1
|
Díaz-González F, Sentchordi-Montané L, Lucas-Castro E, Modamio-Høybjør S, Heath KE. Variants in both the N- or C-terminal domains of IHH lead to defective secretion causing short stature and skeletal defects. Eur J Endocrinol 2024; 191:38-46. [PMID: 38917024 DOI: 10.1093/ejendo/lvae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Heterozygous Indian Hedgehog gene (IHH) variants are associated with brachydactyly type A1 (BDA1). However, in recent years, numerous variants have been identified in patients with short stature and more variable forms of brachydactyly. Many are located in the C-terminal domain of IHH (IHH-C), which lacks signaling activity but is critical for auto-cleavage and activation of the N-terminal (IHH-N) peptide. The absence of functional studies of IHH variants, particularly for those located in IHH-C, has led to these variants being classified as variants of uncertain significance (VUS). OBJECTIVE To establish a simple functional assay to determine the pathogenicity of IHH VUS and confirm that variants in the C-terminal domain affect protein function. DESIGN/METHODS In vitro studies were performed for 9 IHH heterozygous variants, to test their effect on secretion and IHH intracellular processing by western blot of cells expressing each variant. RESULTS IHH secretion was significantly reduced in all mutants, regardless of the location. Similarly, intracellular levels of N-terminal and C-terminal IHH peptides were severely reduced in comparison with the control. Two variants present at a relatively high frequency in the general population also reduced secretion but to a lesser degree in the heterozygous state. CONCLUSIONS These studies provide the first evidence that variants in the C-terminal domain affect the secretion capacity of IHH and thus, reduce availability of IHH ligand, resulting in short stature and mild skeletal defects. The secretion assay permits a relatively easy test to determine the pathogenicity of IHH variants. All studied variants affected secretion and interestingly, more frequent population variants appear to have a deleterious effect and thus contribute to height variation.
Collapse
Affiliation(s)
- Francisca Díaz-González
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Lucía Sentchordi-Montané
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
- Department of Pediatrics, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Department of Pediatrics, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elsa Lucas-Castro
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Silvia Modamio-Høybjør
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
2
|
Waas B, Carpenter BS, Franks NE, Merchant OQ, Verhey KJ, Allen BL. Dual and opposing roles for the kinesin-2 motor, KIF17, in Hedgehog-dependent cerebellar development. SCIENCE ADVANCES 2024; 10:eade1650. [PMID: 38669326 PMCID: PMC11051677 DOI: 10.1126/sciadv.ade1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
While the kinesin-2 motors KIF3A and KIF3B have essential roles in ciliogenesis and Hedgehog (HH) signal transduction, potential role(s) for another kinesin-2 motor, KIF17, in HH signaling have yet to be explored. Here, we investigated the contribution of KIF17 to HH-dependent cerebellar development, where Kif17 is expressed in both HH-producing Purkinje cells and HH-responding cerebellar granule neuron progenitors (CGNPs). Germline Kif17 deletion in mice results in cerebellar hypoplasia due to reduced CGNP proliferation, a consequence of decreased HH pathway activity mediated through decreased Sonic HH (SHH) protein. Notably, Purkinje cell-specific Kif17 deletion partially phenocopies Kif17 germline mutants. Unexpectedly, CGNP-specific Kif17 deletion results in the opposite phenotype-increased CGNP proliferation and HH target gene expression due to altered GLI transcription factor processing. Together, these data identify KIF17 as a key regulator of HH-dependent cerebellar development, with dual and opposing roles in HH-producing Purkinje cells and HH-responding CGNPs.
Collapse
Affiliation(s)
- Bridget Waas
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brandon S. Carpenter
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, 30061, USA
| | - Nicole E. Franks
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olivia Q. Merchant
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24:668-687. [PMID: 36932157 DOI: 10.1038/s41580-023-00591-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Vuu YM, Kadar Shahib A, Rastegar M. The Potential Therapeutic Application of Simvastatin for Brain Complications and Mechanisms of Action. Pharmaceuticals (Basel) 2023; 16:914. [PMID: 37513826 PMCID: PMC10385015 DOI: 10.3390/ph16070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Statins are common drugs that are clinically used to reduce elevated plasma cholesterol levels. Based on their solubility, statins are considered to be either hydrophilic or lipophilic. Amongst them, simvastatin has the highest lipophilicity to facilitate its ability to cross the blood-brain barrier. Recent studies have suggested that simvastatin could be a promising therapeutic option for different brain complications and diseases ranging from brain tumors (i.e., medulloblastoma and glioblastoma) to neurological disorders (i.e., Alzheimer's disease, Parkinson's disease, and Huntington's disease). Specific mechanisms of disease amelioration, however, are still unclear. Independent studies suggest that simvastatin may reduce the risk of developing certain neurodegenerative disorders. Meanwhile, other studies point towards inducing cell death in brain tumor cell lines. In this review, we outline the potential therapeutic effects of simvastatin on brain complications and review the clinically relevant molecular mechanisms in different cases.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Abstract
Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom;
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
6
|
Greenberg D, D’Cruz R, Lacanlale JL, Rowan CJ, Rosenblum ND. Hedgehog-GLI mediated control of renal formation and malformation. FRONTIERS IN NEPHROLOGY 2023; 3:1176347. [PMID: 37675356 PMCID: PMC10479618 DOI: 10.3389/fneph.2023.1176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 09/08/2023]
Abstract
CAKUT is the leading cause of end-stage kidney disease in children and comprises a broad spectrum of phenotypic abnormalities in kidney and ureter development. Molecular mechanisms underlying the pathogenesis of CAKUT have been elucidated in genetic models, predominantly in the mouse, a paradigm for human renal development. Hedgehog (Hh) signaling is critical to normal embryogenesis, including kidney development. Hh signaling mediates the physiological development of the ureter and stroma and has adverse pathophysiological effects on the metanephric mesenchyme, ureteric, and nephrogenic lineages. Further, disruption of Hh signaling is causative of numerous human developmental disorders associated with renal malformation; Pallister-Hall Syndrome (PHS) is characterized by a diverse spectrum of malformations including CAKUT and caused by truncating variants in the middle-third of the Hh signaling effector GLI3. Here, we outline the roles of Hh signaling in regulating murine kidney development, and review human variants in Hh signaling genes in patients with renal malformation.
Collapse
Affiliation(s)
- Dina Greenberg
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Robert D’Cruz
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jon L. Lacanlale
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christopher J. Rowan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Norman D. Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Sakatani H, Kono M, Shiga T, Kuwazoe H, Nanushaj D, Matsuzaki I, Murata SI, Miyajima M, Okada Y, Saika S, Hotomi M. The Roles of Transient Receptor Potential Vanilloid 1 and 4 in Olfactory Regeneration. J Transl Med 2023; 103:100051. [PMID: 36870285 DOI: 10.1016/j.labinv.2022.100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/06/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
Olfactory disorders, which are closely related to cognitive deterioration, can be caused by several factors, including infections, such as COVID-19; aging; and environmental chemicals. Injured olfactory receptor neurons (ORNs) regenerate after birth, but it is unclear which receptors and sensors are involved in ORN regeneration. Recently, there has been great focus on the involvement of transient receptor potential vanilloid (TRPV) channels, which are nociceptors expressed on sensory nerves during the healing of damaged tissues. The localization of TRPV in the olfactory nervous system has been reported in the past, but its function there are unclear. Here, we investigated how TRPV1 and TRPV4 channels are involved in ORN regeneration. TRPV1 knockout (KO), TRPV4 KO, and wild-type (WT) mice were used to model methimazole-induced olfactory dysfunction. The regeneration of ORNs was evaluated using olfactory behavior, histologic examination, and measurement of growth factors. Both TRPV1 and TRPV4 were found to be expressed in the olfactory epithelium (OE). TRPV1, in particular, existed near ORN axons. TRPV4 was marginally expressed in the basal layer of the OE. The proliferation of ORN progenitor cells was reduced in TRPV1 KO mice, which delayed ORN regeneration and the improvement of olfactory behavior. Postinjury OE thickness improved faster in TRPV4 KO mice than WT mice but without acceleration of ORN maturation. The nerve growth factor and transforming growth factor ß levels in TRPV1 KO mice were similar to those in WT mice, and the transforming growth factor ß level was higher than TRPV4 KO mice. TRPV1 was involved in stimulating the proliferation of progenitor cells. TRPV4 modulated their proliferation and maturation. ORN regeneration was regulated by the interaction between TRPV1 and TRPV4. However, in this study, TRPV4 involvement was limited compared with TRPV1. To our knowledge, this is the first study to demonstrate the involvement of TRPV1 and TRPV4 in OE regeneration.
Collapse
Affiliation(s)
- Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Tatsuya Shiga
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Kuwazoe
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Ibu Matsuzaki
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Shin-Ichi Murata
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
8
|
Platova S, Poliushkevich L, Kulakova M, Nesterenko M, Starunov V, Novikova E. Gotta Go Slow: Two Evolutionarily Distinct Annelids Retain a Common Hedgehog Pathway Composition, Outlining Its Pan-Bilaterian Core. Int J Mol Sci 2022; 23:ijms232214312. [PMID: 36430788 PMCID: PMC9695228 DOI: 10.3390/ijms232214312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.
Collapse
Affiliation(s)
- Sofia Platova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | | | - Milana Kulakova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| | | | - Viktor Starunov
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Elena Novikova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| |
Collapse
|
9
|
Kaushal JB, Batra SK, Rachagani S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cell Mol Life Sci 2022; 79:266. [PMID: 35486193 PMCID: PMC9990174 DOI: 10.1007/s00018-022-04233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling is evolutionarily conserved and plays an instructional role in embryonic morphogenesis, organogenesis in various animals, and the central nervous system organization. Multiple feedback mechanisms dynamically regulate this pathway in a spatiotemporal and context-dependent manner to confer differential patterns in cell fate determination. Hh signaling is complex due to canonical and non-canonical mechanisms coordinating cell-cell communication. In addition, studies have demonstrated a regulatory framework of Hh signaling and shown that cholesterol is vital for Hh ligand biogenesis, signal generation, and transduction from the cell surface to intracellular space. Studies have shown the importance of a specific cholesterol pool, termed accessible cholesterol, which serves as a second messenger, conveying signals between smoothened (Smo) and patched 1 (Ptch1) across the plasma and ciliary membranes. Remarkably, recent high-resolution structural and molecular studies shed new light on the interplay between Hh signaling and cholesterol in membrane biology. These studies elucidated novel mechanistic insight into the release and dispersal of cholesterol-anchored Hh and the basis of Hh recognition by Ptch1. Additionally, the putative model of Smo activation by cholesterol binding and/or modification and Ptch1 antagonization of Smo has been explicated. However, the coupling mechanism of Hh signaling and cholesterol offered a new regulatory principle in cell biology: how effector molecules of the Hh signal network react to and remodel cholesterol accessibility in the membrane and selectively activate Hh signaling proteins thereof. Recognizing the biological importance of cholesterol in Hh signaling activation and transduction opens the door for translational research to develop novel therapeutic strategies. This review looks in-depth at canonical and non-canonical Hh signaling and the distinct proposed model of cholesterol-mediated regulation of Hh signaling components, facilitating a more sophisticated understanding of the Hh signal network and cholesterol biology.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Xu S, Tang C. Cholesterol and Hedgehog Signaling: Mutual Regulation and Beyond. Front Cell Dev Biol 2022; 10:774291. [PMID: 35573688 PMCID: PMC9091300 DOI: 10.3389/fcell.2022.774291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (HH) signaling is one of the key agents that govern the precisely regulated developmental processes of multicellular organisms in vertebrates and invertebrates. The HH pathway in the receiving cell includes Patched1, a twelve-pass transmembrane receptor, and Smoothened, a seven-transmembrane G-protein coupled receptor (GPCR), and the downstream GLI family of three transcriptional factors (GLI1-GLI3). Mutations of HH gene and the main components in HH signaling are also associated with numerous types of diseases. Before secretion, the HH protein undergoes post-translational cholesterol modification to gain full activity, and cholesterol is believed to be essential for proper HH signaling transduction. In addition, results from recent studies show the reciprocal effect that HH signaling functions in cholesterol metabolism as well as in cholesterol homeostasis, which provides feedback to HH pathway. Here, we hope to provide new insights into HH signaling function by discussing the role of cholesterol in HH protein maturation, secretion and HH signaling transduction, and the potential role of HH in regulation of cholesterol as well.
Collapse
|
11
|
Garg C, khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic Implications of Sonic Hedgehog Pathway in Metabolic Disorders: Novel Target for Effective Treatment. Pharmacol Res 2022; 179:106194. [DOI: 10.1016/j.phrs.2022.106194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
|
12
|
Gradilla AC, Guerrero I. Hedgehog on track: Long-distant signal transport and transfer through direct cell-to-cell contact. Curr Top Dev Biol 2022; 150:1-24. [DOI: 10.1016/bs.ctdb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Coupland CE, Andrei SA, Ansell TB, Carrique L, Kumar P, Sefer L, Schwab RA, Byrne EFX, Pardon E, Steyaert J, Magee AI, Lanyon-Hogg T, Sansom MSP, Tate EW, Siebold C. Structure, mechanism, and inhibition of Hedgehog acyltransferase. Mol Cell 2021; 81:5025-5038.e10. [PMID: 34890564 PMCID: PMC8693861 DOI: 10.1016/j.molcel.2021.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 01/20/2023]
Abstract
The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery.
Collapse
Affiliation(s)
- Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sebastian A Andrei
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Pramod Kumar
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lea Sefer
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Rebekka A Schwab
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eamon F X Byrne
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Anthony I Magee
- National Heart and Lung Institute, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Thomas Lanyon-Hogg
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
14
|
Ishikawa M, Ishii T, Morikawa T, Iijima Y, Sueishi K. The Effects of Fluvastatin on Indian Hedgehog Pathway in Endochondral Ossification. Cartilage 2021; 13:304S-314S. [PMID: 31327238 PMCID: PMC8804868 DOI: 10.1177/1947603519862318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Statins have demonstrated to be effective for treating chondrodysplasia and its effects were believed to be associated with the fibroblast growth factor receptor 3 (FGFR3). Statins promoted the degradation of FGFR3 in studies using disease-specific induced pluripotent stem cells and model mice, however, recent studies using normal chondrocytes reported that statins did not degrade FGFR3. In order to further investigate the effects of statins in endochondral ossification, this study examined the influence of statins on Indian hedgehog (Ihh), another important component of endochondral ossification, and its related pathways. The chondrocyte cell line ATDC5 was used to investigate changes in cell proliferation, mRNA, and protein expression levels. In addition, an organ culture of a mouse metatarsal bone was performed followed by hematoxylin-eosin staining and fluorescent immunostaining. Results indicated that expression level of Ihh increased with the addition of statins, which activated the Ihh pathway and altered the localization of Ihh. Changes in cholesterol modification may have affected Ihh diffusibility; however, further experiments are necessary. A reactive increase in parathyroid hormone-related protein (PTHrP) was observed in addition to changes in the Wnt pathway through secreted-related protein 2/3 and low-density lipoprotein 5/6. This led to the promotion of cell proliferation, increase of the hypertrophic chondrocyte layer, inhibition of apoptosis, and decrease in mineralization. This study demonstrated that statins had an influence on Ihh, and that the hyperfunction of Ihh may prevent premature cell death caused by FGFR3-related chondrodysplasia through an indirect increase in the expression of PTHrP.
Collapse
Affiliation(s)
| | - Takenobu Ishii
- Department of Orthodontics, Tokyo Dental
Collage, Tokyo, Japan,Takenobu Ishii, Department of Orthodontics,
Tokyo Dental Collage, 2-9-18, Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Taiki Morikawa
- Department of Orthodontics, Tokyo Dental
Collage, Tokyo, Japan
| | - Yuki Iijima
- Department of Orthodontics, Tokyo Dental
Collage, Tokyo, Japan
| | - Kenji Sueishi
- Department of Orthodontics, Tokyo Dental
Collage, Tokyo, Japan
| |
Collapse
|
15
|
Xue Z, Wang W, Shen J, Zhang J, Zhang X, Liu X. A Patched-Like Protein PsPTL Is Not Essential for the Growth and Response to Various Stresses in Phytophthora sojae. Front Microbiol 2021; 12:673784. [PMID: 34690942 PMCID: PMC8530017 DOI: 10.3389/fmicb.2021.673784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Patched (Ptc) and Patched-related (Ptr) proteins containing sterol-sensing domains (SSD) and Patched domains are highly conserved in eukaryotes for lipid transport and metabolism. Four proteins containing predicted SSD and Patched domains were simultaneously found by searching the Phytophthora sojae genome database, and one of them was identified as a Patched-like (PTL) protein. Here, we investigated the biological function of PsPTL. The expression level of PsPTL was higher during mycelial and sporulation stages, compared to zoospore (ZO), cyst, and germinated-cyst stages, without significant change during infection. However, deletion of PsPTL using CRISPR/Cas9 had no significant effect on the growth, development, or virulence of P. sojae. Further investigations showed that PsPTL is not essential for P. sojae to cope with external stresses such as temperature, pH, oxidative and osmotic pressure. In addition, this gene did not appear to play an essential role in P. sojae’s response to exogenous sterols. The transcript levels of the other three proteins containing predicted SSD and Patched domains were also not significantly upregulated in PsPTL deletion transformants. Our studies demonstrated that PsPTL is not an essential protein for P. sojae under the tested conditions, and more in-depth research is required for revealing the potential functions of PsPTL under special conditions or in other signaling pathways.
Collapse
Affiliation(s)
- Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinghuan Shen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xitao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Ozyavuz Cubuk P, Duz MB. Acrocapitofemoral dysplasia: Novel mutation in IHH in two adult patients from the third family in the literature and progression of the disease. Eur J Med Genet 2021; 64:104343. [PMID: 34530144 DOI: 10.1016/j.ejmg.2021.104343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022]
Abstract
Acrocapitofemoral dysplasia (ACFD) is a rare autosomal recessive skeletal dysplasia characterized by short stature with short limb dwarfism, brachydactyly, and a narrow thorax. Major radiographic features are egg-shaped capital femoral epiphyses with a short femoral neck and cone-shaped epiphyses, mainly in the hands and hips. To date, only four child patients from two families have been reported. We describe two adult patients with ACFD with a novel homozygous c.478C>T (p.Arg160Cys) mutation in IHH in the third family of the literature. The reported cases showed a middle phalanges which fused with distal phalanges in the fifth toes, the typical configuration of metacarpals, radial angulation and extremely short femoral neck. These findings could help the diagnosis of ACFD in adult patients. We hope that this new family will be a helpful guide for predicting and managing the prognosis of diagnosed children.
Collapse
Affiliation(s)
- Pelin Ozyavuz Cubuk
- Haseki Training and Research Hospital, Department of Medical Genetics, Health Sciences University, Istanbul, Turkey.
| | - Mehmet Bugrahan Duz
- Haseki Training and Research Hospital, Department of Medical Genetics, Health Sciences University, Istanbul, Turkey
| |
Collapse
|
17
|
Wang X, Liu H, Liu Y, Han G, Wang Y, Chen H, He L, Ma G. Highly Conserved C-Terminal Region of Indian Hedgehog N-Fragment Contributes to Its Auto-Processing and Multimer Formation. Biomolecules 2021; 11:biom11060792. [PMID: 34070546 PMCID: PMC8227148 DOI: 10.3390/biom11060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Hedgehog (HH) is a highly conserved secretory signalling protein family mainly involved in embryonic development, homeostasis, and tumorigenesis. HH is generally synthesised as a precursor, which subsequently undergoes autoproteolytic cleavage to generate an amino-terminal fragment (HH-N), mediating signalling, and a carboxyl-terminal fragment (HH-C), catalysing the auto-processing reaction. The N-terminal region of HH-N is required for HH multimer formation to promote signal transduction, whilst the functions of the C-terminal region of HH-N remain ambiguous. This study focused on Indian Hedgehog (IHH), a member of the HH family, to explore the functions of the C-terminal region of the amino-terminal fragment of IHH (IHH-N) via protein truncation, cell-based assays, and 3D structure prediction. The results revealed that three amino acids, including S195, A196, and A197, were crucial for the multimer formation by inserting the mutual binding of IHH-N proteins. K191, S192, E193, and H194 had an extremely remarkable effect on IHH self-cleavage. In addition, A198, K199, and T200 evidently affected the stability of IHH-N. This work suggested that the C-terminus of IHH-N played an important role in the physiological function of IHH at multiple levels, thus deepening the understanding of HH biochemical properties.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yanfang Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Gefei Han
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Yushu Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Correspondence: (H.C.); (L.H.); (G.M.)
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
- Correspondence: (H.C.); (L.H.); (G.M.)
| | - Gang Ma
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
- Correspondence: (H.C.); (L.H.); (G.M.)
| |
Collapse
|
18
|
Pizette S, Matusek T, Herpers B, Thérond PP, Rabouille C. Hherisomes, Hedgehog specialized recycling endosomes, are required for high level Hedgehog signaling and tissue growth. J Cell Sci 2021; 134:268340. [PMID: 34028543 DOI: 10.1242/jcs.258603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023] Open
Abstract
In metazoans, tissue growth and patterning is partly controlled by the Hedgehog (Hh) morphogen. Using immuno-electron microscopy on Drosophila wing imaginal discs, we identified a cellular structure, the Hherisomes, which contain the majority of intracellular Hh. Hherisomes are recycling tubular endosomes, and their formation is specifically boosted by overexpression of Hh. Expression of Rab11, a small GTPase involved in recycling endosomes, boosts the size of Hherisomes and their Hh concentration. Conversely, increased expression of the transporter Dispatched, a regulator of Hh secretion, leads to their clearance. We show that increasing Hh density in Hherisomes through Rab11 overexpression enhances both the level of Hh signaling and disc pouch growth, whereas Dispatched overexpression decreases high-level Hh signaling and growth. We propose that, upon secretion, a pool of Hh triggers low-level signaling, whereas a second pool of Hh is endocytosed and recycled through Hherisomes to stimulate high-level signaling and disc pouch growth. Altogether, our data indicate that Hherisomes are required to sustain physiological Hh activity necessary for patterning and tissue growth in the wing disc.
Collapse
Affiliation(s)
- Sandrine Pizette
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Inserm, Institute of Biology-Valrose (iBV), 06108 Nice Cedex 2, France
| | - Tamás Matusek
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Inserm, Institute of Biology-Valrose (iBV), 06108 Nice Cedex 2, France
| | - Bram Herpers
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Pascal P Thérond
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Inserm, Institute of Biology-Valrose (iBV), 06108 Nice Cedex 2, France
| | - Catherine Rabouille
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Hubrecht Institute/KNAW [Koninklijke Nederlandsee Akademie van Wetenschap (Dutch Royal Academy of Sciences)] and UMC Utrecht, 3584 CT Utrecht, The Netherlands.,Biological Sciences of Cells and Systems (BSBC) Department, UMC Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
19
|
Yang S, Zhang Y, Yang C, Wu X, El Oud SM, Chen R, Cai X, Wu XS, Lan G, Zheng X. Competitive coordination of the dual roles of the Hedgehog co-receptor in homophilic adhesion and signal reception. eLife 2021; 10:65770. [PMID: 34003115 PMCID: PMC8131103 DOI: 10.7554/elife.65770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Hedgehog (Hh) signaling patterns embryonic tissues and contributes to homeostasis in adults. In Drosophila, Hh transport and signaling are thought to occur along a specialized class of actin-rich filopodia, termed cytonemes. Here, we report that Interference hedgehog (Ihog) not only forms a Hh receptor complex with Patched to mediate intracellular signaling, but Ihog also engages in trans-homophilic binding leading to cytoneme stabilization in a manner independent of its role as the Hh receptor. Both functions of Ihog (trans-homophilic binding for cytoneme stabilization and Hh binding for ligand sensing) involve a heparin-binding site on the first fibronectin repeat of the extracellular domain. Thus, the Ihog-Ihog interaction and the Hh-Ihog interaction cannot occur simultaneously for a single Ihog molecule. By combining experimental data and mathematical modeling, we determined that Hh-Ihog heterophilic interaction dominates and Hh can disrupt and displace Ihog molecules involved in trans-homophilic binding. Consequently, we proposed that the weaker Ihog-Ihog trans interaction promotes and stabilizes direct membrane contacts along cytonemes and that, as the cytoneme encounters secreted Hh ligands, the ligands trigger release of Ihog from trans Ihog-Ihog complex enabling transport or internalization of the Hh ligand-Ihog-Patched -receptor complex. Thus, the seemingly incompatible functions of Ihog in homophilic adhesion and ligand binding cooperate to assist Hh transport and reception along the cytonemes.
Collapse
Affiliation(s)
- Shu Yang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Ya Zhang
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Chuxuan Yang
- Department of Physics, George Washington University, Washington, United States
| | - Xuefeng Wu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Sarah Maria El Oud
- Department of Physics, George Washington University, Washington, United States
| | - Rongfang Chen
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xudong Cai
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| | - Xufeng S Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ganhui Lan
- Department of Physics, George Washington University, Washington, United States
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, United States.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, United States
| |
Collapse
|
20
|
Gu Y, Liu X, Liao L, Gao Y, Shi Y, Ni J, He G. Relationship between lipid metabolism and Hedgehog signaling pathway. J Steroid Biochem Mol Biol 2021; 209:105825. [PMID: 33529733 DOI: 10.1016/j.jsbmb.2021.105825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
The Hedgehog (Hh) signaling pathway is highly conserved signaling pathway in cells. Steroids was found to play a vital role in Hh signaling pathway and aberrant Hh signaling was found to lead a series of disease correlate with abnormal lipid metabolism. This paper aimed to elucidate the relationship between lipid metabolism and Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Xiaochen Liu
- University of Toledo Medical Center 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Lele Liao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Yongquan Gao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Yu Shi
- West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, PR China.
| |
Collapse
|
21
|
Baker EA, Gilbert SPR, Shimeld SM, Woollard A. Extensive non-redundancy in a recently duplicated developmental gene family. BMC Ecol Evol 2021; 21:33. [PMID: 33648446 PMCID: PMC7919330 DOI: 10.1186/s12862-020-01735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/13/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND It has been proposed that recently duplicated genes are more likely to be redundant with one another compared to ancient paralogues. The evolutionary logic underpinning this idea is simple, as the assumption is that recently derived paralogous genes are more similar in sequence compared to members of ancient gene families. We set out to test this idea by using molecular phylogenetics and exploiting the genetic tractability of the model nematode, Caenorhabditis elegans, in studying the nematode-specific family of Hedgehog-related genes, the Warthogs. Hedgehog is one of a handful of signal transduction pathways that underpins the development of bilaterian animals. While having lost a bona fide Hedgehog gene, most nematodes have evolved an expanded repertoire of Hedgehog-related genes, ten of which reside within the Warthog family. RESULTS We have characterised their evolutionary origin and their roles in C. elegans and found that these genes have adopted new functions in aspects of post-embryonic development, including left-right asymmetry and cell fate determination, akin to the functions of their vertebrate counterparts. Analysis of various double and triple mutants of the Warthog family reveals that more recently derived paralogues are not redundant with one another, while a pair of divergent Warthogs do display redundancy with respect to their function in cuticle biosynthesis. CONCLUSIONS We have shown that newer members of taxon-restricted gene families are not always functionally redundant despite their recent inception, whereas much older paralogues can be, which is considered paradoxical according to the current framework in gene evolution.
Collapse
Affiliation(s)
- E A Baker
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - S P R Gilbert
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - S M Shimeld
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - A Woollard
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
22
|
Iriana S, Asha K, Repak M, Sharma-Walia N. Hedgehog Signaling: Implications in Cancers and Viral Infections. Int J Mol Sci 2021; 22:1042. [PMID: 33494284 PMCID: PMC7864517 DOI: 10.3390/ijms22031042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.
Collapse
|
23
|
Liu M, Liu A, Wang J, Zhang Y, Li Y, Su Y, Zhu AJ. Competition between two phosphatases fine-tunes Hedgehog signaling. J Cell Biol 2020; 220:211641. [PMID: 33373452 PMCID: PMC7774589 DOI: 10.1083/jcb.202010078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Hedgehog (Hh) signaling is essential for embryonic development and adult homeostasis. How its signaling activity is fine-tuned in response to fluctuated Hh gradient is less known. Here, we identify protein phosphatase V (PpV), the catalytic subunit of protein phosphatase 6, as a homeostatic regulator of Hh signaling. PpV is genetically upstream of widerborst (wdb), which encodes a regulatory subunit of PP2A that modulates high-level Hh signaling. We show that PpV negatively regulates Wdb stability independent of phosphatase activity of PpV, by competing with the catalytic subunit of PP2A for Wdb association, leading to Wdb ubiquitination and subsequent proteasomal degradation. Thus, regulated Wdb stability, maintained through competition between two closely related phosphatases, ensures graded Hh signaling. Interestingly, PpV expression is regulated by Hh signaling. Therefore, PpV functions as a Hh activity sensor that regulates Wdb-mediated PP2A activity through feedback mechanisms to maintain Hh signaling homeostasis.
Collapse
Affiliation(s)
- Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Aiguo Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jie Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yansong Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yajuan Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China,Correspondence to Ying Su:
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China,Alan Jian Zhu:
| |
Collapse
|
24
|
Shi X, Simms KJ, Zhang P. Acute Alcohol Intoxication Impairs Sonic Hedgehog-Gli1 Signaling and Activation of Primitive Hematopoietic Precursor Cells in the Early Stage of Host Response to Bacteremia. Alcohol Clin Exp Res 2020; 44:1977-1987. [PMID: 32772391 PMCID: PMC7720280 DOI: 10.1111/acer.14429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Activation of hematopoietic stem cells [HSCs, lineage(lin)- stem cell growth factor receptor (c-kit)+ stem cell antigen-1(Sca-1)+ , or LKS cells in mice] is critical for initiating the granulopoietic response. This study determined the effect of alcohol exposure on sonic hedgehog (SHH) signaling in the regulation of HSC activation during bacteremia. METHODS Acute alcohol intoxication was induced in mice by intraperitoneal (i.p.) injection of 20% alcohol (5 g alcohol/kg body weight). Control mice received i.p. saline. Thirty minutes later, mice were intravenously (i.v.) injected with Escherichia coli (E. coli, 1 to 5 × 107 CFUs/mouse) or saline. RESULTS SHH expression by lineage-negative bone marrow cells (BMCs) was significantly increased 24 hours after E. coli infection. Extracellular signal-regulated kinase 1/2 (ERK1/2)-specificity protein 1 (Sp1) signaling promotes SHH expression. ERK1/2 was markedly activated in BMCs 8 hours following E. coli infection. Alcohol suppressed both the activation of ERK1/2 and up-regulation of SHH expression following E. coli infection. E. coli infection up-regulated GLI family zinc finger 1 (Gli1) gene expression by BMCs and increased Gli1 protein content in LKS cells. The extent of Gli1 expression was correlated with the activity of proliferation in LKS cells. Alcohol inhibited up-regulation of Gli1 expression and activation of LKS cells in response to E. coli infection. Alcohol also interrupted the granulopoietic response to bacteremia. CONCLUSION These data show that alcohol disrupts SHH-Gli1 signaling and HSC activation in the early stage of the granulopoietic response, which may serve as an important mechanism underlying the impairment of immune defense against bacterial infection in host excessively consuming alcohol.
Collapse
Affiliation(s)
- Xin Shi
- From the Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Kevin J Simms
- From the Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Ping Zhang
- From the Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
25
|
Martynova NY, Parshina EA, Eroshkin FM, Zaraisky AG. The Cytoskeletal Protein Zyxin Modulates the Expression of the Target Genes of the Shh Signaling Cascade in the Cells of the Neural Plate of Embryos of the Spur-Toed Frog Xenopus laevis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Anderson RA, Schwalbach KT, Mui SR, LeClair EE, Topczewska JM, Topczewski J. Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency. Dis Model Mech 2020; 13:dmm042549. [PMID: 32430393 PMCID: PMC7328163 DOI: 10.1242/dmm.042549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
Human disorders of the post-squalene cholesterol biosynthesis pathway frequently result in skeletal abnormalities, yet our understanding of the mechanisms involved is limited. In a forward-genetic approach, we have found that a late-onset skeletal mutant, named kolibernu7 , is the result of a cis-acting regulatory mutation leading to loss of methylsterol monooxygenase 1 (msmo1) expression within pre-hypertrophic chondrocytes. Generated msmo1nu81 knockdown mutation resulted in lethality at larval stage. We demonstrated that this is a result of both cholesterol deprivation and sterol intermediate accumulation by creating a mutation eliminating activity of Lanosterol synthase (Lss). Our results indicate that double lssnu60;msmo1nu81 and single lssnu60 mutants survive significantly longer than msmo1nu81 homozygotes. Liver-specific restoration of either Msmo1 or Lss in corresponding mutant backgrounds suppresses larval lethality. Rescued mutants develop dramatic skeletal abnormalities, with a loss of Msmo1 activity resulting in a more-severe patterning defect of a near-complete loss of hypertrophic chondrocytes marked by col10a1a expression. Our analysis suggests that hypertrophic chondrocytes depend on endogenous cholesterol synthesis, and blocking C4 demethylation exacerbates the cholesterol deficiency phenotype. Our findings offer new insight into the genetic control of bone development and provide new zebrafish models for human disorders of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Rebecca A Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin T Schwalbach
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Stephanie R Mui
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elizabeth E LeClair
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Jolanta M Topczewska
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| |
Collapse
|
27
|
DHH pathogenic variants involved in 46,XY disorders of sex development differentially impact protein self-cleavage and structural conformation. Hum Genet 2020; 139:1455-1470. [PMID: 32504121 DOI: 10.1007/s00439-020-02189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
In humans, pathogenic variants in the DHH gene underlie cases of 46,XY gonadal dysgenesis. DHH is part of the Hedgehog family of proteins, which require extensive processing, including self-cleavage of the precursor for efficient signalling. In our work, we have assessed the effect of several human DHH pathogenic variants involved in recessive complete or partial gonadal dysgenesis, on protein processing and sub-cellular localization. We found that a subset of variants was unable to perform self-cleavage, which correlated albeit not perfectly with an altered subcellular localization of the resulting proteins. For the processing-proficient variants, we used structural modelling tools and molecular dynamic (MD) simulations to predict the potential impact of the variants on protein conformation and/or interaction with partners. Our study contributes to a better understanding of the molecular mechanisms involved in DHH dysfunction leading to 46,XY disorders of sex development.
Collapse
|
28
|
Dual roles of the sterol recognition region in Hedgehog protein modification. Commun Biol 2020; 3:250. [PMID: 32440000 PMCID: PMC7242414 DOI: 10.1038/s42003-020-0977-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Nature provides a number of mechanisms to encode dynamic information in biomolecules. In metazoans, there exist rare chemical modifications that occur in entirely unique regimes. One such example occurs in the Hedgehog (Hh) morphogens, proteins singular across all domains of life for the nature of their covalent ligation to cholesterol. The isoform- and context-specific efficiency of this ligation profoundly impacts the activity of Hh morphogens and represents an unexplored facet of Hh ligand-dependent cancers. To elucidate the chemical mechanism of this modification, we have defined roles of the uncharacterized sterol recognition region (SRR) in Hh proteins. We use a combination of sequence conservation, directed mutagenesis, and biochemical assays to specify residues of the SRR participate in cellular and biochemical aspects of Hh cholesterolysis. Our investigations offer a functional portrait of this region, providing opportunities to identify parallel reactivity in nature and a template to design tools in chemical biology.
Collapse
|
29
|
Banavali NK. The Mechanism of Cholesterol Modification of Hedgehog Ligand. J Comput Chem 2020; 41:520-527. [PMID: 31823413 DOI: 10.1002/jcc.26097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
Hedgehog (Hh) proteins are important components of signal transduction pathways involved in animal development, and their defects are implicated in carcinogenesis. Their N-terminal domain (HhN) acts as a signaling ligand, and their C-terminal domain (HhC) performs an autocatalytic function of cleaving itself away, while adding a cholesterol moiety to HhN. HhC has two sub-domains: a hedgehog/intein (hint) domain that primarily performs the autocatalytic activity, and a sterol-recognition region (SRR) that binds to cholesterol and properly positions it with respect to HhN. The three-dimensional details of this autocatalytic mechanism remain unknown, as does the structure of the precursor Hh protein. In this study, a complete cholesterol-bound precursor form of the drosophila Hh precursor is modeled using known crystal structures of HhN and the hint domain, and a hypothesized similarity of SRR to an unrelated but similar-sized cholesterol binding protein. The restrained geometries and topology switching (RGATS) strategy is then used to predict atomic-detail pathways for the full autocatalytic reaction starting from the precursor and ending in a cholesterol-linked HhN domain and a cleaved HhC domain. The RGATS explicit solvent simulations indicate the roles of individual HhC residues in facilitating the reaction, which can be confirmed through mutational experiments. These simulations also provide plausible structural models for the N/S acyl transfer intermediate and the product states of this reaction. This study thus provides a good framework for future computational and experimental studies to develop a full structural and dynamic understanding of Hh autoprocessing. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Laboratory of Cellular and Molecular Basis of Diseases, Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
30
|
Secreted tyrosine kinase Vlk negatively regulates Hedgehog signaling by inducing lysosomal degradation of Smoothened. Biochem J 2020; 477:121-136. [PMID: 31845979 DOI: 10.1042/bcj20190784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
Vlk is a secreted tyrosine kinase that plays crucial roles during vertebrate embryonic development including skeletal formation. Genetic studies suggest that Vlk can modulate the Hedgehog signaling pathway during skeletal development. Despite its potential roles as an extracellular regulator of signaling pathways, little is known regarding the molecular functions of Vlk. Here we show that Vlk can negatively regulate the Hedgehog signaling pathway. We found that Vlk can induce lysosomal degradation of Smoothened, a crucial transmembrane signal transducer of the Hedgehog pathway, through the interaction with the extracellular domain of Smoothened (Smo-ECD). In addition, we observed that Vlk can attenuate Hedgehog signaling-induced ciliary localization of Smoothened. Furthermore, Vlk-mediated suppression of Hedgehog signaling can be diminished by tyrosine-to-phenylalanine substitutions in Smo-ECD. Taken together, these results suggest that Vlk may function as a signaling regulator in extracellular space to modulate the Hedgehog pathway.
Collapse
|
31
|
Hossain MS, Liu X, Maynard TI, Mozhdehi D. Genetically Encoded Inverse Bolaamphiphiles. Biomacromolecules 2019; 21:660-669. [DOI: 10.1021/acs.biomac.9b01380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Md Shahadat Hossain
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| | - Xin Liu
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| | - Timothy I. Maynard
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
32
|
Tan L, Lei N, He M, Zhang M, Sun Q, Zeng S, Chen L, Zhou L, Meng X, Xu H. Scutellarin Protects against Human Colorectal Cancer in vitro by Down Regulation of Hedgehog Signaling Pathway Activity. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2020.53.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Zhao J, Ciulla DA, Xie J, Wagner AG, Castillo DA, Zwarycz AS, Lin Z, Beadle S, Giner JL, Li Z, Li H, Banavali N, Callahan BP, Wang C. General Base Swap Preserves Activity and Expands Substrate Tolerance in Hedgehog Autoprocessing. J Am Chem Soc 2019; 141:18380-18384. [PMID: 31682419 PMCID: PMC7106946 DOI: 10.1021/jacs.9b08914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hedgehog (Hh) autoprocessing converts Hh precursor protein to cholesterylated Hh ligand for downstream signaling. A conserved active-site aspartate residue, D46, plays a key catalytic role in Hh autoprocessing by serving as a general base to activate substrate cholesterol. Here we report that a charge-altering Asp-to-His mutant (D46H) expands native cholesterylation activity and retains active-site conformation. Native activity toward cholesterol was established for D46H in vitro using a continuous FRET-based autoprocessing assay and in cellulo with stable expression in human 293T cells. The catalytic efficiency of cholesterylation with D46H is similar to that with wild type (WT), with kmax/KM = 2.1 × 103 and 3.7 × 103 M-1 s-1, respectively, and an identical pKa = 5.8 is obtained for both residues by NMR. To our knowledge this is the first example where a general base substitution of an Asp for His preserves both the structure and activity as a general base. Surprisingly, D46H exhibits increased catalytic efficiency toward non-native substrates, especially coprostanol (>200-fold) and epicoprostanol (>300-fold). Expanded substrate tolerance is likely due to stabilization by H46 of the negatively charged tetrahedral intermediate using electrostatic interactions, which are less constrained by geometry than H-bond stabilization by D46. In addition to providing fundamental insights into Hh autoprocessing, our findings have important implications for protein engineering and enzyme design.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Daniel A. Ciulla
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Jian Xie
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Andrew G. Wagner
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Drew A. Castillo
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Allison S. Zwarycz
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Zhongqian Lin
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Seth Beadle
- Department of Chemistry, State University of New York-ESF, Syracuse, New York 13210, United States
| | - José-Luis Giner
- Department of Chemistry, State University of New York-ESF, Syracuse, New York 13210, United States
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12222, United States
| | - Nilesh Banavali
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12222, United States
| | - Brian P. Callahan
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
34
|
Guo W, Roelink H. Loss of the Heparan Sulfate Proteoglycan Glypican5 Facilitates Long-Range Sonic Hedgehog Signaling. Stem Cells 2019; 37:899-909. [PMID: 30977233 PMCID: PMC8491322 DOI: 10.1002/stem.3018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
As a morphogen, Sonic Hedgehog (Shh) mediates signaling at a distance from its sites of synthesis. After secretion, Shh must traverse a distance through the extracellular matrix (ECM) to reach the target cells and activate the Hh response. ECM proteins, in particular, the heparan sulfate proteoglycans (HSPGs) of the glypican family, have both negative and positive effects on Shh signaling, all attributed to their ability to bind Shh. Using mouse embryonic stem cell-derived mosaic tissues with compartments that lack the glycosyltransferases Exostosin1 and Exostosin2, or the HSPG core protein Glypican5, we show that Shh accumulates around its source cells when they are surrounded by cells that have a mutated ECM. This accumulation of Shh is correlated with an increased noncell autonomous Shh response. Our results support a model in which Shh presented on the cell surface accumulates at or near ECM that lacks HSPGs, possibly due to the absence of these Shh sequestering molecules. Stem Cells 2019;37:899-909.
Collapse
Affiliation(s)
- Wei Guo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Henk Roelink
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
35
|
Carpenter RL, Ray H. Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Saf 2019; 42:263-279. [PMID: 30649745 DOI: 10.1007/s40264-018-0777-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hedgehog pathway, for which sonic hedgehog (Shh) is the most prominent ligand, is highly conserved and is tightly associated with embryonic development in a number of species. This pathway is also tightly associated with the development of several types of cancer, including basal cell carcinoma (BCC) and acute promyelocytic leukemia, among many others. Inactivating mutations in Patched-1 (PTCH1), leading to ligand-independent pathway activation, are frequent in several cancer types, but most prominent in BCC. This has led to the development of several compounds targeting this pathway as a cancer therapeutic. These compounds target the inducers of this pathway in Smoothened (SMO) and the GLI transcription factors, although targeting SMO has had the most success. Despite the many attempts at targeting this pathway, only three US FDA-approved drugs for cancers affect the Shh pathway. Two of these compounds, vismodegib and sonidegib, target SMO to suppress signaling from either PTCH1 or SMO mutations that lead to upregulation of the pathway. The other approved compound is arsenic trioxide, which can suppress this pathway at the level of the GLI proteins, although current evidence suggests it also has other targets. This review focuses on the safety and tolerability of these clinically approved drugs targeting the Shh pathway, along with a discussion on other Shh pathway inhibitors being developed.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr., Indianapolis, IN, 46202, USA.
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA
| |
Collapse
|
36
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
37
|
Xie M, Li JP. Heparan sulfate proteoglycan - A common receptor for diverse cytokines. Cell Signal 2018; 54:115-121. [PMID: 30500378 DOI: 10.1016/j.cellsig.2018.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) are macromolecular glyco-conjugates expressed ubiquitously on the cell surface and in the extracellular matrix where they interact with a wide range of ligands to regulate many aspects of cellular function. The capacity of the side glycosaminoglycan chain heparan sulfate (HS) being able to interact with diverse protein ligands relies on its complex structure that is generated by a controlled biosynthesis process, involving the actions of glycosyl-transferases, sulfotransferases and the glucuronyl C5-epimerase. It is believed that activities of the modification enzymes control the HS structures that are designed to serve the biological functions in a given cell or biological status. In this review, we briefly discuss recent understandings on the roles of HSPG in cytokine stimulated cellular signaling, focusing on FGF, TGF-β, Wnt, Hh, HGF and VEGF.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
38
|
Tajouri A, Kharrat M, Hizem S, Zaghdoudi H, M'rad R, Simic-Schleicher G, Kaiser FJ, Hiort O, Werner R. In vitro functional characterization of the novel DHH mutations p.(Asn337Lysfs*24) and p.(Glu212Lys) associated with gonadal dysgenesis. Hum Mutat 2018; 39:2097-2109. [PMID: 30298535 DOI: 10.1002/humu.23664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
In humans, mutations of Desert Hedgehog gene (DHH) have been described in patients with 46,XY gonadal dysgenesis (GD), associated or not with polyneuropathy. In this study, we describe two patients diagnosed with GD, both harboring novel DHH compound heterozygous mutations p.[Tyr176*];[Asn337Lysfs*24] and p.[Tyr176*];[Glu212Lys]. To investigate the functional consequences of p.(Asn337Lysfs*24) and p.(Glu212Lys) mutations, located within the C-terminal part of DHh on auto-processing, we performed in vitro cleavage assays of these proteins in comparison with Drosophila melanogaster Hedgehog (Hh). We found that p.(Glu212Lys) mutation retained 50% of its activity and led to a partially abolished DHh auto-processing. In contrast, p.(Asn337Lysfs*24) mutation resulted in a complete absence of auto-proteolysis. Furthermore, we found a different auto-processing profile between Drosophila Hh and human DHh, which suggests differences in the processing mechanism between the two species. Review of the literature shows that proven polyneuropathy and GD is associated with complete disruption of DHh-N, whereas disruption of the DHh auto-processing is only described with GD. We propose a model that may explain the differences between Schwann and Leydig cell development by autocrine versus paracrine DHh signaling. To our knowledge, this is the first study investigating the effect of DHH mutations on DHh in vitro auto-processing.
Collapse
Affiliation(s)
- Asma Tajouri
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia.,Department of Paediatric and Adolescent Medicine, Division of Paediatric Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| | - Maher Kharrat
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia
| | - Syrine Hizem
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia
| | - Hajer Zaghdoudi
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia
| | - Ridha M'rad
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia.,Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | | | - Frank J Kaiser
- Section for Functional Genetics at the Institute of Human Genetics, University of Luebeck, Luebeck, Germany
| | - Olaf Hiort
- Department of Paediatric and Adolescent Medicine, Division of Paediatric Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| | - Ralf Werner
- Department of Paediatric and Adolescent Medicine, Division of Paediatric Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| |
Collapse
|
39
|
Praktiknjo SD, Saad F, Maier D, Ip P, Hipfner DR. Activation of Smoothened in the Hedgehog pathway unexpectedly increases Gα s-dependent cAMP levels in Drosophila. J Biol Chem 2018; 293:13496-13508. [PMID: 30018136 DOI: 10.1074/jbc.ra118.001953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
Hedgehog (Hh) signaling plays a key role in the development and maintenance of animal tissues. This signaling is mediated by the atypical G protein-coupled receptor (GPCR) Smoothened (Smo). Smo activation leads to signaling through several well-characterized effectors to activate Hh target gene expression. Recent studies have implicated activation of the heterotrimeric G protein subunit Gαi and the subsequent decrease in cellular cAMP levels in promoting the Hh response in flies and mammals. Although Hh stimulation decreases cAMP levels in some insect cell lines, here using a bioluminescence resonance energy transfer (BRET)-based assay we found that this stimulation had no detectable effect in Drosophila S2-R+ cells. However, we observed an unexpected and significant Gαs-dependent increase in cAMP levels in response to strong Smo activation in Smo-transfected cells. This effect was mediated by Smo's broadly conserved core, and was specifically activated in response to phosphorylation of the Smo C-terminus by GPCR kinase 2 (Gprk2). Genetic analysis of heterotrimeric G protein function in the developing Drosophila wing revealed a positive role for cAMP in the endogenous Hh response. Specifically, we found that mutation or depletion of Gαs diminished low-threshold Hh responses in Drosophila, whereas depletion of Gαi potentiated them (in contrast to previous findings). Our analysis suggested that regulated cAMP production is important for controlling the sensitivity of cellular responses to Hh in Drosophila.
Collapse
Affiliation(s)
- Samantha D Praktiknjo
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7.,the Departments of Anatomy and Cell Biology and
| | - Farah Saad
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7.,Biology, McGill University, Montreal, Quebec H3A 0C7, and
| | - Dominic Maier
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7.,the Departments of Anatomy and Cell Biology and
| | - Pamela Ip
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7.,the Departments of Anatomy and Cell Biology and
| | - David R Hipfner
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, .,the Departments of Anatomy and Cell Biology and.,Biology, McGill University, Montreal, Quebec H3A 0C7, and.,the Département de médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
40
|
Shi X, Wei S, Simms KJ, Cumpston DN, Ewing TJ, Zhang P. Sonic Hedgehog Signaling Regulates Hematopoietic Stem/Progenitor Cell Activation during the Granulopoietic Response to Systemic Bacterial Infection. Front Immunol 2018. [PMID: 29535725 PMCID: PMC5834434 DOI: 10.3389/fimmu.2018.00349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Activation and reprogramming of hematopoietic stem/progenitor cells play a critical role in the granulopoietic response to bacterial infection. Our current study determined the significance of Sonic hedgehog (SHH) signaling in the regulation of hematopoietic precursor cell activity during the host defense response to systemic bacterial infection. Bacteremia was induced in male Balb/c mice via intravenous injection (i.v.) of Escherichia coli (5 × 107 CFUs/mouse). Control mice received i.v. saline. SHH protein level in bone marrow cell (BMC) lysates was markedly increased at both 24 and 48 h of bacteremia. By contrast, the amount of soluble SHH ligand in marrow elutes was significantly reduced. These contrasting alterations suggested that SHH ligand release from BMCs was reduced and/or binding of soluble SHH ligand to BMCs was enhanced. At both 12 and 24 h of bacteremia, SHH mRNA expression by BMCs was significantly upregulated. This upregulation of SHH mRNA expression was followed by a marked increase in SHH protein expression in BMCs. Activation of the ERK1/2–SP1 pathway was involved in mediating the upregulation of SHH gene expression. The major cell type showing the enhancement of SHH expression in the bone marrow was lineage positive cells. Gli1 positioned downstream of the SHH receptor activation serves as a key component of the hedgehog (HH) pathway. Primitive hematopoietic precursor cells exhibited the highest level of baseline Gli1 expression, suggesting that they were active cells responding to SHH ligand stimulation. Along with the increased expression of SHH in the bone marrow, expression of Gli1 by marrow cells was significantly upregulated at both mRNA and protein levels following bacteremia. This enhancement of Gli1 expression was correlated with activation of hematopoietic stem/progenitor cell proliferation. Mice with Gli1 gene deletion showed attenuation in activation of marrow hematopoietic stem/progenitor cell proliferation and inhibition of increase in blood granulocytes following bacteremia. Our results indicate that SHH signaling is critically important in the regulation of hematopoietic stem/progenitor cell activation and reprogramming during the granulopoietic response to serious bacterial infection.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Shengcai Wei
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kevin J Simms
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Devan N Cumpston
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Thomas J Ewing
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
41
|
Kurio N, Saunders C, Bechtold TE, Salhab I, Nah HD, Sinha S, Billings PC, Pacifici M, Koyama E. Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage. Matrix Biol 2018; 67:15-31. [PMID: 29447948 DOI: 10.1016/j.matbio.2018.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
Abstract
Condylar articular cartilage in mouse temporomandibular joint develops from progenitor cells near the articulating surface that proliferate, undergo chondrogenesis and mature into hypertrophic chondrocytes. However, it remains unclear how these processes are regulated, particularly postnatally. Here we focused on the apical polymorphic layer rich in progenitors and asked whether the phenotype and fate of the cells require signaling by Indian hedgehog (Ihh) previously studied in developing long bones. In condyles in newborn mice, the apical polymorphic/progenitor cell layer was ~10 cell layer-thick and expressed the articular matrix marker Tenascin-C (Tn-C), and the underlying thick cell layer expressed Tn-C as well as the chondrogenic master regulator Sox9. By 1 month, condylar cartilage had gained its full width, but became thinner along its main longitudinal axis and displayed hypertrophic chondrocytes. By 3 months, articular cartilage consisted of a 2-3 cell layer-thick zone of superficial cells and chondroprogenitors expressing both Tn-C and Sox9 and a bottom zone of chondrocytes displaying vertical matrix septa. EdU cell tracing in juvenile mice revealed that conversion of chondroprogenitors into chondrocytes and hypertrophic chondrocytes required about 48 and 72 h, respectively. Notably, EdU injection in 3 month-old mice labeled both progenitors and maturing chondrocytes by 96 h. Conditional ablation of Ihh in juvenile/early adult mice compromised chondroprogenitor organization and function and led to reduced chondroprogenitor and chondrocyte proliferation. The phenotype of mutant condyles worsened over time as indicated by apoptotic chondrocyte incidence, ectopic chondrocyte hypertrophy, chondrocyte column derangement and subchondral bone deterioration. In micromass cultures of condylar apical cells, hedgehog (Hh) treatment stimulated chondrogenesis and alkaline phosphatase (APase) activity, while treatment with HhAntag inhibited both. Our findings indicate that the chondroprogenitor layer is continuously engaged in condylar growth postnatally and its organization and functioning depend on hedgehog signaling.
Collapse
Affiliation(s)
- Naito Kurio
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Oral and Maxillofacial Surgery, Okayama University Graduate School, 2-5-1, Okayama, Japan
| | - Cheri Saunders
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Till E Bechtold
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Orofacial Orthopaedics, Center of Dentistry and Oral Medicine, University Hospital Tuebingen, D-72076 Tuebingen, Germany
| | - Imad Salhab
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hyun-Duck Nah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sayantani Sinha
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul C Billings
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maurizio Pacifici
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eiki Koyama
- Division of Orthopaedic Surgery, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Parchure A, Vyas N, Mayor S. Wnt and Hedgehog: Secretion of Lipid-Modified Morphogens. Trends Cell Biol 2018; 28:157-170. [PMID: 29132729 PMCID: PMC6941938 DOI: 10.1016/j.tcb.2017.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/07/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Morphogens are signaling molecules produced by a localized source, specifying cell fate in a graded manner. The source secretes morphogens into the extracellular milieu to activate various target genes in an autocrine or paracrine manner. Here we describe various secreted forms of two canonical morphogens, the lipid-anchored Hedgehog (Hh) and Wnts, indicating the involvement of multiple carriers in the transport of these morphogens. These different extracellular secreted forms are likely to have distinct functions. Here we evaluate newly identified mechanisms that morphogens use to traverse the required distance to activate discrete paracrine signaling.
Collapse
Affiliation(s)
- Anup Parchure
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; Current address: Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Neha Vyas
- St John's Research Institute, St John's National Academy of Health Sciences, Bangalore 560034, India.
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India.
| |
Collapse
|
43
|
Giroux Leprieur E, Tolani B, Li H, Leguay F, Hoang NT, Acevedo LA, Jin JQ, Tseng HH, Yue D, Kim IJ, Wislez M, Wang C, Jablons DM, He B. Membrane-bound full-length Sonic Hedgehog identifies cancer stem cells in human non-small cell lung cancer. Oncotarget 2017; 8:103744-103757. [PMID: 29262597 PMCID: PMC5732763 DOI: 10.18632/oncotarget.21781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/05/2017] [Indexed: 12/04/2022] Open
Abstract
The mechanism of Sonic Hedgehog (Shh) pathway activation in non-small cell lung cancer (NSCLC) is poorly described. Using an antibody against the Shh C-terminal domain, we found a small population of Shh-positive (Shh+) cells in NSCLC cells. The objective of this study was to characterize these Shh+ cells. Shh+ and Shh- cells were sorted by using Fluorescence Activated Cell Sorting (FACS) on 12 commercial NSCLC cell lines. Functional analyses on sorted cells were performed with gene expression assays (qRT-PCR and microarray) and cells were treated with cytotoxic chemotherapy and a targeted inhibitor of Shh signaling (GDC0449). We used in vivo models of nude mice inoculated with Shh+ and Shh- sorted cells and drug-treated cells. Finally, we confirmed our results in fresh human NSCLC samples (n=48) paired with normal lung tissue. We found that Shh+ cells produced an uncleaved, full-length Shh protein detected on the membranes of these cells. Shh+ cells exerted a paracrine effect on Shh- cells, inducing their proliferation and migration. Shh+ cells were chemo-resistant and showed features of cancer stem cells (CSCs) in vitro and in vivo. Pharmacological inhibition of the Shh pathway suppressed their CSC features. A high percentage of Shh+ cells was associated with poor prognosis in early-stage NSCLC patients. In conclusion, we describe for the first time the presence of an abnormal membrane-bound full-length Shh protein in human cancer cells that allows the identification of CSCs in vitro and in vivo.
Collapse
Affiliation(s)
- Etienne Giroux Leprieur
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340, UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Hui Li
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Fleur Leguay
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Ngoc T Hoang
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Luis A Acevedo
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Joy Q Jin
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Hsin-Hui Tseng
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dongsheng Yue
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Il-Jin Kim
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Marie Wislez
- Sorbonne University, UPMC GRC-04 Theranoscan, Department of Respiratory Diseases, APHP - Tenon Hospital, Paris, France
| | - Changli Wang
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - David M Jablons
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
44
|
Abstract
Communication between cells pervades the development and physiology of metazoans. In animals, this process is carried out by a relatively small number of signaling pathways, each consisting of a chain of biochemical events through which extracellular stimuli control the behavior of target cells. One such signaling system is the Hedgehog pathway, which is crucial in embryogenesis and is implicated in many birth defects and cancers. Although Hedgehog pathway components were identified by genetic analysis more than a decade ago, our understanding of the molecular mechanisms of signaling is far from complete. In this review, we focus on the biochemistry and cell biology of the Hedgehog pathway. We examine the unique biosynthesis of the Hedgehog ligand, its specialized release from cells into extracellular space, and the poorly understood mechanisms involved in ligand reception and pathway activation at the surface of target cells. We highlight several critical questions that remain open.
Collapse
Affiliation(s)
- Kostadin Petrov
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Bradley M Wierbowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
45
|
Chen JJ, Boehning D. Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer. Front Oncol 2017; 7:138. [PMID: 28706877 PMCID: PMC5489567 DOI: 10.3389/fonc.2017.00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Calcium is a critical regulator of cell death pathways. One of the most proximal events leading to cell death is activation of plasma membrane and endoplasmic reticulum-resident calcium channels. A large body of evidence indicates that defects in this pathway contribute to cancer development. Although we have a thorough understanding of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell death, it is much less clear how calcium channels are activated upstream of the apoptotic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of apoptotic signaling. Although classically thought of as a static modification, rapid and reversible protein acylation has emerged as a new signaling paradigm relevant to many pathways, including calcium release and cell death. In this review, we will discuss the role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic relevance to cancer.
Collapse
Affiliation(s)
- Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| |
Collapse
|
46
|
Yurek DM, Fletcher-Turner A, Moore J, Chai L, Mahanthappa N. Co-Grafts of Fetal Ventral Mesencephalon and Fibroblasts Expressing Sonic Hedgehog: Effect on Survival and Function of Dopamine Grafts. Cell Transplant 2017. [DOI: 10.3727/000000001783986305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- David M. Yurek
- Department of Surgery/Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305
| | - Anita Fletcher-Turner
- Department of Surgery/Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305
| | - Jennifer Moore
- Department of Surgery/Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536-0305
| | - Ling Chai
- Curis, Inc., 45 Moulton Street, Cambridge, MA 02138
| | | |
Collapse
|
47
|
Seppala M, Fraser GJ, Birjandi AA, Xavier GM, Cobourne MT. Sonic Hedgehog Signaling and Development of the Dentition. J Dev Biol 2017; 5:jdb5020006. [PMID: 29615564 PMCID: PMC5831762 DOI: 10.3390/jdb5020006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 01/20/2023] Open
Abstract
Sonic hedgehog (Shh) is an essential signaling peptide required for normal embryonic development. It represents a highly-conserved marker of odontogenesis amongst the toothed vertebrates. Signal transduction is involved in early specification of the tooth-forming epithelium in the oral cavity, and, ultimately, in defining tooth number within the established dentition. Shh also promotes the morphogenetic movement of epithelial cells in the early tooth bud, and influences cell cycle regulation, morphogenesis, and differentiation in the tooth germ. More recently, Shh has been identified as a stem cell regulator in the continuously erupting incisors of mice. Here, we review contemporary data relating to the role of Shh in odontogenesis, focusing on tooth development in mammals and cartilaginous fishes. We also describe the multiple actions of this signaling protein at the cellular level.
Collapse
Affiliation(s)
- Maisa Seppala
- Centre for Craniofacial and Regenerative Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
- Department of Orthodontics, King's College London Dental Institute, Floor 22, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Gareth J Fraser
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN, UK.
| | - Anahid A Birjandi
- Centre for Craniofacial and Regenerative Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
| | - Guilherme M Xavier
- Centre for Craniofacial and Regenerative Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
- Department of Orthodontics, King's College London Dental Institute, Floor 22, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Martyn T Cobourne
- Centre for Craniofacial and Regenerative Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
- Department of Orthodontics, King's College London Dental Institute, Floor 22, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| |
Collapse
|
48
|
Himmelstein DS, Cajigas I, Bi C, Clark BS, Van Der Voort G, Kohtz JD. SHH E176/E177-Zn 2+ conformation is required for signaling at endogenous sites. Dev Biol 2017; 424:221-235. [PMID: 28263766 PMCID: PMC6047533 DOI: 10.1016/j.ydbio.2017.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/14/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
Abstract
Sonic hedgehog (SHH) is a master developmental regulator. In 1995, the SHH crystal structure predicted that SHH-E176 (human)/E177 (mouse) regulates signaling through a Zn2+-dependent mechanism. While Zn2+ is known to be required for SHH protein stability, a regulatory role for SHH-E176 or Zn2+ has not been described. Here, we show that SHH-E176/177 modulates Zn2+-dependent cross-linking in vitro and is required for endogenous signaling, in vivo. While ectopically expressed SHH-E176A is highly active, mice expressing SHH-E177A at endogenous sites (ShhE177A/-) are morphologically indistinguishable from mice lacking SHH (Shh-/-), with patterning defects in both embryonic spinal cord and forebrain. SHH-E177A distribution along the embryonic spinal cord ventricle is unaltered, suggesting that E177 does not control long-range transport. While SHH-E177A association with cilia basal bodies increases in embryonic ventral spinal cord, diffusely distributed SHH-E177A is not detected. Together, these results reveal a novel role for E177-Zn2+ in regulating SHH signaling that may involve critical, cilia basal-body localized changes in cross-linking and/or conformation.
Collapse
Affiliation(s)
- Diana S Himmelstein
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Ivelisse Cajigas
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Chunming Bi
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Brian S Clark
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Grant Van Der Voort
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Jhumku D Kohtz
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Developmental Biology, Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA.
| |
Collapse
|
49
|
Canonical Sonic Hedgehog Signaling in Early Lung Development. J Dev Biol 2017; 5:jdb5010003. [PMID: 29615561 PMCID: PMC5831770 DOI: 10.3390/jdb5010003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022] Open
Abstract
The canonical hedgehog (HH) signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH proteins, Sonic Hedgehog (SHH) plays an essential role during lung development. In fact, abnormal levels of this secreted protein lead to severe foregut defects and lung hypoplasia. Canonical SHH signal transduction relies on the presence of transmembrane receptors, such as Patched1 and Smoothened, accessory proteins, as Hedgehog-interacting protein 1, and intracellular effector proteins, like GLI transcription factors. Altogether, this complex signaling machinery contributes to conveying SHH response. Pulmonary morphogenesis is deeply dependent on SHH and on its molecular interactions with other signaling pathways. In this review, the role of SHH in early stages of lung development, specifically in lung specification, primary bud formation, and branching morphogenesis is thoroughly reviewed.
Collapse
|
50
|
Mora JR, Nuñez O, Rincón L, Torres FJ. Understanding the role of Zn 2+ in the hydrolysis of glycylserine: a mechanistic study by using density functional theory. Mol Phys 2017. [DOI: 10.1080/00268976.2016.1269961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jose R. Mora
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
| | - Oswaldo Nuñez
- Departamento de Ingeniería Química, Laboratorio de Fisicoquímica orgánica y Química ambiental, Universidad Simón Bolívar , Caracas, Venezuela
| | - Luis Rincón
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
- Departamento de Química, Facultad de Ciencias, Universidad de Los Andes , Mérida, Venezuela
| | - F. Javier Torres
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
| |
Collapse
|