1
|
Baya NA, Erdem IS, Venkatesh SS, Reibe S, Charles PD, Navarro-Guerrero E, Hill B, Lassen FH, Claussnitzer M, Palmer DS, Lindgren CM. Combining evidence from human genetic and functional screens to identify pathways altering obesity and fat distribution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.19.24313913. [PMID: 39371160 PMCID: PMC11451655 DOI: 10.1101/2024.09.19.24313913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Overall adiposity and body fat distribution are heritable traits associated with altered risk of cardiometabolic disease and mortality. Performing rare variant (minor allele frequency<1%) association testing using exome-sequencing data from 402,375 participants in the UK Biobank (UKB) for nine overall and tissue-specific fat distribution traits, we identified 19 genes where putatively damaging rare variation associated with at least one trait (Bonferroni-adjusted P <1.58×10 -7 ) and 50 additional genes at FDR≤1% ( P ≤4.37×10 -5 ). These 69 genes exhibited significantly higher (one-sided t -test P =3.58×10 -18 ) common variant prioritisation scores than genes not significantly enriched for rare putatively damaging variation, with evidence of monotonic allelic series (dose-response relationships) among ultra-rare variants (minor allele count≤10) in 22 genes. Combining rare and common variation evidence, allelic series and longitudinal analysis, we selected 14 genes for CRISPR knockdown in human white adipose tissue cell lines. In three previously uncharacterised target genes, knockdown increased (two-sided t -test P <0.05) lipid accumulation, a cellular phenotype relevant for fat mass traits, compared to Cas9-empty negative controls: COL5A3 (fold change [FC]=1.72, P =0.0028), EXOC7 (FC=1.35, P =0.0096), and TRIP10 (FC=1.39, P =0.0157); furthermore, knockdown of PPARG (FC=0.25, P =5.52×10 -7 ) and SLTM (FC=0.51, P =1.91×10 -4 ) resulted in reduced lipid accumulation. Integrating across population-based genetic and in vitro functional evidence, we highlight therapeutic avenues for altering obesity and body fat distribution by modulating lipid accumulation.
Collapse
|
2
|
Takahashi A, Furuta H, Nishi H, Kamei H, Takahashi SI, Hakuno F. Insulin Receptor Substrate-2 Regulates the Secretion of Growth Factors in Response to Amino Acid Deprivation. Int J Mol Sci 2025; 26:841. [PMID: 39859555 PMCID: PMC11766276 DOI: 10.3390/ijms26020841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Insulin receptor substrates (IRSs) are well-known mediators of the insulin and insulin-like growth factor (IGF)-I signaling pathways. We previously reported that the protein levels of IRS-2, a molecular species of IRS, were upregulated in the livers of rats fed a protein-restricted diet. This study aimed to elucidate the physiological role of IRS-2, whose level increases in response to protein restriction in cultured hepatocyte models. Hepatocyte-derived cell lines subjected to amino acid deprivation showed increased IRS2 mRNA and IRS-2 protein levels due to increased IRS2 transcription and translation, respectively. Amino acid deprivation markedly increased vascular endothelial growth factor-D (VEGF-D) secretion. Remarkably, the amino acid deprivation-induced VEGF-D secretion was suppressed by IRS-2 knockdown and enhanced by IRS-2 overexpression. These results suggest that IRS-2 is an intercellular signaling molecule that extracellularly transmits information on amino acid deprivation stress by regulating the secretion of growth factors such as VEGF-D. Moreover, this function of IRS-2 is distinct from its currently accepted function as a mediator of the insulin/IGF-I signaling pathways. This study demonstrates that IRS-2 can modulate protein secretion in an insulin-independent manner and greatly expands our understanding of the role of IRS-2, which is upregulated in response to amino acid deprivation.
Collapse
Affiliation(s)
- Ayaka Takahashi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (A.T.); (H.F.); (H.N.); (S.-I.T.)
| | - Haruka Furuta
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (A.T.); (H.F.); (H.N.); (S.-I.T.)
| | - Hiroki Nishi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (A.T.); (H.F.); (H.N.); (S.-I.T.)
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (A.T.); (H.F.); (H.N.); (S.-I.T.)
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (A.T.); (H.F.); (H.N.); (S.-I.T.)
| |
Collapse
|
3
|
Toyoshima Y, Nakamura K, Taguchi Y, Tokita R, Takeuchi S, Osawa H, Teramoto N, Sugihara H, Yoshizawa F, Yamanouchi K, Minami S. Deletion of IRS-1 leads to growth failure and insulin resistance with downregulation of liver and muscle insulin signaling in rats. Sci Rep 2025; 15:649. [PMID: 39779784 PMCID: PMC11711447 DOI: 10.1038/s41598-024-84234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Insulin receptor substrate (IRS)-1 and IRS-2 are major molecules that transduce signals from insulin and insulin-like growth factor-I receptors. The physiological functions of these proteins have been intensively investigated in mice, while little is known in other animals. Our previous study showed that the disruption of IRS-2 impairs body growth but not glucose tolerance or insulin sensitivity in rats, which led us to hypothesize that IRS-1 plays more pivotal roles in insulin functions than IRS-2. Here, we created IRS-1 knockout (KO) rats to elucidate the physiological roles of IRS-1 in rats. The body weight of IRS-1 KO rats at birth was lower than that of wild-type (WT) littermates, and postnatal growth of IRS-1 KO rats was severely impaired. Compared with WT rats, IRS-1 KO rats displayed insulin resistance but maintained euglycemia because of compensatory hyperinsulinemia. In addition, despite the increased activity of insulin-stimulated IRS-2-associated phosphatidylinositol-3 kinase (PI3K), insulin-induced phosphorylation of the kinases downstream of PI3K was suppressed in the liver and skeletal muscle of IRS-1 KO rats. Taken together, these results indicate that in rats, IRS-1 is essential for normal growth and the glucose-lowering effects of insulin. IRS-1 appears to be more important than IRS-2 for insulin functions in rats.
Collapse
Affiliation(s)
- Yuka Toyoshima
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan.
| | - Katsuyuki Nakamura
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biomolecular Science, Biomolecular Science Course, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Yusuke Taguchi
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Reiko Tokita
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Shiho Takeuchi
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hayato Osawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Naomi Teramoto
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidetoshi Sugihara
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumiaki Yoshizawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Keitaro Yamanouchi
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiro Minami
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| |
Collapse
|
4
|
Li LN. Fructus mori: An Updated Review on Botany, Phytonutrient, Detection, Bioactivity, Quality Marker, and Application. Comb Chem High Throughput Screen 2025; 28:12-32. [PMID: 38279750 DOI: 10.2174/0113862073270666231206093528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Fructus mori (mulberry) is not only a delicious fruit with rich phytonutrients and health functions but also a medicinal plant with many clinical therapeutic values for tonifying kidneys and consolidating essence, making hair black and eyes bright. METHODS The related references about F. mori in this review from 1996 to 2022 had been collected from both online and offline databases, including PubMed, Elsevier, SciFinder, Willy, SciHub, Scopus, Web of Science, ScienceDirect, SpringerLink, Google Scholar, Baidu Scholar, ACS publications, and CNKI. The other information was acquired from ancient books and classical works about F. mori. RESULTS An updated summary of phytonutrients from F. mori was listed as fellows: flavonoids (1-20) (23.5%), phenolic acids (21-34) 16.5%), alkaloids (35-75) (48.2%), polysaccharides (76- 78) (3.5%), other compounds (79-85) (8.3%). The above chemical components were detected by TLC, UV-Vis, HPLC, GC-MS, and AAS methods for their quality standards. The various bioactivities (hepatoprotective, immunomodulatory, anti-oxidant, hypoglycemic, anti-cancer, and other activities) of mulberry are summarized and discussed in this review, which laid an important basis for analyzing their mechanisms and quality markers. This review summarized its applications for vinegar, wine, yogurt, drink, jelly, and sweetmeat in food fields, and the existing problems and future development directions are also discussed in this review. CONCLUSIONS This review made a comprehensive description of F. mori, including botany, phytonutrient, detection, bioactivity, quality marker, and application. It will not only provide some important clues for further studying F. mori, but also provide some valuable suggestions for in-depth research and development of F. mori.
Collapse
Affiliation(s)
- Ling-Na Li
- Department of Pharmacy and Biotechnology, Zibo Vocational Institute, Zibo, China
| |
Collapse
|
5
|
Imierska M, Zabielski P, Roszczyc-Owsiejczuk K, Pogodzińska K, Błachnio-Zabielska A. Impact of reduced hepatic ceramide levels in high-fat diet mice on glucose metabolism. J Nutr Biochem 2025; 135:109785. [PMID: 39427846 DOI: 10.1016/j.jnutbio.2024.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Dysregulation of insulin action in hepatocytes, common in obesity, significantly contributes to insulin resistance, type 2 diabetes, and metabolic syndrome. Previous research highlights ceramides' role in these conditions. This study explores the impact of ceramides by silencing the serine palmitoyltransferase (Sptlc2) gene, crucial for the initial ceramide biosynthesis, using hydrodynamic gene delivery. Male C57BL/6 mice were randomly divided into three groups: one on a low-fat diet (LFD) receiving scrambled shRNA plasmids, another on a high-fat diet (HFD) with scrambled shRNA plasmids, and a third on HFD with a plasmid targeting Sptlc2. Analyses included RT-PCR for gene expression, western blot for protein levels, and UHPLC/MS/MS for lipid profiling. Glucose metabolism was evaluated via oral glucose tolerance tests, homeostatic model assessment of insulin resistance, and glucose-6-phosphate analysis. Results showed that HFD induces insulin resistance by inhibiting insulin signaling and increasing active lipid levels in hepatocytes. Sptlc2 silencing reduced ceramide accumulation, improving insulin signaling and glucose metabolism. Notably, ceramide synthesis inhibition did not significantly affect other lipid levels, highlighting ceramide's critical role in hepatic insulin resistance.
Collapse
Affiliation(s)
- Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
6
|
Ma J, Dong Y, Liu J, Gao S, Quan J. The role of GRB2 in diabetes, diabetes complications and related disorders. Diabetes Obes Metab 2025; 27:23-34. [PMID: 39478285 DOI: 10.1111/dom.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a key adaptor protein involved in multiple signalling pathways, and its dysregulation is associated with various diseases. Type 2 diabetes is a systemic condition characterized by insulin resistance and impaired β-cell function. The complications of diabetes significantly reduce life expectancy and quality of life, imposing a substantial burden on society. However, the role of GRB2 in diabetes and associated complications is largely unknown. Emerging evidence suggests that GRB2 plays a crucial role in insulin resistance, inflammation, immune activation and the regulation of cellular processes such as cell proliferation, growth, metabolism, angiogenesis, apoptosis and differentiation. Dysregulation of GRB2-mediated pathways contributes to the progression of diabetic neuropathy, cognitive dysfunction, nephropathy, retinopathy and related disorders. This review provides a comprehensive overview of the current understanding of the role of GRB2 in diabetes, diabetes complications and related disorders, alongside recent advances in the development of GRB2-targeted therapies. Elucidating the complex role of GRB2 in these disorders provides valuable insights into potential therapeutic strategies targeting GRB2-mediated pathways.
Collapse
Affiliation(s)
- Jing Ma
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Yuyan Dong
- Clinical College of Ningxia Medical University, Yinchuan, China
| | - Juxiang Liu
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Shuo Gao
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jinxing Quan
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| |
Collapse
|
7
|
Zieleniak A, Zurawska-Klis M, Laszcz K, Bulash K, Pacyga D, Cypryk K, Wozniak L, Wojcik M. Assessment of Changes in the Expression of Genes Involved in Insulin Signaling and Glucose Transport in Leukocytes of Women with Gestational Diabetes During Pregnancy and in the Postpartum Period. Int J Mol Sci 2024; 25:13094. [PMID: 39684804 DOI: 10.3390/ijms252313094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Not much is currently known about disturbances in insulin signaling and glucose transport in leukocytes of women with gestational diabetes mellitus (GDM) during and after pregnancy. In this study, the expression of insulin signaling (INSR, IRS1, IRS2 and PIK3R1)- and glucose transporter (SLC2A1, SLC2A3 and SLC2A4)-related genes in the leukocytes of 92 pregnant women was assayed using quantitative RT-PCR. The cohort consisted of 44 women without GDM (NGT group) and 48 with GDM (GDM group) at 24-28 weeks of gestation. GDM women were then tested again one year after childbirth (pGDM group: 14 women (29.2%) with abnormal glucose tolerance (AGT) and 34 women (70.8%) with normoglycemia). The GDM and NGT groups were closely matched for gestational age and parameters of obesity, such as pre-pregnancy body mass index (BMI), pregnancy weight, and gestational weight gain (GWG) (p > 0.05). Compared to the NGT group, the GDM and pGDM groups were hyperglycemic, but the GDM group featured a more highly insulin-resistant condition than the pGDM group, as reflected by higher fasting insulin (FI) levels and the values of the homeostasis model assessment for insulin resistance (HOMA-IR) (p < 0.05). In leukocytes from the GDM and pGDM groups, PIK3R1, SLC2A1, and SLC2A3 were upregulated and IRS1 was downregulated, with a larger magnitude in fold change (FC) values for PIK3R1 and IRS1 in the GDM group and for SLC2A1 and SLC2A3 in the pGDM group. The expression of SLC2A4 was unchanged in the GDM group but upregulated in the pGDM group, where it was inversely correlated with HOMA-IR (rho = -0.48; p = 0.007). Although the INSR and IRS2 levels did not significantly differ between the groups, the IRS2 transcript positively correlated with pregnancy weight, fasting plasma glucose, FI, and HOMA-IR in the GDM group. Our findings indicate that pronounced quantitative changes exist between the GDM and pGDM groups with respect to the expression of certain genes engaged in insulin signaling and glucose transport in leukocytes, with insulin resistance of a variable degree. These data also highlight the relationship of leukocyte SLC2A4 expression with insulin resistance in the postpartum period.
Collapse
Affiliation(s)
- Andrzej Zieleniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Karolina Laszcz
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Krystsina Bulash
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Dagmara Pacyga
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lucyna Wozniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Marzena Wojcik
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
8
|
Xiao K, Jia X, Qiang W, Chang L, Liu W, Zhang D. Tryptophan supplements in high-carbohydrate diets by improving insulin response and glucose transport through PI3K-AKT-GLUT2 pathways in blunt snout bream (Megalobrama amblycephala). J Nutr Biochem 2024; 134:109715. [PMID: 39127308 DOI: 10.1016/j.jnutbio.2024.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The aim of this experiment was to elucidate the metabolic ramifications of tryptophan supplementation in the context of high-carbohydrate diet-feeding, which is important for improving feeding strategies in aquaculture in order to improve fish carbohydrate metabolism. Juvenile blunt snout bream with an initial mean body mass of 55.0±0.5 g were allocated to consume one of three experimental diets: CN, a normal diet with carbohydrate content of 30% (w/w); HC, a diet with high carbohydrate content of 43% (w/w); and HL, a high-carbohydrate diet to which 0.8% L-tryptophan (L-trp) had been added. These diets were fed for 8 weeks, and the effects of the carbohydrate and tryptophan contents of the diets were assessed. Histological analysis using Hematoxylin and Eosin (H&E) and Oil Red O staining revealed that high-carbohydrate intake was associated with abnormal hepatocyte morphology and excessive liver lipid accumulation, which were notably ameliorated by tryptophan supplementation. A significant increase in plasma glucose, glucagon, AGEs (advanced glycation end products), triglycerides, total cholesterol, and a significant decrease in insulin and hepatic glycogen after a high-carbohydrate diet in terms of plasma indices, compared to the control group. Almost all of them were restored to the normal level in the HL group. The present study might preliminarily suggest that tryptophan supplementation ameliorates the imbalance in glucose metabolism of this species induced by a high-carbohydrate diet. Transcriptomics showed that glucose metabolism under high carbohydrate was mainly regulated by the PI3K-AKT signaling pathway. The mRNA expression and protein levels of GLUT2 also varied with this pathway, which would suggest that sustained activation of this pathway with the addition of tryptophan accelerates glucose transport and insulin secretion under high-carbohydrate diet. Subsequent GTT and ITT experiments have also demonstrated that tryptophan improves glucose tolerance and insulin tolerance in blunt snout bream on a high-carbohydrate diet. In conclusion, these findings elucidate the positive regulatory effect of tryptophan on the PI3K-AKT-GLUT2 pathway under a high carbohydrate diet and provide a theoretical basis for the subsequent rational application of high carbohydrate diets in the future.
Collapse
Affiliation(s)
- Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Qiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Chang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Hosseinpoor Z, Soheili ZS, Davari M, Latifi-Navid H, Samiee S, Samiee D. Crosstalk between MIR-96 and IRS/PI3K/AKT/VEGF cascade in hRPE cells; A potential target for preventing diabetic retinopathy. PLoS One 2024; 19:e0310999. [PMID: 39348384 PMCID: PMC11441665 DOI: 10.1371/journal.pone.0310999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Regulation of visual system function demands precise gene regulation. Dysregulation of miRNAs, as key regulators of gene expression in retinal cells, contributes to different eye disorders such as diabetic retinopathy (DR), macular edema, and glaucoma. MIR-96, a member of the MIR-183 cluster family, is widely expressed in the retina, and its alteration is associated with neovascular eye diseases. MIR-96 regulates protein cascades in inflammatory and insulin signaling pathways, but further investigation is required to understand its potential effects on related genes. For this purpose, we identified a series of key target genes for MIR-96 based on gene and protein interaction networks and utilized text-mining resources. To examine the MIR-96 impact on candidate gene expression, we overexpressed MIR-96 via adeno-associated virus (AAV)-based plasmids in human retinal pigment epithelial (RPE) cells. Based on Real-Time PCR results, the relative expression of the selected genes responded differently to overexpressed MIR-96. While the expression levels of IRS2, FOXO1, and ERK2 (MAPK1) were significantly decreased, the SERPINF1 gene exhibited high expression simultaneously. pAAV-delivered MIR-96 had no adverse effect on the viability of human RPE cells. The data showed that changes in insulin receptor substrate-2 (IRS2) expression play a role in disrupted retinal insulin signaling and contribute to the development of diabetic complications. Considered collectively, our findings suggest that altered MIR-96 and its impact on IRS/PI3K/AKT/VEGF axis regulation contribute to DR progression. Therefore, further investigation of the IRS/PI3K/AKT/VEGF axis is recommended as a potential target for DR treatment.
Collapse
Affiliation(s)
- Zeynab Hosseinpoor
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Maliheh Davari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Dorsa Samiee
- Department of Computer Science, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
10
|
Davenport A, Kessinger CW, Pfeiffer RD, Shah N, Xu R, Abel ED, Tucker NR, Lin Z. Comparative analysis of two independent Myh6-Cre transgenic mouse lines. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100081. [PMID: 39323506 PMCID: PMC11423776 DOI: 10.1016/j.jmccpl.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 09/27/2024]
Abstract
We have previously shown that the Myh6 promoter drives Cre expression in a subset of male germ line cells in three independent Myh6-Cre mouse lines, including two transgenic lines and one knock-in allele. In this study, we further compared the tissue-specificity of the two Myh6-Cre transgenic mouse lines, MDS Myh6-Cre and AUTR Myh6-Cre, through examining the expression of tdTomato (tdTom) red fluorescence protein in multiple internal organs, including the heart, brain, liver, lung, pancreas and brown adipose tissue. Our results show that MDS Myh6-Cre mainly activates tdTom reporter in the heart, whereas AUTR Myh6-Cre activates tdTom expression significantly in the heart, and in the cells of liver, pancreas and brain. In the heart, similar to MDS Myh6-Cre, AUTR Myh6-Cre activates tdTom in most cardiomyocytes. In the other organs, AUTR Myh6-Cre not only mosaically activates tdTom in some parenchymal cells, such as hepatocytes in the liver and neurons in the brain, but also turns on tdTom in some interstitial cells of unknown identity.
Collapse
Affiliation(s)
- Amanda Davenport
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Chase W. Kessinger
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Ryan D. Pfeiffer
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Nikita Shah
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
- College of Arts and Sciences, SUNY Polytechnic Institute, Utica, NY 13502, United States of America
| | - Richard Xu
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - E. Dale Abel
- Department of Medicine David Geffen School of Medicine and UCLA Health, United States of America
| | - Nathan R. Tucker
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Zhiqiang Lin
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| |
Collapse
|
11
|
Hirose M, Inoue K, Matoba S, Tatebe T, Tokita S, Dodo Y, Tomishima T, Hasegawa A, Honda A, Ozaki M, Shinogi A, Yanagisawa R, Fauzi M, Murakami T, Inagaki N, Tamura M, Ogura A. Disruption of insulin receptor substrate 2 (IRS2) causes non-obese type 2 diabetes with β-cell dysfunction in the golden (Syrian) hamster. Sci Rep 2024; 14:17450. [PMID: 39134590 PMCID: PMC11319448 DOI: 10.1038/s41598-024-67513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Because of the advent of genome-editing technology, gene knockout (KO) hamsters have become attractive research models for diverse diseases in humans. This study established a new KO model of diabetes by disrupting the insulin receptor substrate-2 (Irs2) gene in the golden (Syrian) hamster. Homozygous KO animals were born alive but with delayed postnatal growth until adulthood. They showed hyperglycemia, high HbA1c, and impaired glucose tolerance. However, they normally responded to insulin stimulation, unlike Irs2 KO mice, an obese type 2 diabetes (T2D) model. Consistent with this, Irs2 KO hamsters did not increase serum insulin levels upon glucose administration and showed β-cell hypoplasia in their pancreas. Thus, our Irs2 KO hamster provide a unique T2D animal model that is distinct from the obese T2D models. This model may contribute to a better understanding of the pathophysiology of human non-obese T2D with β-cell dysfunction, the most common type of T2D in East Asian countries, including Japan.
Collapse
Affiliation(s)
| | - Kimiko Inoue
- RIKEN BioResource Research Center, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shogo Matoba
- RIKEN BioResource Research Center, Ibaraki, Japan
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takaki Tatebe
- RIKEN BioResource Research Center, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Syun Tokita
- RIKEN BioResource Research Center, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yukiko Dodo
- RIKEN BioResource Research Center, Ibaraki, Japan
| | | | | | - Arata Honda
- Center for Development of Advanced Medical Technology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Mao Ozaki
- RIKEN BioResource Research Center, Ibaraki, Japan
| | | | | | - Muhammad Fauzi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Medical Research Institute KITANO HOSPITAL, Osaka, Japan.
| | | | - Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki, Japan.
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.
- RIKEN Center for Pioneering Research, Saitama, Japan.
| |
Collapse
|
12
|
Xu H, Yong L, Gao X, Chen Y, Wang Y, Wang F, Hou X. CaMK4: Structure, physiological functions, and therapeutic potential. Biochem Pharmacol 2024; 224:116204. [PMID: 38615920 DOI: 10.1016/j.bcp.2024.116204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) is a versatile serine/threonine kinase involved in various cellular functions. It regulates T-cell differentiation, podocyte function, tumor cell proliferation/apoptosis, β cell mass, and insulin sensitivity. However, the underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the regulatory mechanisms of CaMK4 underlying T-cell imbalance and parenchymal cell mass in multiple diseases. The structural motifs and activation of CaMK4, as well as the potential role of CaMK4 as a novel therapeutic target are also discussed.
Collapse
Affiliation(s)
- Hao Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Liang Yong
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, PR China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yandong Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Fuyan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China; Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, PR China
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
13
|
Dobson JR, Jacobson DA. Disrupted Endoplasmic Reticulum Ca 2+ Handling: A Harβinger of β-Cell Failure. BIOLOGY 2024; 13:379. [PMID: 38927260 PMCID: PMC11200644 DOI: 10.3390/biology13060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The β-cell workload increases in the setting of insulin resistance and reduced β-cell mass, which occurs in type 2 and type 1 diabetes, respectively. The prolonged elevation of insulin production and secretion during the pathogenesis of diabetes results in β-cell ER stress. The depletion of β-cell Ca2+ER during ER stress activates the unfolded protein response, leading to β-cell dysfunction. Ca2+ER is involved in many pathways that are critical to β-cell function, such as protein processing, tuning organelle and cytosolic Ca2+ handling, and modulating lipid homeostasis. Mutations that promote β-cell ER stress and deplete Ca2+ER stores are associated with or cause diabetes (e.g., mutations in ryanodine receptors and insulin). Thus, improving β-cell Ca2+ER handling and reducing ER stress under diabetogenic conditions could preserve β-cell function and delay or prevent the onset of diabetes. This review focuses on how mechanisms that control β-cell Ca2+ER are perturbed during the pathogenesis of diabetes and contribute to β-cell failure.
Collapse
Affiliation(s)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
14
|
Thapa R, Afzal M, Goyal A, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Kukreti N, Ali H, Dureja H, Kumar P, Singh TG, Kuppusamy G, Singh SK, Dua K. Exploring ncRNA-mediated regulation of EGFR signalling in glioblastoma: From mechanisms to therapeutics. Life Sci 2024; 345:122613. [PMID: 38582393 DOI: 10.1016/j.lfs.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor type, with a discouragingly low survival rate and few effective treatments. An important function of the EGFR signalling pathway in the development of GBM is to affect tumor proliferation, persistence, and treatment resistance. Advances in molecular biology in the last several years have shown how important ncRNAs are for controlling a wide range of biological activities, including cancer progression and development. NcRNAs have become important post-transcriptional regulators of gene expression, and they may affect the EGFR pathway by either directly targeting EGFR or by modifying important transcription factors and downstream signalling molecules. The EGFR pathway is aberrantly activated in response to the dysregulation of certain ncRNAs, which has been linked to GBM carcinogenesis, treatment resistance, and unfavourable patient outcomes. We review the literature on miRNAs, circRNAs and lncRNAs that are implicated in the regulation of EGFR signalling in GBM, discussing their mechanisms of action, interactions with the signalling pathway, and implications for GBM therapy. Furthermore, we explore the potential of ncRNA-based strategies to overcome resistance to EGFR-targeted therapies, including the use of ncRNA mimics or inhibitors to modulate the activity of key regulators within the pathway.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, 7, United Arab Emirates
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
15
|
Nouri S, Mahmoudi T, Hojjati F, Najafabadi ZN, Shafiee R, Sayedsalehi S, Dehghanitafti A, Ardalani A, Kohansal K, Rezamand G, Asadi A, Nobakht H, Dabiri R, Farahani H, Tabaeian SP, Zali MR. Insulin receptor substrate 2 gene Gly1057Asp polymorphism is a risk factor for nonalcoholic fatty liver disease. Lab Med 2024; 55:215-219. [PMID: 37481466 DOI: 10.1093/labmed/lmad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD), which is an emerging global chronic liver disease, has a close association with insulin resistance. We aimed to determine whether the Gly1057Asp (rs1805097) polymorphism of the insulin receptor substrate 2 (IRS2) gene is associated with NAFLD. METHODS Using the polymerase chain reaction-restriction fragment length polymorphism method, 135 patients with biopsy-proven NAFLD and 135 controls underwent IRS2 genotype analysis. RESULTS Genotype and allele distributions of the IRS2 gene Gly1057Asp variant conformed to the Hardy-Weinberg equilibrium in both the case and control groups (P > .05). The Asp/Asp genotype of IRS2 gene Gly1057Asp polymorphism compared with Gly/Gly genotype was associated with a 2.1-fold increased risk for NAFLD after adjustment for confounding factors (P = .029; odds ratio = 2.10, 95% CI = 1.23-3.97). CONCLUSION Our findings revealed for the first time that the Gly1057Asp Asp/Asp genotype of the IRS2 gene is a marker of increased NAFLD susceptibility; however, studies in other populations are required to confirm the results.
Collapse
Affiliation(s)
- Shadi Nouri
- Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Touraj Mahmoudi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Hojjati
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Radmehr Shafiee
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Shiva Sayedsalehi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Dehghanitafti
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Ardalani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kohansal
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Rezamand
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Nobakht
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Reza Dabiri
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Farahani
- Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Seidamir Pasha Tabaeian
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Chen T, Liu X, Zhang J, Wang L, Su J, Jing T, Xiao P. Associations of chronic exposure to a mixture of pesticides and type 2 diabetes mellitus in a Chinese elderly population. CHEMOSPHERE 2024; 351:141194. [PMID: 38218232 DOI: 10.1016/j.chemosphere.2024.141194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Epidemiological studies have related exposure to pesticides to increased risk of diabetes. However, few studies have evaluated the health effects of mixed pesticides exposure, especially in an elderly population. Here, we utilized gas chromatography-tandem mass spectrometry to quantify the levels of 39 pesticides in 4 categories in a Chinese elderly population. Then we used general linear models to explore the association between individual pesticide exposure and type 2 diabetes mellitus (T2DM). Restricted cubic spline (RCS) models were fitted to identify potential non-linearities between those associations. Furthermore, stratified analysis by gender was conducted to explore the gender-specific associations. Finally, we used weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR) to evaluate the effects of mixed exposure to 39 pesticides. The results showed that exposure to pesticides was associated with high risk of T2DM, with β-Hexachlorocyclohexane (β-BHC) and oxadiazon being the most significant independent contributors, which was pronounced among elderly women. Moreover, the association of β-BHC and oxadiazon with T2DM was linear. These indicated that it is an urgent need to take practical measures to control these harmful pesticides.
Collapse
Affiliation(s)
- Tian Chen
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China; Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xiaohua Liu
- Shanghai Minhang Center for Disease Control and Prevention, Shanghai, China
| | - Jianghua Zhang
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China; Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lulu Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Su
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China; Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ping Xiao
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
17
|
Ye X, Chen W, Huang XF, Yan FJ, Deng SG, Zheng XD, Shan PF. Anti-diabetic effect of anthocyanin cyanidin-3-O-glucoside: data from insulin resistant hepatocyte and diabetic mouse. Nutr Diabetes 2024; 14:7. [PMID: 38429305 PMCID: PMC10907696 DOI: 10.1038/s41387-024-00265-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Anthocyanins are a group of natural products widely found in plants. They have been found to alleviate the disorders of glucose metabolism in type 2 diabetes mellitus (T2DM), while the underlying mechanisms remain unclear. METHODS HepG2 and L02 cells were incubated with 0.2 mM PA and 30 mM glucose for 24 h to induce IR, and cells treated with 5 mM glucose were used as the control. C57BL/6 J male mice and db/db male mice were fed with a chow diet and gavaged with pure water or cyanidin-3-O-glucoside (C3G) solution (150 mg/kg/day) for 6 weeks. RESULTS In this study, the anthocyanin C3G, extracted from red bayberry, was found to alleviate disorders of glucose metabolism, which resulted in increased insulin sensitivity in hepatocytes, and achieved by enhancing the glucose consumption as well as glycogen synthesis in insulin resistance (IR) hepatpcytes. Subsequently, the expression of key proteins involved in IR was detected by western blotting analysis. Protein tyrosine phosphatase-1B (PTP1B), a negative regulator of insulin signaling, could reduce cellular sensitivity to insulin by inhibiting the phosphorylation of insulin receptor substrate-2 (IRS-2). Results of this study showed that C3G inhibited the increase in PTP1B after high glucose and palmitic acid treatment. And this inhibition was accompanied by increased phosphorylation of IRS proteins. Furthermore, the effect of C3G on improving IR in vivo was validated by using a diabetic db/db mouse model. CONCLUSION These findings demonstrated that C3G could alleviate IR in vitro and in vivo to increase insulin sensitivity, which may offer a new insight for regulating glucose metabolism during T2DM by using the natural dietary bioactive components. C3G promotes the phosphorylation of IRS-2 proteins by suppressing the expression of PTP1B, and then enhances the sensitivity of hepatocyte to insulin.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310058, Hangzhou, China
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China
| | - Wen Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China
| | - Xu-Fan Huang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Fu-Jie Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China
| | - Shui-Guang Deng
- Advanced Computing and System Laboratory, College of Computer Science and Technology, Zhejiang University, 310058, Hangzhou, China
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, 310058, Hangzhou, China
| | - Xiao-Dong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058, Hangzhou, China.
| | - Peng-Fei Shan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
18
|
Siwan D, Nandave M, Gilhotra R, Almalki WH, Gupta G, Gautam RK. Unlocking β-cell restoration: The crucial role of PDX1 in diabetes therapy. Pathol Res Pract 2024; 254:155131. [PMID: 38309018 DOI: 10.1016/j.prp.2024.155131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Diabetes has been a significant healthcare problem worldwide for a considerable period. The primary objective of diabetic treatment plans is to control the symptoms associated with the pathology. To effectively combat diabetes, it is crucial to comprehend the disease's etiology, essential factors, and the relevant processes involving β-cells. The development of the pancreas, maturation, and maintenance of β-cells, and their role in regular insulin function are all regulated by PDX1. Therefore, understanding the regulation of PDX1 and its interactions with signaling pathways involved in β-cell differentiation and proliferation are crucial elements of alternative diabetes treatment strategies. The present review aims to explore the protective role of PDX1 in β-cell proliferation through signaling pathways. The main keywords chosen for this review include "PDX1 for β-cell mass," "β-cell proliferation," "β-cell restoration via PDX1," and "mechanism of PDX1 in β-cells." A comprehensive literature search was conducted using various internet search engines, such as PubMed, Science Direct, and other publication databases. We summarize several approaches to generating β-cells from alternative cell sources, employing PDX1 under various modified growth conditions and different transcriptional factors. Our analysis highlights the unique potential of PDX1 as a promising target in molecular and cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India.
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Rau-Pithampur Road, Indore 453331, Madhya Pradesh, India
| |
Collapse
|
19
|
Saedi H, Waro G, Giacchetta L, Tsunoda S. miR-137 regulates PTP61F, affecting insulin signaling, metabolic homeostasis, and starvation resistance in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2319475121. [PMID: 38252824 PMCID: PMC10835047 DOI: 10.1073/pnas.2319475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
miR-137 is a highly conserved brain-enriched microRNA (miRNA) that has been associated with neuronal function and proliferation. Here, we show that Drosophila miR-137 null mutants display increased body weight with enhanced triglyceride content and decreased locomotor activity. In addition, when challenged by nutrient deprivation, miR-137 mutants exhibit reduced motivation to feed and prolonged survival. We show through genetic epistasis and rescue experiments that this starvation resistance is due to a disruption in insulin signaling. Our studies further show that miR-137 null mutants exhibit a drastic reduction in levels of the phosphorylated/activated insulin receptor, InR (InR-P). We investigated if this is due to the predicted miR-137 target, Protein Tyrosine Phosphatase 61F (PTP61F), ortholog of mammalian TC-PTP/PTP1B, which are known to dephosphorylate InR-P. Indeed, levels of an endogenously tagged GFP-PTP61F are significantly elevated in miR-137 null mutants, and we show that overexpression of PTP61F alone is sufficient to mimic many of the metabolic phenotypes of miR-137 mutants. Finally, we knocked-down elevated levels of PTP61F in the miR-137 null mutant background and show that this rescues levels of InR-P, restores normal body weight and triglyceride content, starvation sensitivity, as well as attenuates locomotor and starvation-induced feeding defects. Our study supports a model in which miR-137 is critical for dampening levels of PTP61F, thereby maintaining normal insulin signaling and energy homeostasis.
Collapse
Affiliation(s)
- Hana Saedi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Lea Giacchetta
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
20
|
Hayes E, Winston N, Stocco C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod Med Biol 2024; 23:e12575. [PMID: 38571513 PMCID: PMC10988955 DOI: 10.1002/rmb2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Background The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.
Collapse
Affiliation(s)
- Emily Hayes
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Nicola Winston
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Carlos Stocco
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| |
Collapse
|
21
|
Mazumdar D, Singh S. Diabetic Encephalopathy: Role of Oxidative and Nitrosative Factors in Type 2 Diabetes. Indian J Clin Biochem 2024; 39:3-17. [PMID: 38223005 PMCID: PMC10784252 DOI: 10.1007/s12291-022-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is a set of complex metabolic disorders characterized by chronic hyperglycaemic condition due to defective insulin secretion (Type 1) and action (Type 2), which leads to serious micro and macro-vascular damage, inflammation, oxidative and nitrosative stress and a deranged energy homeostasis due to imbalance in the glucose and lipid metabolism. Moreover, patient with diabetes mellitus often showed the nervous system disorders known as diabetic encephalopathy. The precise pathological mechanism of diabetic encephalopathy by which it effects the central nervous system directly or indirectly causing the cognitive and motor impairment, is not completely understood. However, it has been speculated that like other extracerebellar tissues, oxidative and nitrosative stress may play significant role in the pathogenesis of diabetic encephalopathy. Therefore, the present review aimed to explain the possible association of the oxidative and nitrosative stress caused by the chronic hyperglycaemic condition with the central nervous system complications of the type 2 diabetes mellitus induced diabetic encephalopathy.
Collapse
Affiliation(s)
- Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009 India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009 India
| |
Collapse
|
22
|
Ma Z, Li J, Fu L, Fu R, Tang N, Quan Y, Xin Z, Ding Z, Liu Y. Epididymal RNase T2 contributes to astheno-teratozoospermia and intergenerational metabolic disorder through epididymosome-sperm interaction. BMC Med 2023; 21:453. [PMID: 37993934 PMCID: PMC10664275 DOI: 10.1186/s12916-023-03158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The epididymis is crucial for post-testicular sperm development which is termed sperm maturation. During this process, fertilizing ability is acquired through the epididymis-sperm communication via exchange of protein and small non-coding RNAs (sncRNAs). More importantly, epididymal-derived exosomes secreted by the epididymal epithelial cells transfer sncRNAs into maturing sperm. These sncRNAs could mediate intergenerational inheritance which further influences the health of their offspring. Recently, the linkage and mechanism involved in regulating sperm function and sncRNAs during epididymal sperm maturation are increasingly gaining more and more attention. METHODS An epididymal-specific ribonuclease T2 (RNase T2) knock-in (KI) mouse model was constructed to investigate its role in developing sperm fertilizing capability. The sperm parameters of RNase T2 KI males were evaluated and the metabolic phenotypes of their offspring were characterized. Pandora sequencing technology profiled and sequenced the sperm sncRNA expression pattern to determine the effect of epididymal RNase T2 on the expression levels of sperm sncRNAs. Furthermore, the expression levels of RNase T2 in the epididymal epithelial cells in response to environmental stress were confirmed both in vitro and in vivo. RESULTS Overexpression of RNase T2 caused severe subfertility associated with astheno-teratozoospermia in mice caput epididymis, and furthermore contributed to the acquired metabolic disorders in the offspring, including hyperglycemia, hyperlipidemia, and hyperinsulinemia. Pandora sequencing showed altered profiles of sncRNAs especially rRNA-derived small RNAs (rsRNAs) and tRNA-derived small RNAs (tsRNAs) in RNase T2 KI sperm compared to control sperm. Moreover, environmental stress upregulated RNase T2 in the caput epididymis. CONCLUSIONS The importance was demonstrated of epididymal RNase T2 in inducing sperm maturation and intergenerational inheritance. Overexpressed RNase T2 in the caput epididymis leads to astheno-teratozoospermia and metabolic disorder in the offspring.
Collapse
Affiliation(s)
- Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Jinyu Li
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Li Fu
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Fu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningyuan Tang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Yanmei Quan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Zhixiang Xin
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| |
Collapse
|
23
|
Ahmed M, Biswas T, Mondal S. The strategic involvement of IRS in cancer progression. Biochem Biophys Res Commun 2023; 680:141-160. [PMID: 37738904 DOI: 10.1016/j.bbrc.2023.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Insulin Receptor Substrate (IRS), an intracellular molecule devoid of an intrinsic kinase activity, is activated upon binding to IR which thereby works as a scaffold, organizing all signaling complexes and initiating the signaling process downstream. The level of IRS proteins and their stability in the cell is mostly maintained through the phosphorylation status of their tyrosine and serine residues. IRS is positively regulated by phosphorylation of its Tyr residues whereas a Ser residue phosphorylation attenuates it, although there exist some exceptions as well. Other post-translational modifications like O-linked glycosylation, N-linked glycosylation and acetylation also play a prominent role in IRS regulation. Since the discovery of the Warburg effect, people have been curious to find out all possible signaling networks and molecules that could lead to cancer and no doubt, the insulin signaling pathway is identified as one such pathway, which is highly deregulated in cancers. Eminent studies reveal that IRS is a pertinent regulator of cancer and is highly overexpressed in the five most commonly occurring cancers namely- Prostate, Ovarian, Breast, Colon and Lung cancers. IRS1 and IRS2 family members are actively involved in the progression, invasion and metastasis of these cancers. Recently, less studied IRS4 has also emerged as a contributor in ovarian, breast, colorectal and lung cancer, but no such studies related to IRS4 are found in Prostate cancer. The involvement of other IRS family members in cancer is still undiscovered and so paves the way for further exploration. This review is a time-lapse study of IRSs in the context of cancer done over the past two decades and it highlights all the major discoveries made till date, in these cancers from the perspective of IRS.
Collapse
Affiliation(s)
- Mehnaz Ahmed
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Tannishtha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
24
|
Chen Q, Jiang FJ, Gao X, Li XY, Xia P. Steatotic hepatocyte-derived extracellular vesicles promote β-cell apoptosis and diabetes via microRNA-126a-3p. Liver Int 2023; 43:2560-2570. [PMID: 37337778 DOI: 10.1111/liv.15654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a unique mediator of interorgan communications, playing important roles in the pathophysiologic process of various diseases, including diabetes and other metabolic diseases. Here, we reported that the EVs released by steatotic hepatocytes exerted a detrimental effect on pancreatic β cells, leading to β-cell apoptosis and dysfunction. The effect was profoundly attributable to an up-regulation of miR-126a-3p in the steatotic hepatocyte-derived EVs. Accordingly, overexpression of miR-126a-3p promoted, whereas inhibition of miR-126a-3p prevented β-cell apoptosis, through a mechanism related to its target gene, insulin receptor substrate-2. Moreover, inhibition of miR-126a-3p by its specific antagomir was able to partially reverse the loss of β-cell mass and ameliorate hyperglycaemia in diabetic mice. Thus, the findings reveal a novel pathogenic role of steatotic hepatocyte-derived EVs, which mechanistically links nonalcoholic fatty liver disease to the development of diabetes.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang-Jie Jiang
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Ying Li
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pu Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Liu Z, Xiao T, Liu H. Leptin signaling and its central role in energy homeostasis. Front Neurosci 2023; 17:1238528. [PMID: 38027481 PMCID: PMC10644276 DOI: 10.3389/fnins.2023.1238528] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Leptin plays a critical role in regulating appetite, energy expenditure and body weight, making it a key factor in maintaining a healthy balance. Despite numerous efforts to develop therapeutic interventions targeting leptin signaling, their effectiveness has been limited, underscoring the importance of gaining a better understanding of the mechanisms through which leptin exerts its functions. While the hypothalamus is widely recognized as the primary site responsible for the appetite-suppressing and weight-reducing effects of leptin, other brain regions have also been increasingly investigated for their involvement in mediating leptin's action. In this review, we summarize leptin signaling pathways and the neural networks that mediate the effects of leptin, with a specific emphasis on energy homeostasis.
Collapse
Affiliation(s)
- Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xiao
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
26
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
27
|
Tang H, Lv F, Zhang P, Liu J, Mao J. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1254459. [PMID: 37850091 PMCID: PMC10577417 DOI: 10.3389/fendo.2023.1254459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by episodic sleep state-dependent collapse of the upper airway, with consequent hypoxia, hypercapnia, and arousal from sleep. OSA contributes to multisystem damage; in severe cases, sudden cardiac death might occur. In addition to causing respiratory, cardiovascular and endocrine metabolic diseases, OSA is also closely associated with nonalcoholic fatty liver disease (NAFLD). As the prevalence of OSA and NAFLD increases rapidly, they significantly exert adverse effects on the health of human beings. The authors retrieved relevant documents on OSA and NAFLD from PubMed and Medline. This narrative review elaborates on the current knowledge of OSA and NAFLD, demonstrates the impact of OSA on NAFLD, and clarifies the underlying mechanisms of OSA in the progression of NAFLD. Although there is a lack of sufficient high-quality clinical studies to prove the causal or concomitant relationship between OSA and NAFLD, existing evidence has confirmed the effect of OSA on NAFLD. Elucidating the underlying mechanisms through which OSA impacts NAFLD would hold considerable importance in terms of both prevention and the identification of potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Haiying Tang
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Furong Lv
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Zhang
- Department of Medical Information Engineering, Zhongshan College of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Liu
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
28
|
Guijarro LG, Justo Bermejo FJ, Boaru DL, De Castro-Martinez P, De Leon-Oliva D, Fraile-Martínez O, Garcia-Montero C, Alvarez-Mon M, Toledo-Lobo MDV, Ortega MA. Is Insulin Receptor Substrate4 (IRS4) a Platform Involved in the Activation of Several Oncogenes? Cancers (Basel) 2023; 15:4651. [PMID: 37760618 PMCID: PMC10526421 DOI: 10.3390/cancers15184651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The IRS (insulin receptor substrate) family of scaffold proteins includes insulin receptor substrate-4 (IRS4), which is expressed only in a few cell lines, including human kidney, brain, liver, and thymus and some cell lines. Its N-terminus carries a phosphotyrosine-binding (PTB) domain and a pleckstrin homology domain (PH), which distinguishes it as a member of this family. In this paper, we collected data about the molecular mechanisms that explain the relevance of IRS4 in the development of cancer and identify IRS4 differences that distinguish it from IRS1 and IRS2. Search engines and different databases, such as PubMed, UniProt, ENSEMBL and SCANSITE 4.0, were used. We used the name of the protein that it encodes "(IRS-4 or IRS4)", or the combination of these terms with the word "(cancer)" or "(human)", for searches. Terms related to specific tumor pathologies ("breast", "ovary", "colon", "lung", "lymphoma", etc.) were also used. Despite the lack of knowledge on IRS4, it has been reported that some cancers and benign tumors are characterized by high levels of IRS-4 expression. Specifically, the role of IRS-4 in different types of digestive tract neoplasms, gynecological tumors, lung cancers, melanomas, hematological tumors, and other less common types of cancers has been shown. IRS4 differs from IRS1 and IRS2 in that can activate several oncogenes that regulate the PI3K/Akt cascade, such as BRK and FER, which are characterized by tyrosine kinase-like activity without regulation via extracellular ligands. In addition, IRS4 can activate the CRKL oncogene, which is an adapter protein that regulates the MAP kinase cascade. Knowledge of the role played by IRS4 in cancers at the molecular level, specifically as a platform for oncogenes, may enable the identification and validation of new therapeutic targets.
Collapse
Affiliation(s)
- Luis G. Guijarro
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
| | | | - Diego Liviu Boaru
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Diego De Leon-Oliva
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Oscar Fraile-Martínez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Cielo Garcia-Montero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Melchor Alvarez-Mon
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - María del Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Miguel A. Ortega
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (D.L.B.); (D.D.L.-O.); (O.F.-M.); (C.G.-M.); (M.A.-M.); (M.A.O.)
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
29
|
Stamateris RE, Landa-Galvan HV, Sharma RB, Darko C, Redmond D, Rane SG, Alonso LC. Noncanonical CDK4 signaling rescues diabetes in a mouse model by promoting β cell differentiation. J Clin Invest 2023; 133:e166490. [PMID: 37712417 PMCID: PMC10503800 DOI: 10.1172/jci166490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Expanding β cell mass is a critical goal in the fight against diabetes. CDK4, an extensively characterized cell cycle activator, is required to establish and maintain β cell number. β cell failure in the IRS2-deletion mouse type 2 diabetes model is, in part, due to loss of CDK4 regulator cyclin D2. We set out to determine whether replacement of endogenous CDK4 with the inhibitor-resistant mutant CDK4-R24C rescued the loss of β cell mass in IRS2-deficient mice. Surprisingly, not only β cell mass but also β cell dedifferentiation was effectively rescued, despite no improvement in whole body insulin sensitivity. Ex vivo studies in primary islet cells revealed a mechanism in which CDK4 intervened downstream in the insulin signaling pathway to prevent FOXO1-mediated transcriptional repression of critical β cell transcription factor Pdx1. FOXO1 inhibition was not related to E2F1 activity, to FOXO1 phosphorylation, or even to FOXO1 subcellular localization, but rather was related to deacetylation and reduced FOXO1 abundance. Taken together, these results demonstrate a differentiation-promoting activity of the classical cell cycle activator CDK4 and support the concept that β cell mass can be expanded without compromising function.
Collapse
Affiliation(s)
- Rachel E. Stamateris
- MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Huguet V. Landa-Galvan
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Rohit B. Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Christine Darko
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - David Redmond
- Hartman Institute for Therapeutic Regenerative Medicine, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sushil G. Rane
- Integrative Cellular Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institute for Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Laura C. Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| |
Collapse
|
30
|
Evangelista JE, Xie Z, Marino GB, Nguyen N, Clarke DB, Ma’ayan A. Enrichr-KG: bridging enrichment analysis across multiple libraries. Nucleic Acids Res 2023; 51:W168-W179. [PMID: 37166973 PMCID: PMC10320098 DOI: 10.1093/nar/gkad393] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Gene and protein set enrichment analysis is a critical step in the analysis of data collected from omics experiments. Enrichr is a popular gene set enrichment analysis web-server search engine that contains hundreds of thousands of annotated gene sets. While Enrichr has been useful in providing enrichment analysis with many gene set libraries from different categories, integrating enrichment results across libraries and domains of knowledge can further hypothesis generation. To this end, Enrichr-KG is a knowledge graph database and a web-server application that combines selected gene set libraries from Enrichr for integrative enrichment analysis and visualization. The enrichment results are presented as subgraphs made of nodes and links that connect genes to their enriched terms. In addition, users of Enrichr-KG can add gene-gene links, as well as predicted genes to the subgraphs. This graphical representation of cross-library results with enriched and predicted genes can illuminate hidden associations between genes and annotated enriched terms from across datasets and resources. Enrichr-KG currently serves 26 gene set libraries from different categories that include transcription, pathways, ontologies, diseases/drugs, and cell types. To demonstrate the utility of Enrichr-KG we provide several case studies. Enrichr-KG is freely available at: https://maayanlab.cloud/enrichr-kg.
Collapse
Affiliation(s)
- John Erol Evangelista
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Zhuorui Xie
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Nhi Nguyen
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| |
Collapse
|
31
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Mo F, Lv B, Zhao D, Xi Z, Qian Y, Ge D, Yang N, Zhang D, Jiang G, Gao S. Small RNA Sequencing Analysis of STZ-Injured Pancreas Reveals Novel MicroRNA and Transfer RNA-Derived RNA with Biomarker Potential for Diabetes Mellitus. Int J Mol Sci 2023; 24:10323. [PMID: 37373469 DOI: 10.3390/ijms241210323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) play critical roles in the regulation of different biological processes, but their underlying mechanisms in diabetes mellitus (DM) are still largely unknown. This study aimed to gain a better understanding of the functions of miRNAs and tsRNAs in the pathogenesis of DM. A high-fat diet (HFD) and streptozocin (STZ)-induced DM rat model was established. Pancreatic tissues were obtained for subsequent studies. The miRNA and tsRNA expression profiles in the DM and control groups were obtained by RNA sequencing and validated with quantitative reverse transcription-PCR (qRT-PCR). Subsequently, bioinformatics methods were used to predict target genes and the biological functions of differentially expressed miRNAs and tsRNAs. We identified 17 miRNAs and 28 tsRNAs that were significantly differentiated between the DM and control group. Subsequently, target genes were predicted for these altered miRNAs and tsRNAs, including Nalcn, Lpin2 and E2f3. These target genes were significantly enriched in localization as well as intracellular and protein binding. In addition, the results of KEGG analysis showed that the target genes were significantly enriched in the Wnt signaling pathway, insulin pathway, MAPK signaling pathway and Hippo signaling pathway. This study revealed the expression profiles of miRNAs and tsRNAs in the pancreas of a DM rat model using small RNA-Seq and predicted the target genes and associated pathways using bioinformatics analysis. Our findings provide a novel aspect in understanding the mechanisms of DM and identify potential targets for the diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Fangfang Mo
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziye Xi
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yining Qian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongyu Ge
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nan Yang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Dongwei Zhang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
33
|
Kang JS, Kim MJ, Kwon ES, Lee KP, Kim C, Kwon KS, Yang YR. Identification of novel genes associated with exercise and calorie restriction effects in skeletal muscle. Aging (Albany NY) 2023; 15:204793. [PMID: 37310402 DOI: 10.18632/aging.204793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Exercise and caloric restriction (CR) significantly increase longevity across a range of species and delay aging-related losses in organ function. Although both interventions enhance skeletal muscle function, the molecular mechanisms underlying these associations are unknown. We sought to identify genes regulated by CR and exercise in muscle, and investigate their relationship with muscle function. To do this, expression profiles of Gene Expression Omnibus datasets obtained from the muscle tissue of calorie-restricted male primates and young men post-exercise were analyzed. There were seven transcripts (ADAMTS1, CPEB4, EGR2, IRS2, NR4A1, PYGO1, and ZBTB43) that were consistently upregulated by both CR and exercise training. We used C2C12 murine myoblasts to investigate the effect of silencing these genes on myogenesis, mitochondrial respiration, autophagy, and insulin signaling, all of which are processes affected by CR and exercise. Our results show that in C2C12 cells, Irs2 and Nr4a1 expression were critical for myogenesis, and five genes (Egr2, Irs2, Nr4a1, Pygo1, and ZBTB43) regulated mitochondrial respiration while having no effect on autophagy. Cpeb4 knockdown increased the expression of genes involved in muscle atrophy and induced myotube atrophy. These findings suggest new resources for studying the mechanisms underlying the beneficial effects of exercise and calorie restriction on skeletal muscle function and lifespan extension.
Collapse
Affiliation(s)
- Jae Sook Kang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Min Ju Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Aventi Inc., Daejeon 34141, Republic of Korea
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ki-Sun Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Aventi Inc., Daejeon 34141, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
34
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
35
|
Guha Ray P, Maity D, Huang J, Zulewski H, Fussenegger M. A versatile bioelectronic interface programmed for hormone sensing. Nat Commun 2023; 14:3151. [PMID: 37258547 DOI: 10.1038/s41467-023-39015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
Precision medicine requires smart, ultrasensitive, real-time profiling of bio-analytes using interconnected miniaturized devices to achieve individually optimized healthcare. Here, we report a versatile bioelectronic interface (VIBE) that senses signaling-cascade-guided receptor-ligand interactions via an electronic interface. We show that VIBE offers a low detection limit down to sub-nanomolar range characterised by an output current that decreases significantly, leading to precise profiling of these peptide hormones throughout the physiologically relevant concentration ranges. In a proof-of-concept application, we demonstrate that the VIBE platform differentiates insulin and GLP-1 levels in serum samples of wild-type mice from type-1 and type-2 diabetic mice. Evaluation of human serum samples shows that the bioelectronic device can differentiate between samples from different individuals and report differences in their metabolic states. As the target analyte can be changed simply by introducing engineered cells overexpressing the appropriate receptor, the VIBE interface has many potential applications for point-of-care diagnostics and personalized medicine via the internet of things.
Collapse
Affiliation(s)
- Preetam Guha Ray
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Debasis Maity
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Jinbo Huang
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Henryk Zulewski
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
- Division of Endocrinology and Diabetes, Stadtspital Triemli, Birmensdorferstrasse 497, CH-8063, Zurich, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland.
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
36
|
Luo Q, Ling Z, Huang X, Zuo Y. Association of IRS-1 and IRS-2 polymorphisms with predisposition to type-2 diabetes (T2D): a meta-analysis and trial sequential analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:837-851. [PMID: 37173295 DOI: 10.1080/15257770.2023.2211122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Background: Insulin Receptor Substrate (IRS) molecules play a major role in insulin signalling, and single nucleotide polymorphisms in the IRS-1 (rs1801278) and IRS-2 (rs1805097) gene has been associated with the predisposition to the development of type-2 diabetes (T2D) in some population. However, the observations remain contradictory. Discrepancies in the results have been attributed to several factors, and consideration of a smaller sample size is one of them. To reach a valid conclusion, we performed a meta-analysis of the genetic association between IRS-1 (rs1801278) and IRS-2 (rs1805097) polymorphism with a predisposition to T2D. Materials and Methods: The literature search was performed in different databases such as PubMed, Science Direct, and Scopus. All relevant articles were screened and based in inclusion and exclusion criteria eligible reports were identified. Baseline characteristics, genotype and allele frequencies were extracted from the eligible reports. The meta-analysis was performed by comprehensive meta-analysis software v3.3.070 and odds ratios, 95% confidence interval and probability values were calculated to find out association of IRS-1 and IRS-2 polymorphisms with rhinitis. Results: A total of seven studies comprising 1287 cases and 1638 control were considered for the present meta-analysis for the association of IRS-1 (rs1801278) polymorphism with T2D, and no significant association was observed. For IRS-2 (rs1805097) polymorphism, data from eight cohorts (cases: 1824, controls: 1786) were considered. The heterozygous genetic comparison models revealed a significant protective association against T2D predisposition (p = 0.017, OR = 0.841, 95% CI = 0.729 to 0.970). The trial sequential analysis revealed the requirement of additional case-control studies to draw a definitive conclusion for IRS-1 polymorphism. Conclusions: IRS-2 rs1805097 heterozygotes are protected from T2D development. However, IRS-1 (rs1801278) is not associated with a subject's proclivity for T2D.
Collapse
Affiliation(s)
- Qiaoyan Luo
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Zhifa Ling
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Xiaojia Huang
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Ying Zuo
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| |
Collapse
|
37
|
Guaita-Cespedes M, Grillo-Risco R, Hidalgo MR, Fernández-Veledo S, Burks DJ, de la Iglesia-Vayá M, Galán A, Garcia-Garcia F. Deciphering the sex bias in housekeeping gene expression in adipose tissue: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ 2023; 14:20. [PMID: 37072826 PMCID: PMC10114345 DOI: 10.1186/s13293-023-00506-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/07/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND As the housekeeping genes (HKG) generally involved in maintaining essential cell functions are typically assumed to exhibit constant expression levels across cell types, they are commonly employed as internal controls in gene expression studies. Nevertheless, HKG may vary gene expression profile according to different variables introducing systematic errors into experimental results. Sex bias can indeed affect expression display, however, up to date, sex has not been typically considered as a biological variable. METHODS In this study, we evaluate the expression profiles of six classical housekeeping genes (four metabolic: GAPDH, HPRT, PPIA, and UBC, and two ribosomal: 18S and RPL19) to determine expression stability in adipose tissues (AT) of Homo sapiens and Mus musculus and check sex bias and their overall suitability as internal controls. We also assess the expression stability of all genes included in distinct whole-transcriptome microarrays available from the Gene Expression Omnibus database to identify sex-unbiased housekeeping genes (suHKG) suitable for use as internal controls. We perform a novel computational strategy based on meta-analysis techniques to identify any sexual dimorphisms in mRNA expression stability in AT and to properly validate potential candidates. RESULTS Just above half of the considered studies informed properly about the sex of the human samples, however, not enough female mouse samples were found to be included in this analysis. We found differences in the HKG expression stability in humans between female and male samples, with females presenting greater instability. We propose a suHKG signature including experimentally validated classical HKG like PPIA and RPL19 and novel potential markers for human AT and discarding others like the extensively used 18S gene due to a sex-based variability display in adipose tissue. Orthologs have also been assayed and proposed for mouse WAT suHKG signature. All results generated during this study are readily available by accessing an open web resource ( https://bioinfo.cipf.es/metafun-HKG ) for consultation and reuse in further studies. CONCLUSIONS This sex-based research proves that certain classical housekeeping genes fail to function adequately as controls when analyzing human adipose tissue considering sex as a variable. We confirm RPL19 and PPIA suitability as sex-unbiased human and mouse housekeeping genes derived from sex-specific expression profiles, and propose new ones such as RPS8 and UBB.
Collapse
Affiliation(s)
- Maria Guaita-Cespedes
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Spain
| | - Rubén Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigaciò Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Deborah Jane Burks
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Neuroendocrinology Laboratory, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Imaging Unit FISABIO-CIPF, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Amparo Galán
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
- Molecular Neuroendocrinology Laboratory, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Francisco Garcia-Garcia
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| |
Collapse
|
38
|
Roy JR, Janaki CS, Jayaraman S, Veeraraghavan VP, Periyasamy V, Balaji T, Vijayamalathi M, Bhuvaneswari P, Swetha P. Hypoglycemic Potential of Carica papaya in Liver Is Mediated through IRS-2/PI3K/SREBP-1c/GLUT2 Signaling in High-Fat-Diet-Induced Type-2 Diabetic Male Rats. TOXICS 2023; 11:240. [PMID: 36977005 PMCID: PMC10054599 DOI: 10.3390/toxics11030240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Regardless of socioeconomic or demographic background, the prevalence of type 2 diabetes mellitus, which affects more than half a billion people worldwide, has been steadily increasing over time. The health, emotional, sociological, and economic well-being of people would suffer if this number is not successfully handled. The liver is one of the key organs accountable for sustaining metabolic balance. Elevated levels of reactive oxygen species inhibit the recruitment and activation of IRS-1, IRS-2, and PI3K-Akt downstream signaling cascade. These signaling mechanisms reduce hepatic glucose absorption and glycogenesis while increasing hepatic glucose output and glycogenolysis. In our work, an analysis of the molecular mechanism of Carica papaya in mitigating hepatic insulin resistance in vivo and in silico was carried out. The gluconeogenic enzymes, glycolytic enzymes, hepatic glycogen tissue concentration, oxidative stress markers, enzymatic antioxidants, protein expression of IRS-2, PI3K, SREBP-1C, and GLUT-2 were evaluated in the liver tissues of high-fat-diet streptozotocin-induced type 2 diabetic rats using q-RT-PCR as well as immunohistochemistry and histopathology. Upon treatment, C. papaya restored the protein and gene expression in the liver. In the docking analysis, quercetin, kaempferol, caffeic acid, and p-coumaric acid present in the extract were found to have high binding affinities against IRS-2, PI3K, SREBP-1c, and GLUT-2, which may have contributed much to the antidiabetic property of C. papaya. Thus, C. papaya was capable of restoring the altered levels in the hepatic tissues of T2DM rats, reversing hepatic insulin resistance.
Collapse
Affiliation(s)
- Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai 600 073, Tamil Nadu, India
| | - Coimbatore Sadagopan Janaki
- Department of Anatomy, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai 600 073, Tamil Nadu, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Vijayalakshmi Periyasamy
- Department of Biotechnology and Bioinformatics, Holy Cross College, Trichy 620 002, Tamil Nadu, India
| | - Thotakura Balaji
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai 603 103, Tamil Nadu, India
| | - Madhavan Vijayamalathi
- Department of Physiology, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai 600 073, Tamil Nadu, India
| | - Ponnusamy Bhuvaneswari
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Panneerselvam Swetha
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
39
|
2,3-Dihydrosorbicillin and chrysopanol stimulate insulin secretion in INS-1 cells. Bioorg Med Chem Lett 2023; 83:129186. [PMID: 36781148 DOI: 10.1016/j.bmcl.2023.129186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Pancreatic β-cell function and insulin secretion are important in antidiabetic drug development. In an effort to discover small molecules to regulate insulin secretion, an endophytic fungus, Penicillium sp. SSP-1CLG, was selected for chemical investigation. Large scale cultures of the strain followed by extraction and chromatographic analysis led to the isolation of 10 anthraquinone and alkaloid-type compounds. The isolated compounds were identified by comprehensive analysis of NMR, MS, and ECD data. The effect of compounds 1-10 on insulin secretion in INS-1 cells was investigated. 2,3-Dihydrosorbicillin (1), chrysophanol (2), and glandicolin B (10) at non-cytotoxic concentrations resulted in an increase of glucose-stimulated insulin secretion (GSIS) in rat INS-1 pancreatic β-cells. Furthermore, we investigated the signaling pathway involved in 2,3-dihydrosorbicillin (1) and chrysophanol (2) action in the activation of peroxisome proliferator-activated receptor γ (PPARγ), pancreatic and duodenal homeobox-1 (PDX-1), insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), and Akt. Treatment of INS-1 cells with 2,3-dihydrosorbicillin (1) and chrysophanol (2) increased the expression of these proteins. Our findings indicate that 2,3-dihydrosorbicillin and chrysophanol may play roles in the regulation of insulin secretion in pancreatic β-cells, at least in part, by targeting PPARγ and PDX-1 via the IRS-2/PI3K/Akt signaling pathway.
Collapse
|
40
|
Erdogan BR, Michel MB, Matthes J, Castañeda TR, Christen U, Arioglu-Inan E, Michel MC, Pautz A. A comparison of urinary bladder weight in male and female mice across five models of diabetes and obesity. Front Pharmacol 2023; 14:1118730. [PMID: 36891264 PMCID: PMC9986474 DOI: 10.3389/fphar.2023.1118730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: Diabetes often leads to lower urinary tract dysfunction. The most frequently assessed parameter of urinary bladder dysfunction in animal models of diabetes is an enlargement of the bladder, which is consistently observed in type 1 and less consistently in type 2 diabetes. The vast majority of studies on bladder weight in animal models of diabetes and obesity has been performed in males, and no studies have directly compared this outcome parameter between sexes. Methods: Therefore, we have compared bladder weight and bladder/body weight ratio in five mouse models of obesity and diabetes (RIP-LCMV, db/db, ob/ob (two studies), insulin receptor substrate 2 (IRS2) knock-out mice and mice on a high-fat diet; pre-specified secondary analysis of a previously reported study). Results: In a pooled analysis of the control groups of all studies, females exhibited slightly lower glucose levels, lower body weight, and lower bladder weight, but bladder/body weight ratio was similar in both sexes (0.957 vs. 0.986 mg/g, mean difference 0.029 [-0.06; 0.118]). Among the six diabetic/obese groups, bladder/body weight ratio was similar in both sexes in three but smaller in female mice in three other groups. The mRNA expression of a panel of genes implied in the pathophysiology of bladder enlargement and/or fibrosis and inflammation did not differ systematically between sexes. Conclusions: We conclude that sex differences in diabetes/obesity-associated bladder enlargement may be model dependent.
Collapse
Affiliation(s)
- Betül R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Martina B. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Jan Matthes
- Centre of Pharmacology, University Medical Center, University of Cologne, Cologne, Germany
| | | | - Urs Christen
- Pharmazentrum, Goethe University, Frankfurt, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
41
|
Wu T, Xu S. Understanding the contemporary high obesity rate from an evolutionary genetic perspective. Hereditas 2023; 160:5. [PMID: 36750916 PMCID: PMC9903520 DOI: 10.1186/s41065-023-00268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The topic of obesity is gaining increasing popularity globally. From an evolutionary genetic perspective, it is believed that the main cause of the high obesity rate is the mismatch between environment and genes after people have shifted toward a modern high-calorie diet. However, it has been debated for over 60 years about how obesity-related genes become prevalent all over the world. Here, we review the three most influential hypotheses or viewpoints, i.e., the thrifty gene hypothesis, the drifty gene hypothesis, and the maladaptation viewpoint. In particular, genome-wide association studies in the recent 10 years have provided rich findings and evidence to be considered for a better understanding of the evolutionary genetic mechanisms of obesity. We anticipate this brief review to direct further studies and inspire the future application of precision medicine in obesity treatment.
Collapse
Affiliation(s)
- Tong Wu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China. .,Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Zhou Y, Liu L, Xiang R, Bu X, Qin G, Dai J, Zhao Z, Fang X, Yang S, Han J, Wang G. Arctigenin mitigates insulin resistance by modulating the IRS2/GLUT4 pathway via TLR4 in type 2 diabetes mellitus mice. Int Immunopharmacol 2023; 114:109529. [PMID: 36481528 DOI: 10.1016/j.intimp.2022.109529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Arctigenin (AR), extracted from Arctium lappa L. (Burdock), is a folk herbal medicine used to treat diabetes. However, its mechanism of action has remained elusive. In this study, type 2 diabetes mellitus (T2DM) mice received AR orally for 10 weeks to evaluate its therapeutic effect based on changes in glucose and lipid metabolism, histological examination of target tissues, and liver immunohistochemistry. Furthermore, HepG2 insulin-resistant cells were established to verify the mechanism of AR against diabetes. The results showed that AR treatment reduced blood glucose and lipid levels, reversing liver as well as pancreas tissue damage in T2DM mice. AR reduced the levels of pro-inflammatory cytokines in the serum of T2DM mice, as well as those in insulin-resistant HepG2 cell supernatants, while increasing interleukin-10 (IL-10) levels. The levels of p-p65, phospho-c-Jun N-terminal kinase (p-JNK), induced nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were reduced in the liver tissue of T2DM mice, accompanied by an upregulation of glucose transporter 4 (GLUT4) and insulin receptor substrate 2 (IRS-2). In vitro studies further showed that AR downregulated toll-like receptor 4-mediated inflammation, while upregulating insulin pathway-related proteins and ultimately improving glucose uptake in insulin-resistant HepG2 cells. In conclusion, AR protected mice from insulin resistance, and its therapeutic effect was likely associated with inhibition of toll-like receptor 4 inflammatory signaling to reactivate IRS-2/GLUT4.
Collapse
Affiliation(s)
- Yuyan Zhou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anesthesia Laboratory and Training Center of Wannan Medical College, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Lina Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ruoxuan Xiang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Xiaoyang Bu
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Guozheng Qin
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Jiajia Dai
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China; School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Zhigang Zhao
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Xue Fang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Shuo Yang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China.
| | - Guodong Wang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China.
| |
Collapse
|
43
|
Pautz A, Michel MC. Sex and Gender Differences in the Pharmacology of the Overactive Urinary Bladder. Handb Exp Pharmacol 2023; 282:57-74. [PMID: 37439844 DOI: 10.1007/164_2023_667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dysfunction of the lower urinary tract in general and the overactive bladder syndrome (OAB) in particular are prevalent and have major impact on the quality of life of the afflicted patients and their partners. We concisely review sex and gender differences in patients and animal models in physiological bladder function, its alterations in disease (mostly OAB), and its responses to treatment. Women appear to have a smaller functional bladder capacity and, therefore, must void more often than men. On the other hand, men have a greater bladder outlet resistance, which is partly attributed to a longer urethra and partly to the presence of the prostate. Sex and gender differences in bladder contractility appear small and were not found consistently. The ability of bladder smooth muscle to relax may be somewhat smaller in females. However, females are heavily underrepresented in experimental studies on bladder function. Stress urinary incontinence is found predominantly in women (particularly those after childbirth). OAB is similarly prevalent in men and women. Females seek treatment much more often and are overrepresented in clinical trials. Treatment responses in OAB patients are similar in both genders for oral medications, but improvements upon injections of onabotulinum toxin type A appear smaller in men. We conclude that there is no evidence for major sex and gender differences in bladder dysfunction as related to OAB and its treatment responses, but female animals are heavily underrepresented in experimental studies.
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
44
|
Sung BJ, Lim SB, Yang WM, Kim JH, Kulkarni RN, Kim YB, Lee MK. ROCK1 regulates insulin secretion from β-cells. Mol Metab 2022; 66:101625. [PMID: 36374631 PMCID: PMC9649378 DOI: 10.1016/j.molmet.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The endocrine pancreatic β-cells play a pivotal role in maintaining whole-body glucose homeostasis and its dysregulation is a consistent feature in all forms of diabetes. However, knowledge of intracellular regulators that modulate β-cell function remains incomplete. We investigated the physiological role of ROCK1 in the regulation of insulin secretion and glucose homeostasis. METHODS Mice lacking ROCK1 in pancreatic β-cells (RIP-Cre; ROCK1loxP/loxP, β-ROCK1-/-) were studied. Glucose and insulin tolerance tests as well as glucose-stimulated insulin secretion (GSIS) were measured. An insulin secretion response to a direct glucose or pyruvate or pyruvate kinase (PK) activator stimulation in isolated islets from β-ROCK1-/- mice or β-cell lines with knockdown of ROCK1 was also evaluated. A proximity ligation assay was performed to determine the physical interactions between PK and ROCK1. RESULTS Mice with a deficiency of ROCK1 in pancreatic β-cells exhibited significantly increased blood glucose levels and reduced serum insulin without changes in body weight. Interestingly, β-ROCK1-/- mice displayed a progressive impairment of glucose tolerance while maintaining insulin sensitivity mostly due to impaired GSIS. Consistently, GSIS markedly decreased in ROCK1-deficient islets and ROCK1 knockdown INS-1 cells. Concurrently, ROCK1 blockade led to a significant decrease in intracellular calcium and ATP levels and oxygen consumption rates in isolated islets and INS-1 cells. Treatment of ROCK1-deficient islets or ROCK1 knockdown β-cells either with pyruvate or a PK activator rescued the impaired GSIS. Mechanistically, we observed that glucose stimulation in β-cells greatly enhanced ROCK1 binding to PK. CONCLUSIONS Our findings demonstrate that β-cell ROCK1 is essential for glucose-stimulated insulin secretion and for glucose homeostasis and that ROCK1 acts as an upstream regulator of glycolytic pyruvate kinase signaling.
Collapse
Affiliation(s)
- Byung-Jun Sung
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Sung-Bin Lim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, and Harvard Medical School, Boston, MA, USA.
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Nowon Eulji University Hospital, Eulji University School of Medicine, Seoul, South Korea.
| |
Collapse
|
45
|
Lee JS, Tocheny CE, Shaw LM. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121992. [PMID: 36556357 PMCID: PMC9782138 DOI: 10.3390/life12121992] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
In this review, we provide an overview of the role of the insulin-like growth factor (IGF) signaling pathway in breast cancer and discuss its potential as a therapeutic target. The IGF pathway ligands, IGF-1 and IGF-2, and their receptors, primarily IGF-1R, are important for normal mammary gland biology, and dysregulation of their expression and function drives breast cancer risk and progression through activation of downstream signaling effectors, often in a subtype-dependent manner. The IGF signaling pathway has also been implicated in resistance to current therapeutic strategies, including ER and HER2 targeting drugs. Unfortunately, efforts to target IGF signaling for the treatment of breast cancer have been unsuccessful, due to a number of factors, most significantly the adverse effects of disrupting IGF signaling on normal glucose metabolism. We highlight here the recent discoveries that provide enthusiasm for continuing efforts to target IGF signaling for the treatment of breast cancer patients.
Collapse
Affiliation(s)
| | | | - Leslie M. Shaw
- Correspondence: ; Tel.: +1-508-856-8675; Fax: +1-508-856-1310
| |
Collapse
|
46
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
47
|
Insulin and Insulin-Like Growth Factor 1 Signaling Preserves Sarcomere Integrity in the Adult Heart. Mol Cell Biol 2022; 42:e0016322. [PMID: 36125265 PMCID: PMC9583714 DOI: 10.1128/mcb.00163-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF1) signaling is transduced by insulin receptor substrate 1 (IRS1) and IRS2. To elucidate physiological and redundant roles of insulin and IGF1 signaling in adult hearts, we generated mice with inducible cardiomyocyte-specific deletion of insulin and IGF1 receptors or IRS1 and IRS2. Both models developed dilated cardiomyopathy, and most mice died by 8 weeks post-gene deletion. Heart failure was characterized by cardiomyocyte loss and disarray, increased proapoptotic signaling, and increased autophagy. Suppression of autophagy by activating mTOR signaling did not prevent heart failure. Transcriptional profiling revealed reduced serum response factor (SRF) transcriptional activity and decreased mRNA levels of genes encoding sarcomere and gap junction proteins as early as 3 days post-gene deletion, in concert with ultrastructural evidence of sarcomere disruption and intercalated discs within 1 week after gene deletion. These data confirm conserved roles for constitutive insulin and IGF1 signaling in suppressing autophagic and apoptotic signaling in the adult heart. The present study also identifies an unexpected role for insulin and IGF1 signaling in regulating an SRF-mediated transcriptional program, which maintains expression of genes encoding proteins that support sarcomere integrity in the adult heart, reduction of which results in rapid development of heart failure.
Collapse
|
48
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
49
|
Jain C, Bilekova S, Lickert H. Targeting pancreatic β cells for diabetes treatment. Nat Metab 2022; 4:1097-1108. [PMID: 36131204 DOI: 10.1038/s42255-022-00618-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
Insulin is a life-saving drug for patients with type 1 diabetes; however, even today, no pharmacotherapy can prevent the loss or dysfunction of pancreatic insulin-producing β cells to stop or reverse disease progression. Thus, pancreatic β cells have been a main focus for cell-replacement and regenerative therapies as a curative treatment for diabetes. In this Review, we highlight recent advances toward the development of diabetes therapies that target β cells to enhance proliferation, redifferentiation and protection from cell death and/or enable selective killing of senescent β cells. We describe currently available therapies and their mode of action, as well as insufficiencies of glucagon-like peptide 1 (GLP-1) and insulin therapies. We discuss and summarize data collected over the last decades that support the notion that pharmacological targeting of β cell insulin signalling might protect and/or regenerate β cells as an improved treatment of patients with diabetes.
Collapse
Affiliation(s)
- Chirag Jain
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Sara Bilekova
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair of β-Cell Biology, Technische Universität München, School of Medicine, Klinikum Rechts der Isar, München, Germany.
| |
Collapse
|
50
|
Abstract
Diabetes is a chronic metabolic disease affecting an increasing number of people. Although diabetes has negative health outcomes for diagnosed individuals, a population at particular risk are pregnant women, as diabetes impacts not only a pregnant woman's health but that of her child. In this review, we cover the current knowledge and unanswered questions on diabetes affecting an expectant mother, focusing on maternal and fetal outcomes.
Collapse
Affiliation(s)
- Cecilia González Corona
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA,Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|