1
|
Yepes M. Reprint of: Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 550:21-29. [PMID: 38964373 DOI: 10.1016/j.neuroscience.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/06/2023] [Indexed: 07/06/2024]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
2
|
Uekawa K, Anfray A, Ahn SJ, Casey N, Seo J, Zhou P, Iadecola C, Park L. tPA supplementation preserves neurovascular and cognitive function in Tg2576 mice. Alzheimers Dement 2024; 20:4572-4582. [PMID: 38899570 PMCID: PMC11247712 DOI: 10.1002/alz.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Amyloid beta (Aβ) impairs the cerebral blood flow (CBF) increase induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) is required for functional hyperemia, and in mouse models of Aβ accumulation tPA deficiency contributes to neurovascular and cognitive impairment. However, it remains unknown if tPA supplementation can rescue Aβ-induced neurovascular and cognitive dysfunction. METHODS Tg2576 mice and wild-type littermates received intranasal tPA (0.8 mg/kg/day) or vehicle 5 days a week starting at 11 to 12 months of age and were assessed 3 months later. RESULTS Treatment of Tg2576 mice with tPA restored resting CBF, prevented the attenuation in functional hyperemia, and improved nesting behavior. These effects were associated with reduced cerebral atrophy and cerebral amyloid angiopathy, but not parenchymal amyloid. DISCUSSION These findings highlight the key role of tPA deficiency in the neurovascular and cognitive dysfunction associated with amyloid pathology, and suggest potential therapeutic strategies involving tPA reconstitution. HIGHLIGHTS Amyloid beta (Aβ) induces neurovascular dysfunction and impairs the increase of cerebral blood flow induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) deficiency contributes to the neurovascular and cognitive dysfunction caused by Aβ. In mice with florid amyloid pathology intranasal administration of tPA rescues the neurovascular and cognitive dysfunction and reduces brain atrophy and cerebral amyloid angiopathy. tPA deficiency plays a crucial role in neurovascular and cognitive dysfunction induced by Aβ and tPA reconstitution may be of therapeutic value.
Collapse
Affiliation(s)
- Ken Uekawa
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - James Seo
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
3
|
Yepes M. Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 542:69-80. [PMID: 37574107 DOI: 10.1016/j.neuroscience.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
4
|
López-León CF, Planet R, Soriano J. Preparation and Mechano-Functional Characterization of PEGylated Fibrin Hydrogels: Impact of Thrombin Concentration. Gels 2024; 10:116. [PMID: 38391447 PMCID: PMC10888336 DOI: 10.3390/gels10020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Three-dimensional (3D) neuronal cultures grown in hydrogels are promising platforms to design brain-like neuronal networks in vitro. However, the optimal properties of such cultures must be tuned to ensure a hydrogel matrix sufficiently porous to promote healthy development but also sufficiently rigid for structural support. Such an optimization is difficult since it implies the exploration of different hydrogel compositions and, at the same time, a functional analysis to validate neuronal culture viability. To advance in this quest, here we present a combination of a rheological protocol and a network-based functional analysis to investigate PEGylated fibrin hydrogel networks with gradually higher stiffness, achieved by increasing the concentration of thrombin. We observed that moderate thrombin concentrations of 10% and 25% in volume shaped healthy networks, although the functional traits depended on the hydrogel stiffness, which was much higher for the latter concentration. Thrombin concentrations of 65% or higher led to networks that did not survive. Our results illustrate the difficulties and limitations in preparing 3D neuronal networks, and stress the importance of combining a mechano-structural characterization of a biomaterial with a functional one.
Collapse
Affiliation(s)
- Clara F López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelon, E-08028 Barcelona, Spain
| | - Ramon Planet
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelon, E-08028 Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelon, E-08028 Barcelona, Spain
| |
Collapse
|
5
|
Yelhekar TD, Meng M, Doupe J, Lin Y. All IEGs Are Not Created Equal-Molecular Sorting Within the Memory Engram. ADVANCES IN NEUROBIOLOGY 2024; 38:81-109. [PMID: 39008012 DOI: 10.1007/978-3-031-62983-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
When neurons are recruited to form the memory engram, they are driven to activate the expression of a series of immediate-early genes (IEGs). While these IEGs have been used relatively indiscriminately to identify the so-called engram neurons, recent research has demonstrated that different IEG ensembles can be physically and functionally distinct within the memory engram. This inherent heterogeneity of the memory engram is driven by the diversity in the functions and distributions of different IEGs. This process, which we call molecular sorting, is analogous to sorting the entire population of engram neurons into different sub-engrams molecularly defined by different IEGs. In this chapter, we will describe the molecular sorting process by systematically reviewing published work on engram ensemble cells defined by the following four major IEGs: Fos, Npas4, Arc, and Egr1. By comparing and contrasting these likely different components of the memory engram, we hope to gain a better understanding of the logic and significance behind the molecular sorting process for memory functions.
Collapse
Affiliation(s)
- Tushar D Yelhekar
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meizhen Meng
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joslyn Doupe
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yingxi Lin
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Chitranshi N, Rajput R, Godinez A, Pushpitha K, Mirzaei M, Basavarajappa D, Gupta V, Sharma S, You Y, Galliciotti G, Salekdeh GH, Baker MS, Graham SL, Gupta VK. Neuroserpin gene therapy inhibits retinal ganglion cell apoptosis and promotes functional preservation in glaucoma. Mol Ther 2023; 31:2056-2076. [PMID: 36905120 PMCID: PMC10362384 DOI: 10.1016/j.ymthe.2023.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Our research has proven that the inhibitory activity of the serine protease inhibitor neuroserpin (NS) is impaired because of its oxidation deactivation in glaucoma. Using genetic NS knockout (NS-/-) and NS overexpression (NS+/+ Tg) animal models and antibody-based neutralization approaches, we demonstrate that NS loss is detrimental to retinal structure and function. NS ablation was associated with perturbations in autophagy and microglial and synaptic markers, leading to significantly enhanced IBA1, PSD95, beclin-1, and LC3-II/LC3-I ratio and reduced phosphorylated neurofilament heavy chain (pNFH) levels. On the other hand, NS upregulation promoted retinal ganglion cell (RGC) survival in wild-type and NS-/- glaucomatous mice and increased pNFH expression. NS+/+Tg mice demonstrated decreased PSD95, beclin-1, LC3-II/LC3-I ratio, and IBA1 following glaucoma induction, highlighting its protective role. We generated a novel reactive site NS variant (M363R-NS) resistant to oxidative deactivation. Intravitreal administration of M363R-NS was observed to rescue the RGC degenerative phenotype in NS-/- mice. These findings demonstrate that NS dysfunction plays a key role in the glaucoma inner retinal degenerative phenotype and that modulating NS imparts significant protection to the retina. NS upregulation protected RGC function and restored biochemical networks associated with autophagy and microglial and synaptic function in glaucoma.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Rashi Rajput
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Angela Godinez
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Samridhi Sharma
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghasem H Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Mark S Baker
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Kutsarova E, Schohl A, Munz M, Wang A, Zhang YY, Bilash OM, Ruthazer ES. BDNF signaling in correlation-dependent structural plasticity in the developing visual system. PLoS Biol 2023; 21:e3002070. [PMID: 37011100 PMCID: PMC10101647 DOI: 10.1371/journal.pbio.3002070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
During development, patterned neural activity instructs topographic map refinement. Axons with similar patterns of neural activity converge onto target neurons and stabilize their synapses with these postsynaptic partners, restricting exploratory branch elaboration (Hebbian structural plasticity). On the other hand, non-correlated firing in inputs leads to synapse weakening and increased exploratory growth of axons (Stentian structural plasticity). We used visual stimulation to control the correlation structure of neural activity in a few ipsilaterally projecting (ipsi) retinal ganglion cell (RGC) axons with respect to the majority contralateral eye inputs in the optic tectum of albino Xenopus laevis tadpoles. Multiphoton live imaging of ipsi axons, combined with specific targeted disruptions of brain-derived neurotrophic factor (BDNF) signaling, revealed that both presynaptic p75NTR and TrkB are required for Stentian axonal branch addition, whereas presumptive postsynaptic BDNF signaling is necessary for Hebbian axon stabilization. Additionally, we found that BDNF signaling mediates local suppression of branch elimination in response to correlated firing of inputs. Daily in vivo imaging of contralateral RGC axons demonstrated that p75NTR knockdown reduces axon branch elongation and arbor spanning field volume.
Collapse
Affiliation(s)
- Elena Kutsarova
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Anne Schohl
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Martin Munz
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alex Wang
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Interdepartmental Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Yuan Yuan Zhang
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Olesia M Bilash
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- NYU Neuroscience Institute, New York University, New York, New York, United States of America
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Dinç Y, Demir AB, Özkaya G, Bakar M. Specificity and sensitivity of the SeLECT score in predicting late seizures in patients undergoing intravenous thrombolytic treatment and the effect of diabetes mellitus and leukoaraiosis. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:217-224. [PMID: 37059430 PMCID: PMC10104754 DOI: 10.1055/s-0043-1767764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Seizures after stroke can negatively affect the prognosis of ischemic stroke and cause a decrease in quality of life. The efficacy of intravenous (IV) recombinant tissue plasminogen activator (rt-PA) treatment in acute ischemic stroke has been demonstrated in many studies, and IV rt-PA treatment has been increasingly used around the world. The SeLECT score is a useful score for the prediction of late seizures after stroke and includes the severity of stroke (Se), large artery atherosclerosis (L), early seizure (E), cortical involvement (C), and the territory of the middle cerebral artery (T). However, the specificity and sensitivity of the SeLECT score have not been studied in acute ischemic stroke patients that received IV rt-PA treatment. OBJECTIVE In the present study, we aimed to validate and develop the SeLECT score in acute ischemic stroke patients receiving IV rt-PA treatment. METHODS The present study included 157 patients who received IV thrombolytic treatment in our third-stage hospital. The 1-year seizure rates of the patients were detected. SeLECT scores were calculated. RESULTS In our study, we found that the SeLECT score had low sensitivity but high specificity for predicting the likelihood of late seizure after stroke in patients administered IV rt-PA therapy. In addition to the SeLECT score, we found that the specificity and sensitivity were higher when we evaluated diabetes mellitus (DM) and leukoaraiosis. CONCLUSION We found that DM was an independent risk factor for late seizures after stroke in a patient group receiving thrombolytic therapy, and late seizures after stroke were less frequent in patients with leukoaraiosis.
Collapse
Affiliation(s)
- Yasemin Dinç
- Uludağ University, Faculty of Medicine, Department of Neurology, Bursa, Türkiye
| | - Aylin Bican Demir
- Uludağ University, Faculty of Medicine, Department of Neurology, Bursa, Türkiye
| | - Güven Özkaya
- Bursa Uludag University, Faculty of Medicine, Department of Biostatistics, Bursa, Türkiye
| | - Mustafa Bakar
- Uludağ University, Faculty of Medicine, Department of Neurology, Bursa, Türkiye
| |
Collapse
|
9
|
Glucocorticoid-Responsive Tissue Plasminogen Activator (tPA) and Its Inhibitor Plasminogen Activator Inhibitor-1 (PAI-1): Relevance in Stress-Related Psychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054496. [PMID: 36901924 PMCID: PMC10003592 DOI: 10.3390/ijms24054496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Stressful events trigger a set of complex biological responses which follow a bell-shaped pattern. Low-stress conditions have been shown to elicit beneficial effects, notably on synaptic plasticity together with an increase in cognitive processes. In contrast, overly intense stress can have deleterious behavioral effects leading to several stress-related pathologies such as anxiety, depression, substance use, obsessive-compulsive and stressor- and trauma-related disorders (e.g., post-traumatic stress disorder or PTSD in the case of traumatic events). Over a number of years, we have demonstrated that in response to stress, glucocorticoid hormones (GCs) in the hippocampus mediate a molecular shift in the balance between the expression of the tissue plasminogen activator (tPA) and its own inhibitor plasminogen activator inhibitor-1 (PAI-1) proteins. Interestingly, a shift in favor of PAI-1 was responsible for PTSD-like memory induction. In this review, after describing the biological system involving GCs, we highlight the key role of tPA/PAI-1 imbalance observed in preclinical and clinical studies associated with the emergence of stress-related pathological conditions. Thus, tPA/PAI-1 protein levels could be predictive biomarkers of the subsequent onset of stress-related disorders, and pharmacological modulation of their activity could be a potential new therapeutic approach for these debilitating conditions.
Collapse
|
10
|
Smart C, Mitchell A, McCutcheon F, Medcalf RL, Thiele A. Tissue-type plasminogen activator induces conditioned receptive field plasticity in the mouse auditory cortex. iScience 2023; 26:105947. [PMID: 36711245 PMCID: PMC9874071 DOI: 10.1016/j.isci.2023.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) is a serine protease that is expressed in various compartments in the brain. It is involved in neuronal plasticity, learning and memory, and addiction. We evaluated whether tPA, exogenously applied, could influence neuroplasticity within the mouse auditory cortex. We used a frequency-pairing paradigm to determine whether neuronal best frequencies shift following the pairing protocol. tPA administration significantly affected the best frequency after pairing, whereby this depended on the pairing frequency relative to the best frequency. When the pairing frequency was above the best frequency, tPA caused a best frequency shift away from the conditioned frequency. tPA significantly widened auditory tuning curves. Our data indicate that regional changes in proteolytic activity within the auditory cortex modulate the fine-tuning of auditory neurons, supporting the function of tPA as a modulator of neuronal plasticity.
Collapse
Affiliation(s)
- Caitlin Smart
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Anna Mitchell
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Fiona McCutcheon
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
11
|
Neri S, Gasparini S, Pascarella A, Santangelo D, Cianci V, Mammì A, Lo Giudice M, Ferlazzo E, Aguglia U. Epilepsy in Cerebrovascular Diseases: A Narrative Review. Curr Neuropharmacol 2023; 21:1634-1645. [PMID: 35794769 PMCID: PMC10514540 DOI: 10.2174/1570159x20666220706113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Epilepsy is a common comorbidity of cerebrovascular disease and an increasing socioeconomic burden. OBJECTIVE We aimed to provide an updated comprehensive review on the state of the art about seizures and epilepsy in stroke, cerebral haemorrhage, and leukoaraiosis. METHODS We selected English-written articles on epilepsy, stroke, and small vessel disease up until December 2021. We reported the most recent data about epidemiology, pathophysiology, prognosis, and management for each disease. RESULTS The main predictors for both ES and PSE are the severity and extent of stroke, the presence of cortical involvement and hemorrhagic transformation, while PSE is also predicted by younger age at stroke onset. Few data exist on physiopathology and seizure semiology, and no randomized controlled trial has been performed to standardize the therapeutic approach to post-stroke epilepsy. CONCLUSION Some aspects of ES and PSE have been well explored, particularly epidemiology and risk factors. On the contrary, few data exist on physiopathology, and existing evidence is mainly based on studies on animal models. Little is also known about seizure semiology, which may also be difficult to interpret by non-epileptologists. Moreover, the therapeutic approach needs standardization as regards indications and the choice of specific ASMs. Future research may help to better elucidate these aspects.
Collapse
Affiliation(s)
- Sabrina Neri
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Domenico Santangelo
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Vittoria Cianci
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Anna Mammì
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Michele Lo Giudice
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| |
Collapse
|
12
|
Su EJ, Lawrence DA. Diabetes and the treatment of ischemic stroke. J Diabetes Complications 2022; 36:108318. [PMID: 36228562 DOI: 10.1016/j.jdiacomp.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022]
Abstract
This white paper examines the current challenges for treating ischemic stroke in diabetic patients. The need for a greater understanding of the mechanisms that underlie the relationship between diabetes and the cerebral vascular responses to ischemia is discussed. The critical need to improve the efficacy and safety of thrombolysis is addressed, as is the need for a better characterization the off-target actions of tPA, the only currently approved thrombolytic for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Enming J Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Lépine M, Douceau S, Devienne G, Prunotto P, Lenoir S, Regnauld C, Pouettre E, Piquet J, Lebouvier L, Hommet Y, Maubert E, Agin V, Lambolez B, Cauli B, Ali C, Vivien D. Parvalbumin interneuron-derived tissue-type plasminogen activator shapes perineuronal net structure. BMC Biol 2022; 20:218. [PMID: 36199089 PMCID: PMC9535866 DOI: 10.1186/s12915-022-01419-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Perineuronal nets (PNNs) are specialized extracellular matrix structures mainly found around fast-spiking parvalbumin (FS-PV) interneurons. In the adult, their degradation alters FS-PV-driven functions, such as brain plasticity and memory, and altered PNN structures have been found in neurodevelopmental and central nervous system disorders such as Alzheimer’s disease, leading to interest in identifying targets able to modify or participate in PNN metabolism. The serine protease tissue-type plasminogen activator (tPA) plays multifaceted roles in brain pathophysiology. However, its cellular expression profile in the brain remains unclear and a possible role in matrix plasticity through PNN remodeling has never been investigated. Result By combining a GFP reporter approach, immunohistology, electrophysiology, and single-cell RT-PCR, we discovered that cortical FS-PV interneurons are a source of tPA in vivo. We found that mice specifically lacking tPA in FS-PV interneurons display denser PNNs in the somatosensory cortex, suggesting a role for tPA from FS-PV interneurons in PNN remodeling. In vitro analyses in primary cultures of mouse interneurons also showed that tPA converts plasminogen into active plasmin, which in turn, directly degrades aggrecan, a major structural chondroitin sulfate proteoglycan (CSPG) in PNNs. Conclusions We demonstrate that tPA released from FS-PV interneurons in the central nervous system reduces PNN density through CSPG degradation. The discovery of this tPA-dependent PNN remodeling opens interesting insights into the control of brain plasticity. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01419-8.
Collapse
Affiliation(s)
- Matthieu Lépine
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Sara Douceau
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Gabrielle Devienne
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Paul Prunotto
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Sophie Lenoir
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Caroline Regnauld
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Elsa Pouettre
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Juliette Piquet
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Laurent Lebouvier
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Yannick Hommet
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Eric Maubert
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Véronique Agin
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Bertrand Lambolez
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Bruno Cauli
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France.
| | - Denis Vivien
- Department of clinical research, CHU de Caen Normandie, Caen, France
| |
Collapse
|
14
|
Tomadesso C, de Lizarrondo SM, Ali C, Landeau B, Mézenge F, Perrotin A, de La Sayette V, Vivien D, Chételat G. Plasma Levels of Tissue-Type Plasminogen Activator (tPA) in Normal Aging and Alzheimer's Disease: Links With Cognition, Brain Structure, Brain Function and Amyloid Burden. Front Aging Neurosci 2022; 14:871214. [PMID: 35747448 PMCID: PMC9211060 DOI: 10.3389/fnagi.2022.871214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-type plasminogen activator (tPA) is a protease known for its fibrinolytic action but is also involved in physiological and pathophysiological aging processes; including amyloid elimination and synaptic plasticity. The aim of the study was to investigate the role of tPA in cognitive and brain aging. Therefore, we assessed the links between tPA plasma concentration and cognition, structural MRI, FDG-PET and Flobetapir-PET neuroimaging in 155 cognitively unimpaired adults (CUA, aged 20-85 years old) and 32 patients with Alzheimer's disease (ALZ). A positive correlation was found between tPA and age in CUA (p < 0.001), with males showing higher tPA than females (p = 0.05). No significant difference was found between ALZ patients and cognitively unimpaired elders (CUE). Plasma tPA in CUA negatively correlated with global brain volume. No correlation was found with brain FDG metabolism or amyloid deposition. Age-related tPA changes were associated to changes in blood pressure, glycemia and body mass index. Within the ALZ patients, tPA didn't correlate with any cognitive or neuroimaging measures, but only with physiological measures. Altogether our study suggests that increased tPA plasma concentration with age is related to neuronal alterations and cardiovascular risk factors.
Collapse
Affiliation(s)
- Clémence Tomadesso
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
- Department of Clinical Research, CHU Caen-Normandie, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Brigitte Landeau
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Florence Mézenge
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Audrey Perrotin
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Vincent de La Sayette
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
- Department of Clinical Research, CHU Caen-Normandie, Caen, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, UMR-S U1237, PHIND, Blood and Brain @ Caen Normandy Institute, Caen, France
- *Correspondence: Gaël Chételat
| |
Collapse
|
15
|
Diaz A, Woo Y, Martin-Jimenez C, Merino P, Torre E, Yepes M. Tissue-type plasminogen activator induces TNF-α-mediated preconditioning of the blood-brain barrier. J Cereb Blood Flow Metab 2022; 42:667-682. [PMID: 34796748 PMCID: PMC9051146 DOI: 10.1177/0271678x211060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
Ischemic tolerance is a phenomenon whereby transient exposure to a non-injurious preconditioning stimulus triggers resistance to a subsequent lethal ischemic insult. Despite the fact that not only neurons but also astrocytes and endothelial cells have a unique response to preconditioning stimuli, current research has been focused mostly on the effect of preconditioning on neuronal death. Thus, it is unclear if the blood-brain barrier (BBB) can be preconditioned independently of an effect on neuronal survival. The release of tissue-type plasminogen activator (tPA) from perivascular astrocytes in response to an ischemic insult increases the permeability of the BBB. In line with these observations, treatment with recombinant tPA increases the permeability of the BBB and genetic deficiency of tPA attenuates the development of post-ischemic edema. Here we show that tPA induces ischemic tolerance in the BBB independently of an effect on neuronal survival. We found that tPA renders the BBB resistant to an ischemic injury by inducing TNF-α-mediated astrocytic activation and increasing the abundance of aquaporin-4-immunoreactive astrocytic end-feet processes in the neurovascular unit. This is a new role for tPA, that does not require plasmin generation, and with potential therapeutic implications for patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
- Department of Neurology & Center for Neurodegenerative
Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center,
Atlanta, GA, USA
| |
Collapse
|
16
|
Stevenson TK, Moore SJ, Murphy GG, Lawrence DA. Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease. Semin Thromb Hemost 2021; 48:288-300. [DOI: 10.1055/s-0041-1740265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood–brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-β and neurovascular coupling. In addition, given that tPA has been shown to regulate blood–brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shannon J. Moore
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
17
|
Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells 2021; 10:cells10082055. [PMID: 34440823 PMCID: PMC8391609 DOI: 10.3390/cells10082055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Long-term synaptic plasticity is shaped by the controlled reorganization of the synaptic proteome. A key component of this process is local proteolysis performed by the family of extracellular matrix metalloproteinases (MMPs). In recent years, considerable progress was achieved in identifying extracellular proteases involved in neuroplasticity phenomena and their protein substrates. Perisynaptic metalloproteinases regulate plastic changes at synapses through the processing of extracellular and membrane proteins. MMP9 was found to play a crucial role in excitatory synapses by controlling the NMDA-dependent LTP component. In addition, MMP3 regulates the L-type calcium channel-dependent form of LTP as well as the plasticity of neuronal excitability. Both MMP9 and MMP3 were implicated in memory and learning. Moreover, altered expression or mutations of different MMPs are associated with learning deficits and psychiatric disorders, including schizophrenia, addiction, or stress response. Contrary to excitatory drive, the investigation into the role of extracellular proteolysis in inhibitory synapses is only just beginning. Herein, we review the principal mechanisms of MMP involvement in the plasticity of excitatory transmission and the recently discovered role of proteolysis in inhibitory synapses. We discuss how different matrix metalloproteinases shape dynamics and turnover of synaptic adhesome and signal transduction pathways in neurons. Finally, we discuss future challenges in exploring synapse- and plasticity-specific functions of different metalloproteinases.
Collapse
|
18
|
Plasminogen Activators in Neurovascular and Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094380. [PMID: 33922229 PMCID: PMC8122722 DOI: 10.3390/ijms22094380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells surrounded by a basement membrane, pericytes, astrocytes, microglia and neurons. A carefully coordinated interplay between these cellular and non-cellular components is required to maintain normal neuronal function, and in line with these observations, a growing body of evidence has linked NVU dysfunction to neurodegeneration. Plasminogen activators catalyze the conversion of the zymogen plasminogen into the two-chain protease plasmin, which in turn triggers a plethora of physiological events including wound healing, angiogenesis, cell migration and inflammation. The last four decades of research have revealed that the two mammalian plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), are pivotal regulators of NVU function during physiological and pathological conditions. Here, we will review the most relevant data on their expression and function in the NVU and their role in neurovascular and neurodegenerative disorders.
Collapse
|
19
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Price R, Mercuri NB, Ledonne A. Emerging Roles of Protease-Activated Receptors (PARs) in the Modulation of Synaptic Transmission and Plasticity. Int J Mol Sci 2021; 22:E869. [PMID: 33467143 PMCID: PMC7830300 DOI: 10.3390/ijms22020869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Protease-activated receptors (PARs) are a class of G protein-coupled receptors (GPCRs) with a unique mechanism of activation, prompted by a proteolytic cleavage in their N-terminal domain that uncovers a tethered ligand, which binds and stimulates the same receptor. PARs subtypes (PAR1-4) have well-documented roles in coagulation, hemostasis, and inflammation, and have been deeply investigated for their function in cellular survival/degeneration, while their roles in the brain in physiological conditions remain less appreciated. Here, we describe PARs' effects in the modulation of neurotransmission and synaptic plasticity. Available evidence, mainly concerning PAR1-mediated and PAR2-mediated regulation of glutamatergic and GABAergic transmission, supports that PARs are important modulators of synaptic efficacy and plasticity in normal conditions.
Collapse
Affiliation(s)
- Rachel Price
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (R.P.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (R.P.); (N.B.M.)
- Department of Systems Medicine, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (R.P.); (N.B.M.)
| |
Collapse
|
21
|
Abstract
Dementia is a clinical syndrome that affects approximately 47 million people worldwide and is characterized by progressive and irreversible decline of cognitive, behavioral and sesorimotor functions. Alzheimer's disease (AD) accounts for approximately 60-80% of all cases of dementia, and neuropathologically is characterized by extracellular deposits of insoluble amyloid-β (Aβ) and intracellular aggregates of hyperphosphorylated tau. Significantly, although for a long time it was believed that the extracellular accumulation of Aβ was the culprit of the symptoms observed in these patients, more recent studies have shown that cognitive decline in people suffering this disease is associated with soluble Aβ-induced synaptic dysfunction instead of the formation of insoluble Aβ-containing extracellular plaques. These observations are translationally relevant because soluble Aβ-induced synaptic dysfunction is an early event in AD that precedes neuronal death, and thus is amenable to therapeutic interventions to prevent cognitive decline before the progression to irreversible brain damage. The plasminogen activating (PA) system is an enzymatic cascade that triggers the degradation of fibrin by catalyzing the conversion of plasminogen into plasmin via two serine proteinases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Experimental evidence reported over the last three decades has shown that tPA and uPA play a role in the pathogenesis of AD. However, these studies have focused on the ability of these plasminogen activators to trigger plasmin-induced cleavage of insoluble Aβ-containing extracellular plaques. In contrast, recent evidence indicates that activity-dependent release of uPA from the presynaptic terminal of cerebral cortical neurons protects the synapse from the deleterious effects of soluble Aβ via a mechanism that does not require plasmin generation or the cleavage of Aβ fibrils. Below we discuss the role of the PA system in the pathogenesis of AD and the translational relevance of data published to this date.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University School of Medicine; Department of Neurology, Veterans Affairs Medical Center; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| |
Collapse
|
22
|
Denkena J, Zaisser A, Merz B, Klinger B, Kuhl D, Blüthgen N, Hermey G. Neuronal activity regulates alternative exon usage. Mol Brain 2020; 13:148. [PMID: 33172478 PMCID: PMC7656758 DOI: 10.1186/s13041-020-00685-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Neuronal activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. A large number of genes regulated by different neuronal plasticity inducing pathways have been identified, but altered gene expression levels represent only part of the complexity of the activity-regulated transcriptional program. Alternative splicing, the differential inclusion and exclusion of exonic sequence in mRNA, is an additional mechanism that is thought to define the activity-dependent transcriptome. Here, we present a genome wide microarray-based survey to identify exons with increased expression levels at 1, 4 or 8 h following neuronal activity in the murine hippocampus provoked by generalized seizures. We used two different bioinformatics approaches to identify alternative activity-induced exon usage and to predict alternative splicing, ANOSVA (ANalysis Of Splicing VAriation) which we here adjusted to accommodate data from different time points and FIRMA (Finding Isoforms using Robust Multichip Analysis). RNA sequencing, in situ hybridization and reverse transcription PCR validate selected activity-dependent splicing events of previously described and so far undescribed activity-regulated transcripts, including Homer1a, Homer1d, Ania3, Errfi1, Inhba, Dclk1, Rcan1, Cda, Tpm1 and Krt75. Taken together, our survey significantly adds to the comprehensive understanding of the complex activity-dependent neuronal transcriptomic signature. In addition, we provide data sets that will serve as rich resources for future comparative expression analyses.
Collapse
Affiliation(s)
- Johanna Denkena
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Andrea Zaisser
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Barbara Merz
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Bertram Klinger
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
23
|
Baker SK, Strickland S. A critical role for plasminogen in inflammation. J Exp Med 2020; 217:133866. [PMID: 32159743 PMCID: PMC7144526 DOI: 10.1084/jem.20191865] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Plasminogen and its active form, plasmin, have diverse functions related to the inflammatory response in mammals. Due to these roles in inflammation, plasminogen has been implicated in the progression of a wide range of diseases with an inflammatory component. In this review, we discuss the functions of plasminogen in inflammatory regulation and how this system plays a role in the pathogenesis of diseases spanning organ systems throughout the body.
Collapse
Affiliation(s)
- Sarah K Baker
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY
| |
Collapse
|
24
|
Pasquet N, Douceau S, Naveau M, Lesept F, Louessard M, Lebouvier L, Hommet Y, Vivien D, Bardou I. Tissue-Type Plasminogen Activator Controlled Corticogenesis Through a Mechanism Dependent of NMDA Receptors Expressed on Radial Glial Cells. Cereb Cortex 2020; 29:2482-2498. [PMID: 29878094 DOI: 10.1093/cercor/bhy119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 01/24/2023] Open
Abstract
Modifications of neuronal migration during development, including processes that control cortical lamination are associated with functional deficits at adult stage. Here, we report for the first time that the lack of the serine protease tissue-type Plasminogen Activator (tPA), previously characterized as a neuromodulator and a gliotransmitter, leads to an altered cortical lamination in adult. This results in a neuronal migration defect of tPA deficient neurons which are stopped in the intermediate zone at E16. This phenotype is rescued by re-expressing a wild-type tPA in cortical neurons at E14 but not by a tPA that cannot interact with NMDAR. We thus hypothetized that the tPA produced by cortical neuronal progenitors can control their own radial migration through a mechanism dependent of NMDAR expressed at the surface of radial glial cells (RGC). Accordingly, conditional deletion of tPA in neuronal progenitors at E14 or overexpression of a dominant-negative NMDAR that cannot bind tPA in RGC also delayed neuronal migration. Moreover, the lack of tPA lead to an impaired maturation and orientation of RGC. These data provide the first demonstration that the neuronal serine protease tPA is an actor of a proper corticogenesis by its ability to control NMDAR signaling in RGC.
Collapse
Affiliation(s)
- Nolwenn Pasquet
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U 1237, "Physiopathology and Imaging of Neurological Disorders", GIP Cyceron, Caen, France
| | - Sara Douceau
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U 1237, "Physiopathology and Imaging of Neurological Disorders", GIP Cyceron, Caen, France
| | - Mickael Naveau
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U 1237, "Physiopathology and Imaging of Neurological Disorders", GIP Cyceron, Caen, France
| | - Flavie Lesept
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U 1237, "Physiopathology and Imaging of Neurological Disorders", GIP Cyceron, Caen, France
| | - Morgane Louessard
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U 1237, "Physiopathology and Imaging of Neurological Disorders", GIP Cyceron, Caen, France
| | - Laurent Lebouvier
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U 1237, "Physiopathology and Imaging of Neurological Disorders", GIP Cyceron, Caen, France
| | - Yannick Hommet
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U 1237, "Physiopathology and Imaging of Neurological Disorders", GIP Cyceron, Caen, France
| | - Denis Vivien
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U 1237, "Physiopathology and Imaging of Neurological Disorders", GIP Cyceron, Caen, France.,CHU Caen, Clinical Research Department, Caen University Hospital, Caen, France
| | - Isabelle Bardou
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U 1237, "Physiopathology and Imaging of Neurological Disorders", GIP Cyceron, Caen, France
| |
Collapse
|
25
|
Tissue Plasminogen Activator Loaded PCL Nanofibrous Scaffold Promoted Nerve Regeneration After Sciatic Nerve Transection in Male Rats. Neurotox Res 2020; 39:413-428. [PMID: 32852719 DOI: 10.1007/s12640-020-00276-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023]
Abstract
According to the studies, damages to the peripheral nerve as a result of a trauma or acute compression, stretching, or burns accounts for a vast range of discomforts which strongly impressed the patient's life quality. Applying highly potent biomolecules and growth factors in the damaged nerve site would promote the probability of nerve regeneration and functional recovery. Tissue plasminogen activator (tPA) is one of the components that can contribute importantly to degenerating and regenerating the peripheral nerves following the injuries occurred and the absence of this biomolecule hinders the recoveries of the nerves. This technique would guarantee the direct accessibility of tPA for the regenerating axons. Structural, physical, and in vitro cytotoxicity evaluations were done before in vivo experiments. In this study, twenty-four mature male rats have been exploited. The rats have been classified into four groups: controls, axotomy, axotomy + scaffold, and axotomy + tPA-loaded scaffold. Four, 8, and 12 weeks post-surgical, the sciatic functional index (SFI) has been measured. After 12 weeks, the spinal cord, sciatic nerve, and dorsal root ganglion specimens have been removed and stereological procedures, immunohistochemistry, and gene expression have been used to analyze them. Stereological parameters, immunohistochemistry of GFAP, and gene expression of S100, NGF, and BDNF were significantly enhanced in tPA-loaded scaffold group compared with axotomy group. The most similarity was observed between the results of control group and tPA-loaded scaffold group. According to the results, a good regeneration of the functional nerve tissues in a short time was observed as a result of introducing tPA.
Collapse
|
26
|
Lekoubou A, Fox J, Ssentongo P. Incidence and Association of Reperfusion Therapies With Poststroke Seizures: A Systematic Review and Meta-Analysis. Stroke 2020; 51:2715-2723. [PMID: 32772682 DOI: 10.1161/strokeaha.119.028899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE We performed a systematic review and meta-analysis to assess the incidence and risk of seizures following acute stroke reperfusion therapy (intravenous thrombolysis [IVT] with r-tPA [recombinant tissue-type plasminogen activator], mechanical thrombectomy or both). METHODS We searched major databases (MEDLINE, SCOPUS, and Cochrane Library) for articles published between 1995 and October 28, 2019. The primary outcome was the overall and treatment specific pooled incidence of poststroke seizures (PSS) following acute reperfusion therapy. We also computed the pooled incidence of early poststroke seizures and late poststroke seizures separately for all studies. We derived the risk of PSS associated with IVT in the pooled cohort of patients who received only IVT. The small number of studies (<3) that reported on the risk of PSS associated with mechanical thrombectomy alone or in combination with IVT did not allow us to compute an estimate of the risk of seizures associated with this therapy. RESULTS We identified 13 753 patients with stroke, of which 592 had seizures. The pooled incidence of PSS was 5.9 % (95% CI, 4.2%-8.2%). PSS incidence rates among patients with stroke treated with IVT, mechanical thrombectomy, and both were respectively 6.1% (95% CI, 3.6%-10.2%), 5.9% (95% CI, 4.1%-8.4%), and 5.8 % (95% CI, 3.0%-10.9%). The incidence of late PSS was 6.7% (95% CI, 4.01%-11.02%) and that of early PSS was 3.14% (95% CI, 2.05%-4.76%). The pooled odds ratio for the association between IVT and PSS was 1.24 (95% CI, 0.75-2.05). CONCLUSIONS The findings of this meta-analysis suggest that about one in 15 ischemic stroke patients treated with IVT, mechanical thrombectomy, or both develop seizures independently of the specific reperfusion treatment that they received.
Collapse
Affiliation(s)
- Alain Lekoubou
- Department of Neurology (A.L.), Penn State University, Hershey, PA.,Division of Epidemiology, Department of Public Health Sciences (A.L., P.S.), Penn State University, Hershey, PA
| | - Jonah Fox
- Department of Neurology, Medical University of South Carolina, Charleston (J.F.)
| | - Paddy Ssentongo
- Division of Epidemiology, Department of Public Health Sciences (A.L., P.S.), Penn State University, Hershey, PA
| |
Collapse
|
27
|
Yepes M. The Plasminogen Activation System Promotes Neurorepair in the Ischemic Brain. Curr Drug Targets 2020; 20:953-959. [PMID: 30539695 PMCID: PMC6700753 DOI: 10.2174/1389450120666181211144550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
Abstract
The plasminogen activation (PA) system was originally thought to exclusively promote the degradation of fibrin by catalyzing the conversion of plasminogen into plasmin via two serine proteinases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). However, experimental evidence accumulated over the last 30 years indicates that tPA and uPA are also found in the central nervous system (CNS), where they have a plethora of functions that not always require plasmin generation or fibrin degradation. For example, plasminogen-dependent and - independent effects of tPA and uPA play a central role in the pathophysiological events that underlie one of the leading causes of mortality and disability in the world: cerebral ischemia. Indeed, recent work indicates that while the rapid release of tPA from the presynaptic compartment following the onset of cerebral ischemia protects the synapse from the deleterious effects of the ischemic injury, the secretion of uPA and its binding to its receptor (uPAR) during the recovery phase promotes the repair of synapses that have been lost to the acute ischemic insult. This restorative role of uPA has high translational significance because to this date there is no effective approach to induce neurorepair in the ischemic brain. Here we will discuss recent evidence that bridges the gap between basic research in the field of the PA system and the bedside of ischemic stroke patients, indicating that uPA and uPAR are potential targets for the development of therapeutic strategies to promote neurological recovery among ischemic stroke survivors.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center; Atlanta, GA, United States.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine; Atlanta, GA, United States.,Department of Neurology, Veterans Affairs Medical Center; Atlanta, GA, United States
| |
Collapse
|
28
|
Laliberté G, Othman R, Vaucher E. Mesoscopic Mapping of Stimulus-Selective Response Plasticity in the Visual Pathways Modulated by the Cholinergic System. Front Neural Circuits 2020; 14:38. [PMID: 32719589 PMCID: PMC7350895 DOI: 10.3389/fncir.2020.00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
The cholinergic potentiation of visual conditioning enhances visual acuity and discrimination of the trained stimulus. To determine if this also induces long-term plastic changes on cortical maps and connectivity in the visual cortex and higher associative areas, mesoscopic calcium imaging was performed in head-fixed awake GCaMP6s adult mice before and after conditioning. The conditioned stimulus (0.03 cpd, 30°, 100% contrast, 1 Hz-drifting gratings) was presented 10 min daily for a week. Saline or Donepezil (DPZ, 0.3 mg/kg, s.c.), a cholinesterase inhibitor that potentiates cholinergic transmission, were injected prior to each conditioning session and compared to a sham-conditioned group. Cortical maps of resting state and evoked response to the monocular presentation of conditioned or non-conditioned stimulus (30°, 50 and 75% contrast; 90°, 50, 75, and 100% contrast) were established. Amplitude, duration, and latency of the peak response, as well as size of activation were measured in the primary visual cortex (V1), secondary visual areas (AL, A, AM, PM, LM, RL), retrosplenial cortex (RSC), and higher cortical areas. Visual stimulation increased calcium signaling in all primary and secondary visual areas, the RSC, but no other cortices. There were no significant effects of sham-conditioning or conditioning alone, but DPZ treatment during conditioning significantly decreased the integrated neuronal activity of superficial layers evoked by the conditioned stimulus in V1, AL, PM, and LM. The activity of downstream cortical areas was not changed. The size of the activated area was decreased in V1 and PM, and the signal-to-noise ratio was decreased in AL and PM. Interestingly, signal correlation was seen only between V1, the ventral visual pathway, and the RSC, and was decreased by DPZ administration. The resting state activity was slightly correlated and rarely affected by treatments, except between binocular and monocular V1 in both hemispheres. In conclusion, cholinergic potentiation of visual conditioning induced change in visual processing in the superficial cortical layers. This effect might be a key mechanism in the establishment of the fine cortical tuning in response to the conditioned visual stimulus.
Collapse
Affiliation(s)
- Guillaume Laliberté
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Rahmeh Othman
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada.,Départment de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
29
|
Bres EE, Safina D, Müller J, Bedner P, Yang H, Helluy X, Shchyglo O, Jansen S, Mark MD, Esser A, Steinhäuser C, Herlitze S, Pietrzik CU, Sirko S, Manahan-Vaughan D, Faissner A. Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures. Glia 2020; 68:2517-2549. [PMID: 32579270 DOI: 10.1002/glia.23869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
The Alzheimer disease-associated multifunctional low-density lipoprotein receptor-related protein-1 is expressed in the brain. Recent studies uncovered a role of this receptor for the appropriate functioning of neural stem cells, oligodendrocytes, and neurons. The constitutive knock-out (KO) of the receptor is embryonically lethal. To unravel the receptors' role in the developing brain we generated a mouse mutant by specifically targeting radial glia stem cells of the dorsal telencephalon. The low-density lipoprotein receptor-related protein-1 lineage-restricted KO female and male mice, in contrast to available models, developed a severe neurological phenotype with generalized seizures during early postnatal development. The mechanism leading to a buildup of hyperexcitability and emergence of seizures was traced to a failure in adequate astrocyte development and deteriorated postsynaptic density integrity. The detected impairments in the astrocytic lineage: precocious maturation, reactive gliosis, abolished tissue plasminogen activator uptake, and loss of functionality emphasize the importance of this glial cell type for synaptic signaling in the developing brain. Together, the obtained results highlight the relevance of astrocytic low-density lipoprotein receptor-related protein-1 for glutamatergic signaling in the context of neuron-glia interactions and stage this receptor as a contributing factor for epilepsy.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Dina Safina
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Honghong Yang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Xavier Helluy
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Olena Shchyglo
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Stephan Jansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Swetlana Sirko
- Department of Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians University, Planegg-Martinsried, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
30
|
Gholami M, Hosseinmardi N, Mirnajafi-Zadeh J, Javan M, Semnanian S, Naghdi N, Fathollahi Y. Long-term potentiation enhancing effect of epileptic insult in the CA1 area is dependent on prior-application of primed-burst stimulation. Exp Brain Res 2020; 238:897-903. [PMID: 32166345 DOI: 10.1007/s00221-020-05766-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/01/2020] [Indexed: 12/13/2022]
Abstract
Herein field recordings were utilized to test the effects of a transient period of pentylenetetrazol (PTZ) treatment on theta-burst long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses as well as RT-PCR was used to investigate the effects of the combination of the pharmacological treatment and the theta-burst LTP induction on the expression of NMDA subunit mRNA in hippocampal slices. The slope of field excitatory postsynaptic potential (fEPSP) was unaffected while the population spike amplitude and area were increased by a transient period of PTZ treatment (3 mM, 10 min). After a theta burst, a brief PTZ exposure can lead to an enhancement of LTP as documented by fEPSP recording. The effect can be blocked by a selective NMDA receptor antagonist DL-AP5. An increase in the expression of GluN2B and GluN2A subunit mRNAs was also shown due to the combined treatment. The results indicate that the combined treatment increases the degree of NMDA-dependent LTP and are in accord with literature data on the subunit alterations of the hippocampal NMDA receptors. Moreover, our experimental paradigm can be used as a new approach to study the relevance of LTP-like phenomena and epileptic mechanisms.
Collapse
Affiliation(s)
- Masoumeh Gholami
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.,Department of Basic Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shaheed Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Mohamad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| |
Collapse
|
31
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Shmakova AA, Rubina KA, Rysenkova KD, Gruzdeva AM, Ivashkina OI, Anokhin KV, Tkachuk VA, Semina EV. Urokinase receptor and tissue plasminogen activator as immediate-early genes in pentylenetetrazole-induced seizures in the mouse brain. Eur J Neurosci 2019; 51:1559-1572. [PMID: 31587391 DOI: 10.1111/ejn.14584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/13/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022]
Abstract
Epileptogenesis progressively leads to the rearrangement of normal neuronal networks into more excitable ones and can be viewed as a form of neuroplasticity, the molecular mechanisms of which still remain obscure. Here, we studied pentylenetetrazole seizure-induced regulation of genes for plasminogen activator system in the mouse brain. We found that expression of tissue plasminogen activator (tPA) and urokinase receptor (uPAR) mRNA was strongly increased in the mouse cerebral cortex, hippocampus, striatum and amygdala as early as 3 hr after pentylenetetrazole seizures. Such early activity-induced expression of uPAR in the central nervous system has not been demonstrated before. uPAR mRNA accumulation was followed by elevation of uPAR protein, indicating a complete transcription-translation process. Both tPA gene induction and uPAR gene induction were independent of the protein synthesis, suggesting that they are regulated by neural activity as immediate-early genes. In contrast to tPA and uPAR genes, the expression of which returned to the basal level 6 hr following seizures, urokinase and plasminogen activator inhibitor-1 gene expression showed a delayed activation only at 3 days after seizures. In conclusion, our results suggest an important sensitivity of the brain plasminogen activator system to seizure activity which raises the question of its role in activity-dependent neural tissue remodeling in pathological and normal conditions.
Collapse
Affiliation(s)
- Anna A Shmakova
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kseniya A Rubina
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Karina D Rysenkova
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna M Gruzdeva
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russian Federation.,Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Olga I Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russian Federation.,Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Konstantin V Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russian Federation.,Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Vsevolod A Tkachuk
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation.,Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Ekaterina V Semina
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation.,Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
33
|
The best evidence for progressive myoclonic epilepsy: A pathway to precision therapy. Seizure 2019; 71:247-257. [PMID: 31476531 DOI: 10.1016/j.seizure.2019.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Progressive Myoclonus Epilepsies (PMEs) are a group of uncommon clinically and genetically heterogeneous disorders characterised by myoclonus, generalized epilepsy, and neurological deterioration, including dementia and ataxia. PMEs may have infancy, childhood, juvenile or adult onset, but usually present in late childhood or adolescence, at variance from epileptic encephalopathies, which start with polymorphic seizures in early infancy. Neurophysiologic recordings are suited to describe faithfully the time course of the shock-like muscle contractions which characterize myoclonus. A combination of positive and negative myoclonus is typical of PMEs. The gene defects for most PMEs (Unverricht-Lundborg disease, Lafora disease, several forms of neuronal ceroid lipofuscinoses, myoclonus epilepsy with ragged-red fibers [MERRF], and type 1 and 2 sialidoses) have been identified. PMEs are uncommon disorders, difficult to diagnose in the absence of extensive experience. Thus, aetiology is undetermined in many patients, despite the advance in molecular medicine. Treatment of PMEs remains essentially symptomaticof seizures and myoclonus, together with palliative, supportive, and rehabilitative measures. The response to therapy may initially be relatively favourable, afterwards however, seizures may become more frequent, and progressive neurologic decline occurs. The prognosis of a PME depends on the specific disease. The history of PMEs revealed that the international collaboration and sharing experience is the right way to proceed. This emerging picture and biological insights will allow us to find ways to provide the patients with meaningful treatment.
Collapse
|
34
|
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019; 76:3229-3248. [PMID: 31197404 PMCID: PMC11105229 DOI: 10.1007/s00018-019-03182-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans in brain ECM, which are essential for several vital functions, are emphasized in detail.
Collapse
Affiliation(s)
| | - Amit Benbenishty
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
35
|
Kobylarek D, Iwanowski P, Lewandowska Z, Limphaibool N, Szafranek S, Labrzycka A, Kozubski W. Advances in the Potential Biomarkers of Epilepsy. Front Neurol 2019; 10:685. [PMID: 31312171 PMCID: PMC6614180 DOI: 10.3389/fneur.2019.00685] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a group of chronic neurological disorders characterized by recurrent, spontaneous, and unpredictable seizures. It is one of the most common neurological disorders, affecting tens of millions of people worldwide. Comprehensive studies on epilepsy in recent decades have revealed the complexity of epileptogenesis, in which immunological processes, epigenetic modifications, and structural changes in neuronal tissues have been identified as playing a crucial role. This review discusses the recent advances in the biomarkers of epilepsy. We evaluate the possible molecular background underlying the clinical changes observed in recent studies, focusing on therapeutic investigations, and the evidence of their safety and efficacy in the human population. This article reviews the pathophysiology of epilepsy, including recent reports on the effects of oxidative stress and hypoxia, and focuses on specific biomarkers and their clinical implications, along with further perspectives in epilepsy research.
Collapse
Affiliation(s)
- Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
36
|
Kudryashova IV. The Molecular Basis of Destabilization of Synapses as a Factor of Structural Plasticity. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Lenoir S, Varangot A, Lebouvier L, Galli T, Hommet Y, Vivien D. Post-synaptic Release of the Neuronal Tissue-Type Plasminogen Activator (tPA). Front Cell Neurosci 2019; 13:164. [PMID: 31105531 PMCID: PMC6491899 DOI: 10.3389/fncel.2019.00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
The neuronal serine protease tissue-type Plasminogen Activator (tPA) is an important player of the neuronal survival and of the synaptic plasticity. Thus, a better understanding the mechanisms regulating the neuronal trafficking of tPA is required to further understand how tPA can influence brain functions. Using confocal imaging including living cells and high-resolution cell imaging combined with an innovating labeling of tPA, we demonstrate that the neuronal tPA is contained in endosomal vesicles positives for Rabs and in exosomal vesicles positives for synaptobrevin-2 (VAMP2) in dendrites and axons. tPA-containing vesicles differ in their dynamics with the dendritic tPA containing-vesicles less mobile than the axonal tPA-containing vesicles, these laters displaying mainly a retrograde trafficking. Interestingly spontaneous exocytosis of tPA containing-vesicles occurs largely in dendrites.
Collapse
Affiliation(s)
- Sophie Lenoir
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Alexandre Varangot
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Laurent Lebouvier
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Thierry Galli
- Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris, France
| | - Yannick Hommet
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France.,Department of Clinical Research, Caen University Hospital, CHU Caen, Caen, France
| |
Collapse
|
38
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
39
|
Diaz A, Jeanneret V, Merino P, McCann P, Yepes M. Tissue-type plasminogen activator regulates p35-mediated Cdk5 activation in the postsynaptic terminal. J Cell Sci 2019; 132:jcs224196. [PMID: 30709918 PMCID: PMC6432712 DOI: 10.1242/jcs.224196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/19/2019] [Indexed: 11/20/2022] Open
Abstract
Neuronal depolarization induces the synaptic release of tissue-type plasminogen activator (tPA). Cyclin-dependent kinase-5 (Cdk5) is a member of the family of cyclin-dependent kinases that regulates cell migration and synaptic function in postmitotic neurons. Cdk5 is activated by its binding to p35 (also known as Cdk5r1), a membrane-anchored protein that is rapidly degraded by the proteasome. Here, we show that tPA prevents the degradation of p35 in the synapse by a plasminogen-dependent mechanism that requires open synaptic N-methyl-D-aspartate (NMDA) receptors. We show that tPA treatment increases the abundance of p35 and its binding to Cdk5 in the postsynaptic density (PSD). Furthermore, our data indicate that tPA-induced p35-mediated Cdk5 activation does not induce cell death, but instead prevents NMDA-induced ubiquitylation of postsynaptic density protein-95 (PSD-95; also known as Dlg4) and the removal of GluR1 (also known as Gria1)-containing α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors from the PSD. These results show that the interaction between tPA and synaptic NMDA receptors regulates the expression of AMPA receptor subunits in the PSD via p35-mediated Cdk5 activation. This is a novel role for tPA as a regulator of Cdk5 activation in cerebral cortical neurons.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Valerie Jeanneret
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Patrick McCann
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
40
|
Role of t-PA and PAI-1 variants in temporal lobe epilepsy in Chinese Han population. BMC Neurol 2019; 19:13. [PMID: 30669988 PMCID: PMC6343363 DOI: 10.1186/s12883-019-1239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background Epilepsy is one of the most common chronic disabling neurologic diseases. The purpose of our study was to investigate whether there is an association between t-PA (tissue plasminogen activator, rs2020918 and rs4646972), PAI-1 (plasminogen activator inhibitor 1, rs1799768) polymorphisms and susceptibility to temporal lobe epilepsy (TLE) in Chinese Han population. Method One hundred and twenty-one cases of patients who were diagnosed as TLE and 146 normal controls were enrolled and the genotypes of t-PA and PAI-1 were detected by polymerase chain reaction-ligase detection reaction (PCR-LDR) method after the genomic DNA being extracted from peripheral blood. Result There were significant differences for the genotypic frequencies at the two polymorphic sites in t-PA gene between TLE patients and controls (P = 0.019; P = 0.001). Furthermore, the frequency of rs2020918 (C > T) with T (CT + TT) and rs4646972 (311 bp insertion/−) with 311 bp deletion (311 bp/− + −/−) was significantly higher among TLE patients relative to controls respectively (P = 0.006; P = 0.001). However, no significant difference in genotypic and allelic frequency was found at the polymorphic site in PAI-1 gene between TLE patients and controls (P = 0.735). Conclusion We reported for the first time to our knowledge the significant role of the two SNPs in t-PA gene (rs2020918 and rs4646972) in developing susceptibility to TLE in Chinese Han population.
Collapse
|
41
|
Angelucci F, Čechová K, Průša R, Hort J. Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: Consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther 2018; 25:303-313. [PMID: 30403004 PMCID: PMC6488905 DOI: 10.1111/cns.13082] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Soluble oligomeric forms of amyloid beta (Aβ) play an important role in causing the cognitive deficits in Alzheimer’s disease (AD) by targeting and disrupting synaptic pathways. Thus, the present research is directed toward identifying the neuronal pathways targeted by soluble forms and, accordingly, develops alternative therapeutic strategies. The neurotrophin brain‐derived neurotrophic factor (BDNF) is synthesized as a precursor (pro‐BDNF) which is cleaved extracellularly by plasmin to release the mature form. The conversion from pro‐BDNF to BDNF is an important process that regulates neuronal activity and memory processes. Plasmin‐dependent maturation of BDNF in the brain is regulated by plasminogen activator inhibitor‐1 (PAI‐1), the natural inhibitor of tissue‐type plasminogen activator (tPA). Therefore, tPA/PAI‐1 system represents an important regulator of extracellular BDNF/pro‐BDNF ratio. In this review, we summarize the data on the components of the plasminogen activation system and on BDNF in AD. Moreover, we will hypothesize a possible pathogenic mechanism caused by soluble Aβ forms based on the effects on tPA/PAI‐1 system and on the consequence of an altered conversion from pro‐BDNF to the mature BDNF in the brain of AD patients. Translation into clinic may include a better characterization of the disease stage and future direction on therapeutic targets.
Collapse
Affiliation(s)
- Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kateřina Čechová
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Richard Průša
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
42
|
Jeanneret V, Ospina JP, Diaz A, Manrique LG, Merino P, Gutierrez L, Torre E, Wu F, Cheng L, Yepes M. Tissue-type plasminogen activator protects the postsynaptic density in the ischemic brain. J Cereb Blood Flow Metab 2018; 38:1896-1910. [PMID: 29547062 PMCID: PMC6259311 DOI: 10.1177/0271678x18764495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia causes the presynaptic release of tissue-type plasminogen activator (tPA). The postsynaptic density (PSD) is a postsynaptic structure that provides a matrix where signaling transduction of excitatory synapses takes place. The postsynaptic density protein-95 (PSD-95) is the most abundant scaffolding protein in the postsynaptic density (PSD), where it modulates the postsynaptic response to the presynaptic release of glutamate by regulating the anchoring of glutamate receptors to the PSD. We found that tPA induces the local translation of PSD-95 mRNA and the subsequent recruitment of PSD-95 protein to the PSD, via plasminogen-independent activation of TrkB receptors. Our data show that PSD-95 is removed from the PSD during the early stages of cerebral ischemia, and that this effect is abrogated by either the release of neuronal tPA, or intravenous administration of recombinant tPA (rtPA). We report that the effect of tPA on PSD-95 is associated with inhibition of the phosphorylation and recruitment of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the PSD, known to amplify the effect of the excitotoxic injury, and that this is followed by TrkB-mediated protection of dendritic spines from the harmful effects of the hypoxic insult. These data reveal that tPA is a synaptic protector in the ischemic brain.
Collapse
Affiliation(s)
- Valerie Jeanneret
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Juan P Ospina
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ariel Diaz
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Luis G Manrique
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Laura Gutierrez
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Enrique Torre
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Fang Wu
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Lihong Cheng
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,3 Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
43
|
Gorlewicz A, Kaczmarek L. Pathophysiology of Trans-Synaptic Adhesion Molecules: Implications for Epilepsy. Front Cell Dev Biol 2018; 6:119. [PMID: 30298130 PMCID: PMC6160742 DOI: 10.3389/fcell.2018.00119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Chemical synapses are specialized interfaces between neurons in the brain that transmit and modulate information, thereby integrating cells into multiplicity of interacting neural circuits. Cell adhesion molecules (CAMs) might form trans-synaptic complexes that are crucial for the appropriate identification of synaptic partners and further for the establishment, properties, and dynamics of synapses. When affected, trans-synaptic adhesion mechanisms play a role in synaptopathies in a variety of neuropsychiatric disorders including epilepsy. This review recapitulates current understanding of trans-synaptic interactions in pathophysiology of interneuronal connections. In particular, we discuss here the possible implications of trans-synaptic adhesion dysfunction for epilepsy.
Collapse
Affiliation(s)
- Adam Gorlewicz
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
44
|
Stevenson TK, Lawrence DA. Characterization of Tissue Plasminogen Activator Expression and Trafficking in the Adult Murine Brain. eNeuro 2018; 5:ENEURO.0119-18.2018. [PMID: 30090852 PMCID: PMC6080846 DOI: 10.1523/eneuro.0119-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/24/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
Tissue plasminogen activator (tPA) is an immediate-early gene important for regulating physiological processes like synaptic plasticity and neurovascular coupling. It has also been implicated in several pathological processes including blood-brain barrier (BBB) permeability, seizure progression, and stroke. These varied reports suggest that tPA is a pleiotropic mediator whose actions are highly compartmentalized in space and time. The specific localization of tPA, therefore, can provide useful information about its function. Accordingly, the goal of this study was to provide a detailed characterization of tPA's regional, cellular, and subcellular localization in the brain. To achieve this, two new transgenic mouse lines were utilized: (1) a PlatβGAL reporter mouse, which houses the β-galactosidase gene in the tPA locus and (2) a tPABAC-Cerulean mouse, which has a cerulean-fluorescent protein fused in-frame to the tPA C-terminus. Using these two transgenic reporters, we show that while tPA is expressed throughout most regions of the adult murine brain, it appears to be preferentially targeted to fiber tracts in the limbic system. In the hippocampus, confocal microscopy revealed tPA-Cerulean (tPA-Cer) puncta localized to giant mossy fiber boutons (MFBs) and astrocytes in stratum lucidum. With amplification of the tPA-Cer signal, somatically localized tPA was also observed in the stratum oriens (SO)/alveus layer of both CA1 and CA3 subfields. Coimmunostaining of tPA-Cer and interneuronal markers indicates that these tPA-positive cell bodies belong to a subclass of somatostatin (SST)/oriens-lacunosum moleculare (O-LM) interneurons. Together, these data imply that tPA's localization is differentially regulated, suggesting that its neuromodulatory effects may be compartmentalized and specialized to cell type.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
45
|
Ciampa E, Li Y, Dillon S, Lecarpentier E, Sorabella L, Libermann TA, Karumanchi SA, Hess PE. Cerebrospinal Fluid Protein Changes in Preeclampsia. Hypertension 2018; 72:219-226. [PMID: 29844151 DOI: 10.1161/hypertensionaha.118.11153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/15/2018] [Accepted: 05/06/2018] [Indexed: 01/21/2023]
Abstract
The molecular mechanisms underlying seizure susceptibility in preeclampsia are unknown. We hypothesized that altered expression of distinct proteins in the cerebrospinal fluid (CSF) may reflect pathophysiological changes in the central nervous system that contribute to the neurological manifestations of severe preeclampsia. We obtained CSF samples from 13 patients with preeclampsia and 14 control patients during spinal anesthesia before delivery and analyzed them by SOMAscan, an aptamer-based proteomics platform for alterations in 1310 protein levels. Ingenuity Pathway Analysis was conducted to highlight relationships between preeclampsia-specific proteins found to be significantly altered. For 2 of the target proteins, we validated the difference in CSF concentrations by ELISA. SOMAscan revealed 82 proteins, whose expression levels were significantly different (P<0.05) in CSF from patients with preeclampsia versus controls. Principal component analysis achieved perfect separation of the preeclampsia and control groups in 2 dimensions. The differentially expressed proteins converge around 4 signaling molecules: TGF-β (transforming growth factor-β), VEGFA (vascular endothelial growth factor A), angiotensinogen, and IL-6 (interleukin-6). Within the TGF-β pathway, upregulation of activin A (301.6±47.4 versus 151.6±20.5 pg/mL; P=0.0074) and follistatin-related gene (5129±347 versus 3016±188 pg/mL; P<0.0001) in preeclampsia was confirmed by ELISA. In summary, signaling pathways important for vascular remodeling, inflammation, and neuronal growth, signaling, and electrophysiology were well represented among the proteins found to be altered in CSF in patients with preeclampsia.
Collapse
Affiliation(s)
- Erin Ciampa
- From the Departments of Anesthesia (E.C., Y.L., L.S., P.E.H.)
| | - Yunping Li
- From the Departments of Anesthesia (E.C., Y.L., L.S., P.E.H.)
| | - Simon Dillon
- Medicine (S.D., E.L., T.A.L., S.A.K.).,Genomics, Proteomics, Bioinformatics, and Systems Biology Center (S.D., T.A.L.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Edouard Lecarpentier
- Medicine (S.D., E.L., T.A.L., S.A.K.).,Faculté de médecine de Créteil Université Paris Est Créteil - Paris XII, and Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, France (E.L.)
| | - Laura Sorabella
- From the Departments of Anesthesia (E.C., Y.L., L.S., P.E.H.).,Department of Anesthesia, Vanderbilt University Medical Center, Nashville, TN (L.S.)
| | - Towia A Libermann
- Medicine (S.D., E.L., T.A.L., S.A.K.).,Genomics, Proteomics, Bioinformatics, and Systems Biology Center (S.D., T.A.L.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - S Ananth Karumanchi
- Medicine (S.D., E.L., T.A.L., S.A.K.) .,Obstetrics and Gynecology (S.A.K.).,Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| | - Philip E Hess
- From the Departments of Anesthesia (E.C., Y.L., L.S., P.E.H.)
| |
Collapse
|
46
|
Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J Alzheimers Dis 2018; 60:S87-S105. [PMID: 28453486 DOI: 10.3233/jad-170057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.
Collapse
Affiliation(s)
- Holly M Stradecki-Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles H Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Ami P Raval
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Mehdi Youbi
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
47
|
Weinhard L, d'Errico P, Leng Tay T. Headmasters: Microglial regulation of learning and memory in health and disease. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Abstract
We all know about classical fibrinolysis, how plasminogen activation by either tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA) promotes fibrin breakdown, and how this process was harnessed for the therapeutic removal of blood clots. While this is still perfectly true and still applicable to thromboembolic conditions today, another dimension to this system came to light over two decades ago that implicated the plasminogen activating system in a context far removed from the dissolution of blood clots. This unsuspected area related to brain biology where t-PA was linked to a plethora of activities in the CNS, some of which do not necessarily require plasmin generation. Indeed, t-PA either directly or via plasmin, has been shown to not only have key roles in modulating astrocytes, neurons, microglia, and pericytes, but also to have profound effects in a number of CNS conditions, including ischaemic stroke, severe traumatic brain injury and also in neurodegenerative disorders. While compelling insights have been obtained from various animal models, the clinical relevance of aberrant expression of these components in the CNS, although strongly implied, are only just emerging. This review will cover these areas and will also discuss how the use of thrombolytic agents and anti-fibrinolytic drugs may potentially have impacts outside of their clinical intention, particularly in the CNS.
Collapse
Affiliation(s)
- R L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
49
|
Gandolfi D, Cerri S, Mapelli J, Polimeni M, Tritto S, Fuzzati-Armentero MT, Bigiani A, Blandini F, Mapelli L, D'Angelo E. Activation of the CREB/ c-Fos Pathway during Long-Term Synaptic Plasticity in the Cerebellum Granular Layer. Front Cell Neurosci 2017; 11:184. [PMID: 28701927 PMCID: PMC5487453 DOI: 10.3389/fncel.2017.00184] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
The induction of long-term potentiation and depression (LTP and LTD) is thought to trigger gene expression and protein synthesis, leading to consolidation of synaptic and neuronal changes. However, while LTP and LTD have been proposed to play important roles for sensori-motor learning in the cerebellum granular layer, their association with these mechanisms remained unclear. Here, we have investigated phosphorylation of the cAMP-responsive element binding protein (CREB) and activation of the immediate early gene c-Fos pathway following the induction of synaptic plasticity by theta-burst stimulation (TBS) in acute cerebellar slices. LTP and LTD were localized using voltage-sensitive dye imaging (VSDi). At two time points following TBS (15 min and 120 min), corresponding to the early and late phases of plasticity, slices were fixed and processed to evaluate CREB phosphorylation (P-CREB) and c-FOS protein levels, as well as Creb and c-Fos mRNA expression. High levels of P-CREB and Creb/c-Fos were detected before those of c-FOS, as expected if CREB phosphorylation triggered gene expression followed by protein synthesis. No differences between control slices and slices stimulated with TBS were observed in the presence of an N-methyl-D-aspartate receptor (NMDAR) antagonist. Interestingly, activation of the CREB/c-Fos system showed a relevant degree of colocalization with long-term synaptic plasticity. These results show that NMDAR-dependent plasticity at the cerebellum input stage bears about transcriptional and post-transcriptional processes potentially contributing to cerebellar learning and memory consolidation.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Jonathan Mapelli
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| | - Mariarosa Polimeni
- Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of PaviaPavia Italy
| | - Simona Tritto
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
| | - Marie-Therese Fuzzati-Armentero
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Lisa Mapelli
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Museo Storico Della Fisica e Centro Studi e Ricerche Enrico FermiRome, Italy
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| |
Collapse
|
50
|
Neuronal activity-regulated alternative mRNA splicing. Int J Biochem Cell Biol 2017; 91:184-193. [PMID: 28591617 DOI: 10.1016/j.biocel.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022]
Abstract
Activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. Numerous genes whose expression is induced by different neuronal plasticity inducing pathways have been identified, but the alteration of gene expression levels represents only part of the complexity of the activity-regulated transcriptional program. Alternative splicing of precursor mRNA is an additional mechanism that modulates the activity-dependent transcriptional signature. Recently developed splicing sensitive transcriptome wide analyses improve our understanding of the underlying mechanisms and demonstrate to what extend the activity regulated transcriptome is alternatively spliced. So far, only for a small group of differentially spliced mRNAs of synaptic proteins, the functional implications have been studied in detail. These include examples in which differential exon usage can result in the expression of alternative proteins which interfere with or alter the function of preexisting proteins and cause a dominant negative functional block of constitutively expressed variants. Such altered proteins contribute to the structural and functional reorganization of pre- and postsynaptic terminals and to the maintenance and formation of synapses. In addition, activity-induced alternative splicing can affect the untranslated regions (UTRs) and generates mRNAs harboring different cis-regulatory elements. Such differential UTRs can influence mRNA stability, translation, and can change the targeting of mRNAs to subcellular compartments. Here, we summarize different categories of alternative splicing which are thought to contribute to synaptic remodeling, give an overview of activity-regulated alternatively spliced mRNAs of synaptic proteins that impact synaptic functions, and discuss splicing factors and epigenetic modifications as regulatory determinants.
Collapse
|