1
|
Abassah-Oppong S, Zoia M, Mannion BJ, Rouco R, Tissières V, Spurrell CH, Roland V, Darbellay F, Itum A, Gamart J, Festa-Daroux TA, Sullivan CS, Kosicki M, Rodríguez-Carballo E, Fukuda-Yuzawa Y, Hunter RD, Novak CS, Plajzer-Frick I, Tran S, Akiyama JA, Dickel DE, Lopez-Rios J, Barozzi I, Andrey G, Visel A, Pennacchio LA, Cobb J, Osterwalder M. A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival. Nat Commun 2024; 15:8793. [PMID: 39389973 PMCID: PMC11467299 DOI: 10.1038/s41467-024-53009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Approximately a quarter of the human genome consists of gene deserts, large regions devoid of genes often located adjacent to developmental genes and thought to contribute to their regulation. However, defining the regulatory functions embedded within these deserts is challenging due to their large size. Here, we explore the cis-regulatory architecture of a gene desert flanking the Shox2 gene, which encodes a transcription factor indispensable for proximal limb, craniofacial, and cardiac pacemaker development. We identify the gene desert as a regulatory hub containing more than 15 distinct enhancers recapitulating anatomical subdomains of Shox2 expression. Ablation of the gene desert leads to embryonic lethality due to Shox2 depletion in the cardiac sinus venosus, caused in part by the loss of a specific distal enhancer. The gene desert is also required for stylopod morphogenesis, mediated via distributed proximal limb enhancers. In summary, our study establishes a multi-layered role of the Shox2 gene desert in orchestrating pleiotropic developmental expression through modular arrangement and coordinated dynamics of tissue-specific enhancers.
Collapse
Affiliation(s)
- Samuel Abassah-Oppong
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Biological Sciences, Fort Hays State University, Hays, KS, 67601, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Raquel Rouco
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Tissières
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Virginia Roland
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Itum
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Julie Gamart
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Tabitha A Festa-Daroux
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Carly S Sullivan
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eddie Rodríguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- School of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Guillaume Andrey
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
2
|
Sato M, Inada E, Kubota N, Ozawa M. Loss of Cell-Cell Contact Inhibits Cellular Differentiation of α-Catenin Knock Out P19 Embryonal Carcinoma Cells and Their Colonization into the Developing Mouse Embryos. BIOTECH 2024; 13:41. [PMID: 39449371 DOI: 10.3390/biotech13040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Cadherin-catenin cell-cell adhesion complexes, composed of cadherin, β-catenin or plakoglobin, and α-catenin (α-cat) molecules, are crucial for maintaining cell-cell contact and are commonly referred to as "adherens junctions (AJs)." Inactivating this system leads to loss of cell-cell contact and developmental arrest in early embryos. However, it remains unclear whether the loss of cell-cell contact affects the differentiation of embryonic cells. In this study, we explored the use of a murine embryonal carcinoma cell line, P19, as an in vitro model for early embryogenesis. P19 cells easily form embryoid bodies (EBs) and are susceptible to cellular differentiation in response to retinoic acid (RA) and teratoma formation. Using CRISPR/Cas9 technology to disrupt the endogenous α-cat gene in P19 cells, we generated α-cat knockout (KO) cells that exhibited a loss of cell-cell contact. When cultivated on non-coated dishes, these α-cat KO cells formed EBs, but their structures were labile. In the RA-containing medium, the α-cat KO EBs failed to produce differentiated cells on their outer layer and continued to express SSEA-1, an antigen specific to pluripotent cells. Teratoma formation assays revealed an absence of overt differentiated cells in tumors derived from α-cat KO P19 cells. Aggregation assays revealed the inability of the KO cells to colonize into the zona pellucida-denuded 8-cell embryos. These findings suggest that the AJs are essential for promoting the early stages of cellular differentiation and for the colonization of early-developing embryos.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
3
|
Campos G, Nel-Themaat L. Blastocoel fluid as an alternative source of DNA for minimally invasive PGT and biomarker of embryo competence. Reprod Biomed Online 2024; 49:104322. [PMID: 39121560 DOI: 10.1016/j.rbmo.2024.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 08/12/2024]
Abstract
The discovery of DNA in blastocoel fluid (BF-DNA) generated new perspectives in the potential development of simpler and safer alternative non-invasive tests in reproductive genetics. Short DNA fragments of apoptotic origin, together with specific expression patterns of pro- and anti-apoptotic genes in the blastocoel fluid of euploid and aneuploid embryos, suggest a self-correction mechanism to preferentially eliminate aneuploid cells, and purge defective and non-viable cells. The correlation of blastocoel fluid content with the genetic status of the whole embryo, and therefore its potential use in minimally invasive preimplantation genetic testing (miPGT), or as an indicator of embryo potential, remains uncertain and needs to be determined. The limited amount and compromised integrity of BF-DNA, with likely apoptotic origination, constrains its amplification, leading to low concordance and reproducibility rates for both aneuploidy screening and monogenic testing. While embryo genotyping constitutes a more ambitious goal, the presence of analysable DNA after amplification in blastocoel fluid may be used as a clinical biomarker of embryo competency to select the most viable embryo(s) for transfer, and potentially improve the implantation rate. Although blastocentesis remains a promising area for future research, several technical and methodological limitations are currently constraining its consideration for clinical practice.
Collapse
Affiliation(s)
- Gerard Campos
- Geisinger Medical Centre, Women's Health Fertility Clinic, Danville, Pennsylvania, USA; Girexx Fertility Clinics, Barcelona, Spain.
| | - Liesl Nel-Themaat
- Stanford Fertility and Reproductive Health Services, Stanford Medicine Children's Health, Sunnyvale, California, USA
| |
Collapse
|
4
|
Batki J, Hetzel S, Schifferl D, Bolondi A, Walther M, Wittler L, Grosswendt S, Herrmann BG, Meissner A. Extraembryonic gut endoderm cells undergo programmed cell death during development. Nat Cell Biol 2024; 26:868-877. [PMID: 38849542 PMCID: PMC11178501 DOI: 10.1038/s41556-024-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time. We find that extraembryonic gut cells display substantial memory of their developmental origin including retention of the original DNA methylation landscape and resulting transcriptional signatures. Furthermore, we show that extraembryonic gut cells undergo programmed cell death and neighbouring embryonic cells clear their remnants via non-professional phagocytosis. By midgestation, we no longer detect extraembryonic cells in the wild-type gut, whereas they persist and differentiate further in p53-mutant embryos. Our study provides key insights into the molecular and developmental fate of extraembryonic cells inside the embryo.
Collapse
Affiliation(s)
- Julia Batki
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Dennis Schifferl
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefanie Grosswendt
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Yoon H, Lee J, Kang I, Choi KW, Lee J, Jun JH. Enhancement of preimplantation mouse embryo development with optimized in vitro culture dish via stabilization of medium osmolarity. Clin Exp Reprod Med 2023; 50:244-252. [PMID: 37995752 PMCID: PMC10711242 DOI: 10.5653/cerm.2023.06436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE We evaluated the efficacy of the newly developed optimized in vitro culture (OIVC) dish for cultivating preimplantation mouse embryos. This dish minimizes the need for mineral oil and incorporates microwells, providing a stable culture environment and enabling independent monitoring of individual embryos. METHODS Mouse pronuclear (PN) zygotes and two-cell-stage embryos were collected at 18 and 46 hours after human chorionic gonadotropin injection, respectively. These were cultured for 120 hours using potassium simplex optimized medium (KSOM) to reach the blastocyst stage. The embryos were randomly allocated into three groups, each cultured in one of three dishes: a 60-mm culture dish, a microdrop dish, and an OIVC dish that we developed. RESULTS The OIVC dish effectively maintained the osmolarity of the KSOM culture medium over a 5-day period using only 2 mL of mineral oil. This contrasts with the significant osmolarity increase observed in the 60-mm culture dish. Additionally, the OIVC dish exhibited higher blastulation rates from two-cell embryos (100%) relative to the other dish types. Moreover, blastocysts derived from both PN zygotes and two-cell embryos in the OIVC dish group demonstrated significantly elevated mean cell numbers. CONCLUSION Use of the OIVC dish markedly increased the number of cells in blastocysts derived from the in vitro culture of preimplantation mouse embryos. The capacity of this dish to maintain medium osmolarity with minimal mineral oil usage represents a breakthrough that may advance embryo culture techniques for various mammals, including human in vitro fertilization and embryo transfer programs.
Collapse
Affiliation(s)
- Hyejin Yoon
- Department of Senior Healthcare, Graduate School of Eulji University, Seongnam, Republic of Korea
| | - Jongwoo Lee
- CNC Biotech Incorporated, Suwon, Republic of Korea
| | - Inyoung Kang
- Department of Biomedical Laboratory Science, Graduate School of Eulji University, Seongnam, Republic of Korea
| | | | - Jaewang Lee
- Department of Biomedical Laboratory Science, Graduate School of Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Jin Hyun Jun
- Department of Senior Healthcare, Graduate School of Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Graduate School of Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
| |
Collapse
|
6
|
Madani S, Machaty Z, Vajta G. An Alternative Way to Improve Mammalian Embryo Development In Vitro: Culture of Zona Pellucida-Free Embryos. Cell Reprogram 2022; 24:111-117. [PMID: 35506897 DOI: 10.1089/cell.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An increasing number of data proves that the presence of the zona pellucida is not essential to mammalian embryo production, including maturation, fertilization, and embryo culture. In fact, the structure of the zona pellucida of in vitro-produced embryos differs significantly from its in vivo counterpart, influencing metabolism and requiring disproportionate efforts to crack open at the time of hatching. This review aims to focus attention on this field and stimulate research in zona-free embryo culture. In domestic animals, extensive application of purpose-designed culture systems for zona-free embryos proved the feasibility of this approach. It may open new possibilities and increase efficiency in both transgenic research and human-assisted reproduction.
Collapse
Affiliation(s)
- Sarah Madani
- Department of Biology and Physiology of Organisms, Faculty of Biological Sciences, University of Science and Technology, Houari Boumedien, Algiers, Algeria
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Gábor Vajta
- RVT Australia, Cairns, Australia.,VitaVitro Biotech Co., Ltd., Shenzhen, China
| |
Collapse
|
7
|
Vajta G, Parmegiani L, Machaty Z, Chen WB, Yakovenko S. Back to the future: optimised microwell culture of individual human preimplantation stage embryos. J Assist Reprod Genet 2021; 38:2563-2574. [PMID: 33864207 PMCID: PMC8581087 DOI: 10.1007/s10815-021-02167-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Although in vitro culture of human embryos is a crucial step in assisted reproduction, the lack of focused research hampers worldwide standardisation and consistent outcomes. Only 1.2% of research papers published in five leading journals in human reproduction in 2019 focused on in vitro culture conditions, creating the impression that the optimisation process has approached its limits. On the other hand, in vitro culture of mammalian embryos is based on old principles, while there is no consensus on basic issues as density, time, medium change, gas atmosphere and small technical details including the way of drop preparation. This opinion paper aims to highlight and analyse the slow advancement in this field and stimulate research for simple and affordable solutions to meet the current requirements. A possible way for advancement is discussed in detail. Selection of embryos with the highest developmental competence requires individual culture and modification of the widely used "drop under oil" approach. Current use of three-dimensional surfaces instead of large flat bottoms is restricted to time-lapse systems, but these wells are designed for optical clarity, not for the needs of embryos. The size and shape of the original microwells (Well of the Well; WOW) offer a practical and straightforward solution to combine the benefits of communal and individual incubation and improve the overall quality of cultured embryos.
Collapse
Affiliation(s)
- Gábor Vajta
- RVT Australia, Cairns, QLD 4870 Australia
- VitaVitro Biotech Co., Ltd., Shenzhen, China
| | | | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN USA
| | | | - Sergey Yakovenko
- Altravita IVF Clinic, Moscow, Russia
- Biophysics Department, Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Vajta G, Parmegiani L, Machaty Z, Chen WB, Yakovenko S. Back to the future: optimised microwell culture of individual human preimplantation stage embryos. J Assist Reprod Genet 2021. [PMID: 33864207 DOI: 10.1007/s10815-021-02167-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
Although in vitro culture of human embryos is a crucial step in assisted reproduction, the lack of focused research hampers worldwide standardisation and consistent outcomes. Only 1.2% of research papers published in five leading journals in human reproduction in 2019 focused on in vitro culture conditions, creating the impression that the optimisation process has approached its limits. On the other hand, in vitro culture of mammalian embryos is based on old principles, while there is no consensus on basic issues as density, time, medium change, gas atmosphere and small technical details including the way of drop preparation. This opinion paper aims to highlight and analyse the slow advancement in this field and stimulate research for simple and affordable solutions to meet the current requirements. A possible way for advancement is discussed in detail. Selection of embryos with the highest developmental competence requires individual culture and modification of the widely used "drop under oil" approach. Current use of three-dimensional surfaces instead of large flat bottoms is restricted to time-lapse systems, but these wells are designed for optical clarity, not for the needs of embryos. The size and shape of the original microwells (Well of the Well; WOW) offer a practical and straightforward solution to combine the benefits of communal and individual incubation and improve the overall quality of cultured embryos.
Collapse
Affiliation(s)
- Gábor Vajta
- RVT Australia, Cairns, QLD, 4870, Australia. .,VitaVitro Biotech Co., Ltd., Shenzhen, China.
| | | | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Sergey Yakovenko
- Altravita IVF Clinic, Moscow, Russia.,Biophysics Department, Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Imai H, Tsuda S, Iwamori T, Kano K, Kusakabe KT, Ono E. Establishment of a novel method for the production of chimeric mouse embryos using water-in-oil droplets. Exp Anim 2020; 70:84-90. [PMID: 32999214 PMCID: PMC7887616 DOI: 10.1538/expanim.20-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Production of chimeric animals is often a necessity for the generation of genetically
modified animals and has gained popularity in recent years in regenerative medicine for
the reconstruction of xenogeneic organs. Aggregation and injection methods are generally
used to produce chimeric mice. In the aggregation method, the chimeras are produced by
co-culturing embryos and stem cells, and keeping them physically adhered, although it may
not be an assured method for producing chimeric embryos. In the injection method, the
chimeras are produced by injecting stem cells into the zona pellucida using
microcapillaries; however, this technique requires a high degree of skill. This study
aimed to establish a novel method for producing chimeric embryos via water-in-oil droplets
that differs from conventional methods. In this study, embryonic stem cells and embryos
were successfully isolated in the droplets, and the emergence of chimeric embryos was
confirmed by co-culture for 6 h. Using this method, the control and operability of stem
cell numbers could be regulated, and reproducibility and quantification were improved
during the production of chimeric embryos. In addition to the conventional methods for
producing chimeric embryos, the novel method described here could be employed for the
efficient production of chimeric animals.
Collapse
Affiliation(s)
- Hiroyuki Imai
- Department of Biomedicine, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Soichiro Tsuda
- On-chip Biotechnologies Co., Ltd., 2-24-16 Naka-cho, Koganei, Tokyo 184-0012, Japan
| | - Tokuko Iwamori
- Department of Biomedicine, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kiyoshi Kano
- Laboratory of Veterinary Developmental Biology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ken Takeshi Kusakabe
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Riveiro AR, Brickman JM. From pluripotency to totipotency: an experimentalist's guide to cellular potency. Development 2020; 147:147/16/dev189845. [PMID: 32847824 DOI: 10.1242/dev.189845] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are derived from the pre-implantation mammalian blastocyst. At this point in time, the newly formed embryo is concerned with the generation and expansion of both the embryonic lineages required to build the embryo and the extra-embryonic lineages that support development. When used in grafting experiments, embryonic cells from early developmental stages can contribute to both embryonic and extra-embryonic lineages, but it is generally accepted that ESCs can give rise to only embryonic lineages. As a result, they are referred to as pluripotent, rather than totipotent. Here, we consider the experimental potential of various ESC populations and a number of recently identified in vitro culture systems producing states beyond pluripotency and reminiscent of those observed during pre-implantation development. We also consider the nature of totipotency and the extent to which cell populations in these culture systems exhibit this property.
Collapse
Affiliation(s)
- Alba Redó Riveiro
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Du Y, Xie W, Zhang F, Liu C. Chimeric Mouse Generation by ES Cell Blastocyst Microinjection and Uterine Transfer. Methods Mol Biol 2019; 1874:99-114. [PMID: 30353510 PMCID: PMC7354057 DOI: 10.1007/978-1-4939-8831-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ability to generate chimeric mice through microinjecting embryonic stem (ES) cells into blastocysts is a critical step for the conventional ES cell-mediated knockout technology. In recent years, designer nuclease-based methods, especially the CRISPR technology, have substantially decreased the needs for blastocyst microinjection. However, this method has still remained as a valuable technique for generating sophisticated genetic models as well as for stem cell research. In this chapter, we describe the detailed procedures used in our laboratory on how to use ES cells to produce chimeric mice, including derivation and inactivation of MEF feeder cells, culturing and handling of mouse ES cells, collection and microinjection of blastocysts, and finally implantation of injected blastocysts into the uteri of pseudopregnant surrogate mothers.
Collapse
Affiliation(s)
- Yubin Du
- Transgenic Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wen Xie
- Transgenic Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fan Zhang
- Transgenic Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Okumura H, Nakanishi A, Toyama S, Yamanoue M, Yamada K, Ukai A, Hashita T, Iwao T, Miyamoto T, Tagawa YI, Hirabayashi M, Miyoshi I, Matsunaga T. Contribution of rat embryonic stem cells to xenogeneic chimeras in blastocyst or 8-cell embryo injection and aggregation. Xenotransplantation 2018; 26:e12468. [PMID: 30375053 DOI: 10.1111/xen.12468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/23/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022]
Abstract
The ultimate goal of regenerative medicine is the transplantation of a target organ generated by the patient's own cells. Recently, a method of organ generation using pluripotent stem cells (PSCs) and blastocyst complementation was reported. This approach is based on chimeric animal generation using an early embryo and PSCs, and the contribution of PSCs to the target organ is key to the method's success. However, the contribution rate of PSCs in target organs generated by different chimeric animal generation methods remains unknown. In this study, we used 8-cell embryo aggregation, 8-cell embryo injection, and blastocyst injection to generate interspecies chimeric mice using rat embryonic stem (ES) cells and then investigated the differences in the contribution rate of the rat ES cells. The rate of chimeric mouse generation was the highest using blastocyst injection, followed in order by 8-cell embryo injection and 8-cell embryo aggregation. However, the contribution rate of rat ES cells was the highest in chimeric neonates generated by 8-cell embryo injection, and the difference was statistically significant in the liver. Live functionality was confirmed by analyzing the expression of rat hepatocyte-derived drug-metabolizing enzyme. Collectively, these findings indicate that the 8-cell embryo injection method is the most suitable for generation of PSC-derived organs via chimeric animal generation, particularly for the liver.
Collapse
Affiliation(s)
- Hiroki Okumura
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Anna Nakanishi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoshi Toyama
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Mai Yamanoue
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kana Yamada
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akane Ukai
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomomi Miyamoto
- Center for Experimental Animal Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoh-Ichi Tagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ichiro Miyoshi
- Center for Experimental Animal Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
13
|
Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat Cell Biol 2018; 20:979-989. [PMID: 30038254 DOI: 10.1038/s41556-018-0147-7] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/20/2018] [Indexed: 02/08/2023]
Abstract
Embryonic stem cells can be incorporated into the developing embryo and its germ line, but, when cultured alone, their ability to generate embryonic structures is restricted. They can interact with trophoblast stem cells to generate structures that break symmetry and specify mesoderm, but their development is limited as the epithelial-mesenchymal transition of gastrulation cannot occur. Here, we describe a system that allows assembly of mouse embryonic, trophoblast and extra-embryonic endoderm stem cells into structures that acquire the embryo's architecture with all distinct embryonic and extra-embryonic compartments. Strikingly, such embryo-like structures develop to undertake the epithelial-mesenchymal transition, leading to mesoderm and then definitive endoderm specification. Spatial transcriptomic analyses demonstrate that these morphological transformations are underpinned by gene expression patterns characteristic of gastrulating embryos. This demonstrates the remarkable ability of three stem cell types to self-assemble in vitro into gastrulating embryo-like structures undertaking spatio-temporal events of the gastrulating mammalian embryo.
Collapse
|
14
|
Yang X, Zhou J, He J, Liu J, Wang H, Liu Y, Jiang T, Zhang Q, Fu X, Xu Y. An Immune System-Modified Rat Model for Human Stem Cell Transplantation Research. Stem Cell Reports 2018; 11:514-521. [PMID: 29983387 PMCID: PMC6092637 DOI: 10.1016/j.stemcr.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/04/2023] Open
Abstract
Due to its lack of both innate and acquired immune responses to human cells, the NODSCIDIl2rγ−/− (NSG) mouse model has become an important tool for human stem cell research. When compared with the mouse, the rat is physiologically more similar to humans and offers advantages in preclinical efficacy studies on human stem cells, particularly in evaluating neural, hepatic, and cardiac functions. Therefore, we generated a human SIRPα+Prdkc−/−Il2rγ−/− rat model, denoted NSG-like (NSGL) rat, which expresses human SIRPα and is abolished in the development of B, T, and natural killer cells. When compared with Prdkc−/−Il2rγ−/− (SG) rats, NSGL rats allow more efficient engraftment of human cancer cells and human pluripotent stem cells. In addition, only NSGL rats, but not SG rats, can be engrafted with human hematopoietic stem cells to reconstitute the human immune system. Therefore, NSGL rats represent an improved xenotransplantation model for efficacy studies of human stem cells. Generation of human SIRPα+Prkdc−/−Il2rγ−/− NSG-like (NSGL) rat model NSGL rats lack B, T, and NK cells but express human SIRPα NSGL rats can be efficiently engrafted with human stem cells NSGL rats can be reconstituted by human HSCs to generate a human immune system
Collapse
Affiliation(s)
- Xinglong Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianlong Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jingjin He
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
| | - Jingfeng Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hui Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
| | - Yachen Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Tao Jiang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China.
| | - Yang Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Parasar P, Sacha CR, Ng N, McGuirk ER, Chinthala S, Ozcan P, Lindsey J, Salas S, Laufer MR, Missmer SA, Anchan RM. Differentiating mouse embryonic stem cells express markers of human endometrium. Reprod Biol Endocrinol 2017; 15:52. [PMID: 28716123 PMCID: PMC5514487 DOI: 10.1186/s12958-017-0273-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Modeling early endometrial differentiation is a crucial step towards understanding the divergent pathways between normal and ectopic endometrial development as seen in endometriosis. METHODS To investigate these pathways, mouse embryonic stem cells (mESCs) and embryoid bodies (EBs) were differentiated in standard EB medium (EBM). Immunofluorescence (IF) staining and reverse-transcription polymerase chain reaction (RT-PCR) were used to detect expression of human endometrial cell markers on differentiating cells, which were sorted into distinct populations using fluorescence-activated cell sorting (FACS). RESULTS A subpopulation (50%) of early differentiating mESCs expressed both glandular (CD9) and stromal (CD13) markers of human endometrium, suggestive of a novel endometrial precursor cell population. We further isolated a small population of endometrial mesenchymal stem cells, CD45-/CD146+/PDGFR-β+, from differentiating EBs, representing 0.7% of total cells. Finally, quantitative PCR demonstrated significantly amplified expression of transcription factors Hoxa10 and Foxa2 in CD13+ EBs isolated by FACS (p = 0.03). CONCLUSIONS These findings demonstrate that mESCs have the capacity to express human endometrial cell markers and demonstrate potential differentiation pathways of endometrial precursor and mesenchymal stem cells, providing an in vitro system to model early endometrial tissue development. This model represents a key step in elucidating the mechanisms of ectopic endometrial tissue growth. Such a system could enable the development of strategies to prevent endometriosis and identify approaches for non-invasive monitoring of disease progression.
Collapse
Affiliation(s)
- P. Parasar
- Boston Center for Endometriosis, Boston Children’s and Brigham and Women’s Hospitals, 333 and 221 Longwood Avenue, Boston, MA 02115 USA
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - C. R. Sacha
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - N. Ng
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - E. R. McGuirk
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - S. Chinthala
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
- Department of OB/GYN, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637 USA
| | - P. Ozcan
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - J. Lindsey
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - S. Salas
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - M. R. Laufer
- Boston Center for Endometriosis, Boston Children’s and Brigham and Women’s Hospitals, 333 and 221 Longwood Avenue, Boston, MA 02115 USA
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
- Division of Gynecology, Department of Surgery, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - S. A. Missmer
- Boston Center for Endometriosis, Boston Children’s and Brigham and Women’s Hospitals, 333 and 221 Longwood Avenue, Boston, MA 02115 USA
- Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children’s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - R. M. Anchan
- Boston Center for Endometriosis, Boston Children’s and Brigham and Women’s Hospitals, 333 and 221 Longwood Avenue, Boston, MA 02115 USA
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| |
Collapse
|
16
|
Thompson CA, Wojta K, Pulakanti K, Rao S, Dawson P, Battle MA. GATA4 Is Sufficient to Establish Jejunal Versus Ileal Identity in the Small Intestine. Cell Mol Gastroenterol Hepatol 2017; 3:422-446. [PMID: 28462382 PMCID: PMC5404030 DOI: 10.1016/j.jcmgh.2016.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Patterning of the small intestinal epithelium along its cephalocaudal axis establishes three functionally distinct regions: duodenum, jejunum, and ileum. Efficient nutrient assimilation and growth depend on the proper spatial patterning of specialized digestive and absorptive functions performed by duodenal, jejunal, and ileal enterocytes. When enterocyte function is disrupted by disease or injury, intestinal failure can occur. One approach to alleviate intestinal failure would be to restore lost enterocyte functions. The molecular mechanisms determining regionally defined enterocyte functions, however, are poorly delineated. We previously showed that GATA binding protein 4 (GATA4) is essential to define jejunal enterocytes. The goal of this study was to test the hypothesis that GATA4 is sufficient to confer jejunal identity within the intestinal epithelium. METHODS To test this hypothesis, we generated a novel Gata4 conditional knock-in mouse line and expressed GATA4 in the ileum, where it is absent. RESULTS We found that GATA4-expressing ileum lost ileal identity. The global gene expression profile of GATA4-expressing ileal epithelium aligned more closely with jejunum and duodenum rather than ileum. Focusing on jejunal vs ileal identity, we defined sets of jejunal and ileal genes likely to be regulated directly by GATA4 to suppress ileal identity and promote jejunal identity. Furthermore, our study implicates GATA4 as a transcriptional repressor of fibroblast growth factor 15 (Fgf15), which encodes an enterokine that has been implicated in an increasing number of human diseases. CONCLUSIONS Overall, this study refines our understanding of an important GATA4-dependent molecular mechanism to pattern the intestinal epithelium along its cephalocaudal axis by elaborating on GATA4's function as a crucial dominant molecular determinant of jejunal enterocyte identity. Microarray data from this study have been deposited into NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO series accession number GSE75870.
Collapse
Key Words
- Cyp7a1, cytochrome P450 family 7 subfamily A member 1
- E, embryonic day
- EMSA, electrophoretic mobility shift assay
- Enterohepatic Signaling
- FXR
- FXR, farnesoid X receptor
- Fabp6, fatty acid binding protein 6
- Fgf, fibroblast growth factor
- Fgf15
- Jejunal Identity
- OSTα/β, organic solute transporter α/β
- PCR, polymerase chain reaction
- SBS, short-bowel syndrome
- Slc, solute carrier
- TSS, transcription start site
- Transcriptional Regulation
- bio-ChIP-seq, biotin-mediated chromatin immunoprecipitation with high-throughput sequencing
- bp, base pair
- cDNA, complementary DNA
- cKI, conditional knock-in
- cKO, conditional knockout
- dATP, deoxyadenosine triphosphate
- lnl, loxP-flanked PGK-Neo-3xSV40 polyadenylation sequence
- mRNA, messenger RNA
- pA, polyadenylation
- qRT, quantitative reverse-transcription
- xiFABP, Xenopus I-FABP
Collapse
Affiliation(s)
- Cayla A. Thompson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin Wojta
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kirthi Pulakanti
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Paul Dawson
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Michele A. Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
17
|
Teratake Y, Kuga C, Hasegawa Y, Sato Y, Kitahashi M, Fujimura L, Watanabe-Takano H, Sakamoto A, Arima M, Tokuhisa T, Hatano M. Transcriptional repression of p27 is essential for murine embryonic development. Sci Rep 2016; 6:26244. [PMID: 27196371 PMCID: PMC4872541 DOI: 10.1038/srep26244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022] Open
Abstract
The Nczf gene has been identified as one of Ncx target genes and encodes a novel KRAB zinc-finger protein, which functions as a sequence specific transcriptional repressor. In order to elucidate Nczf functions, we generated Nczf knockout (Nczf−/−) mice. Nczf−/− mice died around embryonic day 8.5 (E8.5) with small body size and impairment of axial rotation. Histopathological analysis revealed that the cell number decreased and pyknotic cells were occasionally observed. We examined the expression of cell cycle related genes in Nczf−/− mice. p27 expression was increased in E8.0 Nczf−/− mice compared to that of wild type mice. Nczf knockdown by siRNA resulted in increased expression of p27 in mouse embryonic fibroblasts (MEFs). Furthermore, p27 promoter luciferase reporter gene analysis confirmed the regulation of p27 mRNA expression by Nczf. Nczf−/−; p27−/− double knockout mice survived until E11.5 and the defect of axial rotation was restored. These data suggest that p27 repression by Nczf is essential in the developing embryo.
Collapse
Affiliation(s)
- Youichi Teratake
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Chisa Kuga
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Yuta Hasegawa
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Yoshiharu Sato
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Masayasu Kitahashi
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Haruko Watanabe-Takano
- Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Akemi Sakamoto
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan.,Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Masafumi Arima
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Takeshi Tokuhisa
- Developmental Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan.,Biomedical Research Center, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba city, Chiba, Japan
| |
Collapse
|
18
|
Lee SG, Park JK, Choi KH, Son HY, Lee CK. Embryo Aggregation Promotes Derivation Efficiency of Outgrowths from Porcine Blastocysts. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1565-72. [PMID: 26580280 PMCID: PMC4647096 DOI: 10.5713/ajas.15.0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/04/2015] [Accepted: 07/17/2015] [Indexed: 01/29/2023]
Abstract
Porcine embryonic stem cells (pESCs) have become an advantageous experimental tool for developing therapeutic applications and producing transgenic animals. However, despite numerous reports of putative pESC lines, deriving validated pESC lines from embryos produced in vitro remains difficult. Here, we report that embryo aggregation was useful for deriving pESCs from in vitro-produced embryos. Blastocysts derived from embryo aggregation formed a larger number of colonies and maintained cell culture stability. Our derived cell lines demonstrated expression of pluripotent markers (alkaline phosphatase, Oct4, Sox2, and Nanog), an ability to form embryoid bodies, and the capacity to differentiate into the three germ layers. A cytogenetic analysis of these cells revealed that all lines derived from aggregated blastocysts had normal female and male karyotypes. These results demonstrate that embryo aggregation could be a useful technique to improve the efficiency of deriving ESCs from in vitro-fertilized pig embryos, studying early development, and deriving pluripotent ESCs in vitro in other mammals.
Collapse
Affiliation(s)
- Sang-Goo Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921,
Korea
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115,
USA
| | - Jin-Kyu Park
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921,
Korea
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211,
USA
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921,
Korea
| | - Hye-Young Son
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921,
Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921,
Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang 232-916,
Korea
| |
Collapse
|
19
|
Affiliation(s)
- Chris O'Neill
- Kolling Institute for Medical Research, Sydney Medical School, Royal North Shore Hospital, NSW, 2065 Australia
| |
Collapse
|
20
|
Guo J, Wu B, Li S, Bao S, Zhao L, Hu S, Sun W, Su J, Dai Y, Li X. Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos. Stem Cells Int 2014; 2014:409021. [PMID: 25610470 PMCID: PMC4291195 DOI: 10.1155/2014/409021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/30/2014] [Indexed: 01/02/2023] Open
Abstract
Blastocyst injection and morula aggregation are commonly used to evaluate stem cell pluripotency based on chimeric contribution of the stem cells. To assess the protocols for generating chimeras from stem cells, 8-cell mouse embryos were either injected or cocultured with mouse embryonic stem cells and induced pluripotent stem cells, respectively. Although a significantly higher chimera rate resulted from blastocyst injection, the highest germline contribution resulted from injection of 8-cell embryos with embryonic stem cells. The fully agouti colored chimeras were generated from both injection and coculture of 8-cell embryos with embryonic stem cells. Additionally, microsatellite DNA screening showed that the fully agouti colored chimeras were fully embryonic stem cell derived mice. Unlike embryonic stem cells, the mouse chimeras were only generated from injection of 8-cell embryos with induced pluripotent stem cells and none of these showed germline transmission. The results indicated that injection of 8-cell embryos is the most efficient method for assessing stem cell pluripotency and generating induced pluripotent stem cell chimeras, embryonic stem cell chimeras with germline transmission, and fully mouse embryonic stem cell derived mice.
Collapse
Affiliation(s)
- Jitong Guo
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| | - Baojiang Wu
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| | - Shuyu Li
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| | - Lixia Zhao
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| | - Shuxiang Hu
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| | - Wei Sun
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| | - Jie Su
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| | - Yanfeng Dai
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Saikexing Reproductive Biotechnology Co., Ltd., Helingeer 011517, China
| |
Collapse
|
21
|
DeVeale B, Bausch-Fluck D, Seaberg R, Runciman S, Akbarian V, Karpowicz P, Yoon C, Song H, Leeder R, Zandstra PW, Wollscheid B, van der Kooy D. Surfaceome profiling reveals regulators of neural stem cell function. Stem Cells 2014; 32:258-68. [PMID: 24023036 DOI: 10.1002/stem.1550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/03/2013] [Accepted: 07/24/2013] [Indexed: 11/11/2022]
Abstract
The composition of cell-surface proteins changes during lineage specification, altering cellular responses to their milieu. The changes that characterize maturation of early neural stem cells (NSCs) remain poorly understood. Here we use mass spectrometry-based cell surface capture technology to profile the cell surface of early NSCs and demonstrate functional requirements for several enriched molecules. Primitive NSCs arise from embryonic stem cells upon removal of Transforming growth factor-β signaling, while definitive NSCs arise from primitive NSCs upon Lif removal and FGF addition. In vivo aggregation assays revealed that N-cadherin upregulation is sufficient for the initial exclusion of definitive NSCs from pluripotent ectoderm, while c-kit signaling limits progeny of primitive NSCs. Furthermore, we implicate EphA4 in primitive NSC survival signaling and Erbb2 as being required for NSC proliferation. This work elucidates several key mediators of NSC function whose relevance is confirmed on forebrain-derived populations and identifies a host of other candidates that may regulate NSCs.
Collapse
Affiliation(s)
- Brian DeVeale
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
DeVeale B, Brokhman I, Mohseni P, Babak T, Yoon C, Lin A, Onishi K, Tomilin A, Pevny L, Zandstra PW, Nagy A, van der Kooy D. Oct4 is required ~E7.5 for proliferation in the primitive streak. PLoS Genet 2013; 9:e1003957. [PMID: 24244203 PMCID: PMC3828132 DOI: 10.1371/journal.pgen.1003957] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/01/2013] [Indexed: 12/14/2022] Open
Abstract
Oct4 is a widely recognized pluripotency factor as it maintains Embryonic Stem (ES) cells in a pluripotent state, and, in vivo, prevents the inner cell mass (ICM) in murine embryos from differentiating into trophectoderm. However, its function in somatic tissue after this developmental stage is not well characterized. Using a tamoxifen-inducible Cre recombinase and floxed alleles of Oct4, we investigated the effect of depleting Oct4 in mouse embryos between the pre-streak and headfold stages, ∼E6.0–E8.0, when Oct4 is found in dynamic patterns throughout the embryonic compartment of the mouse egg cylinder. We found that depletion of Oct4 ∼E7.5 resulted in a severe phenotype, comprised of craniorachischisis, random heart tube orientation, failed turning, defective somitogenesis and posterior truncation. Unlike in ES cells, depletion of the pluripotency factors Sox2 and Oct4 after E7.0 does not phenocopy, suggesting that ∼E7.5 Oct4 is required within a network that is altered relative to the pluripotency network. Oct4 is not required in extraembryonic tissue for these processes, but is required to maintain cell viability in the embryo and normal proliferation within the primitive streak. Impaired expansion of the primitive streak occurs coincident with Oct4 depletion ∼E7.5 and precedes deficient convergent extension which contributes to several aspects of the phenotype. Embryogenesis is an intricate process requiring that division, differentiation and position of cells are coordinated. During mammalian development early pluripotent populations are canalized or restricted in potency during embryogenesis. Due to considerable interest in how this fundamental state of pluripotency is maintained, and the requirement of the transcription factor Oct4 to maintain pluripotency, Oct4 has been intensively studied in culture. However, it is not clear what role Oct4 has during lineage specification of pluripotent cells. Oct4 removal during lineage specification indicates that it is required in the primitive streak of mouse embryos to maintain proliferation. The consequences of Oct4 removal diverge from the consequences of removing another factor required for pluripotency between preimplantation development and early cell fate specification suggesting that the network Oct4 acts within is altered between these stages.
Collapse
Affiliation(s)
- Brian DeVeale
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (BD); (DvdK)
| | - Irina Brokhman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Paria Mohseni
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tomas Babak
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Charles Yoon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Lin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Tomilin
- Institute of Cytology, Russian Academy of Science, St-Petersburg, Russia
| | - Larysa Pevny
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Andras Nagy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (BD); (DvdK)
| |
Collapse
|
23
|
Osteil P, Tapponnier Y, Markossian S, Godet M, Schmaltz-Panneau B, Jouneau L, Cabau C, Joly T, Blachère T, Gócza E, Bernat A, Yerle M, Acloque H, Hidot S, Bosze Z, Duranthon V, Savatier P, Afanassieff M. Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency. Biol Open 2013; 2:613-28. [PMID: 23789112 PMCID: PMC3683164 DOI: 10.1242/bio.20134242] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022] Open
Abstract
Not much is known about the molecular and functional features of pluripotent stem cells (PSCs) in rabbits. To address this, we derived and characterized 2 types of rabbit PSCs from the same breed of New Zealand White rabbits: 4 lines of embryonic stem cells (rbESCs), and 3 lines of induced PSCs (rbiPSCs) that were obtained by reprogramming adult skin fibroblasts. All cell lines required fibroblast growth factor 2 for their growth and proliferation. All rbESC lines showed molecular and functional properties typically associated with primed pluripotency. The cell cycle of rbESCs had a prolonged G1 phase and a DNA damage checkpoint before entry into the S phase, which are the 2 features typically associated with the somatic cell cycle. In contrast, the rbiPSC lines exhibited some characteristics of naïve pluripotency, including resistance to single-cell dissociation by trypsin, robust activity of the distal enhancer of the mouse Oct4 gene, and expression of naïve pluripotency-specific genes, as defined in rodents. According to gene expression profiles, rbiPSCs were closer to the rabbit inner cell mass (ICM) than rbESCs. Furthermore, rbiPSCs were capable of colonizing the ICM after aggregation with morulas. Therefore, we propose that rbiPSCs self-renew in an intermediate state between naïve and primed pluripotency, which represents a key step toward the generation of bona fide naïve PSC lines in rabbits.
Collapse
Affiliation(s)
- Pierre Osteil
- INSERM, U846, Stem Cell and Brain Institute , 18 Avenue du Doyen Jean Lépine, F-69500 Bron , France ; Stem Cell and Brain Institute , F-69500 Bron , France ; Université de Lyon , F-69100 Villeurbanne , France ; INRA, USC1361, F-69500 Bron , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Osteil P, Tapponnier Y, Markossian S, Godet M, Schmaltz-Panneau B, Jouneau L, Cabau C, Joly T, Blachère T, Gócza E, Bernat A, Yerle M, Acloque H, Hidot S, Bosze Z, Duranthon V, Savatier P, Afanassieff M. Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency. Biol Open 2013. [PMID: 23789112 DOI: 10.1242/bio.20134242.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2022] Open
Abstract
Not much is known about the molecular and functional features of pluripotent stem cells (PSCs) in rabbits. To address this, we derived and characterized 2 types of rabbit PSCs from the same breed of New Zealand White rabbits: 4 lines of embryonic stem cells (rbESCs), and 3 lines of induced PSCs (rbiPSCs) that were obtained by reprogramming adult skin fibroblasts. All cell lines required fibroblast growth factor 2 for their growth and proliferation. All rbESC lines showed molecular and functional properties typically associated with primed pluripotency. The cell cycle of rbESCs had a prolonged G1 phase and a DNA damage checkpoint before entry into the S phase, which are the 2 features typically associated with the somatic cell cycle. In contrast, the rbiPSC lines exhibited some characteristics of naïve pluripotency, including resistance to single-cell dissociation by trypsin, robust activity of the distal enhancer of the mouse Oct4 gene, and expression of naïve pluripotency-specific genes, as defined in rodents. According to gene expression profiles, rbiPSCs were closer to the rabbit inner cell mass (ICM) than rbESCs. Furthermore, rbiPSCs were capable of colonizing the ICM after aggregation with morulas. Therefore, we propose that rbiPSCs self-renew in an intermediate state between naïve and primed pluripotency, which represents a key step toward the generation of bona fide naïve PSC lines in rabbits.
Collapse
Affiliation(s)
- Pierre Osteil
- INSERM, U846, Stem Cell and Brain Institute , 18 Avenue du Doyen Jean Lépine, F-69500 Bron , France ; Stem Cell and Brain Institute , F-69500 Bron , France ; Université de Lyon , F-69100 Villeurbanne , France ; INRA, USC1361, F-69500 Bron , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee ST, Gong SP, Yum KE, Lee EJ, Lee CH, Choi JH, Kim DY, Han H, Kim KS, Hysolli E, Ahn JY, Park IH, Han JY, Jeong JW, Lim JM. Transformation of somatic cells into stem cell-like cells under a stromal niche. FASEB J 2013; 27:2644-56. [PMID: 23580613 DOI: 10.1096/fj.12-223065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To study the genomic plasticity of somatic cells without ectopic genetic manipulation, we cultured mouse fibroblasts with ovarian cells, embryonic fibroblasts of different strains, and parthenogenetic embryonic stem cells (ESCs). Of 41 trials, cell aggregation resembling nascent ESC colony from inner cell mass was detected in 9 cases (22%), and 6 cases (67%) yielded fibroblast-derived colonies with ESC morphology. Cells used in coculture provided the critical (P=0.0061) inducing factor for the aggregation. These colony-forming fibroblasts (CFFs) showed similar characteristics to those in ESCs and induced pluripotent stem cells (iPSCs), including pluripotency gene expression, in vitro differentiation, and teratoma formation. Furthermore, CFFs produced somatic chimera, although none showed germline chimerism. CFFs had a tetraploid-like karyotype, and their imprinting patterns differed from parthenogenetic ESCs, thereby confirming their nongermline transmissibility. We observed dysregulation of cell cycle-related proteins, as well as both homologous and heterologous recombination of genomic single-nucleotide polymorphisms in CFFs. Our observations provide information on somatic cell plasticity, resulting in stemness or tumorigenesis, regardless of colony-forming cell progenitors in the fibroblast population. The plasticity of somatic genomes under environmental influences, as well as acquisition of pluripotency by cell fusion, is also implicated.
Collapse
Affiliation(s)
- Seung Tae Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nelson TJ, Martinez-Fernandez A, Yamada S, Terzic A. Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Chang TC, Liu CC, Hsing EW, Liang SM, Chi YH, Sung LY, Lin SP, Shen TL, Ko BS, Yen BL, Yet SF, Wu KK, Liou JY. 14-3-3σ regulates β-catenin-mediated mouse embryonic stem cell proliferation by sequestering GSK-3β. PLoS One 2012; 7:e40193. [PMID: 22768254 PMCID: PMC3387134 DOI: 10.1371/journal.pone.0040193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/02/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pluripotent embryonic stem cells are considered to be an unlimited cell source for tissue regeneration and cell-based therapy. Investigating the molecular mechanism underlying the regulation of embryonic stem cell expansion is thus important. 14-3-3 proteins are implicated in controlling cell division, signaling transduction and survival by interacting with various regulatory proteins. However, the function of 14-3-3 in embryonic stem cell proliferation remains unclear. METHODOLOGY AND PRINCIPAL FINDINGS In this study, we show that all seven 14-3-3 isoforms were detected in mouse embryonic stem cells. Retinoid acid suppressed selectively the expression of 14-3-3σ isoform. Knockdown of 14-3-3σ with siRNA reduced embryonic stem cell proliferation, while only 14-3-3σ transfection increased cell growth and partially rescued retinoid acid-induced growth arrest. Since the growth-enhancing action of 14-3-3σ was abrogated by β-catenin knockdown, we investigated the influence of 14-3-3σ overexpression on β-catenin/GSK-3β. 14-3-3σ bound GSK-3β and increased GSK-3β phosphorylation in a PI-3K/Akt-dependent manner. It disrupted β-catenin binding by the multiprotein destruction complex. 14-3-3σ overexpression attenuated β-catenin phosphorylation and rescued the decline of β-catenin induced by retinoid acid. Furthermore, 14-3-3σ enhanced Wnt3a-induced β-catenin level and GSK-3β phosphorylation. DKK, an inhibitor of Wnt signaling, abolished Wnt3a-induced effect but did not interfere GSK-3β/14-3-3σ binding. SIGNIFICANCE Our findings show for the first time that 14-3-3σ plays an important role in regulating mouse embryonic stem cell proliferation by binding and sequestering phosphorylated GSK-3β and enhancing Wnt-signaled GSK-3β inactivation. 14-3-3σ is a novel target for embryonic stem cell expansion.
Collapse
Affiliation(s)
- Tzu-Ching Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Chia Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - En-Wei Hsing
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Hui Chi
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Bor-Sheng Ko
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - B. Linju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K. Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (JYL); (KKW)
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (JYL); (KKW)
| |
Collapse
|
28
|
An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep 2012; 2:76-88. [PMID: 22840399 DOI: 10.1016/j.celrep.2012.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 03/06/2012] [Accepted: 06/11/2012] [Indexed: 01/08/2023] Open
Abstract
Olfactory stimuli are detected by over 1,000 odorant receptors in mice, with each receptor being mapped to specific glomeruli in the olfactory bulb. The trace amine-associated receptors (TAARs) are a small family of evolutionarily conserved olfactory receptors whose contribution to olfaction remains enigmatic. Here, we show that a majority of the TAARs are mapped to a discrete subset of glomeruli in the dorsal olfactory bulb of the mouse. This TAAR projection is distinct from the previously described class I and class II domains, and is formed by a sensory neuron population that is restricted to express TAAR genes prior to choice. We also show that the dorsal TAAR glomeruli are selectively activated by amines at low concentrations. Our data uncover a hard-wired, parallel input stream in the main olfactory pathway that is specialized for the detection of volatile amines.
Collapse
|
29
|
Hong N, Chen S, Ge R, Song J, Yi M, Hong Y. Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation. Stem Cells Dev 2012; 21:2333-41. [PMID: 22204449 DOI: 10.1089/scd.2011.0630] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos.
Collapse
Affiliation(s)
- Ni Hong
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
30
|
Park J, Kim C, Tang Y, Amano T, Lin CJ, Tian XC. Reprogramming of mouse fibroblasts to an intermediate state of differentiation by chemical induction. Cell Reprogram 2011; 13:121-31. [PMID: 21473689 DOI: 10.1089/cell.2010.0067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) generated by forced expression of four transcription factors offer promises for regenerative and therapeutic uses in human diseases. However, it is necessary to overcome the risk of tumorigenicity caused by the use of potent oncogenes and the use of randomly integrating vectors before the iPSC technology can be applied to human medicine. Stem cells and cancer cells share many features in common, implying that there are similar underlying mechanisms in their development. Small molecules have been used to induce cell reprogramming for lineage trans-differentiation and for maintaining pluripotency of stem cells. In this study, we investigated the possibility of replacing all reprogramming viral factors with small molecules. To this end, we evaluated the effects of carcinogens at nongenotoxic levels on somatic cells. We identified 16 candidate chemicals through biology-oriented in silico high-throughput screening with commercially available inventories from Sigma-Aldrich for cancer research, and established a reprogramming protocol of 16-day treatment followed by 5 days of recovery. This protocol was applied to B6/129 mouse embryonic fibroblasts (MEFs) at passage 3. From recovery day 2, colonies appeared at an efficiency of 0.02%. These colonies were positive for both alkaline phosphatase and surface specific embryonic antigen-1 (SSEA-1) at a comparable level to those of mouse embryonic stem cells (ESCs). Global gene expression analysis with a 38K gene MEEBO microarray revealed that the colonies had 564 (1.5%) differentially expressed genes compared to MEFs at day 0 of treatment, and these genes were enriched in "neuromuscular differentiation." Moreover, 122 differentially expressed genes in the colonies were ESC-enriched, including downregulated somatic markers and upregulated stem cell markers. In conclusion, combined chemical treatment of MEFs herein might have caused these cells to transverse to an intermediate state within the mesodermal lineages.
Collapse
Affiliation(s)
- Joonghoon Park
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
31
|
Somfai T, Inaba Y, Aikawa Y, Ohtake M, Kobayashi S, Akai T, Hattori H, Konishi K, Imai K. Culture of bovine embryos in polyester mesh sections: the effect of pore size and oxygen tension on in vitro development. Reprod Domest Anim 2011; 45:1104-9. [PMID: 19845884 DOI: 10.1111/j.1439-0531.2009.01502.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to assess the feasibility of polyester mesh culture for the in vitro production of bovine embryos, as polyester mesh is an alternative way for tracking individual embryos throughout culture using time-lapse cinematography (TLC). Bovine embryos were isolated during in vitro culture using sections of three different polyethylene terephthalate (PET) mesh products. In vitro matured and fertilized bovine oocytes were cultured in the 217 × 217, 230 × 230 or 238 × 238-μm openings of PET mesh sections or in simple micro-drops (control) for 7 days under either 20% or 5% O(2) tensions. No difference in embryo developmental rates was found between the culture groups in terms of cleavage, blastocyst formation and blastocyst expansion irrespective of O(2) tension. In contrast, under 20% O(2) tension, blastocysts that developed in PET mesh with 217 × 217-μm opening had significantly higher numbers of total and trophectoderm (TE) cells than control embryos; however, the numbers and proportions of inner cell mass (ICM) cells did not differ. Under 5% O(2) tension, no difference was found among the culture groups in the numbers of total, ICM and TE cells in embryos. All three PET mesh products investigated in this study were proven to be effective to prevent embryo movement. The results demonstrate that bovine embryos can be cultured in PET mesh sections without negative side-effects and suggest that embryo distance determined by the mesh affects embryo quality at atmospheric oxygen tension. Polyethylene terephthalate mesh with 217 × 217-μm openings was found to be the most suitable for further application in TLC.
Collapse
Affiliation(s)
- T Somfai
- National Livestock Breeding Center, Fukushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, Linnarsson S. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 2011; 21:1160-7. [PMID: 21543516 DOI: 10.1101/gr.110882.110] [Citation(s) in RCA: 666] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Our understanding of the development and maintenance of tissues has been greatly aided by large-scale gene expression analysis. However, tissues are invariably complex, and expression analysis of a tissue confounds the true expression patterns of its constituent cell types. Here we describe a novel strategy to access such complex samples. Single-cell RNA-seq expression profiles were generated, and clustered to form a two-dimensional cell map onto which expression data were projected. The resulting cell map integrates three levels of organization: the whole population of cells, the functionally distinct subpopulations it contains, and the single cells themselves-all without need for known markers to classify cell types. The feasibility of the strategy was demonstrated by analyzing the transcriptomes of 85 single cells of two distinct types. We believe this strategy will enable the unbiased discovery and analysis of naturally occurring cell types during development, adult physiology, and disease.
Collapse
Affiliation(s)
- Saiful Islam
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Simerly C, McFarland D, Castro C, Lin CC, Redinger C, Jacoby E, Mich-Basso J, Orwig K, Mills P, Ahrens E, Navara C, Schatten G. Interspecies chimera between primate embryonic stem cells and mouse embryos: monkey ESCs engraft into mouse embryos, but not post-implantation fetuses. Stem Cell Res 2011; 7:28-40. [PMID: 21543277 DOI: 10.1016/j.scr.2011.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022] Open
Abstract
Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor.
Collapse
Affiliation(s)
- Calvin Simerly
- Division of Developmental and Regenerative Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh Development Center, Magee-Womens Research Institute and Foundation, 204 Craft Avenue, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Niibe K, Kawamura Y, Araki D, Morikawa S, Miura K, Suzuki S, Shimmura S, Sunabori T, Mabuchi Y, Nagai Y, Nakagawa T, Okano H, Matsuzaki Y. Purified mesenchymal stem cells are an efficient source for iPS cell induction. PLoS One 2011; 6:e17610. [PMID: 21412425 PMCID: PMC3055883 DOI: 10.1371/journal.pone.0017610] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/31/2011] [Indexed: 12/13/2022] Open
Abstract
Background Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by the forced expression of defined transcription factors. Although most somatic cells are capable of acquiring pluripotency with minimal gene transduction, the poor efficiency of cell reprogramming and the uneven quality of iPS cells are still important problems. In particular, the choice of cell type most suitable for inducing high-quality iPS cells remains unclear. Methodology/Principal Findings Here, we generated iPS cells from PDGFRα+ Sca-1+ (PαS) adult mouse mesenchymal stem cells (MSCs) and PDGFRα− Sca-1− osteo-progenitors (OP cells), and compared the induction efficiency and quality of individual iPS clones. MSCs had a higher reprogramming efficiency compared with OP cells and Tail Tip Fibroblasts (TTFs). The iPS cells induced from MSCs by Oct3/4, Sox2, and Klf4 appeared to be the closest equivalent to ES cells by DNA microarray gene profile and germline-transmission efficiency. Conclusions/Significance Our findings suggest that a purified source of undifferentiated cells from adult tissue can produce high-quality iPS cells. In this context, prospectively enriched MSCs are a promising candidate for the efficient generation of high-quality iPS cells.
Collapse
Affiliation(s)
- Kunimichi Niibe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Kawamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Araki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kyoko Miura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Takehiko Sunabori
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yasuo Nagai
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Haugas M, Lilleväli K, Hakanen J, Salminen M. Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Dev Dyn 2011; 239:2452-69. [PMID: 20652952 DOI: 10.1002/dvdy.22373] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gata2 has essential roles in the development of many organs. During mouse inner ear morphogenesis, it is expressed in otic vesicle and the surrounding periotic mesenchyme from early on, but no defects in the ear development of Gata2 null mice have been observed before lethality at embryonic day (E) 10.5. Here, we used conditional gene targeting to reveal the role of Gata2 at later stages of inner ear development. We show that Gata2 is critically required from E14.5-E15.5 onward for vestibular morphogenesis. Without Gata2 the semicircular ducts fail to grow to their normal size and the surrounding mesenchymal cells are not removed properly to generate the perilymphatic space. Gata2 is the first factor known to control the clearing of the vestibular perilymphatic mesenchyme, but interestingly, it is not required for the formation of the cochlear perilymphatic areas, suggesting distinct molecular control for these processes.
Collapse
Affiliation(s)
- Maarja Haugas
- Department of Veterinary Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
36
|
Hidvegi T, Mukherjee A, Ewing M, Kemp C, Perlmutter DH. The Role of Autophagy in Alpha-1-Antitrypsin Deficiency. Methods Enzymol 2011; 499:33-54. [DOI: 10.1016/b978-0-12-386471-0.00003-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Abstract
Horizontal gene transfer or simply transgenic technology has evolved much since 1980. Gene delivery strategies, systems, and equipments have become more and more precise and efficient. It has also been shown that even chromosomes can be used besides traditional plasmid and viral vectors for zygote or embryonic stem cell transformation. Artificial chromosomes and their loadable variants have brought their advantages over traditional genetic information carriers into the field of transgenesis. Engineered chromosomes are appealing vectors for gene transfer since they have large transgene carrying capacity, they are non-integrating, and stably expressing in eukaryotic cells. Embryonic stem cell lines can be established that carry engineered chromosomes and ultimately used in transgenic mouse chimera creation. The demonstrated protocol describes all the steps necessary for the successful production of transgenic mouse chimeras with engineered chromosome bearer embryonic stem cells.
Collapse
|
38
|
Nelson TJ, Martinez-Fernandez A, Yamada S, Terzic A. Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Mamo S, Kobolak J, Borbíró I, Bíró T, Bock I, Dinnyes A. Gene targeting and Calcium handling efficiencies in mouse embryonic stem cell lines. World J Stem Cells 2010; 2:127-40. [PMID: 21607130 PMCID: PMC3097933 DOI: 10.4252/wjsc.v2.i6.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To compare gene targeting efficiencies, expression profiles, and Ca(2+) handling potentials in two widely used mouse embryonic stem cell lines. METHODS The two widely used mouse embryonic stem cell lines, R1 and HM-1, were cultured and maintained on Mitomycin C treated mouse embryonic fibroblast feeder cell layers, following standard culture procedures. Cells were incubated with primary and secondary antibodies before fluorescence activated cell sorting analysis to compare known pluripotency markers. Moreover, cells were harvested by trypsinization and transfected with a kinase-inactive murine Tyk2 targeting construct, following the BioRad and Amaxa transfection procedures. Subsequently, the cells were cultured and neomycin-resistant cells were picked after 13 d of selection. Surviving clones were screened twice by polymerase chain reaction (PCR) and finally confirmed by Southern blot analysis before comparison. Global gene expression profiles of more than 20 400 probes were also compared and significantly regulated genes were confirmed by real time PCR analysis. Calcium handling potentials of these cell lines were also compared using various agonists. RESULTS We found significant differences in transfection efficiencies of the two cell lines (91% ± 6.1% vs 75% ± 4.2%, P = 0.01). Differences in the targeting efficiencies were also significant whether the Amaxa or BioRad platforms were used for comparison. We did not observe significant differences in the levels of many known pluripotency markers. However, our genome-wide expression analysis using more than 20 400 spotted cDNA arrays identified 55 differentially regulated transcripts (P < 0.05) implicated in various important biological processes, including binding molecular functions (particularly Ca(2+) binding roles). Subsequently, we measured Ca(2+) signals in these cell lines in response to various calcium agonists, both in high and low Ca(2+) solutions, and found significant differences (P < 0.05) in the regulation of Ca(2+) homeostasis between the investigated cell lines. Then we further compared the detection and expression of various membrane and intracellular Ca(2+) receptors and similarly found significant (P < 0.05) variations in a number of calcium receptors between these cell lines. CONCLUSION Results of this study emphasize the importance of considering intrinsic cellular variations, during selection of cell lines for experiments and interpretations of experimental results.
Collapse
Affiliation(s)
- Solomon Mamo
- Solomon Mamo, Julianna Kobolak, Andras Dinnyes, Genetic Reprogramming Group, Agricultural Biotechnology Center, Szent-Gyorgyi Albert ut. 4, H-2100 Gödöllő, Hungary
| | | | | | | | | | | |
Collapse
|
40
|
Iijima S, Tanimoto Y, Mizuno S, Daitoku Y, Kunita S, Sugiyama F, Yagami KI. Effect of Different Culture Conditions on Establishment of Embryonic Stem Cells from BALB/cAJ and NZB/BINJ Mice. Cell Reprogram 2010; 12:679-88. [DOI: 10.1089/cell.2010.0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Saori Iijima
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Satoshi Kunita
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Ken-ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki Japan
| |
Collapse
|
41
|
Nelson TJ, Martinez-Fernandez A, Yamada S, Mael AA, Terzic A, Ikeda Y. Induced pluripotent reprogramming from promiscuous human stemness related factors. Clin Transl Sci 2010; 2:118-26. [PMID: 20161095 DOI: 10.1111/j.1752-8062.2009.00091.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ectopic expression of pluripotency gene sets provokes nuclear reprogramming in permissive somatic tissue environments generating induced pluripotent stem (iPS) cells. The evolutionary conserved function of stemness orthologs was here tested through interspecies transduction. A spectrum of HIV-based lentiviral vectors was designed, and point mutations in the HIV-1 capsid region identified for efficient infectivity and expanded trans-species tropism. Human pluripotent gene sequences, OCT3/4, SOX2, KLF4 and c-MYC, packaged into engineered lentiviral expression vectors achieved consistent expression in non-human fibroblasts. Despite variation in primary amino-acid sequence between species, introduction of human pluripotent genes produced cell lines with embryonic stem cell-like morphology. Transduced fibroblasts differentiated in vitro into all three germ layers according to gastrulation gene expression profiles, and formed in vivo teratoma with multi-lineage potential. Reprogrammed progeny incorporated into non-human morula to produce blastomeres capable of developing into chimeric embryos with competent organogenesis. This model system establishes a prototypic approach to examine consequences of human stemness factors induced reprogramming in the context of normal embryonic development, exploiting non-human early stage embryos. Thus, ectopic xeno-transduction across species unmasks the promiscuous nature of stemness induction, suggesting evolutionary selection of core processes for somatic tissue reprogramming.
Collapse
Affiliation(s)
- Timothy J Nelson
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
42
|
Tamowski S, Aston KI, Carrell DT. The use of transgenic mouse models in the study of male infertility. Syst Biol Reprod Med 2010; 56:260-73. [PMID: 20536325 DOI: 10.3109/19396368.2010.485244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past few decades with the rapid advances in embryo and embryonic stem cell manipulation techniques, transgenic mouse models have emerged as a powerful tool for the study of gene function and complex diseases including male infertility. In this review we give a brief history of the development of tools for the production of transgenic mouse models. This spans the advances from early pronuclear injection to the use of targeted embryonic stem cells to produce gene targeted, conditional, and inducible knockout mouse models. Lastly we provide a few examples to illustrate the utility of mouse models in the study of male infertility.
Collapse
Affiliation(s)
- Susan Tamowski
- Transgenic and Gene Targeting Mouse Core, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
43
|
Vajta G, Rienzi L, Cobo A, Yovich J. Embryo culture: can we perform better than nature? Reprod Biomed Online 2009; 20:453-69. [PMID: 20202911 DOI: 10.1016/j.rbmo.2009.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/20/2009] [Accepted: 12/09/2009] [Indexed: 11/27/2022]
Abstract
Culture of preimplantation-stage embryos has always been a key element of laboratory embryology and has contributed substantially to the success of many assisted reproduction procedures. During the past decade, its importance has increased as extended in-vitro embryo culture and single blastocyst transfer have become indispensable parts of the approach to decreasing the chance of multiple pregnancy while preserving the overall efficiency of the treatment. However, in spite of the scientific and commercial challenge stimulating research worldwide to optimize embryo culture conditions, a consensus is missing even in the basic principles, including composition and exchange of media, the required physical and biological environment and even the temperature of incubation. This review attempts to summarize the controversies, demonstrate the fragility of some widely accepted dogmas and generate an open-minded debate towards rapid and efficient optimization. New approaches expanding the traditional frames of mammalian embryo culture are also discussed. Although some researchers suppose that the efficiency of the presently applied in-vitro culture systems have already approached the biological limits, authors are confident that substantial improvement may be achieved that may expand considerably the possibilities of future assisted reproduction in humans.
Collapse
Affiliation(s)
- Gábor Vajta
- Cairns Fertility Centre, Cairns, QLD 4870, Australia.
| | | | | | | |
Collapse
|
44
|
Matsumoto K, Li Y, Jakuba C, Sugiyama Y, Sayo T, Okuno M, Dealy CN, Toole BP, Takeda J, Yamaguchi Y, Kosher RA. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development 2009; 136:2825-35. [PMID: 19633173 DOI: 10.1242/dev.038505] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb.
Collapse
Affiliation(s)
- Kazu Matsumoto
- Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yamada S, Nelson TJ, Behfar A, Crespo-Diaz RJ, Fraidenraich D, Terzic A. Stem cell transplant into preimplantation embryo yields myocardial infarction-resistant adult phenotype. Stem Cells 2009; 27:1697-705. [PMID: 19544428 DOI: 10.1002/stem.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells are an emerging strategy for treatment of myocardial infarction, limited however to postinjury intervention. Preventive stem cell-based therapy to augment stress tolerance has yet to be considered for lifelong protection. Here, pluripotent stem cells were microsurgically introduced at the blastocyst stage of murine embryo development to ensure stochastic integration and sustained organ contribution. Engineered chimera displayed excess in body weight due to increased fat deposits, but were otherwise devoid of obesity-related morbidity. Remarkably, and in sharp contrast to susceptible nonchimeric offspring, chimera was resistant to myocardial infarction induced by permanent coronary occlusion. Infarcted nonchimeric adult hearts demonstrated progressive deterioration in ejection fraction, while age-matched 12-14-months-old chimera recovered from equivalent ischemic insult to regain within one-month preocclusion contractile performance. Electrical remodeling and ventricular enlargement with fibrosis, prominent in failing nonchimera, were averted in the chimeric cohort characterized by an increased stem cell load in adipose tissue and upregulated markers of biogenesis Ki67, c-Kit, and stem cell antigen-1 in the myocardium. Favorable outcome in infarcted chimera translated into an overall benefit in workload capacity and survival. Thus, prenatal stem cell transplant yields a cardioprotective phenotype in adulthood, expanding cell-based indications beyond traditional postinjury applications to include pre-emptive therapy.
Collapse
Affiliation(s)
- Satsuki Yamada
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ko K, Tapia N, Wu G, Kim JB, Bravo MJA, Sasse P, Glaser T, Ruau D, Han DW, Greber B, Hausdörfer K, Sebastiano V, Stehling M, Fleischmann BK, Brüstle O, Zenke M, Schöler HR. Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 2009; 5:87-96. [PMID: 19570517 DOI: 10.1016/j.stem.2009.05.025] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/08/2009] [Accepted: 05/28/2009] [Indexed: 01/06/2023]
Abstract
Mouse and human stem cells with features similar to those of embryonic stem cells have been derived from testicular cells. Although pluripotent stem cells have been obtained from defined germline stem cells (GSCs) of mouse neonatal testis, only multipotent stem cells have been obtained so far from defined cells of mouse adult testis. In this study we describe a robust and reproducible protocol for obtaining germline-derived pluripotent stem (gPS) cells from adult unipotent GSCs. Pluripotency of gPS cells was confirmed by in vitro and in vivo differentiation, including germ cell contribution and transmission. As determined by clonal analyses, gPS cells indeed originate from unipotent GSCs. We propose that the conversion process requires a GSC culture microenvironment that depends on the initial number of plated GSCs and the length of culture time.
Collapse
Affiliation(s)
- Kinarm Ko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster 48149, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nomura-Kitabayashi A, Anderson GA, Sleep G, Mena J, Karabegovic A, Karamath S, Letarte M, Puri MC. Endoglin is dispensable for angiogenesis, but required for endocardial cushion formation in the midgestation mouse embryo. Dev Biol 2009; 335:66-77. [PMID: 19703439 DOI: 10.1016/j.ydbio.2009.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/27/2009] [Accepted: 08/15/2009] [Indexed: 11/16/2022]
Abstract
Vascular patterning depends on precisely coordinated timing of endothelial cell differentiation and onset of cardiac function. Endoglin is a transmembrane receptor for members of the TGF-beta superfamily that is expressed on endothelial cells from early embryonic gestation to adult life. Heterozygous loss of function mutations in human ENDOGLIN cause Hereditary Hemorrhagic Telangiectasia Type 1, a vascular disorder characterized by arteriovenous malformations that lead to hemorrhage and stroke. Endoglin null mice die in embryogenesis with numerous lesions in the cardiovascular tree including incomplete yolk sac vessel branching and remodeling, vessel dilation, hemorrhage and abnormal cardiac morphogenesis. Since defects in multiple cardiovascular tissues confound interpretations of these observations, we performed in vivo chimeric rescue analysis using Endoglin null embryonic stem cells. We demonstrate that Endoglin is required cell autonomously for endocardial to mesenchymal transition during formation of the endocardial cushions. Endoglin null cells contribute widely to endothelium in chimeric embryos rescued from cardiac development defects, indicating that Endoglin is dispensable for angiogenesis and vascular remodeling in the midgestation embryo, but is required for early patterning of the heart.
Collapse
Affiliation(s)
- Aya Nomura-Kitabayashi
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada M4N-3M5
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang Z, Ruan J, Cui D. Advances and prospect of nanotechnology in stem cells. NANOSCALE RESEARCH LETTERS 2009; 4:593-605. [PMID: 20596412 PMCID: PMC2894000 DOI: 10.1007/s11671-009-9292-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/05/2009] [Indexed: 05/14/2023]
Abstract
In recent years, stem cell nanotechnology has emerged as a new exciting field. Theoretical and experimental studies of interaction between nanomaterials or nanostructures and stem cells have made great advances. The importance of nanomaterials, nanostructures, and nanotechnology to the fundamental developments in stem cells-based therapies for injuries and degenerative diseases has been recognized. In particular, the effects of structure and properties of nanomaterials on the proliferation and differentiation of stem cells have become a new interdisciplinary frontier in regeneration medicine and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches and challenges, with the aim of improving application of nanotechnology in the stem cells research and development.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | |
Collapse
|
49
|
Nelson TJ, Martinez-Fernandez A, Terzic A. KCNJ11 knockout morula re-engineered by stem cell diploid aggregation. Philos Trans R Soc Lond B Biol Sci 2009; 364:269-76. [PMID: 18977736 DOI: 10.1098/rstb.2008.0179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
KCNJ11-encoded Kir6.2 assembles with ATP-binding cassette sulphonylurea receptors to generate ATP-sensitive K+ (KATP) channel complexes. Expressed in tissues with dynamic metabolic flux, these evolutionarily conserved yet structurally and functionally unique heteromultimers serve as high-fidelity rheostats that adjust membrane potential-dependent cell functions to match energetic demand. Genetic defects in channel subunits disrupt the cellular homeostatic response to environmental stress, compromising organ tolerance in the adult. As maladaptation characterizes malignant KATP channelopathies, establishment of platforms to examine progression of KATP channel-dependent adaptive behaviour is warranted. Chimeras provide a powerful tool to assay the contribution of genetic variance to stress intolerance during prenatal or post-natal development. Here, KCNJ11 KATP channel gene knockout<-->wild-type chimeras were engineered through diploid aggregation. Integration of wild-type embryonic stem cells into zona pellucida-denuded morula derived from knockout embryos achieved varying degrees of incorporation of stress-tolerant tissue within the KATP channel-deficient background. Despite the stress-vulnerable phenotype of the knockout, ex vivo derived mosaic blastocysts tolerated intrauterine transfer and implantation, followed by full-term embryonic development in pseudopregnant surrogates to produce live chimeric offspring. The development of adult chimerism from the knockout<-->wild-type mosaic embryo offers thereby a new paradigm to probe the ecogenetic control of the KATP channel-dependent stress response.
Collapse
Affiliation(s)
- Timothy J Nelson
- Departments of Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
50
|
Abstract
This chapter describes the tools and the experimental route of targeted manipulation by aggregation in the mouse using targeted embryonic stem cells (ES cells). Instead of injecting ES cells into the blastocoel of a diploid blastocyst-stage embryo (3.5 dpc) ES cells can be brought together with diploid morula-stage embryos (2.5 dpc). The zona pellucida of the embryo needs to be removed and one or two embryos (sandwich aggregation) are put together with ES cells into an indentation well of a cell culture grade dish overnight for aggregation. This can be performed manually using a stereomicroscope and does not require any special training or expensive instrumentation.The next day, the embryo would have developed into a blastocyst in vitro and can be transferred to a pseudopregnant female mouse (see Chapter 15 ).The use of tetraploid embryos generated by electrofusion will lead to entirely ES cell-derived fetuses.
Collapse
Affiliation(s)
- Anne Plück
- Centre for Mouse Genetics, Institute for Genetics, University of Cologne, Koeln, Germany.
| | | |
Collapse
|