Additionally, cytosolic phospholipase A2 (cPLA2) was isolated as a binding target of fexofenadine, and fexofenadine-mediated anti-TNF activity relied on cPLA2 in vitro. The objective of this study is to determine whether fexofenadine is therapeutic against chemically-induced murine IBD model and whether cPLA2 and/or histamine H1 receptor is important for fexofenadine's anti-inflammatory activity in vivo by leveraging various genetically modified mice and chemically induced murine IBD models. Both dextran sulfate sodium- and 2, 4, 6-trinitrobenzene sulfonic acid-induced murine IBD models revealed that orally delivered fexofenadine was therapeutic against IBD, evidenced by mitigated clinical symptoms, decreased secretions of the proinflammatory cytokine IL-6 and IL-1β, lowered intestinal inflammation, and reduced p-p65 and p-IĸBα. Intriguingly, Fexofenadine-mediated protective effects against IBD were lost in cPLA2 deficient mice but not in histamine H1 receptor-deficient mice. Collectively, these findings demonstrate the therapeutic effects of over-the-counter drug Fexofenadine in treating DSS-induced IBD murine and provide first in vivo evidence showing that cPLA2 is required for fexofenadine's therapeutic effects in murine IBD model and probably other inflammatory and autoimmune diseases as well.
Collapse
Affiliation(s)
- Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
| | - Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (R.L.); (Y.C.); (A.H.)
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
32
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
33
|
Kakavas S, Karayiannis D, Mastora Z. The Complex Interplay between Immunonutrition, Mast Cells, and Histamine Signaling in COVID-19. Nutrients 2021; 13:nu13103458. [PMID: 34684460 PMCID: PMC8537261 DOI: 10.3390/nu13103458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
There is an ongoing need for new therapeutic modalities against SARS-CoV-2 infection. Mast cell histamine has been implicated in the pathophysiology of COVID-19 as a regulator of proinflammatory, fibrotic, and thrombogenic processes. Consequently, mast cell histamine and its receptors represent promising pharmacological targets. At the same time, nutritional modulation of immune system function has been proposed and is being investigated for the prevention of COVID-19 or as an adjunctive strategy combined with conventional therapy. Several studies indicate that several immunonutrients can regulate mast cell activity to reduce the de novo synthesis and/or release of histamine and other mediators that are considered to mediate, at least in part, the complex pathophysiology present in COVID-19. This review summarizes the effects on mast cell histamine of common immunonutrients that have been investigated for use in COVID-19.
Collapse
Affiliation(s)
- Sotirios Kakavas
- Critical Care Department, “Sotiria” General Hospital of Chest Diseases, 152 Mesogeion Avenue, 11527 Athens, Greece;
| | - Dimitrios Karayiannis
- Department of Clinical Nutrition, Evangelismos General Hospital of Athens, Ypsilantou 45-47, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-213-2045035; Fax: +30-213-2041385
| | - Zafeiria Mastora
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
34
|
Palma AM, Hanes MR, Marshall JS. Mast Cell Modulation of B Cell Responses: An Under-Appreciated Partnership in Host Defence. Front Immunol 2021; 12:718499. [PMID: 34566974 PMCID: PMC8460918 DOI: 10.3389/fimmu.2021.718499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Mast cells are well known to be activated via cross-linking of immunoglobulins bound to surface receptors. They are also recognized as key initiators and regulators of both innate and adaptive immune responses against pathogens, especially in the skin and mucosal surfaces. Substantial attention has been given to the role of mast cells in regulating T cell function either directly or indirectly through actions on dendritic cells. In contrast, the ability of mast cells to modify B cell responses has been less explored. Several lines of evidence suggest that mast cells can greatly modify B cell generation and activities. Mast cells co-localise with B cells in many tissue settings and produce substantial amounts of cytokines, such as IL-6, with profound impacts on B cell development, class-switch recombination events, and subsequent antibody production. Mast cells have also been suggested to modulate the development and functions of regulatory B cells. In this review, we discuss the critical impacts of mast cells on B cells using information from both clinical and laboratory studies and consider the implications of these findings on the host response to infections.
Collapse
Affiliation(s)
- Alejandro M Palma
- IWK Health Centre and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Mark R Hanes
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
35
|
Shulpekova YO, Nechaev VM, Popova IR, Deeva TA, Kopylov AT, Malsagova KA, Kaysheva AL, Ivashkin VT. Food Intolerance: The Role of Histamine. Nutrients 2021; 13:3207. [PMID: 34579083 PMCID: PMC8469513 DOI: 10.3390/nu13093207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
Histamine is a natural amine derived from L-histidine. Although it seems that our knowledge about this molecule is wide and diverse, the importance of histamine in many regulatory processes is still enigmatic. The interplay between different types of histamine receptors and the compound may cause ample effects, including histamine intoxication and so-called histamine intolerance or non-allergic food intolerance, leading to disturbances in immune regulation, manifestation of gastroenterological symptoms, and neurological diseases. Most cases of clinical manifestations of histamine intolerance are non-specific due to tissue-specific distribution of different histamine receptors and the lack of reproducible and reliable diagnostic markers. The diagnosis of histamine intolerance is fraught with difficulties, in addition to challenges related to the selection of a proper treatment strategy, the regular course of recovery, and reduced amelioration of chronic symptoms due to inappropriate treatment prescription. Here, we reviewed a history of histamine uptake starting from the current knowledge about its degradation and the prevalence of histamine precursors in daily food, and continuing with the receptor interactions after entering and the impacts on the immune, central nervous, and gastrointestinal systems. The purpose of this review is to build an extraordinarily specific method of histamine cycle assessment in regard to non-allergic intolerance and its possible dire consequences that can be suffered.
Collapse
Affiliation(s)
- Yulia O. Shulpekova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Vladimir M. Nechaev
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Irina R. Popova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| | - Tatiana A. Deeva
- Department of Biological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 123098 Moscow, Russia; (A.T.K.); (A.L.K.)
| | - Vladimir T. Ivashkin
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.O.S.); (V.M.N.); (I.R.P.); (V.T.I.)
| |
Collapse
|
36
|
Saheera S, Potnuri AG, Guha A, Palaniyandi SS, Thandavarayan RA. Histamine 2 receptors in cardiovascular biology: A friend for the heart. Drug Discov Today 2021; 27:234-245. [PMID: 34438076 DOI: 10.1016/j.drudis.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/04/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Undermining new mediators involved in the development and progression of cardiovascular diseases (CVDs) is vital for better disease management. Existing studies implicate a crucial role for inflammation and inflammatory cells, particularly mast cells, in cardiac diseases. Interestingly, the mast cell mediator, histamine, and its receptors profoundly impact the pathophysiology of the heart, resulting in hypertension-induced cardiac hypertrophy and other cardiac anomalies. In this review, we provide a detailed description of mast cell activation, mediators, and histamine receptors, with a particular focus on histamine 2 receptors (H2Rs). Preclinical and clinical studies using histamine receptor antagonists report improvement in cardiac function. Insights into the precise function of histamine receptors will aid in developing novel therapies and pave the way for repurposing antihistamines for cardiovascular diseases.
Collapse
Affiliation(s)
- Sherin Saheera
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ajay Godwin Potnuri
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ashrith Guha
- Department of Cardiology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Suresh S Palaniyandi
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, MI 48202, USA
| | | |
Collapse
|
37
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
38
|
Caffaratti C, Plazy C, Mery G, Tidjani AR, Fiorini F, Thiroux S, Toussaint B, Hannani D, Le Gouellec A. What We Know So Far about the Metabolite-Mediated Microbiota-Intestinal Immunity Dialogue and How to Hear the Sound of This Crosstalk. Metabolites 2021; 11:406. [PMID: 34205653 PMCID: PMC8234899 DOI: 10.3390/metabo11060406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Trillions of microorganisms, termed the "microbiota", reside in the mammalian gastrointestinal tract, and collectively participate in regulating the host phenotype. It is now clear that the gut microbiota, metabolites, and intestinal immune function are correlated, and that alterations of the complex and dynamic host-microbiota interactions can have deep consequences for host health. However, the mechanisms by which the immune system regulates the microbiota and by which the microbiota shapes host immunity are still not fully understood. This article discusses the contribution of metabolites in the crosstalk between gut microbiota and immune cells. The identification of key metabolites having a causal effect on immune responses and of the mechanisms involved can contribute to a deeper insight into host-microorganism relationships. This will allow a better understanding of the correlation between dysbiosis, microbial-based dysmetabolism, and pathogenesis, thus creating opportunities to develop microbiota-based therapeutics to improve human health. In particular, we systematically review the role of soluble and membrane-bound microbial metabolites in modulating host immunity in the gut, and of immune cells-derived metabolites affecting the microbiota, while discussing evidence of the bidirectional impact of this crosstalk. Furthermore, we discuss the potential strategies to hear the sound of such metabolite-mediated crosstalk.
Collapse
Affiliation(s)
- Clément Caffaratti
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Caroline Plazy
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Geoffroy Mery
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Department of Infectiology-Pneumology, CHU Grenoble-Alpes, 38000 Grenoble, France
| | - Abdoul-Razak Tidjani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Federica Fiorini
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Sarah Thiroux
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Bertrand Toussaint
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Dalil Hannani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Audrey Le Gouellec
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| |
Collapse
|
39
|
Qu C, Fuhler GM, Pan Y. Could Histamine H1 Receptor Antagonists Be Used for Treating COVID-19? Int J Mol Sci 2021; 22:5672. [PMID: 34073529 PMCID: PMC8199351 DOI: 10.3390/ijms22115672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has rapidly become a pandemic worldwide, causing extensive and long-term health issues. There is an urgent need to identify therapies that limit SARS-CoV-2 infection and improve the outcome of COVID-19 patients. Unbalanced lung inflammation is a common feature in severe COVID-19 patients; therefore, reducing lung inflammation can undoubtedly benefit the clinical manifestations. Histamine H1 receptor (H1 receptor) antagonists are widely prescribed medications to treat allergic diseases, while recently it has emerged that they show significant promise as anti-SARS-CoV-2 agents. Here, we briefly summarize the novel use of H1 receptor antagonists in combating SARS-CoV-2 infection. We also describe the potential antiviral mechanisms of H1 receptor antagonists on SARS-CoV-2. Finally, the opportunities and challenges of the use of H1 receptor antagonists in managing COVID-19 are discussed.
Collapse
Affiliation(s)
- Changbo Qu
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
40
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
41
|
Kim KW, Kim BM, Won JY, Min HK, Lee KA, Lee SH, Kim HR. Regulation of osteoclastogenesis by mast cell in rheumatoid arthritis. Arthritis Res Ther 2021; 23:124. [PMID: 33882986 PMCID: PMC8059019 DOI: 10.1186/s13075-021-02491-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background In the pathogenesis of rheumatoid arthritis (RA), the role of mast cells has not been revealed clearly. We aimed to define the inflammatory and tissue-destructive roles of mast cells in rheumatoid arthritis (RA). Methods Serum and synovial fluid (SF) concentration levels of tryptase, chymase, and histamine were quantified using ELISA. After activating mast cells using IL-33, the production of TNF-α, IL-1β, IL-6, IL-17, RANKL, and MMPs was determined using real-time PCR and ELISA. Osteoclastogenesis was assessed in CD14+ monocytes from peripheral blood and SF, which were cultured with IL-33-activated mast cells, by counting TRAP-positive multinucleated cells. Results The concentration levels of serum tryptase, chymase, and histamine and SF histamine were higher in patients with RA than in controls. FcεR1 and c-kit-positive mast cells were higher in RA synovium than in osteoarthritic (OA) synovium. Stimulation of mast cells by IL-33 increased the number of trypatse+chymase− and tryptase+chymase+ mast cells. IL-33 stimulation also increased the gene expression levels of TNF-α, IL-1β, IL-6, IL-17, RANKL, and MMP-9 in mast cells. Furthermore, IL-33 stimulated human CD14+ monocytes to differentiate into TRAP+ multinucleated osteoclasts. When CD14+ monocytes were co-cultured with mast cells, osteoclast differentiation was increased. Additionally, IL-33-activated mast cells stimulated osteoclast differentiation. The inhibition of intercellular contact between mast cells and monocytes using inserts reduced osteoclast differentiation. Conclusions IL-33 increased inflammatory and tissue-destructive cytokines by activation of mast cells. Mast cells stimulated osteoclast differentiation in monocytes. Mast cells could stimulate osteoclastogenesis indirectly through production of tissue-destructive cytokines and directly through stimulation of osteoclast precursors.
Collapse
Affiliation(s)
| | - Bo-Mi Kim
- Laboratory of Stem Cell, NEXEL, Seoul, South Korea
| | - Ji-Yeon Won
- R&D Center, OncoInsight Co. Ltd, Seoul, South Korea
| | - Hong-Ki Min
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, South Korea
| | - Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, South Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, South Korea.
| |
Collapse
|
42
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
43
|
Miyajima M. Amino acids: key sources for immunometabolites and immunotransmitters. Int Immunol 2020; 32:435-446. [PMID: 32383454 DOI: 10.1093/intimm/dxaa019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Immune-cell activation and functional plasticity are closely linked to metabolic reprogramming that is required to supply the energy and substrates for such dynamic transformations. During such processes, immune cells metabolize many kinds of molecules including nucleic acids, sugars and lipids, which is called immunometabolism. This review will mainly focus on amino acids and their derivatives among such metabolites and describe the functions of these molecules in the immune system. Although amino acids are essential for, and well known as, substrates for protein synthesis, they are also metabolized as energy sources and as substrates for functional catabolites. For example, glutamine is metabolized to produce energy through glutaminolysis and tryptophan is consumed to supply nicotinamide adenine dinucleotide, whereas arginine is metabolized to produce nitric acid and polyamine by nitric oxide synthase and arginase, respectively. In addition, serine is catabolized to produce nucleotides and to induce methylation reactions. Furthermore, in addition to their intracellular functions, amino acids and their derivatives are secreted and have extracellular functions as immunotransmitters. Many amino acids and their derivatives have been classified as neurotransmitters and their functions are clear as transmitters between nerve cells, or between nerve cells and immune cells, functioning as immunotransmitters. Thus, this review will describe the intracellular and external functions of amino acid from the perspective of immunometabolism and immunotransmission.
Collapse
Affiliation(s)
- Michio Miyajima
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
44
|
Neree AT, Soret R, Marcocci L, Pietrangeli P, Pilon N, Mateescu MA. Vegetal diamine oxidase alleviates histamine-induced contraction of colonic muscles. Sci Rep 2020; 10:21563. [PMID: 33299054 PMCID: PMC7726047 DOI: 10.1038/s41598-020-78134-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Excess of histamine in gut lumen generates a pronounced gastrointestinal discomfort, which may include diarrhea and peristalsis dysfunctions. Deleterious effects of histamine can be alleviated with antihistamine drugs targeting histamine receptors. However, many antihistamine agents come with various undesirable side effects. Vegetal diamine oxidase (vDAO) might be a relevant alternative owing to its histaminase activity. Mammalian intestinal mucosa contains an endogenous DAO, yet possessing lower activity compared to that of vDAO preparation. Moreover, in several pathological conditions such as inflammatory bowel disease and irritable bowel syndrome, this endogenous DAO enzyme can be lost or inactivated. Here, we tested the therapeutic potential of vDAO by focusing on the well-known effect of histamine on gut motility. Using ex vivo and in vitro assays, we found that vDAO is more potent than commercial anti-histamine drugs at inhibiting histamine-induced contraction of murine distal colon muscles. We also identified pyridoxal 5′-phosphate (the biologically active form of vitamin B6) as an effective enhancer of vDAO antispasmodic activity. Furthermore, we discovered that rectally administered vDAO can be retained on gut mucosa and remain active. These observations make administration of vDAO in the gut lumen a valid alternative treatment for histamine-induced intestinal dysfunctions.
Collapse
Affiliation(s)
- Armelle Tchoumi Neree
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys", University of Quebec at Montreal, Montreal, QC, H3C 3P8, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada
| | - Rodolphe Soret
- Department of Biological Sciences, Research Chair on Rare Genetic Diseases, University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada
| | - Lucia Marcocci
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Paola Pietrangeli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Nicolas Pilon
- Department of Biological Sciences, Research Chair on Rare Genetic Diseases, University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada. .,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada. .,Department of Pediatrics, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys", University of Quebec at Montreal, Montreal, QC, H3C 3P8, Canada. .,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada.
| |
Collapse
|
45
|
Mast Cell Functions Linking Innate Sensing to Adaptive Immunity. Cells 2020; 9:cells9122538. [PMID: 33255519 PMCID: PMC7761480 DOI: 10.3390/cells9122538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although mast cells (MCs) are known as key drivers of type I allergic reactions, there is increasing evidence for their critical role in host defense. MCs not only play an important role in initiating innate immune responses, but also influence the onset, kinetics, and amplitude of the adaptive arm of immunity or fine-tune the mode of the adaptive reaction. Intriguingly, MCs have been shown to affect T-cell activation by direct interaction or indirectly, by modifying the properties of antigen-presenting cells, and can even modulate lymph node-borne adaptive responses remotely from the periphery. In this review, we provide a summary of recent findings that explain how MCs act as a link between the innate and adaptive immunity, all the way from sensing inflammatory insult to orchestrating the final outcome of the immune response.
Collapse
|
46
|
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging Roles of Mast Cells in the Regulation of Lymphatic Immuno-Physiology. Front Immunol 2020; 11:1234. [PMID: 32625213 PMCID: PMC7311670 DOI: 10.3389/fimmu.2020.01234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Anatoliy A Gashev
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
47
|
Schirmer B, Rother T, Bruesch I, Bleich A, Werlein C, Jonigk D, Seifert R, Neumann D. Genetic Deficiency of the Histamine H 4-Receptor Reduces Experimental Colorectal Carcinogenesis in Mice. Cancers (Basel) 2020; 12:cancers12040912. [PMID: 32276475 PMCID: PMC7226035 DOI: 10.3390/cancers12040912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC), a severe complication of inflammatory bowel diseases, is a common type of cancer and accounts for high mortality. CRC can be modeled in mice by application of the tumor promoter, azoxymethane (AOM), in combination with dextran sodium sulfate (DSS), which are able to induce colitis-like manifestations. Active colitis correlates with high mucosal concentrations of histamine, which, together with the histamine receptor subtype 4 (H4R), provide a pro-inflammatory function in a mouse colitis model. Here, we analyzed whether H4R is involved in the pathogenesis of AOM/DSS-induced CRC in mice. As compared to wild type (WT) mice, AOM/DSS-treated mice lacking H4R expression (TM) demonstrate ameliorated signs of CRC, i.e., significantly reduced loss of body weight, stiffer stool consistency, and less severe perianal bleeding. Importantly, numbers and diameters of tumors and the degree of colonic inflammation are dramatically reduced in TM mice as compared to WT mice. This is concomitant with a reduced colonic inflammatory response involving expression of cyclooxygenase 2 and the production of C-X-C motif chemokine ligand 1 (CXCL1) and CXCL2. We conclude that H4R is involved in the tumorigenesis of chemically-induced CRC in mice via cyclooxygenase 2 expression and, probably, CXCL1 and CXCL2 as effector molecules.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Tamina Rother
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
- Institute of Pathology and German Center of Lung Research (DZL), Partner site BREATH, Hannover Medical School, 30625 Hannover, Germany
| | - Inga Bruesch
- Institute of Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Bleich
- Institute of Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Christopher Werlein
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-4082
| |
Collapse
|
48
|
Pal S, Gasheva OY, Zawieja DC, Meininger CJ, Gashev AA. Histamine-mediated autocrine signaling in mesenteric perilymphatic mast cells. Am J Physiol Regul Integr Comp Physiol 2020; 318:R590-R604. [PMID: 31913658 PMCID: PMC7099465 DOI: 10.1152/ajpregu.00255.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022]
Abstract
Lymphatic vessels play a critical role in mounting a proper immune response by trafficking peripheral immune cells to draining lymph nodes. Mast cells (MCs) are well known for their roles in type I hypersensitivity reactions, but little is known about their secretory regulation in the lymphatic niche. MCs, as innate sensor and effector cells, reside close to mesenteric lymphatic vessels (MLVs), and their activation and ability to release histamine influences the lymphatic microenvironment in a histamine-NF-κB-dependent manner. Using an established experimental protocol involving surgical isolation of rat mesenteric tissue segments, including MLVs and surrounding perilymphatic tissues, we tested the hypothesis that perilymphatic mesenteric MCs possess histamine receptors (HRs) that bind and respond to the histamine released from these same MCs. Under various experimental conditions, including inflammatory stimulation by LPS, we measured histamine in mesenteric perilymphatic tissues, evaluated expression of histidine decarboxylase in MCs along with the degree of MC degranulation, assessed the functional status of HRs in MCs, and evaluated the ability of histamine itself to induce MC activation. Finally, we evaluated the importance of MCs and HR1 and -2 for MLV-directed trafficking of CD11b/c-positive cells during acute tissue inflammation. Our data indicate the existence of a functionally potent MC-histamine autocrine regulatory loop, the elements of which are crucially important for acute inflammation-induced trafficking of the CD11b/c-positive cells toward MLVs. This MC-histamine loop serves as a first-line cellular servo control system, playing a key role in the innate and adaptive immune response as well as NF-κB-mediated maintenance of body homeostasis.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Olga Y Gasheva
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Anatoliy A Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| |
Collapse
|
49
|
Sandoval-Talamantes AK, Gómez-González BA, Uriarte-Mayorga DF, Martínez-Guzman MA, Wheber-Hidalgo KA, Alvarado-Navarro A. Neurotransmitters, neuropeptides and their receptors interact with immune response in healthy and psoriatic skin. Neuropeptides 2020; 79:102004. [PMID: 31902596 DOI: 10.1016/j.npep.2019.102004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic inflammatory disease with a multifactorial origin that affects the skin. It is characterized by keratinocyte hyperproliferation, which results in erythemato-squamous plaques. Just as the immune system plays a fundamental role in psoriasis physiopathology, the nervous system maintains the inflammatory process through the neuropeptides and neurotransmitters synthesis, as histamine, serotonin, calcitonin gene-related peptide, nerve growth factor, vasoactive intestinal peptide, substance P, adenosine, glucagon-like peptide, somatostatin and pituitary adenylate cyclase polypeptide. In patients with psoriasis, the systemic or in situ expression of these chemical mediators and their receptors are altered, which affects the clinical activity of patients due to its link to the immune system, provoking neurogenic inflammation. It is important to establish the role of the nervous system since it could represent a therapeutic alternative for psoriasis patients. The aim of this review is to offer a detailed review of the current literature about the neuropeptides and neurotransmitters involved in the physiopathology of psoriasis.
Collapse
Affiliation(s)
- Ana Karen Sandoval-Talamantes
- Centro de Reabilitación Infantil Teletón de Occidente, Copal 4575, Col. Arboledas del Sur, 44980 Guadalajara, Jalisco, México
| | - B A Gómez-González
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - D F Uriarte-Mayorga
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - M A Martínez-Guzman
- Unima Diagnósticos de México, Paseo de los Mosqueteros 4181, Col. Villa Universitaria, 45110 Zapopan, Jalisco, México
| | - Katia Alejandra Wheber-Hidalgo
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y dermatología, Universidad de Guadalajara, México, Sierra Mojada 950, Col. Independencia, 44340, Guadalajara, Jalisco, México.
| |
Collapse
|
50
|
Schaper‐Gerhardt K, Rossbach K, Nikolouli E, Werfel T, Gutzmer R, Mommert S. The role of the histamine H 4 receptor in atopic dermatitis and psoriasis. Br J Pharmacol 2020; 177:490-502. [PMID: 30460986 PMCID: PMC7012951 DOI: 10.1111/bph.14550] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) and psoriasis are common skin diseases with a high negative impact on patients' quality of life. Both diseases are mediated by a pro-inflammatory infiltrate consisting of several cell types, such as T-cells, antigen-presenting cells and granulocytes and display disturbed keratinocyte differentiation. Given the fact that histamine levels are also highly elevated in inflamed skin, it is likely that histamine plays a relevant role in disease pathology. However, antagonists blocking histamine H1 receptor or H2 receptors are largely ineffective in reducing chronic symptoms in AD and psoriasis. Over the last years, much research has been undertaken to shed light into the mode of action of the most recently discovered histamine H4 receptor. This research has shown that H4 receptor antagonists display antipruritic and anti-inflammatory effects not only in mouse models but also in first human clinical trials, and therefore, H4 receptors might present a novel therapeutic target. In this review, we summarize the effects of the H4 receptors on different cell types, mouse models and clinical studies in regard to AD and psoriasis respectively. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Katrin Schaper‐Gerhardt
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Kristine Rossbach
- Department of Pharmacology, Toxicology and PharmacyVeterinary School HannoverHannoverGermany
| | - Eirini Nikolouli
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Ralf Gutzmer
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Susanne Mommert
- Division of Immunodermatology and Allergy Research, Department of Dermatology and AllergyHannover Medical SchoolHannoverGermany
| |
Collapse
|