1
|
Huang Y, Tsang SW, Tsang WH, Chow KL. Mab21l2 is required to promote cell proliferation in stylopods during early limb development. Biochem Biophys Res Commun 2025; 756:151534. [PMID: 40054064 DOI: 10.1016/j.bbrc.2025.151534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Mab2l12 is highly conserved across species and has been implicated in various developmental processes, including eye and heart development. Human patients and transgenic mice with MAB21L2(R51C) mutation have severe skeletal anomalies in their appendicular skeleton. In this study, we aimed to investigate the specific impact of Mab2l12 in limb development. By conditional gene knockout model, we found that removing Mab21l2 by Prx1-cre during early limb development led to malformation of the stylopods. Histological examination revealed a three-day delay of endochondral ossification in the Prx1-cre; Mab21l2flox/flox mice. The critical window for Mab21l2 action in humerus development has been confined to E9.5-10.5 when Mab2l12 is expressed in the distal mesenchyme of forelimb buds. Reduced proliferation was noted in the chondrocytes of this perspective humerus region in Prx1-cre; Mab21l2flox/flox mice at E10.5. This defect may contribute to a smaller cartilage template found at E13.5 and the subsequent humerus shortening at birth. These results imply that Mab21l2 is acting non-autonomously to control stylopods development.
Collapse
Affiliation(s)
| | | | | | - King L Chow
- Division of Life Science, Hong Kong, China; Department of Chemical and Biological Engineering, Hong Kong, China; Division of Public Policy, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Huang S, Ma L, Li B, Dou J, Xu Q, Wang Y. Genomic analysis reveals population structure and selection signatures in plateau dairy cattle. BMC Genomics 2025; 26:240. [PMID: 40075267 PMCID: PMC11905691 DOI: 10.1186/s12864-025-11335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To solve the problem of an insufficient supply of dairy products in Tibet, work has been carried out to improve native dairy cattle and introduce purebred dairy cattle from low-altitude areas. The harsh environment of the plateau not only severely limits the production performance of high-yielding dairy cattle, such as Holstein and Jersey cattle, but also challenges their survival. The population structure and plateau adaptation mechanism of plateau dairy cattle are rarely reported. In this study, key genes and pathways affecting plateau purebred and crossbred dairy cattle were explored using genetic chip information. RESULTS The results showed that the genetic diversity of the Tibet dairy cattle population was higher than that of the native cattle and plains dairy cattle. Purebred Holstein and Jersey cattle in Tibet were genetically closer to dairy cattle in the plains, and crossbred dairy cattle were admixed with more Tibet cattle and Apaijiza cattle. Based on the fixation index (FST), integrated haplotype score (iHS), and cross-population extend haplotype homozygosity (XP-EHH) approaches, 60 and 40 genes were identified in plateau Holstein and Jersey cattle, respectively. A total of 78 and 70 genes were identified in crossbred cattle compared to Holstein and Tibet cattle respectively. These genes are related to cardiac health and development, neuronal development and function, angiogenesis and hematopoietic, pigmentation, growth and development, and immune response. CONCLUSIONS Our results provide a glimpse into diverse selection signatures in plateau dairy cattle, which can be used to enhance our understanding of the genomic basis of plateau adaptation in dairy cattle. These results support further research on breeding strategies such as marker-assisted selection and gene editing in plateau dairy cattle populations.
Collapse
Affiliation(s)
- Shangzhen Huang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, MARA, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Longgang Ma
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, MARA, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary Medicine, Academy of Agriculture and Animal Husbandry of Tibet Autonomous Region, Lhasa, 850000, China
| | - Jinhuan Dou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Qing Xu
- Institute of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, MARA, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Meng X, Li W, Xu J, Yao Y, Gong A, Yang Y, Qu F, Guo C, Zheng H, Cui G, Suo S, Peng G. Spatiotemporal transcriptome atlas of developing mouse lung. Sci Bull (Beijing) 2025:S2095-9273(25)00240-3. [PMID: 40118721 DOI: 10.1016/j.scib.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
The functional development of the mammalian lung is a complex process that relies on the spatial and temporal organization of multiple cell types and their states. However, a comprehensive spatiotemporal transcriptome atlas of the developing lung has not yet been reported. Here we apply high-throughput spatial transcriptomics to allow for a comprehensive assessment of mouse lung development comprised of two critical developmental events: branching morphogenesis and alveologenesis. We firstly generate a spatial molecular atlas of mouse lung development spanning from E12.5 to P0 based on the integration of published single cell RNA-sequencing data and identify 10 spatial domains critical for functional lung organization. Furthermore, we create a lineage trajectory connecting spatial clusters from adjacent time points in E12.5-P0 lungs and explore TF (transcription factor) regulatory networks for each lineage specification. We observe the establishment of pulmonary airways within the developing lung, accompanied by the proximal-distal patterning with distinct characteristics of gene expression, signaling landscape and transcription factors enrichment. We characterize the alveolar niche heterogeneity with maturation state differences during the later developmental stage around birth and demonstrate differentially expressed genes, such as Angpt2 and Epha3, which may perform a critical role during alveologenesis. In addition, multiple signaling pathways, including ANGPT, VEGF and EPHA, exhibit increased levels in more maturing alveolar niche. Collectively, by integrating the spatial transcriptome with corresponding single-cell transcriptome data, we provide a comprehensive molecular atlas of mouse lung development with detailed molecular domain annotation and communication, which would pave the way for understanding human lung development and respiratory regeneration medicine.
Collapse
Affiliation(s)
- Xiaogao Meng
- Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenjia Li
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jian Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yao Yao
- Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - An Gong
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yumeng Yang
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Fangfang Qu
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Chenkai Guo
- Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hui Zheng
- Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
| | - Guizhong Cui
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Guangzhou National Laboratory, Guangzhou 510005, China.
| | - Shengbao Suo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Guangzhou National Laboratory, Guangzhou 510005, China.
| | - Guangdun Peng
- Center for Cell Lineage Technology and Bioengineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
4
|
Dalecka L, Hruba E, Andrasova M, Steklikova K, Pavlikova Z, Kucerova K, Szotkowska T, Bartos M, Buchtova M, Tucker AS, Hovorakova M. Sprouty2/4 deficiency disrupts early signaling centers impacting chondrogenesis in the mouse forelimb. JBMR Plus 2025; 9:ziaf002. [PMID: 39906257 PMCID: PMC11792080 DOI: 10.1093/jbmrpl/ziaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
The FGF signaling pathway plays an important role in the regulation of limb development, controlling cell migration, proliferation, differentiation, and apoptosis. Sprouty proteins act as antagonists of the FGF pathway and control the extent of FGF signaling as part of a negative feedback loop. Sprouty2/4 deficient mice evince defects in endochondral bone formation and digit patterning in their forelimbs, with pathogenesis recently related to ciliopathies. To understand the mechanisms behind these pathologies, the limb defects in Sprouty2+/-;Sprouty4-/- male and female mice were characterized and correlated to the dynamic expression patterns of Sprouty2 and Sprouty4, and the impact on the main signaling centers of the limb bud was assessed. Sprouty2 and Sprouty4 exhibited dynamic expressions during limb development. Interestingly, despite similar expression patterns in all limbs, the hindlimbs did not evince any obvious alterations in development, while the forelimbs showed consistent phenotypes of variable severity. Prenatally as well as postnatally, the left forelimb was significantly more severely affected than the right one. A broad variety of pathologies was present in the autopodium of the forelimb, including changes in digit number, size, shape, and number of bones, hand clefts, and digit fusions. Ectopic ossification of bones and abnormal bone fusions detected in micro-CT scans were frequently observed in the digital as well as in the carpal and metacarpal areas. Sprouty2+/-;Sprouty4-/- limb buds showed patchy loss of Fgf8 expression in the apical ectodermal ridge, and a loss of tissue underlying these regions. The zone of polarizing activity was also impacted, with lineage analysis highlighting a change in the contribution of Sonic hedgehog expressing cells. These findings support the link between Sproutys and Hedgehog signaling during limb development and highlight the importance of Sprouty2 and Sprouty4 in controlling early signaling centers in the limb.
Collapse
Affiliation(s)
- Linda Dalecka
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marketa Andrasova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Klara Steklikova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zuzana Pavlikova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Klara Kucerova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Tereza Szotkowska
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Martin Bartos
- First Faculty of Medicine, General University Hospital, Institute of Dental Medicine, 121 08 Prague, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Abigail Saffron Tucker
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, Guys Hospital, London, TN8 7LR, United Kingdom
| | - Maria Hovorakova
- First Faculty of Medicine, Institute of Histology and Embryology, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
5
|
Shakya SB, Edwards SV, Sackton TB. Convergent evolution of noncoding elements associated with short tarsus length in birds. BMC Biol 2025; 23:52. [PMID: 39984930 PMCID: PMC11846207 DOI: 10.1186/s12915-025-02156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Convergent evolution is the independent evolution of similar traits in unrelated lineages across the Tree of Life. Various genomic signatures can help identify cases of convergent evolution at the molecular level, including changes in substitution rate in the same genes or gene networks. In this study, utilizing tarsus measurements of ~ 5400 species of birds, we identify independent shifts in tarsus length and use both comparative genomic and population genetic data to identify convergent evolutionary changes among focal clades with shifts to shorter optimal tarsus length. RESULTS Using a newly generated, comprehensive and broadly accessible set of 932,467 avian conserved non-exonic elements (CNEEs) and a whole-genome alignment of 79 birds, we find strong evidence for convergent acceleration in short-tarsus clades among 14,422 elements. Analysis of 9854 protein-coding genes, however, yielded no evidence of convergent patterns of positive selection. Accelerated elements in short-tarsus clades are concentrated near genes with functions in development, with the strongest enrichment associated with skeletal system development. Analysis of gene networks supports convergent changes in regulation of broadly homologous limb developmental genes and pathways. CONCLUSIONS Our results highlight the important role of regulatory elements undergoing convergent acceleration in convergent skeletal traits and are consistent with previous studies showing the roles of regulatory elements and skeletal phenotypes.
Collapse
Affiliation(s)
- Subir B Shakya
- Informatics Group, Harvard University, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Timothy B Sackton
- Informatics Group, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Bigliardi E, Shetty AV, Low WC, Steer CJ. Interspecies Blastocyst Complementation and the Genesis of Chimeric Solid Human Organs. Genes (Basel) 2025; 16:215. [PMID: 40004544 PMCID: PMC11854981 DOI: 10.3390/genes16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Solid organ transplantation remains a life-saving treatment for patients worldwide. Unfortunately, the supply of donor organs cannot meet the current need, making the search for alternative sources even more essential. Xenotransplantation using sophisticated genetic engineering techniques to delete and overexpress specific genes in the donor animal has been investigated as a possible option. However, the use of exogenous tissue presents another host of obstacles, particularly regarding organ rejection. Given these limitations, interspecies blastocyst complementation in combination with precise gene knockouts presents a unique, promising pathway for the transplant organ shortage. In recent years, great advancements have been made in the field, with encouraging results in producing a donor-derived organ in a chimeric host. That said, one of the major barriers to successful interspecies chimerism is the mismatch in the developmental stages of the donor and the host cells in the chimeric embryo. Another major barrier to successful chimerism is the mismatch in the developmental speeds between the donor and host cells in the chimeric embryos. This review outlines 19 studies in which blastocyst complementation was used to generate solid organs. In particular, the genesis of the liver, lung, kidney, pancreas, heart, thyroid, thymus and parathyroids was investigated. Of the 19 studies, 7 included an interspecies model. Of the 7, one was completed using human donor cells in a pig host, and all others were rat-mouse chimeras. While very promising results have been demonstrated, with great advancements in the field, several challenges continue to persist. In particular, successful chimerism, organ generation and donor contribution, synchronized donor-host development, as well as ethical concerns regarding human-animal chimeras remain important aspects that will need to be addressed in future research.
Collapse
Affiliation(s)
- Elena Bigliardi
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Anala V. Shetty
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford J. Steer
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Doktor F, Antounians L, Figueira RL, Khalaj K, Duci M, Zani A. Amniotic fluid stem cell extracellular vesicles as a novel fetal therapy for pulmonary hypoplasia: a review on mechanisms and translational potential. Stem Cells Transl Med 2025; 14:szae095. [PMID: 39823257 PMCID: PMC11740888 DOI: 10.1093/stcltm/szae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025] Open
Abstract
Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development. Hypoplastic lungs have impaired growth (arrested branching morphogenesis), maturation (decreased epithelial/mesenchymal differentiation), and vascularization (endothelial dysfunction and vascular remodeling leading to postnatal pulmonary hypertension). Herein, we discuss the pathogenesis of pulmonary hypoplasia and the role of microRNAs (miRNAs) during normal and pathological lung development. Since multiple cells and pathways are altered, the ideal strategy for hypoplastic lungs is to deliver a therapy that addresses all aspects of abnormal lung development. In this review, we report on a novel regenerative approach based on the administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). Specifically, we describe the effects of AFSC-EVs in rodent and human models of pulmonary hypoplasia, their mechanism of action via release of their cargo, including miRNAs, and their anti-inflammatory properties. We also compare cargo contents and regenerative effects of EVs from AFSCs and mesenchymal stromal cells (MSCs). Overall, there is compelling evidence that antenatal administration of AFSC-EVs rescues multiple features of fetal lung development in experimental models of pulmonary hypoplasia. Lastly, we discuss the steps that need to be taken to translate this promising EV-based therapy from the bench to the bedside. These include strategies to overcome barriers commonly associated with EV therapeutics and specific challenges related to stem cell-based therapies in fetal medicine.
Collapse
Affiliation(s)
- Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Miriam Duci
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5
| |
Collapse
|
8
|
Jones HN, Davenport BN, Wilson RL. Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. Physiol Genomics 2025; 57:8-15. [PMID: 39374081 PMCID: PMC11918312 DOI: 10.1152/physiolgenomics.00131.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion, resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a nonviral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor (hIGF1) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the subplacenta/decidua that provide insight into the underlying mechanism driving placental insufficiency and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at midpregnancy, and subplacenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR subplacenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 subplacenta/decidua when compared with sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis, indicative of homeostasis. Overall, this study identified changes to the subplacenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on to restore or maintain appropriate placenta function.NEW & NOTEWORTHY Placental insufficiency at midpregnancy, established through moderate maternal nutrient restriction, is characterized with fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. Treatment of placenta insufficiency with a hIGF1 nanoparticle results in marked changes to transporter activity and increases our mechanistic understanding of how therapies designed to improve fetal growth may impact the placenta.
Collapse
Affiliation(s)
- Helen N Jones
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Baylea N Davenport
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Rebecca L Wilson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
9
|
Tozawa S, Matsubara H, Minamitani F, Kamei Y, Saida M, Asao M, Suzuki KT, Matsunami M, Shigenobu S, Hayashi T, Abe G, Takeuchi T. Novel function of Hox13 in regulating outgrowth of the newt hindlimb bud through interaction with Fgf10 and Tbx4. Dev Growth Differ 2025; 67:10-22. [PMID: 39725403 PMCID: PMC11758191 DOI: 10.1111/dgd.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype. Some of the Hox13 crispant newts showed hindlimb defects, in which whole or almost whole hindlimbs were lost, suggesting a novel function of Hox13 in limb development. Using germline mutants, we showed that mutation in Hox13 led to hindlimb defects. The limb buds of Hox13 crispants formed, however, did not show outgrowth. Expression of Fgf10 and Tbx4, which are involved in limb outgrowth, decreased in the hindlimb buds of Hox13 crispants. In addition, hindlimb defects were observed in both Fgf10 and Tbx4 crispant newts. Finally, Fgf10 and Tbx4 interacted with Hox13 genetically. Our results revealed a novel function of Hox13 in regulating the outgrowth of the newt hindlimb bud through interaction with Fgf10 and Tbx4.
Collapse
Affiliation(s)
- Sayo Tozawa
- Graduate School of Medical SciencesTottori University YonagoTottoriJapan
| | - Haruka Matsubara
- Division of Developmental Biology, School of Life Sciences, Faculty of MedicineTottori University YonagoTottoriJapan
| | - Fumina Minamitani
- Division of Developmental Biology, School of Life Sciences, Faculty of MedicineTottori University YonagoTottoriJapan
- Present address:
Tono Geoscience Center, Japan Atomic Energy AgencyTokiGifuJapan
| | - Yasuhiro Kamei
- Trans‐Scale Biology CenterNational Institute for Basic BiologyOkazakiJapan
| | - Misako Saida
- Trans‐Scale Biology CenterNational Institute for Basic BiologyOkazakiJapan
| | - Momoko Asao
- Trans‐Scale Biology CenterNational Institute for Basic BiologyOkazakiJapan
| | - Ken‐ichi T. Suzuki
- Trans‐Scale Biology CenterNational Institute for Basic BiologyOkazakiJapan
| | | | - Shuji Shigenobu
- Trans‐Scale Biology CenterNational Institute for Basic BiologyOkazakiJapan
| | - Toshinori Hayashi
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| | - Gembu Abe
- Graduate School of Medical SciencesTottori University YonagoTottoriJapan
- Division of Developmental Biology, School of Life Sciences, Faculty of MedicineTottori University YonagoTottoriJapan
| | - Takashi Takeuchi
- Graduate School of Medical SciencesTottori University YonagoTottoriJapan
- Division of Developmental Biology, School of Life Sciences, Faculty of MedicineTottori University YonagoTottoriJapan
| |
Collapse
|
10
|
Zhu M, Catta-Preta R, Lee C, Tabin C. Shifts in embryonic oxygen levels cue heterochrony in limb initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620348. [PMID: 39484532 PMCID: PMC11527133 DOI: 10.1101/2024.10.25.620348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Heterochrony, or the alteration of developmental timing, is an important mechanism of evolutionary change. Avian species display synchronized growth of the forelimbs and hindlimbs, while mammalian species show delayed hindlimb development. We find that mammalian limb heterochrony is evident from the start of limb bud formation, and is associated with heterochronic expression of T-box transcription factors. This heterochronic shift is not due to changes in cis-regulatory sequences controlling T-box gene expression, but unexpectedly, is dependent upon differential oxygen levels to which avian and mammalian embryos are exposed prior to limb initiation, mediated, at least partially, by an NFKB transcription factor, cRel. Together, these results provide mechanistic understanding of an important example of developmental heterochrony and exemplify how the maternal environment regulates timing during embryonic development.
Collapse
|
11
|
Jones MLM, Sarila G, O'Sullivan B, Haycock S, Chapuis P, King SK, Teague WJ. A Novel Use of Embryonic Gut Organoid Culture to Investigate Duodenal Atresia. J Pediatr Surg 2024; 59:161611. [PMID: 39048421 DOI: 10.1016/j.jpedsurg.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The cause of duodenal atresia (DA) is not known. Tandler's "solid cord" hypothesis conflicts with current biological evidence. In humans, a genetic aetiology is supported by the association with Trisomy 21. Interruption of Fgf10 is the strongest genetic link to DA in mice, demonstrating an increased incidence and severity as embryos mature. This project aimed to develop an organoid model to facilitate ex vivo DA research on the FGF10/FGFR2b signalling pathway. We hypothesised that DA morphology represents an evolving spectrum of disease and that Fgf10 knockout organoids would vary in growth pattern compared to wild-type. METHODS Organoids were cultured from the duodenum of E12.5 Fgf10 knockout, heterozygous and wild-type embryos, using an air-liquid interface with Growth Factor reduced Matrigel. Organoids were photographed every 48 h to observe growth. Organoids were isolated and fixed after 14 days, then stained with DAPI, KI-67, and cytokeratin to demonstrate proliferation and differentiation. RESULTS Wild-type duodenum developed into crypt-forming organoids. Fgf10 heterozygous duodenum failed to progress beyond the development stage of spheroids. Fgf10 knockout duodenum failed to demonstrate any growth. Wholemount staining showed the greatest cell proliferation and differentiation in wild-type tissue. CONCLUSION This research presents a novel concept for the growth of embryonic gastrointestinal tissue to inform normal biology. The small sample numbers and restricted culture duration limit longer-term growth analysis. While this model serves as a potential ex vivo setting for future research, that research should consider organoid models with greater standardisation and other gastrointestinal regions. LEVEL OF EVIDENCE Animal/laboratory study.
Collapse
Affiliation(s)
- Matthew L M Jones
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Department of Paediatric Surgery, The Royal Children's Hospital, Melbourne, VIC, Australia.
| | - Gulcan Sarila
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Benjamin O'Sullivan
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatric Surgery, The Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Shasha Haycock
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatric Surgery, The Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Pierre Chapuis
- Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Sebastian K King
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Department of Paediatric Surgery, The Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Warwick J Teague
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Department of Paediatric Surgery, The Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Calsa B, Menezes LDS, Neves JG, Gontijo JAR, Santamaria-Jr M, Boer PA. Mandible development under gestational protein restriction: cellular and molecular mechanisms. J Mol Histol 2024; 55:937-953. [PMID: 39105943 DOI: 10.1007/s10735-024-10242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Insufficient evidence regarding how maternal undernutrition affects craniofacial bone development persists. With its unique focus on the impact of gestational protein restriction on calvaria and mandible osteogenesis, this study aims to fill, at least in part, this gap. Female mice were mated and randomized into NP (normal protein) or LP (low protein) groups. On the 18th gestational day (GD), male embryos were collected and submitted to microtomography (µCT), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), PCR, and autophagy dynamic analyses. The study shows that the LP offspring exhibited lower body mass than the NP group, with µCT analysis revealing no volumetric differences in fetus's head. EDS analysis showed lower calcium and higher phosphorus percentages in mandibles and calvaria. SEM assessment evidenced higher hydroxyapatite crystal-like (HC) deposition on the calvaria surface in LP fetus. Conversely, lower HC deposition was observed on the mandible surface, suggesting delayed matrix mineralization in LP fetuses with a higher percentage of collagen fibers in the mandible bone. The autophagy process was reduced in the mesenchyme of LP fetuses. PCR array analysis of 84 genes revealed 27 genes with differential expression in the LP progeny-moreover, increased mRNA levels of Akt1, Mtor, Nfkb, and Smad1 in the LP offspring. In conclusion, the results suggest that gestational protein restriction anticipated bone differentiation in utero, before 18GD, where this process is reduced compared to the control, leading to the reduction in bone area at 15 postnatal day previously observed. These findings provide insights into the molecular and cellular mechanisms of mandible development and suggest potential implications for the Developmental Origins of Health and Disease (DOHaD).
Collapse
Affiliation(s)
- Bruno Calsa
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Luan Dos Santos Menezes
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, UNICAMP, Piracicaba, SP, Brazil
| | - José Guilherme Neves
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, UNICAMP, Piracicaba, SP, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Milton Santamaria-Jr
- Department of Social and Pediatric Dentistry, Institute of Science and Technology, College of Dentistry, São Paulo State University, São Jose dos Campos, Sao Paulo, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
13
|
Rochais F, Kelly RG. Fibroblast growth factor 10. Differentiation 2024; 139:100741. [PMID: 38040515 DOI: 10.1016/j.diff.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Fibroblast growth factor 10 (FGF10) is a major morphoregulatory factor that plays essential signaling roles during vertebrate multiorgan development and homeostasis. FGF10 is predominantly expressed in mesenchymal cells and signals though FGFR2b in adjacent epithelia to regulate branching morphogenesis, stem cell fate, tissue differentiation and proliferation, in addition to autocrine roles. Genetic loss of function analyses have revealed critical requirements for FGF10 signaling during limb, lung, digestive system, ectodermal, nervous system, craniofacial and cardiac development. Heterozygous FGF10 mutations have been identified in human genetic syndromes associated with craniofacial anomalies, including lacrimal and salivary gland aplasia. Elevated Fgf10 expression is associated with poor prognosis in a range of cancers. In addition to developmental and disease roles, FGF10 regulates homeostasis and repair of diverse adult tissues and has been identified as a target for regenerative medicine.
Collapse
Affiliation(s)
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
14
|
Gavazzi LM, Nair M, Suydam R, Usip S, Thewissen JGM, Cooper LN. Protein signaling and morphological development of the tail fluke in the embryonic beluga whale (Delphinapterus leucas). Dev Dyn 2024; 253:859-874. [PMID: 38494595 PMCID: PMC11656686 DOI: 10.1002/dvdy.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND During the land-to-sea transition of cetaceans (whales, dolphins, and porpoises), the hindlimbs were lost and replaced by an elaborate tail fluke that evolved 32 Ma. All modern cetaceans utilize flukes for lift-based propulsion, and nothing is known of this organ's molecular origins during embryonic development. This study utilizes immunohistochemistry to identify the spatiotemporal location of protein signals known to drive appendage outgrowth in other vertebrates (e.g., Sonic Hedgehog [SHH], GREMLIN [GREM], wingless-type family member 7a [WNT], and fibroblast growth factors [FGFs]) and to test the hypothesis that signals associated with outgrowth and patterning of the tail fluke are similar to a tetrapod limb. Specifically, this study utilizes an embryo of a beluga whale (Delphinapterus leucas) as a case study. RESULTS Results showed epidermal signals of WNT and FGFs, and mesenchymal/epidermal signals of SHH and GREM. These patterns are most consistent with vertebrate limb development. Overall, these data are most consistent with the hypothesis that outgrowth of tail flukes in cetaceans employs a signaling pattern that suggests genes essential for limb outgrowth and patterning shape this evolutionarily novel appendage. CONCLUSIONS While these data add insights into the molecular signals potentially driving the evolution and development of tail flukes in cetaceans, further exploration of the molecular drivers of fluke development is required.
Collapse
Affiliation(s)
- L. M. Gavazzi
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - M. Nair
- Wright State UniversityDaytonOhioUSA
| | - R. Suydam
- Department of Wildlife ManagementNorth Slope BoroughUtqiaġvikAlaskaUSA
| | - S. Usip
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - J. G. M. Thewissen
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - L. N. Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOhioUSA
| |
Collapse
|
15
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
16
|
Krzyscik MA, Karl K, Dudeja P, Krejci P, Hristova K. Quantitative and qualitative differences in the activation of a fibroblast growth factor receptor by different FGF ligands. Cytokine Growth Factor Rev 2024; 78:77-84. [PMID: 39043538 PMCID: PMC11389727 DOI: 10.1016/j.cytogfr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The FGF system is the most complex of all receptor tyrosine kinase signaling networks with 18 FGF ligands and four FGFRs that deliver morphogenic signals to pattern most embryonic structures. Even when a single FGFR is expressed in the tissue, different FGFs can trigger dramatically different biological responses via this receptor. Here we show both quantitative and qualitative differences in the signaling of one of the FGF receptors, FGFR1c, in response to different FGFs. We provide an overview of the recent discovery that FGFs engage in biased signaling via FGFR1c. We discuss the concept of ligand bias, which represents qualitative differences in signaling as it is a measure of differential ligand preferences for different downstream responses. We show how FGF ligand bias manifests in functional data in cultured chondrocyte cells. We argue that FGF-ligand bias contributes substantially to FGF-driven developmental processes, along with known differences in FGF expression levels, FGF-FGFR binding coefficients and differences in FGF stability in vivo.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kelly Karl
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic; Institute of Animal Physiology and Genetics of the CAS, Brno 60200, Czech Republic
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
17
|
Tanaka J, Miura A, Shimamura Y, Hwang Y, Shimizu D, Kondo Y, Sawada A, Sarmah H, Ninish Z, Mishima K, Mori M. Generation of salivary glands derived from pluripotent stem cells via conditional blastocyst complementation. Cell Rep 2024; 43:114340. [PMID: 38865239 PMCID: PMC11580835 DOI: 10.1016/j.celrep.2024.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Whole salivary gland generation and transplantation offer potential therapies for salivary gland dysfunction. However, the specific lineage required to engineer complete salivary glands has remained elusive. In this study, we identify the Foxa2 lineage as a critical lineage for salivary gland development through conditional blastocyst complementation (CBC). Foxa2 lineage marking begins at the boundary between the endodermal and ectodermal regions of the oral epithelium before the formation of the primordial salivary gland, thereby labeling the entire gland. Ablation of Fgfr2 within the Foxa2 lineage in mice leads to salivary gland agenesis. We reversed this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts, resulting in mice that survived to adulthood with salivary glands of normal size, comparable to those of their littermate controls. These findings demonstrate that CBC-based salivary gland regeneration serves as a foundational experimental approach for future advanced cell-based therapies.
Collapse
Affiliation(s)
- Junichi Tanaka
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA; Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo 142-8555, Japan.
| | - Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yuko Shimamura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Youngmin Hwang
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yuri Kondo
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Anri Sawada
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hemanta Sarmah
- Columbia Stem Cell Initiative, Stem Cell Core, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zurab Ninish
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Jones HN, Davenport BN, Wilson RL. Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597595. [PMID: 38895421 PMCID: PMC11185673 DOI: 10.1101/2024.06.05.597595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a non-viral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor ( hIGF1 ) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the sub-placenta/decidua that provide insight into the underlying mechanism driving placental insufficiency, and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at mid-pregnancy, and sub-placenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR sub-placenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 sub-placenta/decidua when compared to sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis indicative of homeostasis. Overall, this study identified changes to the sub-placenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on in order to restore or maintain appropriate placenta function.
Collapse
|
19
|
Ikeda S, Sato K, Fujita H, Ono-Minagi H, Miyaishi S, Nohno T, Ohuchi H. Harderian Gland Development and Degeneration in the Fgf10-Deficient Heterozygous Mouse. J Dev Biol 2024; 12:16. [PMID: 38921483 PMCID: PMC11205083 DOI: 10.3390/jdb12020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The mouse Harderian gland (HG) is a secretory gland that covers the posterior portion of the eyeball, opening at the base of the nictitating membrane. The HG serves to protect the eye surface from infection with its secretions. Mice open their eyelids at about 2 weeks of age, and the development of the HG primordium mechanically opens the eye by pushing the eyeball from its rear. Therefore, when HG formation is disturbed, the eye exhibits enophthalmos (the slit-eye phenotype), and a line of Fgf10+/- heterozygous loss-of-function mice exhibits slit-eye due to the HG atrophy. However, it has not been clarified how and when HGs degenerate and atrophy in Fgf10+/- mice. In this study, we observed the HGs in embryonic (E13.5 to E19), postnatal (P0.5 to P18) and 74-week-old Fgf10+/- mice. We found that more than half of the Fgf10+/- mice had markedly degenerated HGs, often unilaterally. The degenerated HG tissue had a melanized appearance and was replaced by connective tissue, which was observed by P10. The development of HGs was delayed or disrupted in the similar proportion of Fgf10+/- embryos, as revealed via histology and the loss of HG-marker expression. In situ hybridization showed Fgf10 expression was observed in the Harderian mesenchyme in wild-type as well as in the HG-lacking heterozygote at E19. These results show that the Fgf10 haploinsufficiency causes delayed or defective HG development, often unilaterally from the unexpectedly early neonatal period.
Collapse
Affiliation(s)
- Shiori Ikeda
- Department of Cytology and Histology, Medical School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hitomi Ono-Minagi
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Satoru Miyaishi
- Department of Legal Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tsutomu Nohno
- Department of Cytology and Histology, Medical School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
20
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Chen KQ, Kawakami H, Anderson A, Corcoran D, Soni A, Nishinakamura R, Kawakami Y. Sall genes regulate hindlimb initiation in mouse embryos. Genetics 2024; 227:iyae029. [PMID: 38386912 PMCID: PMC11075541 DOI: 10.1093/genetics/iyae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Vertebrate limbs start to develop as paired protrusions from the lateral plate mesoderm at specific locations of the body with forelimb buds developing anteriorly and hindlimb buds posteriorly. During the initiation process, limb progenitor cells maintain active proliferation to form protrusions and start to express Fgf10, which triggers molecular processes for outgrowth and patterning. Although both processes occur in both types of limbs, forelimbs (Tbx5), and hindlimbs (Isl1) utilize distinct transcriptional systems to trigger their development. Here, we report that Sall1 and Sall4, zinc finger transcription factor genes, regulate hindlimb initiation in mouse embryos. Compared to the 100% frequency loss of hindlimb buds in TCre; Isl1 conditional knockouts, Hoxb6Cre; Isl1 conditional knockout causes a hypomorphic phenotype with only approximately 5% of mutants lacking the hindlimb. Our previous study of SALL4 ChIP-seq showed SALL4 enrichment in an Isl1 enhancer, suggesting that SALL4 acts upstream of Isl1. Removing 1 allele of Sall4 from the hypomorphic Hoxb6Cre; Isl1 mutant background caused loss of hindlimbs, but removing both alleles caused an even higher frequency of loss of hindlimbs, suggesting a genetic interaction between Sall4 and Isl1. Furthermore, TCre-mediated conditional double knockouts of Sall1 and Sall4 displayed a loss of expression of hindlimb progenitor markers (Isl1, Pitx1, Tbx4) and failed to develop hindlimbs, demonstrating functional redundancy between Sall1 and Sall4. Our data provides genetic evidence that Sall1 and Sall4 act as master regulators of hindlimb initiation.
Collapse
Affiliation(s)
- Katherine Q Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aaron Anderson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aditi Soni
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Suzuki T. Current research on mechanisms of limb bud development, and challenges for the next decade. Genes Genet Syst 2024; 99:n/a. [PMID: 38382923 DOI: 10.1266/ggs.23-00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
The developmental mechanisms of limb buds have been studied in developmental biology as an excellent model of pattern formation. Chick embryos have contributed to the discovery of new principles in developmental biology, as it is easy to observe live embryos and manipulate embryonic tissues. Herein, I outline recent findings and future issues over the next decade regarding three themes, based on my research: limb positioning, proximal-distal limb elongation and digit identity determination. First, how hindlimb position is determined at the molecular level is described, with a focus on the transforming growth factor-β signaling molecule GDF11. Second, I explain how the cell population in the limb bud deforms with developmental progress, shaping the limb bud with elongation along the proximal-distal axis. Finally, I describe the developmental mechanisms that determine digit identity through the interdigits.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Division of Biology, Graduate School of Science, Osaka Metropolitan University
| |
Collapse
|
23
|
Suzuki M, Okumura A, Chihara A, Shibata Y, Endo T, Teramoto M, Agata K, Bronner ME, Suzuki KIT. Fgf10 mutant newts regenerate normal hindlimbs despite severe developmental defects. Proc Natl Acad Sci U S A 2024; 121:e2314911121. [PMID: 38442169 PMCID: PMC10945807 DOI: 10.1073/pnas.2314911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
In amniote limbs, Fibroblast Growth Factor 10 (FGF10) is essential for limb development, but whether this function is broadly conserved in tetrapods and/or involved in adult limb regeneration remains unknown. To tackle this question, we established Fgf10 mutant lines in the newt Pleurodeles waltl which has amazing regenerative ability. While Fgf10 mutant forelimbs develop normally, the hindlimbs fail to develop and downregulate FGF target genes. Despite these developmental defects, Fgf10 mutants were able to regenerate normal hindlimbs rather than recapitulating the embryonic phenotype. Together, our results demonstrate an important role for FGF10 in hindlimb formation, but little or no function in regeneration, suggesting that different mechanisms operate during limb regeneration versus development.
Collapse
Affiliation(s)
- Miyuki Suzuki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Akinori Okumura
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Akane Chihara
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Yuki Shibata
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Tetsuya Endo
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin470-0195, Japan
| | - Machiko Teramoto
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Kiyokazu Agata
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ken-ichi T. Suzuki
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| |
Collapse
|
24
|
Hirashima T, Matsuda M. ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue. Curr Biol 2024; 34:683-696.e6. [PMID: 38228149 DOI: 10.1016/j.cub.2023.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore; The Hakubi Center, Kyoto University, Yoshida-honmachi, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honchō, Kawaguchi 332-0012, Japan.
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Graduate School of Medicine, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8317, Japan
| |
Collapse
|
25
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580629. [PMID: 38405698 PMCID: PMC10888970 DOI: 10.1101/2024.02.16.580629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
26
|
Nojiri T, Takechi M, Furutera T, Brualla NLM, Iseki S, Fukui D, Tu VT, Meguro F, Koyabu D. Development of the hyolaryngeal architecture in horseshoe bats: insights into the evolution of the pulse generation for laryngeal echolocation. EvoDevo 2024; 15:2. [PMID: 38326924 PMCID: PMC10851524 DOI: 10.1186/s13227-024-00221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The hyolaryngeal apparatus generates biosonar pulses in the laryngeally echolocating bats. The cartilage and muscles comprising the hyolarynx of laryngeally echolocating bats are morphologically modified compared to those of non-bat mammals, as represented by the hypertrophied intrinsic laryngeal muscle. Despite its crucial contribution to laryngeal echolocation, how the development of the hyolarynx in bats differs from that of other mammals is poorly documented. The genus Rhinolophus is one of the most sophisticated laryngeal echolocators, with the highest pulse frequency in bats. The present study provides the first detailed description of the three-dimensional anatomy and development of the skeleton, cartilage, muscle, and innervation patterns of the hyolaryngeal apparatus in two species of rhinolophid bats using micro-computed tomography images and serial tissue sections and compares them with those of laboratory mice. Furthermore, we measured the peak frequency of the echolocation pulse in active juvenile and adult individuals to correspond to echolocation pulses with hyolaryngeal morphology at each postnatal stage. RESULTS We found that the sagittal crests of the cricoid cartilage separated the dorsal cricoarytenoid muscle in horseshoe bats, indicating that this unique morphology may be required to reinforce the repeated closure movement of the glottis during biosonar pulse emission. We also found that the cricothyroid muscle is ventrally hypertrophied throughout ontogeny, and that the cranial laryngeal nerve has a novel branch supplying the hypertrophied region of this muscle. Our bioacoustic analyses revealed that the peak frequency shows negative allometry against skull growth, and that the volumetric growth of all laryngeal cartilages is correlated with the pulse peak frequency. CONCLUSIONS The unique patterns of muscle and innervation revealed in this study appear to have been obtained concomitantly with the acquisition of tracheal chambers in rhinolophids and hipposiderids, improving sound intensity during laryngeal echolocation. In addition, significant protrusion of the sagittal crest of the cricoid cartilage and the separated dorsal cricoarytenoid muscle may contribute to the sophisticated biosonar in this laryngeally echolocating lineage. Furthermore, our bioacoustic data suggested that the mineralization of these cartilages underpins the ontogeny of echolocation pulse generation. The results of the present study provide crucial insights into how the anatomy and development of the hyolaryngeal apparatus shape the acoustic diversity in bats.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Masaki Takechi
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Toshiko Furutera
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Nicolas L M Brualla
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Dai Fukui
- The University of Tokyo Fuji Iyashinomori Woodland Study Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 341-2 Yamanaka, Yamanakako, Yamanashi, 401-05013, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Fumiya Meguro
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-Shi, Ibaraki, 305-8550, Japan
| | - Daisuke Koyabu
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-Shi, Ibaraki, 305-8550, Japan.
| |
Collapse
|
27
|
Papaioannou VE, Behringer RR. Analysis of Mid- to Late-Gestation Phenotypes in Mice. Cold Spring Harb Protoc 2024; 2024:107973. [PMID: 37932082 DOI: 10.1101/pdb.over107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Mid- to late gestation is characterized by tissue differentiation, maturation, organogenesis, and growth, and many mutant genes have detrimental effects during this phase of development. The outcome may be lethal before birth or may be compatible with life but result in birth defects. Some of the common causes of death during late gestation are hematopoietic defects, cardiovascular problems, and placental insufficiency. Many morphological abnormalities, lethal or not, can be investigated with gross and histological analyses or by visualization of the developing skeleton. Molecular characterization of mutant phenotypes, guided by the expression pattern of the mutant gene, can reveal disruptions in gene expression patterns of known developmental genes. Cell proliferation and cell death assays will reveal disruptions in cellular dynamics. Various modalities of 3D imaging of intact embryos can provide volumetric information about mutant phenotypes.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
28
|
Peng W, Song Y, Zhu G, Zeng Y, Cai H, Lu C, Abuduxukuer Z, Song X, Gao X, Ye L, Wang J, Jin M. FGF10 attenuates allergic airway inflammation in asthma by inhibiting PI3K/AKT/NF-κB pathway. Cell Signal 2024; 113:110964. [PMID: 37956773 DOI: 10.1016/j.cellsig.2023.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yansha Song
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guiping Zhu
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingying Zeng
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Cai
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chong Lu
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zilinuer Abuduxukuer
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xixi Song
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Gao
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ling Ye
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meiling Jin
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Yuri S, Murase Y, Isotani A. Generation of rat-derived lung epithelial cells in Fgfr2b-deficient mice retains species-specific development. Development 2024; 151:dev202081. [PMID: 38179792 DOI: 10.1242/dev.202081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Regenerative medicine is a tool to compensate for the shortage of lungs for transplantation, but it remains difficult to construct a lung in vitro due to the complex three-dimensional structures and multiple cell types required. A blastocyst complementation method using interspecies chimeric animals has been attracting attention as a way to create complex organs in animals, although successful lung formation using interspecies chimeric animals has not yet been achieved. Here, we applied a reverse-blastocyst complementation method to clarify the conditions required to form lungs in an Fgfr2b-deficient mouse model. We then successfully formed a rat-derived lung in the mouse model by applying a tetraploid-based organ-complementation method. Importantly, rat lung epithelial cells retained their developmental timing even in the mouse body. These findings provide useful insights to overcome the barrier of species-specific developmental timing to generate functional lungs in interspecies chimeras.
Collapse
Affiliation(s)
- Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yuki Murase
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
30
|
Tanaka J, Miura A, Shimamura Y, Hwang Y, Shimizu D, Kondo Y, Sawada A, Sarmah H, Ninish Z, Mishima K, Mori M. Generation of salivary glands derived from pluripotent stem cells via conditional blastocyst complementation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566845. [PMID: 38014349 PMCID: PMC10680620 DOI: 10.1101/2023.11.13.566845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Various patients suffer from dry mouth due to salivary gland dysfunction. Whole salivary gland generation and transplantation is a potential therapy to resolve this issue. However, the lineage permissible to design the entire salivary gland generation has been enigmatic. Here, we discovered Foxa2 as a lineage critical for generating a salivary gland via conditional blastocyst complementation (CBC). Foxa2 linage, but not Shh nor Pitx2, initiated to label between the boundary region of the endodermal and the ectodermal oral mucosa before primordial salivary gland formation, resulting in marking the entire salivary gland. The salivary gland was agenesis by depleting Fgfr2 under the Foxa2 lineage in the mice. We rescued this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts. Those mice survived until adulthood with normal salivary glands compatible in size compared with littermate controls. These results indicated that CBC-based salivary gland generation is promising for next-generation cell-based therapy.
Collapse
|
31
|
Schütz K, Schmidt A, Schwerk N, Renz DM, Gerard B, Schaefer E, Antal MC, Peters S, Griese M, Rapp CK, Engels H, Cremer K, Bergmann AK, Schmidt G, Auber B, Kamp JC, Laenger F, von Hardenberg S. Variants in FGF10 cause early onset of severe childhood interstitial lung disease: A detailed description of four affected children. Pediatr Pulmonol 2023; 58:3095-3105. [PMID: 37560881 DOI: 10.1002/ppul.26627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION Fibroblast growth factor 10 (FGF10) is a signaling molecule with a well-established role for lung branching morphogenesis. Rare heterozygous, deleterious variants in the FGF10 gene are known causes of the lacrimo-auriculo-dento-digital (LADD) syndrome and aplasia of lacrimal and salivary glands. Previous studies indicate that pathogenic variants in FGF10 can cause childhood Interstitial Lung Disease (chILD) due to severe diffuse developmental disorders of the lung, but detailed reports on clinical presentation and follow-up of affected children are lacking. METHODS We describe four children with postnatal onset of chILD and heterozygous variants in FGF10, each detected by exome or whole genome sequencing. RESULTS All children presented with postnatal respiratory failure. Two children died within the first 2 days of life, one patient died at age of 12 years due to right heart failure related to severe pulmonary hypertension (PH) and one patient is alive at age of 6 years, but still symptomatic. Histopathological analysis of lung biopsies from the two children with early postpartum demise revealed diffuse developmental disorder representing acinar dysplasia and interstitial fibrosis. Sequential biopsies of the child with survival until the age of 12 years revealed alveolar simplification and progressive interstitial fibrosis. DISCUSSION Our report extends the phenotype of FGF10-related disorders to early onset chILD with progressive interstitial lung fibrosis and PH. Therefore, FGF10-related disorder should be considered even without previously described syndromic stigmata in children with postnatal respiratory distress, not only when leading to death in the neonatal period but also in case of persistent respiratory complaints and PH.
Collapse
Affiliation(s)
- Katharina Schütz
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Axel Schmidt
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nicolaus Schwerk
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Munich, Germany
| | - Diane Miriam Renz
- Department of Pediatric Radiology, Hannover Medical School, Institute of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Benedicte Gerard
- Laboratoires de Diagnostic Génétique, Unité de génétique moléculaire, Nouvel Hôpital Civil, Strasbourg, Cedex, France
| | - Elise Schaefer
- Laboratoires de Diagnostic Génétique, Unité de génétique moléculaire, Nouvel Hôpital Civil, Strasbourg, Cedex, France
| | - Maria Cristina Antal
- UF6349 fœtopathologie, Département de Pathologie, Hôpitaux Universitaires, Strasbourg, France
| | - Sophia Peters
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Matthias Griese
- Department of Pediatric Pneumology, German Center for Lung Research (DZL), Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Christina K Rapp
- Department of Pediatric Pneumology, German Center for Lung Research (DZL), Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hartmut Engels
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jan C Kamp
- German Center for Lung Research (DZL), Munich, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Florian Laenger
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | | |
Collapse
|
32
|
Neptune ER, Cardoso WV. Unravelling the expanding role of FGF10 signalling in lung homeostasis and maintenance. Eur Respir J 2023; 62:2301691. [PMID: 37945046 DOI: 10.1183/13993003.01691-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Enid R Neptune
- Department of Medicine, Department of Genetics, Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
33
|
Miura A, Sarmah H, Tanaka J, Hwang Y, Sawada A, Shimamura Y, Otoshi T, Kondo Y, Fang Y, Shimizu D, Ninish Z, Suer JL, Dubois NC, Davis J, Toyooka S, Wu J, Que J, Hawkins FJ, Lin CS, Mori M. Conditional blastocyst complementation of a defective Foxa2 lineage efficiently promotes the generation of the whole lung. eLife 2023; 12:e86105. [PMID: 37861292 PMCID: PMC10642968 DOI: 10.7554/elife.86105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
Millions suffer from incurable lung diseases, and the donor lung shortage hampers organ transplants. Generating the whole organ in conjunction with the thymus is a significant milestone for organ transplantation because the thymus is the central organ to educate immune cells. Using lineage-tracing mice and human pluripotent stem cell (PSC)-derived lung-directed differentiation, we revealed that gastrulating Foxa2 lineage contributed to both lung mesenchyme and epithelium formation. Interestingly, Foxa2 lineage-derived cells in the lung mesenchyme progressively increased and occupied more than half of the mesenchyme niche, including endothelial cells, during lung development. Foxa2 promoter-driven, conditional Fgfr2 gene depletion caused the lung and thymus agenesis phenotype in mice. Wild-type donor mouse PSCs injected into their blastocysts rescued this phenotype by complementing the Fgfr2-defective niche in the lung epithelium and mesenchyme and thymic epithelium. Donor cell is shown to replace the entire lung epithelial and robust mesenchymal niche during lung development, efficiently complementing the nearly entire lung niche. Importantly, those mice survived until adulthood with normal lung function. These results suggest that our Foxa2 lineage-based model is unique for the progressive mobilization of donor cells into both epithelial and mesenchymal lung niches and thymus generation, which can provide critical insights into studying lung transplantation post-transplantation shortly.
Collapse
Affiliation(s)
- Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hemanta Sarmah
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Junichi Tanaka
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Youngmin Hwang
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Anri Sawada
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yuko Shimamura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Takehiro Otoshi
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yuri Kondo
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yinshan Fang
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Zurab Ninish
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Jake Le Suer
- The Pulmonary Center and Department of Medicine, Boston University School of MedicineBostonUnited States
- Center for Regenerative Medicine, Boston University and Boston Medical CenterBostonUnited States
| | - Nicole C Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jennifer Davis
- Department of Pathology, University of WashingtonSeattleUnited States
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jianwen Que
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Finn J Hawkins
- The Pulmonary Center and Department of Medicine, Boston University School of MedicineBostonUnited States
- Center for Regenerative Medicine, Boston University and Boston Medical CenterBostonUnited States
| | - Chyuan-Sheng Lin
- Bernard and Shirlee Brown Glaucoma Laboratory, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| |
Collapse
|
34
|
Chen Y, Zhou T, Liao Z, Gao W, Wu J, Zhang S, Li Y, Liu H, Zhou H, Xu C, Su P. Hnrnpk is essential for embryonic limb bud development as a transcription activator and a collaborator of insulator protein Ctcf. Cell Death Differ 2023; 30:2293-2308. [PMID: 37608075 PMCID: PMC10589297 DOI: 10.1038/s41418-023-01207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Proper development of the limb bud relies on the concordance of various signals, but its molecular mechanisms have not yet been fully illustrated. Here we report that heterogeneous nuclear ribonucleoprotein K (hnRNPK) is essential for limb bud development. Its ablation in the limb bud results in limbless forelimbs and severe deformities of the hindlimbs. In terms of mechanism, hnRNPK functions as a transcription activator for the vital genes involved in the three regulatory axes of limb bud development. Simultaneously, for the first time we elucidate that hnRNPK binds to and coordinates with the insulator protein CCCTC binding factor (CTCF) to maintain a three-dimensional chromatin architecture. Ablation of hnRNPK weakens the binding strength of CTCF to topologically associating domain (TAD) boundaries, then leading to the loose TADs, and decreased interactions between promoters and enhancers, and further decreased transcription of developmental genes. Our study establishes a fundamental and novel role of hnRNPK in regulating limb bud development.
Collapse
Affiliation(s)
- Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenjie Gao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinna Wu
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Shun Zhang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongyong Li
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hang Zhou
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Caixia Xu
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
35
|
Zhang X, Shi X, Xie F, Liu Y, Wei X, Cai Y, Chao J. Dissecting pulmonary fibroblasts heterogeneity in lung development, health and diseases. Heliyon 2023; 9:e19428. [PMID: 37674845 PMCID: PMC10477496 DOI: 10.1016/j.heliyon.2023.e19428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Lung fibroblasts are the major components in the connective tissue of the pulmonary interstitium and play essential roles in the developing of postnatal lung, synthesizing the extracellular matrix and maintaining the integrity of the lung architecture. Fibroblasts are activated in various disease conditions and exhibit functional heterogeneities according to their origin, spatial location, activated state and microenvironment. In recent years, advances in technology have enabled researchers to identify fibroblast subpopulations in both mouse and human. Here, we discuss pulmonary fibroblast heterogeneity, focusing on the developing, healthy and pathological lung conditions. We firstly review the expression profiles of fibroblasts during lung development, and then consider fibroblast diversity according to different anatomical sites of lung architecture. Subsequently, we discuss fibroblast heterogeneity in genetic lineage. Finally, we focus on how fibroblast heterogeneity may shed light on different pathological lung conditions such as fibrotic diseases, infectious diseases including COVID-19, and lung cancers. We emphasize the importance of comparative studies to illuminate the overlapping characteristics, expression profiles and signaling pathways of the fibroblast subpopulations across disease conditions, a better characterization of the functional complexity rather than the expression of a particular gene may have important therapeutic applications.
Collapse
Affiliation(s)
- Xinxin Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Xiaoni Shi
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Feiyan Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yaping Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinyan Wei
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yu Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
36
|
Guo K, Huang W, Chen K, Huang P, Peng W, Shi R, He T, Zhang M, Wang H, Hu J, Wang X, Shentu Y, Xu H, Lin L. Fibroblast growth factor 10 ameliorates neurodegeneration in mouse and cellular models of Alzheimer's disease via reducing tau hyperphosphorylation and neuronal apoptosis. Aging Cell 2023; 22:e13937. [PMID: 37503695 PMCID: PMC10497839 DOI: 10.1111/acel.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized with senile plaques formed by Aβ deposition, and neurofibrillary tangles composed of hyperphosphorylated tau protein, which ultimately lead to cognitive impairment. Despite the heavy economic and life burdens faced by the patients with AD, effective treatments are still lacking. Previous studies have reported the neuroprotective effects of FGF10 in CNS diseases, but its role in AD remains unclear. In this study, we demonstrated that FGF10 levels were reduced in the serum of AD patients, as well as in the brains of 3xTg-AD mice and APPswe-transfected HT22 cells, suggesting a close relationship between FGF10 and AD. Further investigations revealed that intranasal delivery of FGF10 improved cognitive functions in 3xTg-AD mice. Additionally, FGF10 treatment reduced tau hyperphosphorylation and neuronal apoptosis, thereby mitigating neuronal cell damage and synaptic deficits in the cortex and hippocampus of 3xTg-AD mice, as well as APPswe-transfected HT22 cells. Furthermore, we evaluated the therapeutic potential of FGF10 gene delivery for treating AD symptoms and pathologies. Tail vein delivery of the FGF10 gene using AAV9 improved cognitive and neuronal functions in 3xTg-AD mice. Similarly, endogenous FGF10 overexpression ameliorated tau hyperphosphorylation and neuronal apoptosis in the cortex and hippocampus of 3xTg-AD mice. Importantly, we confirmed that the FGFR2/PI3K/AKT signaling pathway was activated following intranasal FGF10 delivery and AAV9-mediated FGF10 gene delivery in 3xTg-AD mice and APPswe-transfected HT22 cells. Knockdown of FGFR2 attenuated the protective effect of FGF10. Collectively, these findings suggest that intranasal delivery of FGF10 and AAV9-mediated FGF10 gene delivery could be a promising disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Kaiming Guo
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain HealthWenzhouChina
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Kun Chen
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- Jinhua Maternity and Child Health Care HospitalJinhuaChina
| | - Pengkai Huang
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
| | - Wenshuo Peng
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruiqing Shi
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
| | - Tao He
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Mulan Zhang
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Hao Wang
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain HealthWenzhouChina
| | - Jian Hu
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
| | - Xinshi Wang
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yangping Shentu
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huiqin Xu
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Li Lin
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain HealthWenzhouChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
37
|
Chen SY, Liu FC. The Fgf9-Nolz1-Wnt2 axis regulates morphogenesis of the lung. Development 2023; 150:dev201827. [PMID: 37497597 DOI: 10.1242/dev.201827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream β-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.
Collapse
Affiliation(s)
- Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
38
|
Ishida H, Maeda J, Uchida K, Yamagishi H. Unique Pulmonary Hypertensive Vascular Diseases Associated with Heart and Lung Developmental Defects. J Cardiovasc Dev Dis 2023; 10:333. [PMID: 37623346 PMCID: PMC10455332 DOI: 10.3390/jcdd10080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Although pediatric pulmonary hypertension (PH) shares features and mechanisms with adult PH, there are also some significant differences between the two conditions. Segmental PH is a unique pediatric subtype of PH with unclear and/or multifactorial pathophysiological mechanisms, and is often associated with complex congenital heart disease (CHD), pulmonary atresia with ventricular septal defect, and aortopulmonary collateral arteries. Some cases of complex CHD, associated with a single ventricle after Fontan operation, show pathological changes in the small peripheral pulmonary arteries and pulmonary vascular resistance similar to those observed in pulmonary arterial hypertension (PAH). This condition is termed as the pediatric pulmonary hypertensive vascular disease (PPHVD). Recent advances in genetics have identified the genes responsible for PAH associated with developmental defects of the heart and lungs, such as TBX4 and SOX17. Targeted therapies for PAH have been developed; however, their effects on PH associated with developmental heart and lung defects remain to be established. Real-world data analyses on the anatomy, pathophysiology, genetics, and molecular biology of unique PPHVD cases associated with developmental defects of the heart and lungs, using nationwide and/or international registries, should be conducted in order to improve the treatments and prognosis of patients with these types of pediatric PH.
Collapse
Affiliation(s)
- Hidekazu Ishida
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Jun Maeda
- Department of Cardiology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan;
| | - Keiko Uchida
- Department of Pediatrics, Keio University of Medicine, 35 Shinanomachi, Shinjuku-ku 160-8582, Tokyo, Japan;
- Keio University Health Center, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Kanagawa, Japan
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Keio University of Medicine, 35 Shinanomachi, Shinjuku-ku 160-8582, Tokyo, Japan;
| |
Collapse
|
39
|
Reyes-Castro RA, Chen SY, Seemann J, Kundu ST, Gibbons DL, Arur S. Phosphorylated nuclear DICER1 promotes open chromatin state and lineage plasticity of AT2 tumor cells in lung adenocarcinomas. SCIENCE ADVANCES 2023; 9:eadf6210. [PMID: 37494452 PMCID: PMC10371025 DOI: 10.1126/sciadv.adf6210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
KRAS/ERK pathway phosphorylates DICER1, causing its nuclear translocation, and phosphomimetic Dicer1 contributes to tumorigenesis in mice. Mechanisms through which phospho-DICER1 regulates tumor progression remain undefined. While DICER1 canonically regulates microRNAs (miRNA) and epithelial-to-mesenchymal transition (EMT), we found that phosphorylated nuclear DICER1 (phospho-nuclear DICER1) promotes late-stage tumor progression in mice with oncogenic Kras, independent of miRNAs and EMT. Instead, we observe that the murine AT2 tumor cells exhibit altered chromatin compaction, and cells from disorganized advanced tumors, but not localized tumors, express gastric genes. Collectively, this results in subpopulations of tumor cells transitioning from a restricted alveolar to a broader endodermal lineage state. In human LUADs, we observed expression of phospho-nuclear DICER1 in advanced tumors together with the expression of gastric genes. We define a multimeric chromatin-DICER1 complex composed of the Mediator complex subunit 12, CBX1, MACROH2A.1, and transcriptional regulators supporting the model that phospho-nuclear DICER1 leads to lineage reprogramming of AT2 tumor cells to mediate lung cancer progression.
Collapse
Affiliation(s)
- Raisa A. Reyes-Castro
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Shin-Yu Chen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacob Seemann
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samrat T. Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swathi Arur
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
40
|
El Agha E, Thannickal VJ. The lung mesenchyme in development, regeneration, and fibrosis. J Clin Invest 2023; 133:e170498. [PMID: 37463440 DOI: 10.1172/jci170498] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
41
|
Liu S, Sun D, Butler R, Rawlins EL. RTK signalling promotes epithelial columnar cell shape and apical junction maintenance in human lung progenitor cells. Development 2023; 150:dev201284. [PMID: 37260147 PMCID: PMC10281517 DOI: 10.1242/dev.201284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Multipotent epithelial progenitor cells can be expanded from human embryonic lungs as organoids and maintained in a self-renewing state using a defined medium. The organoid cells are columnar, resembling the cell morphology of the developing lung tip epithelium in vivo. Cell shape dynamics and fate are tightly coordinated during development. We therefore used the organoid system to identify signalling pathways that maintain the columnar shape of human lung tip progenitors. We found that EGF, FGF7 and FGF10 have distinct functions in lung tip progenitors. FGF7 activates MAPK/ERK and PI3K/AKT signalling, and is sufficient to promote columnar cell shape in primary tip progenitors. Inhibitor experiments show that MAPK/ERK and PI3K/AKT signalling are key downstream pathways, regulating cell proliferation, columnar cell shape and cell junctions. We identified integrin signalling as a key pathway downstream of MAPK/ERK in the tip progenitors; disrupting integrin alters polarity, cell adhesion and tight junction assembly. By contrast, stimulation with FGF10 or EGF alone is not sufficient to maintain organoid columnar cell shape. This study employs organoids to provide insight into the cellular mechanisms regulating human lung development.
Collapse
Affiliation(s)
- Shuyu Liu
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Richard Butler
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L. Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
42
|
Yoshioka H, Kagawa K, Minamizaki T, Nakano M, Aubin JE, Kozai K, Tsuga K, Yoshiko Y. Developmental impairments of craniofacial bone and cartilage in transgenic mice expressing FGF10. Bone Rep 2023; 18:101692. [PMID: 37275784 PMCID: PMC10236464 DOI: 10.1016/j.bonr.2023.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Mutations in a common extracellular domain of fibroblast growth factor receptor (FGFR)-2 isoforms (type IIIb and IIIc) cause craniosynostosis syndrome and chondrodysplasia syndrome. FGF10, a major ligand for FGFR2-IIIb and FGFR1-IIIb, is a key participant in the epithelial-mesenchymal interactions required for morphogenetic events. FGF10 also regulates preadipocyte differentiation and early chondrogenesis in vitro, suggesting that FGF10-FGFR signaling may be involved in craniofacial skeletogenesis in vivo. To test this hypothesis, we used a tet-on doxycycline-inducible transgenic mouse model (FGF10 Tg) to overexpress Fgf10 from embryonic day 12.5. Fgf10 expression was 73.3-fold higher in FGF10 Tg than in wild-type mice. FGF10 Tg mice exhibited craniofacial anomalies, such as a short rostrum and mandible, an underdeveloped (cleft) palate, and no tympanic ring. Opposite effects on chondrogenesis in different anatomical regions were seen, e.g., hyperplasia in the nasal septum and hypoplasia in the mandibular condyle. We found an alternative splicing variant of Fgfr2-IIIb with a predicted translation product lacking the transmembrane domain, and suggesting a soluble form of FGFR2-IIIb (sFGFR2-IIIb), differentially expressed in some of the craniofacial bones and cartilages. Thus, excessive FGF10 may perturb signal transduction of the FGF-FGFR, leading to craniofacial skeletal abnormalities in FGF10 Tg mice.
Collapse
Affiliation(s)
- Hirotaka Yoshioka
- Department of Anatomy, School of Medicine, International University of Health and Welfare, Chiba, Japan
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuko Kagawa
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Nakano
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Pediatric Dentistry, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Jane E. Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
43
|
Cao S, Feng H, Yi H, Pan M, Lin L, Zhang YS, Feng Z, Liang W, Cai B, Li Q, Xiong Z, Shen Q, Ke M, Zhao X, Chen H, He Q, Min M, Cai Q, Liu H, Wang J, Pei D, Chen J, Ma Y. Single-cell RNA sequencing reveals the developmental program underlying proximal-distal patterning of the human lung at the embryonic stage. Cell Res 2023:10.1038/s41422-023-00802-6. [PMID: 37085732 PMCID: PMC10119843 DOI: 10.1038/s41422-023-00802-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.
Collapse
Affiliation(s)
- Shangtao Cao
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mengjie Pan
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Lihui Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yao Santo Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ziyu Feng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifang Liang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Baomei Cai
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Zhi Xiong
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qingmei Shen
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Minjing Ke
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Zhao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Huilin Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qina He
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Mingwei Min
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Quanyou Cai
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
44
|
Danopoulos S, Belgacemi R, Hein RFC, Miller AJ, Deutsch GH, Glass I, Spence JR, Al Alam D. FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells. Am J Physiol Lung Cell Mol Physiol 2023; 324:L433-L444. [PMID: 36791060 PMCID: PMC10027085 DOI: 10.1152/ajplung.00316.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling is known to play an important role in lung organogenesis. However, we recently demonstrated that FGF10 fails to induce branching in human fetal lungs as is observed in mouse. Our previous human fetal lung RNA sequencing data exhibited increased FGF18 during the pseudoglandular stage of development, suggestive of its importance in human lung branching morphogenesis. Whereas it has been previously reported that FGF18 is critical during alveologenesis, few studies have described its implication in lung branching, specifically in human. Therefore, we aimed to determine the role of FGF18 in human lung branching morphogenesis. Human fetal lung explants within the pseudoglandular stage of development were treated with recombinant human FGF18 in air-liquid interface culture. Explants were analyzed grossly to assess differences in branching pattern, as well as at the cellular and molecular levels. FGF18 treatment promoted branching in explant cultures and demonstrated increased epithelial proliferation as well as maintenance of the double positive SOX2/SOX9 distal bud progenitor cells, confirming its role in human lung branching morphogenesis. In addition, FGF18 treated explants displayed increased expression of SOX9, FN1, and COL2A1 within the mesenchyme, all factors that are important to chondrocyte differentiation. In humans, cartilaginous airways extend deep into the lung up to the 12th generation of branching whereas in mouse these are restricted to the trachea and main bronchi. Therefore, our data suggest that FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Soula Danopoulos
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, United States
- Division of Neonatology, Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| | - Randa Belgacemi
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, United States
| | - Renee F C Hein
- Department of Cell and Developmental biology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alyssa J Miller
- Department of Cell and Developmental biology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Gail H Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, Washington, United States
| | - Ian Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States
| | - Jason R Spence
- Department of Cell and Developmental biology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, United States
- Division of Neonatology, Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| |
Collapse
|
45
|
Gilbert RM, Gleghorn JP. Connecting clinical, environmental, and genetic factors point to an essential role for vitamin A signaling in the pathogenesis of congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L456-L467. [PMID: 36749917 PMCID: PMC10042603 DOI: 10.1152/ajplung.00349.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a developmental disorder that results in incomplete diaphragm formation, pulmonary hypoplasia, and pulmonary hypertension. Although a variety of genes have been linked to its etiology, CDH is not a monogenetic disease, and the cause of the condition is still unclear in the vast majority of clinical cases. By comparing human clinical data and experimental rodent data from the literature, we present clear support demonstrating the importance of vitamin A (vitA) during the early window of pregnancy when the diaphragm and lung are forming. Alteration of vitA signaling via dietary and genetic perturbations can create diaphragmatic defects. Unfortunately, vitA deficiency is chronic among people of child-bearing age, and this early window of diaphragm development occurs before many might be aware of pregnancy. Furthermore, there is an increased demand for vitA during this critical period, which exacerbates the likelihood of deficiency. It would be beneficial for the field to further investigate the connections between maternal vitA and CDH incidence, with the goal of determining vitA status as a CDH risk factor. Regular clinical monitoring of vitA levels in child-bearing years is a tractable method by which CDH outcomes could be prevented or improved.
Collapse
Affiliation(s)
- Rachel M Gilbert
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
46
|
Karolak JA, Welch CL, Mosimann C, Bzdęga K, West JD, Montani D, Eyries M, Mullen MP, Abman SH, Prapa M, Gräf S, Morrell NW, Hemnes AR, Perros F, Hamid R, Logan MPO, Whitsett J, Galambos C, Stankiewicz P, Chung WK, Austin ED. Molecular Function and Contribution of TBX4 in Development and Disease. Am J Respir Crit Care Med 2023; 207:855-864. [PMID: 36367783 PMCID: PMC10111992 DOI: 10.1164/rccm.202206-1039tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, recognition of the profound impact of the TBX4 (T-box 4) gene, which encodes a member of the evolutionarily conserved family of T-box-containing transcription factors, on respiratory diseases has emerged. The developmental importance of TBX4 is emphasized by the association of TBX4 variants with congenital disorders involving respiratory and skeletal structures; however, the exact role of TBX4 in human development remains incompletely understood. Here, we discuss the developmental, tissue-specific, and pathological TBX4 functions identified through human and animal studies and review the published TBX4 variants resulting in variable disease phenotypes. We also outline future research directions to fill the gaps in our understanding of TBX4 function and of how TBX4 disruption affects development.
Collapse
Affiliation(s)
- Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Katarzyna Bzdęga
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, and
| | - David Montani
- Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, DMU 5 Thorinno, Inserm UMR_S999, Le Kremlin-Bicêtre, France
| | - Mélanie Eyries
- Sorbonne Université, AP-HP, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mary P. Mullen
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Matina Prapa
- St. George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Stefan Gräf
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, United Kingdom
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, and
| | - Frédéric Perros
- Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, DMU 5 Thorinno, Inserm UMR_S999, Le Kremlin-Bicêtre, France
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Malcolm P. O. Logan
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Jeffrey Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Perinatal Institute, Cincinnati, Ohio
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Csaba Galambos
- Department of Pathology, University of Colorado School of Medicine, and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Wendy K. Chung
- Department of Pediatrics and
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
47
|
Ko HS, Laiman V, Tsao PN, Chen CM, Chuang HC. Alteration in branching morphogenesis via YAP/TAZ in fibroblasts of fetal lungs in an LPS-induced inflammation model. Mol Med 2023; 29:16. [PMID: 36717779 PMCID: PMC9887856 DOI: 10.1186/s10020-023-00613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chorioamnionitis is a common cause of preterm birth and leads to serious complications in newborns. The objective of this study was to investigate the role of the Hippo signaling pathway in lung branching morphogenesis under a lipopolysaccharide (LPS)-induced inflammation model. MATERIALS AND METHODS IMR-90 cells and ex vivo fetal lungs were treated with 0, 10, 30, or 50 μg/ml LPS for 24 and 72 h. Supernatant levels of lactate dehydrogenase (LDH), interleukin (IL)-6, IL-8, Chemokine (C-X-C motif) ligand 1(CXCL1), branching and the surface area ratio, Yes-associated protein (YAP), transcription coactivator with PDZ-binding motif (TAZ), fibroblast growth factor 10 (FGF10), fibroblast growth factor receptor II (FGFR2), SRY-box transcription factor 2 (SOX2), SOX9, and sirtuin 1 (SIRT1) levels were examined. Differentially expressed genes in fetal lungs after LPS treatment were identified by RNA-sequencing. RESULTS LPS at 50 μg/ml increased IL-6 and IL-8 in IMR-90 cells and increased IL-6, CXCL1 and LDH in fetal lungs. The branching ratio significantly increased by LPS at 30 μg/ml compared to the control but the increased level had decreased by 50 μg/ml LPS exposure. Exposure to 50 μg/ml LPS increased phosphorylated (p)-YAP, p-YAP/YAP, and p-TAZ/TAZ in IMR-90 cells, whereas 50 μg/ml LPS decreased FGF10 and SOX2. Consistently, p-YAP/YAP and p-TAZ/TAZ were increased in fibronectin+ cells of fetal lungs. Moreover, results of RNA-sequencing in fetal lungs showed that SMAD, FGF, IκB phosphorylation, tissue remodeling and homeostasis was involved in branching morphogenesis following exposure to 50 μg/ml LPS. The p-SIRT1/SIRT1 ratio increased in IMR-90 cells by LPS treatment. CONCLUSIONS This study showed that regulation of the Hippo pathway in fibroblasts of fetal lungs was involved in branching morphogenesis under an inflammatory disease such as chorioamnionitis.
Collapse
Affiliation(s)
- Hung-Shuo Ko
- grid.412896.00000 0000 9337 0481School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- grid.412896.00000 0000 9337 0481International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.8570.a0000 0001 2152 4506Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito Hospital, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Po-Nien Tsao
- grid.412094.a0000 0004 0572 7815Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Ming Chen
- grid.412897.10000 0004 0639 0994Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031 Taiwan ,grid.412896.00000 0000 9337 0481Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan ,grid.412896.00000 0000 9337 0481Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.7445.20000 0001 2113 8111National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
48
|
Zhu M, Tabin CJ. The role of timing in the development and evolution of the limb. Front Cell Dev Biol 2023; 11:1135519. [PMID: 37200627 PMCID: PMC10185760 DOI: 10.3389/fcell.2023.1135519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
The term heterochrony was coined to describe changes in the timing of developmental processes relative to an ancestral state. Limb development is a well-suited system to address the contribution of heterochrony to morphological evolution. We illustrate how timing mechanisms have been used to establish the correct pattern of the limb and provide cases where natural variations in timing have led to changes in limb morphology.
Collapse
|
49
|
Zhao L, Li M, Yin Z, Lv L, Zhou M, Wang Y, Zhang M, Guo T, Guo X, Liu H, Cheng L, Liang X, Duo S, Li R. Development of a Lung Vacancy Mouse Model through CRISPR/Cas9-Mediated Deletion of Thyroid Transcription Factor 1 Exon 2. Cells 2022; 11:cells11233874. [PMID: 36497134 PMCID: PMC9740088 DOI: 10.3390/cells11233874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
A developmental niche vacancy in host embryos is necessary for stem cell complementation-based organ regeneration (SCOG). Thyroid transcription factor 1 (TTF-1) is a tissue-specific transcription factor that regulates the embryonic development and differentiation of the thyroid and, more importantly, lungs; thus, it has been considered as a master gene to knockout in order to develop a lung vacancy host. TTF-1 knockout mice were originally produced by inserting a stop codon in Exon 3 of the gene (E3stop) through embryonic stem cell-based homologous recombination. The main problems of utilizing E3stop host embryos for lung SCOG are that these animals all have a tracheoesophageal fistula (TEF), which cannot be corrected by donor stem cells, and most of them have monolateral sac-like lungs. To improve the mouse model towards achieving SCOG-based lung generation, in this project, we used the CRISPR/Cas9 tool to remove Exon 2 of the gene by zygote microinjection and successfully produced TTF-1 knockout (E2del) mice. Similar to E3stop, E2del mice are birth-lethal due to retarded lung development with sac-like lungs and only a rudimentary bronchial tree, increased basal cells but without alveolar type II cells and blood vessels, and abnormal thyroid development. Unlike E3stop, 57% of the E2del embryos presented type I tracheal agenesis (TA, a kind of human congenital malformation) with a shortened trachea and clear separations of the trachea and esophagus, while the remaining 43% had TEF. Furthermore, all the E2del mice had bilateral sac-like lungs. Both TA and bilateral sac-like lungs are preferred in SCOG. Our work presents a new strategy for producing SCOG host embryos that may be useful for lung regeneration.
Collapse
Affiliation(s)
- Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Limin Lv
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yixi Wang
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Tianxu Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiyun Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Han Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Linxin Cheng
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Shuguang Duo
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (S.D.); (R.L.)
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (S.D.); (R.L.)
| |
Collapse
|
50
|
Congenital lung malformations: Dysregulated lung developmental processes and altered signaling pathways. Semin Pediatr Surg 2022; 31:151228. [PMID: 36442455 DOI: 10.1016/j.sempedsurg.2022.151228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Congenital lung malformations comprise a diverse group of anomalies including congenital pulmonary airway malformation (CPAM, previously known as congenital cystic adenomatoid malformation or CCAM), bronchopulmonary sequestration (BPS), congenital lobar emphysema (CLE), bronchogenic cysts, and hybrid lesions. Little is known about the signaling pathways that underlie the pathophysiology of these lesions and the processes that may promote their malignant transformation. In the last decade, the use of transgenic/knockout animal models and the implementation of next generation sequencing on surgical lung specimens have increased our knowledge on the pathophysiology of these lesions. Herein, we provide an overview of normal lung development in humans and rodents, and we discuss the current state of knowledge on the pathophysiology and molecular pathways that are altered in each congenital lung malformation.
Collapse
|