1
|
Cunanan J, Zhang D, Peired AJ, Barua M. Podocytes in health and glomerular disease. Front Cell Dev Biol 2025; 13:1564847. [PMID: 40342933 PMCID: PMC12058676 DOI: 10.3389/fcell.2025.1564847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Podocytes are highly specialized, terminally differentiated cells in the glomerulus of the kidney and these cells play a central role in blood filtration. In this review, we comprehensively describe the cell biology of podocytes under healthy conditions and in glomerular disorders wherein podocyte injury is a major pathological mechanism. First, the molecular mechanisms that maintain podocyte actin cytoskeleton structure, permanent cell cycle exit, and metabolism under healthy conditions are described. Secondly, the mechanisms of podocyte injury, including genetic alterations and external insults that ultimately disrupt podocyte actin cytoskeleton dynamics or interrupt podocyte quiescence and mitochondrial metabolism are discussed. This understanding forms the basis of described potential therapeutic agents that act by modulating dysregulated podocyte cytoskeleton organization, prevent or reverse cell cycle re-entry, and re-establish normal mitochondrial energy production. Lastly, the application of modern techniques such as single cell RNA sequencing, super resolution microscopy, atomic force microscopy, and glomerular organoids is improving the resolution of mechanistic podocytopathy knowledge. Taken together, our review provides critical insights into the cellular and molecular mechanisms leading to podocyte loss, necessary for the advancement of therapeutic development in glomerular diseases.
Collapse
Affiliation(s)
- Joanna Cunanan
- Division of Nephrology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Daniel Zhang
- Division of Nephrology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Anna Julie Peired
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence (Università degli Studi di Firenze), Florence, Italy
| | - Moumita Barua
- Division of Nephrology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Torra R, Barros X, Díaz-Encarnación M, Fayos L, Furlano M, Pilco M, Pybus M, Shabaka A, Viera E, Ars E. When should the nephrologist think about genetics in patients with glomerular diseases? Clin Kidney J 2025; 18:sfaf044. [PMID: 40115110 PMCID: PMC11923545 DOI: 10.1093/ckj/sfaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Indexed: 03/23/2025] Open
Abstract
This review discusses the significance of genetics in diagnosing glomerular diseases. Advances in genetic testing, particularly next-generation sequencing, have improved the accessibility and accuracy of diagnosing monogenic diseases, allowing for targeted gene panels and whole-exome/genome sequencing to identify genetic variants associated with glomerular diseases. Key indicators for considering a genetic cause include the age of onset, extrarenal features, family history, and inconclusive kidney biopsy results. Early-onset diseases, for instance, have a higher likelihood of being genetically caused, while extrarenal manifestations can also suggest an underlying genetic condition. A thorough family history can reveal patterns of inheritance that point to monogenic causes, although complexities like incomplete penetrance, skewed X inactivation and mosaicism can complicate the assessment. Also, autosomal recessive conditions imply asymptomatic parents, making genetic suspicion less likely, while de novo mutations can occur without any family history, further obscuring genetic assessment. Focal segmental glomerulosclerosis (FSGS) is characterized by podocyte injury and depletion, presenting in various forms, including primary, genetic, and secondary FSGS. Accurate classification of FSGS patients based on clinical and histological features is essential for guiding treatment decisions, optimizing therapeutic plans, avoiding unnecessary immunosuppression, and predicting relapse risk after kidney transplantation. Overall, a clinicopathological approach, enriched by genetic testing, offers a precise framework for diagnosis and management in glomerular diseases. Future directions for research and clinical practice include potential advancements in genetic testing and personalized medicine, which could further improve diagnostic precision and individualized treatment strategies.
Collapse
Affiliation(s)
- Roser Torra
- Nephrology Department, Fundació Puigvert, Institut de Recerca Sant Pau (IR-Sant Pau), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain. RICORS2040
| | - Xoana Barros
- Nephrology Department, Fundació Puigvert, Institut de Recerca Sant Pau (IR-Sant Pau), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain. RICORS2040
| | - Montserrat Díaz-Encarnación
- Nephrology Department, Fundació Puigvert, Institut de Recerca Sant Pau (IR-Sant Pau), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain. RICORS2040
| | - Leonor Fayos
- Nephrology Department, Fundació Puigvert, Institut de Recerca Sant Pau (IR-Sant Pau), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain. RICORS2040
| | - Mónica Furlano
- Nephrology Department, Fundació Puigvert, Institut de Recerca Sant Pau (IR-Sant Pau), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain. RICORS2040
| | - Melissa Pilco
- Nephrology Department, Fundació Puigvert, Institut de Recerca Sant Pau (IR-Sant Pau), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain. RICORS2040
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Institut de Recerca Sant Pau (IR-Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain. RICORS2040
| | - Amir Shabaka
- Nephrology Department, Hospital Universitario la Paz, Madrid, Spain. RICORS2040
| | - Elizabeth Viera
- Nephrology Department, Fundació Puigvert, Institut de Recerca Sant Pau (IR-Sant Pau), Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain. RICORS2040
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Institut de Recerca Sant Pau (IR-Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain. RICORS2040
| |
Collapse
|
3
|
Dong Y, Xu H, Tang D. Membranous Nephropathy Target Antigens Display Podocyte-Specific and Non-Specific Expression in Healthy Kidneys. Genes (Basel) 2025; 16:241. [PMID: 40149392 PMCID: PMC11942440 DOI: 10.3390/genes16030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Autoimmunity towards podocyte antigens causes membranous nephropathy (MN). Numerous MN target antigens (MNTAgs) have been reported, including PLA2R1, THSD7A, NTNG1, TGFBR3, HTRA1, NDNF, SEMA3B, FAT1, EXT1, CNTN1, NELL1, PCDH7, EXT2, PCSK6, and NCAM1, but their podocyte expression has not been thoroughly studied. METHODS We screened CZ CELLxGene single-cell RNA (scRNA) sequence datasets for those of adult, fetal, and mouse kidneys and analyzed the above MNTAgs' expression. RESULTS In adult kidneys, most MNTAgs are present in podocytes, except PCSK6 and NCAM1. PLA2R1 is expressed significantly more than other MNTAgs in podocytes and is a major podocyte marker, consistent with PLA2R1 as the dominant MNTAg. Additionally, PLA2R1 is a top-upregulated gene in the podocytes of chronic kidney disease, acute kidney injury, and diabetic nephropathy, indicating its general role in causing podocyte injury. PLA2R1, NTNG1, HTRA1, and NDNF display podocyte-enriched expression along with elevated chromatin accessibility in podocytes, suggesting transcription initiation contributing to their preference expression in podocytes. In the fetal kidney, most MNTAgs are expressed in podocytes. While PLA2R1 is weakly present in podocytes, SEMA3B is abundantly expressed in immature and mature podocytes, supporting SEMA3B as a childhood MNTAg. In mouse kidneys, Thsd7a is the only MNTAg with a prominent level and podocyte-specific expression. Conclusions: Most MNTAgs are present in podocytes in adults and during renal development. In adults, PLA2R1 expression is highly enriched in podocytes and significantly upregulated in multiple kidney diseases accompanied by proteinuria. In mouse kidneys, Thsd7a is specifically expressed in podocytes at an elevated level.
Collapse
Affiliation(s)
- Ying Dong
- Department of Surgery, McMaster University, Hamilton, ON L8S 1C7, Canada;
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Hui Xu
- The Division of Nephrology, Xiangya Hospital of the Central South University, Changsha 410008, China;
| | - Damu Tang
- Department of Surgery, McMaster University, Hamilton, ON L8S 1C7, Canada;
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
4
|
Stark Z, Byrne AB, Sampson MG, Lennon R, Mallett AJ. A guide to gene-disease relationships in nephrology. Nat Rev Nephrol 2025; 21:115-126. [PMID: 39443743 DOI: 10.1038/s41581-024-00900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The use of next-generation sequencing technologies such as exome and genome sequencing in research and clinical care has transformed our understanding of the molecular architecture of genetic kidney diseases. Although the capability to identify and rigorously assess genetic variants and their relationship to disease has advanced considerably in the past decade, the curation of clinically relevant relationships between genes and specific phenotypes has received less attention, despite it underpinning accurate interpretation of genomic tests. Here, we discuss the need to accurately define gene-disease relationships in nephrology and provide a framework for appraising genetic and experimental evidence critically. We describe existing international programmes that provide expert curation of gene-disease relationships and discuss sources of discrepancy as well as efforts at harmonization. Further, we highlight the need for alignment of disease and phenotype terminology to ensure robust and reproducible curation of knowledge. These collective efforts to support evidence-based translation of genomic sequencing into practice across clinical, diagnostic and research settings are crucial for delivering the promise of precision medicine in nephrology, providing more patients with timely diagnoses, accurate prognostic information and access to targeted treatments.
Collapse
Affiliation(s)
- Zornitza Stark
- ClinGen, Boston, MA, USA.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| | - Alicia B Byrne
- ClinGen, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Matthew G Sampson
- ClinGen, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics, Harvard Medical School, Boston, MA, USA
| | - Rachel Lennon
- ClinGen, Boston, MA, USA
- Wellcome Centre for Cell-Matrix Research, The University of Manchester, Manchester, UK
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew J Mallett
- ClinGen, Boston, MA, USA.
- Townsville Hospital and Health Service, Townsville, Queensland, Australia.
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Wamaitha SE, Rojas EJ, Monticolo F, Hsu FM, Sosa E, Mackie AM, Oyama K, Custer M, Murphy M, Laird DJ, Shu J, Hennebold JD, Clark AT. Defining the cell and molecular origins of the primate ovarian reserve. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634052. [PMID: 39896577 PMCID: PMC11785033 DOI: 10.1101/2025.01.21.634052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The primate ovarian reserve is established during late fetal development and consists of quiescent primordial follicles in the ovarian cortex, each composed of granulosa cells surrounding an oocyte in dictate. As late stages of fetal development are not routinely accessible for study with human tissue, we exploited the evolutionary proximity of the rhesus macaque to investigate primate follicle formation. Similar to human prenatal ovaries, the rhesus also develops multiple types of pre-granulosa (PG) cells, with the majority of primordial follicles derived from PG2 with small variable contributions from PG1. We observed that activated medullary follicles recruit fetal theca cells to establish a two-cell system for sex-steroid hormone production prior to birth, providing a cell-based explanation for mini puberty.
Collapse
Affiliation(s)
- Sissy E. Wamaitha
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Ernesto J. Rojas
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA 94143, United States
| | - Francesco Monticolo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
| | - Fei-man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Enrique Sosa
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Amanda M. Mackie
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
| | - Kiana Oyama
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
| | - Maggie Custer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
| | - Melinda Murphy
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA 94143, United States
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Jon D. Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center; Beaverton, OR 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University; Portland, OR 97239, USA
| | - Amander T. Clark
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute; University of California Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Sun Y, Liu S, Ding W, Zhu C, Jiang G, Li H. Recent Advances in miRNA Biomarkers for Diagnosis and Prognosis of Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2025; 11:283-291. [PMID: 40401151 PMCID: PMC12094685 DOI: 10.1159/000545240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 02/28/2025] [Indexed: 05/23/2025]
Abstract
Background Focal segmental glomerulosclerosis (FSGS) is an increasingly prevalent group of refractory glomerular diseases and a significant aetiology of end-stage renal disease. Podocyte injury and depletion significantly contribute to the pathogenesis and progression of FSGS. MicroRNAs (miRNAs) are noncoding RNAs that regulate the expression of specific genes in relevant cells, thereby playing crucial roles in the pathogenesis of FSGS. Many studies have shown that miRNAs can be secreted from cells into body fluids and that these miRNAs in the circulation are highly stable. The gold standard for FSGS diagnosis is kidney biopsy; however, the clinical heterogeneity of FSGS, along with variations in histology and nonspecific morphological features, can impact its diagnostic accuracy. Thus, the discovery of novel and efficacious biomarkers is crucial in facilitating the diagnosis of FSGS. In addition, the degree of kidney damage in patients with FSGS varies at different stages, necessitating individualized diagnosis and treatment approaches. Considering the side effects of glucocorticoids, determining whether a patient is steroid resistant is vital. Thus, ideal biomarkers should not only be specific and sensitive but also have the ability to accurately reflect the stage or prognosis of the disease to improve the treatment for patients. Summary To date, numerous studies have shown that both urinary miRNAs and plasma miRNAs are potential biomarkers for FSGS. In addition, the identification of miRNA biomarkers specific for the FSGS disease state may provide new insights into the underlying pathological mechanism of FSGS. Key Messages Here we summarize the currently available miRNA biomarkers that could help us better understand the diagnosis, disease activity, prognosis, and clinical features of FSGS.
Collapse
Affiliation(s)
- Yufei Sun
- Division of Nephrology, Department of Internal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Liu
- Division of Nephrology, Department of Internal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan Ding
- Division of Nephrology, Department of Internal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Zhu
- Department of Nephrology, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gengru Jiang
- Division of Nephrology, Department of Internal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Huilin Li
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
7
|
Liu PJ, Sayeeda K, Zhuang C, Krendel M. Roles of myosin 1e and the actin cytoskeleton in kidney functions and familial kidney disease. Cytoskeleton (Hoboken) 2024; 81:737-752. [PMID: 38708443 PMCID: PMC11538376 DOI: 10.1002/cm.21861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kazi Sayeeda
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cindy Zhuang
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
8
|
Schulz K, Hazelton-Cavill P, Alornyo KK, Edenhofer I, Lindenmeyer M, Lohr C, Huber TB, Denholm B, Koehler S. Piezo activity levels need to be tightly regulated to maintain normal morphology and function in pericardial nephrocytes. Sci Rep 2024; 14:28254. [PMID: 39548228 PMCID: PMC11568303 DOI: 10.1038/s41598-024-79352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Due to their position on glomerular capillaries, podocytes are continuously counteracting biomechanical filtration forces. Most therapeutic interventions known to generally slow or prevent the progression of chronic kidney disease appear to lower these biomechanical forces on podocytes, highlighting the critical need to better understand podocyte mechano-signalling pathways. Here we investigated whether the mechanotransducer Piezo is involved in a mechanosensation pathway in Drosophila nephrocytes, the podocyte homologue in the fly. Loss of function analysis in Piezo depleted nephrocytes reveal a severe morphological and functional phenotype. Further, pharmacological activation of endogenous Piezo with Yoda1 causes a significant increase of intracellular Ca++ upon exposure to a mechanical stimulus in nephrocytes, as well as filtration disturbances. Elevated Piezo expression levels also result in a severe nephrocyte phenotype. Interestingly, expression of Piezo which lacks mechanosensitive channel activity, does not result in a severe nephrocyte phenotype, suggesting the observed changes in Piezo wildtype overexpressing cells are caused by the mechanosensitive channel activity. Moreover, blocking Piezo activity using the tarantula toxin GsMTx4 reverses the phenotypes observed in nephrocytes overexpressing Piezo. Taken together, here we provide evidence that Piezo activity levels need to be tightly regulated to maintain normal pericardial nephrocyte morphology and function.
Collapse
Affiliation(s)
- Kristina Schulz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paris Hazelton-Cavill
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl K Alornyo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
9
|
Leblond AL, Helmchen B, Ankavay M, Lenggenhager D, Jetzer J, Helmchen F, Yurtsever H, Parrotta R, Healy ME, Pöschel A, Markkanen E, Semmo N, Ferrié M, Cocquerel L, Seeger H, Hopfer H, Müllhaupt B, Gouttenoire J, Moradpour D, Gaspert A, Weber A. HEV ORF2 protein-antibody complex deposits are associated with glomerulonephritis in hepatitis E with reduced immune status. Nat Commun 2024; 15:8849. [PMID: 39397005 PMCID: PMC11471813 DOI: 10.1038/s41467-024-53072-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Hepatitis E virus (HEV) infection, one of the most common forms of hepatitis worldwide, is often associated with extrahepatic, particularly renal, manifestations. However, the underlying mechanisms are incompletely understood. Here, we report the development of a de novo immune complex-mediated glomerulonephritis (GN) in a kidney transplant recipient with chronic hepatitis E. Applying immunostaining, electron microscopy, and mass spectrometry after laser-capture microdissection, we show that GN develops in parallel with increasing glomerular deposition of a non-infectious, genome-free and non-glycosylated HEV open reading frame 2 (ORF2) capsid protein. No productive HEV infection of kidney cells is detected. Patients with acute hepatitis E display similar but less pronounced deposits. Our results establish a link between the production of HEV ORF2 protein and the development of hepatitis E-associated GN in the immunocompromised state. The formation of glomerular IgG-HEV ORF2 immune complexes discovered here provides a potential mechanistic explanation of how the hepatotropic HEV can cause variable renal manifestations. These findings directly provide a tool for etiology-based diagnosis of hepatitis E-associated GN as a distinct entity and suggest therapeutic implications.
Collapse
Affiliation(s)
- Anne-Laure Leblond
- Department of Pathology and Molecular Pathology, University of Zurich (UZH) and University Hospital Zurich (USZ), Zurich, Switzerland
| | - Birgit Helmchen
- Department of Pathology and Molecular Pathology, University of Zurich (UZH) and University Hospital Zurich (USZ), Zurich, Switzerland
| | - Maliki Ankavay
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University of Zurich (UZH) and University Hospital Zurich (USZ), Zurich, Switzerland
| | - Jasna Jetzer
- Department of Pathology and Molecular Pathology, University of Zurich (UZH) and University Hospital Zurich (USZ), Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | | | - Rossella Parrotta
- Department of Pathology and Molecular Pathology, University of Zurich (UZH) and University Hospital Zurich (USZ), Zurich, Switzerland
| | - Marc E Healy
- Department of Pathology and Molecular Pathology, University of Zurich (UZH) and University Hospital Zurich (USZ), Zurich, Switzerland
| | - Amiskwia Pöschel
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich - Vetsuisse Faculty, Zürich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich - Vetsuisse Faculty, Zürich, Switzerland
| | - Nasser Semmo
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Ferrié
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Laurence Cocquerel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Harald Seeger
- Clinic of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Helmut Hopfer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Beat Müllhaupt
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University of Zurich (UZH) and University Hospital Zurich (USZ), Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University of Zurich (UZH) and University Hospital Zurich (USZ), Zurich, Switzerland.
- Institute of Molecular Cancer Research (IMCR), University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
10
|
Liu Y, Ge RL, Shan ZZ, Wang YJ, Yang YY, Sun X, Luo PL. Adriamycin-induced podocyte injury via the Sema3A/TRPC5/Rac1 pathway. Front Med (Lausanne) 2024; 11:1381479. [PMID: 39301490 PMCID: PMC11410697 DOI: 10.3389/fmed.2024.1381479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Podocytopathies encompass kidney diseases where direct or indirect podocyte injury leads to proteinuria or nephrotic syndrome. Although Semaphorin3A (Sema3A) is expressed in podocytes and tubular cells in adult mammalian kidneys and has a common effect on the progression of podocyte injury, its mechanism remains unclear. Previous studies have shown increased Sema3A expression in various glomerulopathies, indicating a gap in understanding its role. In this study, analysis of human data revealed a positive correlation between the levels of urinary Sema3A and Podocalyxin (PCX), suggesting a close relationship between Sema3A and podocyte loss. Furthermore, the impact of Adriamycin on podocytes was investigated. Adriamycin induced podocyte migration and apoptosis, along with an increase in Sema3A expression, all of which were ameliorated by the inhibition of Sema3A. Importantly, TRPC5 was found to increase the overexpression of Sema3A in podocytes. A TRPC5 inhibitor, AC1903, alleviated podocyte migration and apoptosis, inhibiting the formation of lamellar pseudopodia in the podocyte cytoskeleton by lowering the expression of Rac1. Furthermore, AC1903 relieved massive albuminuria and foot process effacement in the kidneys of Adriamycin-treated mice in vivo. In conclusion, our findings suggest that Sema3A may impact the cytoskeletal stability of podocytes through TRPC5 ion channels, mediated by Rac1, ultimately leading to foot process effacement. Notably, AC1903 demonstrates the potential to reverse Adriamycin-induced foot process fusion and urine protein. These results contribute to a deeper understanding of the mechanisms involved in podocytopathies and highlight the therapeutic potential of targeting the Sema3A-TRPC5 pathway.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| | - Ri-Li Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhen-Zhen Shan
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Yan-Jun Wang
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| | - Yan-Yan Yang
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| | - Xue Sun
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Peng-Li Luo
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Clinical Research Center for Chronic Kidney Disease in Qinghai Province, Xining, China
| |
Collapse
|
11
|
Finn LS. Nephrotic Syndrome Throughout Childhood: Diagnosing Podocytopathies From the Womb to the Dorm. Pediatr Dev Pathol 2024; 27:426-458. [PMID: 38745407 DOI: 10.1177/10935266241242669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The etiologies of podocyte dysfunction that lead to pediatric nephrotic syndrome (NS) are vast and vary with age at presentation. The discovery of numerous novel genetic podocytopathies and the evolution of diagnostic technologies has transformed the investigation of steroid-resistant NS while simultaneously promoting the replacement of traditional morphology-based disease classifications with a mechanistic approach. Podocytopathies associated with primary and secondary steroid-resistant NS manifest as diffuse mesangial sclerosis, minimal change disease, focal segmental glomerulosclerosis, and collapsing glomerulopathy. Molecular testing, once an ancillary option, has become a vital component of the clinical investigation and when paired with kidney biopsy findings, provides data that can optimize treatment and prognosis. This review focuses on the causes including selected monogenic defects, clinical phenotypes, histopathologic findings, and age-appropriate differential diagnoses of nephrotic syndrome in the pediatric population with an emphasis on podocytopathies.
Collapse
Affiliation(s)
- Laura S Finn
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at The University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
12
|
Vivante A. Genetics of Chronic Kidney Disease. N Engl J Med 2024; 391:627-639. [PMID: 39141855 DOI: 10.1056/nejmra2308577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Asaf Vivante
- From the Department of Pediatrics and the Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, and the Nephro-Genetics Clinic and Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel Hashomer, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - all in Israel
| |
Collapse
|
13
|
Le Berre L, Tilly G, Pilet P, Brouard S, Dantal J. The Immunosuppressive Drug LF15-0195 Acts Also on Glomerular Lesions, by a Change in Cytoskeleton Distribution in Podocyte. Am J Nephrol 2024; 55:583-596. [PMID: 39074452 DOI: 10.1159/000539965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Buffalo/Mna rats spontaneously develop nephrotic syndrome (NS) which recurs after renal transplantation. The immunosuppressive drug LF15-0195 can promote regression of the initial and post-transplantation nephropathy via induction of regulatory T cells. We investigate if this drug has an additional effect on the expression and localization of podocyte specific proteins. METHODS Buffalo/Mna kidney samples were collected before and after the occurrence of proteinuria, and after the remission of proteinuria induced by LF15-0195 treatment and compared by quantitative RT-PCR, Western blot, electron, and confocal microscopy to kidney samples of age-matched healthy rats. Cytoskeleton changes were assessed in culture by stress fibers induction by TNFα. RESULTS We observed, by electron microscopy, a restoration of foot process architecture in the LF15-0195-treated Buff/Mna kidneys, consistent with proteinuria remission. Nephrin, podocin, CD2AP, and α-actinin-4 mRNA levels remained low during the active disease in the Buff/Mna, in comparison with healthy rats which increase, while podocalyxin and synaptopodin transcripts were elevated before the occurrence of the disease but did not differ from healthy animals after. No difference in the mRNA and protein expression between the untreated and the LF15-0195-treated proteinuric Buff/Mna were seen for these 6 proteins. No changes were observed by confocal microscopy in the protein distribution at a cellular level, but a more homogenous distribution similar to healthy rats, was observed within the glomeruli of LF15-0195-treated rats. In addition, LF15-0195 could partially restore actin cytoskeleton of endothelial cells in TNFα-induced-cell stress experiment. CONCLUSION The effect of LF15-0195 treatment appears to be mediated by 2 mechanisms: an immunomodulatory effect via regulatory T cells induction, described in our previous work and which can act on immune cell involved in the disease pathogenesis, and an effect on the restoration of podocyte cytoskeleton, independent of expression levels of the proteins involved in the slit diaphragm and podocyte function, showed in this article.
Collapse
Affiliation(s)
- Ludmilla Le Berre
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| | - Gaëlle Tilly
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| | - Paul Pilet
- Regenerative Medicine and Skeleton, RMeS, UMR 1229, Oniris, Nantes Université, INSERM, Nantes, France
| | - Sophie Brouard
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| | - Jacques Dantal
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| |
Collapse
|
14
|
Tollaksen R, Craver RD, Yosypiv IV. Nephrotic Syndrome in a Child With NPHS2 Mutation. Pediatr Dev Pathol 2024; 27:359-363. [PMID: 38291869 DOI: 10.1177/10935266231223274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Steroid resistant nephrotic syndrome (SRNS) accounts for 30% of all cases of nephrotic syndrome (NS) in children and frequently leads to end stage kidney disease (ESKD). About 30% of children with SRNS demonstrate causative mutations in podocyte- associated genes. Early identification of genetic forms of SRNS is critical to avoid potentially harmful immunosuppressive therapy. A 2-year-old male patient with NS and no family history of renal disease did not respond to 4-week steroid treatment. Kidney biopsy demonstrated mesangial proliferative glomerulopathy with basement membrane dysmorphism. Tacrolimus and Lisinopril were added to therapy pending results of genetic testing. Kidney Gene panel showed a NPHS2 c.413G>A (p.Arg138Gln) homozygous pathogenic variant. This missense variant is considered a common pathogenic founder mutation in European populations. A diagnosis of autosomal-recessive form of nonsyndromic SRNS due to NPHS2 causative variant was made. Immunosuppresive therapy was stopped, Lizinopril dose was increased and weekly infusions of Albumin/furosemide were initiated to manage edema. This case demonstrates that early genetic testing in children with SRNS avoids prolonged potentially harmful immunosuppressive therapy, allows for timely genetic family counseling, and allows earlier consideration for future living related donor kidney transplantation.
Collapse
Affiliation(s)
- Ross Tollaksen
- Departments of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Randall D Craver
- Department of Pathology, LSU School of Medicine, New Orleans, LA, USA
| | - Ihor V Yosypiv
- Departments of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
15
|
Caparali EB, De Gregorio V, Barua M. Genetic Causes of Nephrotic Syndrome and Focal and Segmental Glomerulosclerosis. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:309-316. [PMID: 39084756 DOI: 10.1053/j.akdh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024]
Abstract
The field of nephrology has a long-standing interest in deciphering the genetic basis of nephrotic syndrome (NS), motivated by the mechanistic insights it provides in chronic kidney disease. The initial era of genetic studies solidified NS and the focal segmental glomerulosclerosis lesion as podocyte disorders. The likelihood of identifying a single gene (called monogenic) cause is higher if certain factors are present such as positive family history. Obtaining a monogenic diagnosis enables reproductive counseling and screening of family members. Now, with a new era of genomic studies facilitated by technological advances and the emergence of large genetically characterized cohorts, more insights are apparent. This includes the phenotypic breadth associated with disease genes, as evidenced in Alport syndrome and congenital NS of the Finnish type. Moreover, the underlying genetic architecture is more complex than previously appreciated, as shown by genome-wide association studies, suggesting that variants in multiple genes collectively influence risk. Achieving molecularly informed diagnoses also holds substantial potential for personalizing medicine, including the development of targeted therapeutics. Illustrative examples include coenzyme Q10 for ADCK4-associated NS and inaxaplin, a small molecule that inhibits apolipoprotein L1 channel activity, though larger studies are required to confirm benefit.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa De Gregorio
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Moumita Barua
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Tory K. The dominant findings of a recessive man: from Mendel's kid pea to kidney. Pediatr Nephrol 2024; 39:2049-2059. [PMID: 38051388 PMCID: PMC11147900 DOI: 10.1007/s00467-023-06238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
The research of Mendel, born two centuries ago, still has many direct implications for our everyday clinical work. He introduced the terms "dominant" and "recessive" characters and determined their 3:1 ratio in the offspring of heterozygous "hybrid" plants. This distribution allowed calculation of the number of the phenotype-determining "elements," i.e., the alleles, and has been used ever since to prove the monogenic origin of a disorder. The Mendelian inheritance of monogenic kidney disorders is still of great help in distinguishing them from those with multifactorial origin in clinical practice. Inheritance of most monogenic kidney disorders fits to Mendel's observations: the equal contribution of the two parents and the complete penetrance or the direct correlation between the frequency of the recessive character and the degree of inbreeding. Nevertheless, beyond the truth of these basic concepts, several observations have expanded their genetic characteristics. The extreme genetic heterogeneity, the pleiotropy of the causal genes and the role of modifiers in ciliopathies, the digenic inheritance and parental imprinting in some tubulopathies, and the incomplete penetrance and eventual interallelic interactions in podocytopathies, reflect this expansion. For all these reasons, the transmission pattern in a natural setting may depend not only on the "character" but also on the causal gene and the variant. Mendel's passion for research combined with his modest personality and meticulous approach can still serve as an example in the work required to understand the non-Mendelian universe of genetics.
Collapse
Affiliation(s)
- Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Hungarian Academy of Sciences, Budapest, Hungary.
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
Wiesner E, Binz-Lotter J, Hackl A, Unnersjö-Jess D, Rutkowski N, Benzing T, Hackl MJ. Correlative multiphoton-STED microscopy of podocyte calcium levels and slit diaphragm ultrastructure in the renal glomerulus. Sci Rep 2024; 14:13019. [PMID: 38844492 PMCID: PMC11156906 DOI: 10.1038/s41598-024-63507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
In recent years functional multiphoton (MP) imaging of vital mouse tissues and stimulation emission depletion (STED) imaging of optically cleared tissues allowed new insights into kidney biology. Here, we present a novel workflow where MP imaging of calcium signals can be combined with super-resolved STED imaging for morphological analysis of the slit diaphragm (SD) within the same glomerulus. Mice expressing the calcium indicator GCaMP3 in podocytes served as healthy controls or were challenged with two different doses of nephrotoxic serum (NTS). NTS induced glomerular damage in a dose dependent manner measured by shortening of SD length. In acute kidney slices (AKS) intracellular calcium levels increased upon disease but showed a high variation between glomeruli. We could not find a clear correlation between intracellular calcium levels and SD length in the same glomerulus. Remarkably, analysis of the SD morphology of glomeruli selected during MP calcium imaging revealed a higher percentage of completely disrupted SD architecture than estimated by STED imaging alone. Our novel co-imaging protocol is applicable to a broad range of research questions. It can be used with different tissues and is compatible with diverse reporters and target proteins.
Collapse
Affiliation(s)
- Eva Wiesner
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Agnes Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nelli Rutkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
18
|
Mitrotti A, Giliberti M, Di Leo V, di Bari I, Pontrelli P, Gesualdo L. Hidden genetics behind glomerular scars: an opportunity to understand the heterogeneity of focal segmental glomerulosclerosis? Pediatr Nephrol 2024; 39:1685-1707. [PMID: 37728640 PMCID: PMC11026212 DOI: 10.1007/s00467-023-06046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a complex disease which describes different kinds of kidney defects, not exclusively linked with podocyte defects. Since nephrin mutation was first described in association with early-onset nephrotic syndrome (NS), many advancements have been made in understanding genetic patterns associated with FSGS. New genetic causes of FSGS have been discovered, displaying unexpected genotypes, and recognizing possible site of damage. Many recent large-scale sequencing analyses on patients affected by idiopathic chronic kidney disease (CKD), kidney failure (KF) of unknown origin, or classified as FSGS, have revealed collagen alpha IV genes, as one of the most frequent sites of pathogenic mutations. Also, recent interest in complex and systemic lysosomal storage diseases, such as Fabry disease, has highlighted GLA mutations as possible causes of FSGS. Tubulointerstitial disease, recently classified by KDIGO based on genetic subtypes, when associated with UMOD variants, may phenotypically gain FSGS features, as well as ciliopathy genes or others, otherwise leading to completely different phenotypes, but found carrying pathogenic variants with associated FSGS phenotype. Thus, glomerulosclerosis may conceal different heterogeneous conditions. When a kidney biopsy is performed, the principal objective is to provide an accurate diagnosis. The broad spectrum of phenotypic expression and genetic complexity is demonstrating that a combined path of management needs to be applied. Genetic investigation should not be reserved only to selected cases, but rather part of medical management, integrating with clinical and renal pathology records. FSGS heterogeneity should be interpreted as an interesting opportunity to discover new pathways of CKD, requiring prompt genotype-phenotype correlation. In this review, we aim to highlight how FSGS represents a peculiar kidney condition, demanding multidisciplinary management, and in which genetic analysis may solve some otherwise unrevealed idiopathic cases. Unfortunately there is not a uniform correlation between specific mutations and FSGS morphological classes, as the same variants may be identified in familial cases or sporadic FSGS/NS or manifest a variable spectrum of the same disease. These non-specific features make diagnosis challenging. The complexity of FSGS genotypes requires new directions. Old morphological classification does not provide much information about the responsible cause of disease and misdiagnoses may expose patients to immunosuppressive therapy side effects, mistaken genetic counseling, and misguided kidney transplant programs.
Collapse
Affiliation(s)
- Adele Mitrotti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.
| | - Marica Giliberti
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Di Leo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Ighli di Bari
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Precision and Regenerative Medicine and Ionian Area, Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
19
|
Tseng MH, Lin SH, Fan WL, Wu TW, Lin SP, Ding JJ, Tsai IJ, Tsai JD. Phenotype, genotype, and clinical outcome of Taiwanese with congenital nephrotic syndrome. J Formos Med Assoc 2024; 123:647-654. [PMID: 37845138 DOI: 10.1016/j.jfma.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND/PURPOSE Congenital nephrotic syndrome (CNS) is one of the important causes of end-stage kidney disease in children. Studies on the genotype, phenotype, and clinical outcome in infants with CNS caused by genetic mutations are scarce. METHODS We analyzed the genetic background, clinical manifestations, treatment response, and prognosis of pediatric patients with CNS in Taiwan. RESULTS Fifteen infants with CNS were enrolled, and 11 patients of median age 21 (interquartile range 3∼44) days caused by genetic mutations from 10 unrelated families were included in the study. Of the eleven patients, 9 had extra-renal manifestations including microcephaly, facial dysmorphism, and skeletal anomalies. More than two-thirds of the patients had disease onset before 1 month of age. Diffuse meningeal sclerosis was the most common histological characteristic. Whole exome sequencing followed by direct Sanger sequence revealed mutations in OSGEP (R247Q), WT1 (R366H and R467Q), LAMB2 (Q1209∗ and c. 5432-5451 19 bp deletion), NUP93 (D302V), and LAGE3 (c.188+1G > A). Three of the variants were novel. Corticosteroids and/or immunosuppressants were administered in 2 patients, but both were refractory to treatment. During the mean 3.5 years of follow-up, all but two died of uremia and sepsis. The two survivors reached end-stage kidney disease and required peritoneal dialysis, and one of them underwent uneventful renal transplantation. CONCLUSION The majority of patients with CNS in Taiwan were caused by OSGEP followed by WT1 mutation. R247Q is the hotspot mutation of OSGEP in Taiwan. CNS patients in Taiwan suffer from significant morbidity and mortality.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ta-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, CA, USA; Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Shuan-Pei Lin
- Division of Pediatric Genetics, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Jhao-Jhuang Ding
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - I-Jung Tsai
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan.
| | - Jeng-Daw Tsai
- Division of Nephrology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
20
|
Liang L, He M, Zhou P, Pan S, Chen J, Lv L, Hu M, Zhou S, Liu D, Liu Z. c-Cbl induced podocin ubiquitination contributes to the podocytes injury in diabetic nephropathy. FASEB J 2024; 38:e23662. [PMID: 38752545 DOI: 10.1096/fj.202400356r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 07/16/2024]
Abstract
The ubiquitination function in diabetic nephropathy (DN) has attracted much attention, but there is a lack of information on its ubiquitylome profile. To examine the differences in protein content and ubiquitination in the kidney between db/db mice and db/m mice, we deployed liquid chromatography-mass spectrometry (LC-MS/MS) to conduct analysis. We determined 145 sites in 86 upregulated modified proteins and 66 sites in 49 downregulated modified proteins at the ubiquitinated level. Moreover, 347 sites among the 319 modified proteins were present only in the db/db mouse kidneys, while 213 sites among the 199 modified proteins were present only in the db/m mouse kidneys. The subcellular localization study indicated that the cytoplasm had the highest proportion of ubiquitinated proteins (31.87%), followed by the nucleus (30.24%) and the plasma membrane (20.33%). The enrichment analysis revealed that the ubiquitinated proteins are mostly linked to tight junctions, oxidative phosphorylation, and thermogenesis. Podocin, as a typical protein of slit diaphragm, whose loss is a crucial cause of proteinuria in DN. Consistent with the results of ubiquitination omics, the K261R mutant of podocin induced the weakest ubiquitination compared with the K301R and K370R mutants. As an E3 ligase, c-Cbl binds to podocin, and the regulation of c-Cbl can impact the ubiquitination of podocin. In conclusion, in DN, podocin ubiquitination contributes to podocyte injury, and K261R is the most significant site. c-Cbl participates in podocin ubiquitination and may be a direct target for preserving the integrity of the slit diaphragm structure, hence reducing proteinuria in DN.
Collapse
Affiliation(s)
- Lulu Liang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengfei He
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panpan Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingfang Chen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linxiao Lv
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingyang Hu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sijie Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Leroy C, Lang K, Spitz D, Milosavljevic J, Heinkele H, Kayser S, Helmstädter M, Walz G, Ulbrich MH, Hermle T. Linking Basement Membrane and Slit Diaphragm in Drosophila Nephrocytes. J Am Soc Nephrol 2024; 35:00001751-990000000-00329. [PMID: 38776165 PMCID: PMC11387032 DOI: 10.1681/asn.0000000000000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/17/2024] [Indexed: 05/24/2024] Open
Abstract
Key Points
Drosophila nephrocytes feature a special basement membrane that may serve to model joint function of the glomerular filtration barrier.Silencing of Drosophila laminin and collagen IV genes reduced the density of slit diaphragms in nephrocytes, showing a direct effect of the matrix.Matrix receptor silencing phenocopied basement membrane disruption, indicating that the matrix guides slit diaphragm position through matrix receptors.
Background
The glomerular basement membrane and the slit diaphragm are essential parts of the filtration barrier. How these layers collaborate remains unclear. The podocyte-like nephrocytes in Drosophila harbor both a slit diaphragm and a basement membrane, serving as a model to address this critical question.
Methods
Basement membrane components and matrix receptors were silenced using RNA interference in nephrocytes. Slit diaphragms were analyzed using immunofluorescence, followed by automated quantification. Tracer endocytosis was applied for functional readouts.
Results
Immunofluorescence indicated a significant reduction in slit diaphragm density upon loss of laminin and collagen IV components. This was accompanied by reduced expression of fly nephrin and shallower membrane invaginations. Tracer studies revealed that the basement membrane defines properties of the nephrocyte filtration barrier. Acute enzymatic disruption of the basement membrane via collagenase rapidly caused slit diaphragm mislocalization and disintegration, which was independent of cell death. Loss of matrix-interacting receptors, particularly integrins mys and mew, phenocopied basement membrane disruption. Integrins and nephrin colocalized at the slit diaphragm in nephrocytes in a mutually dependent manner, interacting genetically. Human integrin α3 interacted physically with nephrin.
Conclusions
The glomerular basement membrane model in Drosophila nephrocytes reveals that matrix receptor–mediated cues ensure correct positioning of the slit diaphragm and the overall filtration barrier architecture.
Collapse
Grants
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 â€" SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/6-1 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
Collapse
Affiliation(s)
- Claire Leroy
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Dominik Spitz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Helena Heinkele
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Séverine Kayser
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- EMcore, Renal Division, Department of Medicine, University Hospital Freiburg, University Faculty of Medicine, Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- EMcore, Renal Division, Department of Medicine, University Hospital Freiburg, University Faculty of Medicine, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Maximilian H Ulbrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Kachmar J, Boyer O, Lipska-Ziętkiewicz B, Morinière V, Gribouval O, Heidet L, Balasz-Chmielewska I, Benetti E, Cloarec S, Csaicsich D, Decramer S, Gellermann J, Guigonis V, Hogan J, Bayazit AK, Melk A, Nigmatullina N, Oh J, Ozaltin F, Ranchin B, Tsimaratos M, Trautmann A, Antignac C, Schaefer F, Dorval G. Steroid-Resistant Nephrotic Syndrome due to NPHS2 Variants Is Not Associated With Posttransplant Recurrence. Kidney Int Rep 2024; 9:973-981. [PMID: 38765578 PMCID: PMC11101709 DOI: 10.1016/j.ekir.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Unlike idiopathic nephrotic syndrome (NS), hereditary podocytopathies are not expected to recur after kidney transplantation. However, some reports of posttransplant recurrence of NS in patients carrying variants in the NPHS2 gene have been described, notably with the p.Arg138Gln variant, which is more prevalent in Europe. The objective of this study was to assess the risk of recurrence after kidney transplantation in a large cohort of patients with biallelic NPHS2 pathogenic variants. METHODS Since January 2010, 61 patients identified at Necker-Enfants Malades Hospital and 56 enrolled in the PodoNet Registry with biallelic variants in the NPHS2 gene were transplanted and were compared with 44 transplanted children with steroid-resistant NS (SRNS) without any identified pathogenic variant. RESULTS Of the 117 patients, 23 carried the p.Arg138Gln variant in the homozygous state and 16 in the compound heterozygous state. The other 78 patients carried different variants in the homozygous (n = 44) or compound heterozygous state. Only 1 patient with NPHS2-related SRNS experienced posttransplant recurrence (median follow-up of cohort 8.5 years [2.5-15]). Conversely, 7 of 44 patients (16%) without any identified pathogenic variant recurred within a maximum of 7 days after transplantation (median follow-up 8.9 years [0.6-13.9]). CONCLUSION In this large cohort, the risk of patients with causative variants in the NPHS2 gene to develop NS recurrence after kidney transplantation was extremely low. This is coherent with the pathophysiology of intrinsic slit-diaphragm disease. These data are reassuring and should be considered when counselling patients, making living kidney donation, whether related or not, a safe choice.
Collapse
Affiliation(s)
- Jessica Kachmar
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Imagine Institute for Genetic Diseases, Université Paris Cité, Paris, France
| | - Olivia Boyer
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Imagine Institute for Genetic Diseases, Université Paris Cité, Paris, France
- Service de néphrologie pédiatrique Centre de Référence MARHEA, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Beata Lipska-Ziętkiewicz
- Centre for Rare Diseases and Clinical Genetics Unit, Medical University of Gdansk, Gdansk, Poland
| | - Vincent Morinière
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Olivier Gribouval
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Imagine Institute for Genetic Diseases, Université Paris Cité, Paris, France
| | - Laurence Heidet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Imagine Institute for Genetic Diseases, Université Paris Cité, Paris, France
- Service de néphrologie pédiatrique Centre de Référence MARHEA, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| | - Irena Balasz-Chmielewska
- Department of Pediatrics, Nephrology and Hypertension, Medical University of Gdansk, Gdansk, Poland
| | - Elisa Benetti
- Pediatric Nephrology Unit, Padua University Hospital, Padua, Italy
| | - Sylvie Cloarec
- Service de Néphrologie-Hémodialyse pédiatrique, Centre de compétence Maladies Rénales Rares, CHRU Tours-Clocheville, Tours, France
| | - Dagmar Csaicsich
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Stéphane Decramer
- Pediatric Nephrology Unit, Toulouse University Hospital; Centre De Référence Des Maladies Rénales Rares du Sud-Ouest, SoRare; INSERM U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France
| | - Jutta Gellermann
- Klinik für Pädiatrie/Nephrologie, Charité Campus Virchox-Klinikum, Berlin, Germany
| | | | - Julien Hogan
- Pediatric Nephrology, Hôpital Universitaire Robert-Debré; Paris Translational Research Center for Organ Transplantation, Inserm UMR-S970, Université Paris Cité, Paris, France
| | | | - Anette Melk
- Children’s Hospital, Hannover Medical School, Hannover, Germany
| | - Nazym Nigmatullina
- National Research Center for Maternal and Child Heatlh, Astana, Kazakhstan
| | - Jun Oh
- Pediatric Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatih Ozaltin
- Department of Pediatric Nephrology, Hacettepe University, Faculty of Medicine, Sihhiye, Ankara, Türkiye
| | - Bruno Ranchin
- Pediatric Nephrology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Michel Tsimaratos
- Faculté de médecine de Marseille, Université de la Méditerranée, Marseille, France
| | - Agnes Trautmann
- Department of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, Germany
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Imagine Institute for Genetic Diseases, Université Paris Cité, Paris, France
| | - Franz Schaefer
- Department of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, Germany
| | - Guillaume Dorval
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Imagine Institute for Genetic Diseases, Université Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
23
|
Kuzmuk V, Pranke I, Rollason R, Butler M, Ding WY, Beesley M, Waters AM, Coward RJ, Sessions R, Tuffin J, Foster RR, Mollet G, Antignac C, Edelman A, Welsh GI, Saleem MA. A small molecule chaperone rescues keratin-8 mediated trafficking of misfolded podocin to correct genetic Nephrotic Syndrome. Kidney Int 2024; 105:744-758. [PMID: 37995908 DOI: 10.1016/j.kint.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Iwona Pranke
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Butler
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Wen Y Ding
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Beesley
- Department of Pathology, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | | | - Richard J Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jack Tuffin
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Géraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
24
|
Zhao M, Yin Y, Yang B, Chang M, Ma S, Shi X, Li Q, Li P, Zhang Y. Ameliorative effects of Modified Huangqi Chifeng decoction on podocyte injury via autophagy mediated by PI3K/AKT/mTOR and AMPK/mTOR pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117520. [PMID: 38042389 DOI: 10.1016/j.jep.2023.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Proteinuria is recognized as a risk factor for the exacerbation of chronic kidney disease. Modified Huangqi Chifeng decoction (MHCD) has distinct advantages in reducing proteinuria. Our previous experimental results have shown that MHCD can inhibit excessive autophagy. However, the specific mechanism by which MHCD regulates autophagy needs to be further explored. AIM OF THE STUDY In this study, in vivo and in vitro experiments were conducted to further clarify the protective mechanism of MHCD on the kidney and podocytes by regulating autophagy based on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK)/mTOR signaling pathways. MATERIALS AND METHODS By a single injection via the tail vein, Sprague-Dawley rats received Adriamycin (5 mg/kg) to establish a model of proteinuria nephropathy. They were divided into control, model, MHCD, 3-methyladenine (3 MA), 3 MA + MHCD, and telmisartan groups and were administered continuously for 6 weeks. The MHCD-containing serum was prepared, and a model of podocyte injury induced by Adriamycin (0.2 μg/mL) was established. RESULTS MHCD reduced the 24-h urine protein levels and relieved pathological kidney damage. During autophagy in the kidneys of rats with Adriamycin-induced nephropathy, the PI3K/AKT/mTOR signaling pathway is inhibited, while the AMPK/mTOR signaling pathway is activated. MHCD antagonized these effects, thereby inhibiting excessive autophagy. MHCD alleviated Adriamycin-induced podocyte autophagy, as demonstrated using Pik3r1 siRNA and an overexpression plasmid for Prkaa1/Prkaa2. Furthermore, MHCD could activate the PI3K/AKT/mTOR signaling pathway while suppressing the AMPK/mTOR signaling pathway. CONCLUSIONS This study demonstrated that MHCD can activate the interaction between the PI3K/AKT/mTOR and the AMPK/mTOR signaling pathways to maintain autophagy balance, inhibit excessive autophagy, and play a role in protecting the kidneys and podocytes.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yundong Yin
- Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Peng Li
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, Beijing, 100091, China.
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
25
|
Pantel D, Mertens ND, Schneider R, Hölzel S, Kari JA, Desoky SE, Shalaby MA, Lim TY, Sanna-Cherchi S, Shril S, Hildebrandt F. Copy number variation analysis in 138 families with steroid-resistant nephrotic syndrome identifies causal homozygous deletions in PLCE1 and NPHS2 in two families. Pediatr Nephrol 2024; 39:455-461. [PMID: 37670083 PMCID: PMC10979458 DOI: 10.1007/s00467-023-06134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of kidney failure in children and adults under the age of 20 years. Previously, we were able to detect by exome sequencing (ES) a known monogenic cause of SRNS in 25-30% of affected families. However, ES falls short of detecting copy number variants (CNV). Therefore, we hypothesized that causal CNVs could be detected in a large SRNS cohort. METHODS We performed genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on a cohort of 138 SRNS families, in whom we previously did not identify a genetic cause through ES. We evaluated ES and CNV data for variants in 60 known SRNS genes and in 13 genes in which variants are known to cause a phenocopy of SRNS. We applied previously published, predefined criteria for CNV evaluation. RESULTS We detected a novel CNV in two genes in 2 out of 138 families (1.5%). The 9,673 bp homozygous deletion in PLCE1 and the 6,790 bp homozygous deletion in NPHS2 were confirmed across the breakpoints by PCR and Sanger sequencing. CONCLUSIONS We confirmed that CNV analysis can identify the genetic cause in SRNS families that remained unsolved after ES. Though the rate of detected CNVs is minor, CNV analysis can be used when there are no other genetic causes identified. Causative CNVs are less common in SRNS than in other monogenic kidney diseases, such as congenital anomalies of the kidneys and urinary tract, where the detection rate was 5.3%. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Dalia Pantel
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Nils D Mertens
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Ronen Schneider
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Selina Hölzel
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jameela A Kari
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Nephrology Center of Excellence, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Sherif El Desoky
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Nephrology Center of Excellence, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohamed A Shalaby
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Nephrology Center of Excellence, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Butt L, Unnersjö-Jess D, Reilly D, Hahnfeldt R, Rinschen MM, Bozek K, Schermer B, Benzing T, Höhne M. In vivo characterization of a podocyte-expressed short podocin isoform. BMC Nephrol 2023; 24:378. [PMID: 38114895 PMCID: PMC10731740 DOI: 10.1186/s12882-023-03420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
The most common genetic causes of steroid-resistant nephrotic syndrome (SRNS) are mutations in the NPHS2 gene, which encodes the cholesterol-binding, lipid-raft associated protein podocin. Mass spectrometry and cDNA sequencing revealed the existence of a second shorter isoform in the human kidney in addition to the well-studied canonical full-length protein. Distinct subcellular localization of the shorter isoform that lacks part of the conserved PHB domain suggested a physiological role. Here, we analyzed whether this protein can substitute for the canonical full-length protein. The short isoform of podocin is not found in other organisms except humans. We therefore analysed a mouse line expressing the equivalent podocin isoform (podocinΔexon5) by CRISPR/Cas-mediated genome editing. We characterized the phenotype of these mice expressing podocinΔexon5 and used targeted mass spectrometry and qPCR to compare protein and mRNA levels of podocinwildtype and podocinΔexon5. After immunolabeling slit diaphragm components, STED microscopy was applied to visualize alterations of the podocytes' foot process morphology.Mice homozygous for podocinΔexon5 were born heavily albuminuric and did not survive past the first 24 h after birth. Targeted mass spectrometry revealed massively decreased protein levels of podocinΔexon5, whereas mRNA abundance was not different from the canonical form of podocin. STED microscopy revealed the complete absence of podocin at the podocytes' slit diaphragm and severe morphological alterations of podocyte foot processes. Mice heterozygous for podocinΔexon5 were phenotypically and morphologically unaffected despite decreased podocin and nephrin protein levels.The murine equivalent to the human short isoform of podocin cannot stabilize the lipid-protein complex at the podocyte slit diaphragm. Reduction of podocin levels at the site of the slit diaphragm complex has a detrimental effect on podocyte function and morphology. It is associated with decreased protein abundance of nephrin, the central component of the filtration-slit forming slit diaphragm protein complex.
Collapse
Grants
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- KFO 329, BR4917/3, INST 1856/71-1 FUGG Deutsche Forschungsgemeinschaft
- Project No: 2019_KollegSE.04 Else Kröner-Fresenius-Stiftung,Germany
- Project No: 2019_KollegSE.04 Eva Luise und Horst Köhler Stiftung
- NNF19OC0056043 Novo Nordisk Fonden
- Young Researcher Fellowship Carlsbergfondet
- 311-8.03.03.02-147635 North Rhine-Westphalia return program
- 01ZX1917B Bundesministerium für Bildung und Forschung
- BMBF 01-GM1901E Bundesministerium für Bildung und Forschung
- Universitätsklinikum Köln (8977)
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
- MedTechLabs, Karolinska University Hospital, Solna, Sweden
| | - Dervla Reilly
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
| | - Robert Hahnfeldt
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
| | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, University Hospital Cologne, CECAD Building, Joseph-Stelzmann-Str. 62, 50931, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine, University Hospital Cologne CECAD building Joseph-Stelzmann-Str. 62, Cologne, 50931, Germany.
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
27
|
Liu D, Song Y, Chen H, You Y, Zhu L, Zhang J, Xu X, Hu J, Huang X, Wu X, Xu X, Jiang S, Du Y. Anti-VEGFR2 F(ab') 2 drug conjugate promotes renal accumulation and glomerular repair in diabetic nephropathy. Nat Commun 2023; 14:8268. [PMID: 38092739 PMCID: PMC10719340 DOI: 10.1038/s41467-023-43847-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Poor renal distribution of antibody-based drugs is the key factor contributing to low treatment efficiency for renal diseases and side effects. Here, we prepare F(ab')2 fragmented vascular endothelial growth factor receptor 2 antibody (anti-VEGFR2 (F(ab')2) to block VEGFR2 overactivation in diabetic nephropathy (DN). We find that the anti-VEGFR2 F(ab')2 has a higher accumulation in DN male mice kidneys than the intact VEGFR2 antibody, and simultaneously preserves the binding ability to VEGFR2. Furthermore, we develop an antibody fragment drug conjugate, anti-VEGFR2 F(ab')2-SS31, comprising the anti-VEGFR2 F(ab')2 fragment linked to the mitochondria-targeted antioxidant peptide SS31. We find that introduction of SS31 potentiates the efficacy of anti-VEGFR2 F(ab')2. These findings provide proof of concept for the premise that antibody fragment drug conjugate improves renal distribution and merits drug validation in renal disease therapy.
Collapse
Affiliation(s)
- Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yanling Song
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Hui Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jucong Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xinyi Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiahao Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiajie Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiaochuan Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310015, Hangzhou, China.
| | - Saiping Jiang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, 321299, Jinhua, China.
| |
Collapse
|
28
|
Wang T, Li C, Wang X, Liu F. MAGI2 ameliorates podocyte apoptosis of diabetic kidney disease through communication with TGF-β-Smad3/nephrin pathway. FASEB J 2023; 37:e23305. [PMID: 37950637 DOI: 10.1096/fj.202301058r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Podocytes, the key component of the glomerular filtration barrier (GFB), are gradually lost during the progression of diabetic kidney disease (DKD), severely compromising kidney functionality. The molecular mechanisms regulating the survival of podocytes in DKD are incompletely understood. Here, we show that membrane-associated guanylate kinase inverted 2 (MAGI2) is specifically expressed in renal podocytes, and promotes podocyte survival in DKD. We found that MAGI2 expression was downregulated in podocytes cultured with high-glucose in vitro, and in kidneys of db/db mice as well as DKD patients. Conversely, we found enforced expression of MAGI2 via AAV transduction protected podocytes from apoptosis, with concomitant improvement of renal functions. Mechanistically, we found that MAGI2 deficiency induced by high glucose levels activates TGF-β signaling to decrease the expression of anti-apoptotic proteins. These results indicate that MAGI2 protects podocytes from cell death, and can be harnessed therapeutically to improve renal function in diabetic kidney disease.
Collapse
Affiliation(s)
- Tingli Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Lizotte F, Rousseau M, Denhez B, Lévesque D, Guay A, Liu H, Moreau J, Higgins S, Sabbagh R, Susztak K, Boisvert FM, Côté AM, Geraldes P. Deletion of protein tyrosine phosphatase SHP-1 restores SUMOylation of podocin and reverses the progression of diabetic kidney disease. Kidney Int 2023; 104:787-802. [PMID: 37507049 DOI: 10.1016/j.kint.2023.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/03/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Both clinical and experimental data suggest that podocyte injury is involved in the onset and progression of diabetic kidney disease (DKD). Although the mechanisms underlying the development of podocyte loss are not completely understood, critical structural proteins such as podocin play a major role in podocyte survival and function. We have reported that the protein tyrosine phosphatase SHP-1 expression increased in podocytes of diabetic mice and glomeruli of patients with diabetes. However, the in vivo contribution of SHP-1 in podocytes is unknown. Conditional podocyte-specific SHP-1-deficient mice (Podo-SHP-1-/-) were generated to evaluate the impact of SHP-1 deletion at four weeks of age (early) prior to the onset of diabetes and after 20 weeks (late) of diabetes (DM; Ins2+/C96Y) on kidney function (albuminuria and glomerular filtration rate) and kidney pathology. Ablation of the SHP-1 gene specifically in podocytes prevented and even reversed the elevated albumin/creatinine ratio, glomerular filtration rate progression, mesangial cell expansion, glomerular hypertrophy, glomerular basement membrane thickening and podocyte foot process effacement induced by diabetes. Moreover, podocyte-specific deletion of SHP-1 at an early and late stage prevented diabetes-induced expression of collagen IV, fibronectin, transforming growth factor-β, transforming protein RhoA, and serine/threonine kinase ROCK1, whereas it restored nephrin, podocin and cation channel TRPC6 expression. Mass spectrometry analysis revealed that SHP-1 reduced SUMO2 post-translational modification of podocin while podocyte-specific deletion of SHP-1 preserved slit diaphragm protein complexes in the diabetic context. Thus, our data uncovered a new role of SHP-1 in the regulation of cytoskeleton dynamics and slit diaphragm protein expression/stability, and its inhibition preserved podocyte function preventing DKD progression.
Collapse
Affiliation(s)
- Farah Lizotte
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marina Rousseau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoit Denhez
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andréanne Guay
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - HongBo Liu
- Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie Moreau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sarah Higgins
- Division of Nephrology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Robert Sabbagh
- Department of Surgery, Université de Sherbrooke, Québec, Canada
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Anne Marie Côté
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Nephrology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
30
|
Shams S, Lubbad LI, Simjee SU, Jabeen A. N-(2-hydroxy phenyl) acetamide ameliorate inflammation and doxorubicin-induced nephrotoxicity in rats. Int Immunopharmacol 2023; 123:110741. [PMID: 37572504 DOI: 10.1016/j.intimp.2023.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Doxorubicin (DOX) is an anthracyclin antibiotic used for the treatment of various cancers. Nephrotoxicity is among the serious side effects of DOX, therefore, DOX-induced nephrotoxic model has been widely used to study nephropathies. The objectives of this study is to investigate the possible anti-inflammatory and nephroprotective effects of salicylic acid derivative, N-(2-hydroxy phenyl) acetamide (NA-2), in a rat model of DOX-induced nephrotoxicity. The in vitro anti-inflammatory potential of NA-2 was manifested by whole blood oxidative burst and nitric oxide (NO) assays with no toxicity on normal human fibroblast (BJ) cells, human embryonic kidney (HEK-293) cells, and normal monkey kidney epithelial (Vero) cells. The in vivo study included five groups: Normal control, DOX (6 mg/kg DOX-i.v.via tail vein), NA-2 treated control-i.p., NA-2/DOX treated-i.p., and prednisolone/DOX treated. After 7 days of DOX administration, rats with urinary protein level of >50 mg/kg/day were selected. Treatment group rats received i.p. doses of NA-2 (10 mg/kg/day) for 3 weeks with weekly monitoring of urinary protein excretion and body weights. mRNA expression of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, and kidney injury molecule (KIM)-1 was analyzed by quantitative polymerase chain reaction (qPCR). Protein expressions were analyzed by immunohistochemistry. NA-2 attenuated DOX-induced changes in serum and urine levels, and improved inflammatory profile of the renal tissue. Histopathological findings revealed protective effects of NA-2 showing lesser lesions. We conclude that NA-2 is able to protect against DOX-induced renal damage functionally, biochemically and histopathologically with corresponding improvement in the kidney inflammatory profile.
Collapse
Affiliation(s)
- Sidrah Shams
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Shabana U Simjee
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
31
|
Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, Gear S, Gross O, Hoefele J, Lennon R, Miner JH, Renieri A, Savige J, Turner AN. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel) 2023; 14:1686. [PMID: 37761826 PMCID: PMC10530214 DOI: 10.3390/genes14091686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.
Collapse
Affiliation(s)
- Constantinos Deltas
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Gregory Papagregoriou
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Stavroula F. Louka
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Apostolos Malatras
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Frances Flinter
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | | | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine & Health, Technical University Munich, 81675 Munich, Germany
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9WU, UK
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC 3052, Australia
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
32
|
Ding WY, Kuzmuk V, Hunter S, Lay A, Hayes B, Beesley M, Rollason R, Hurcombe JA, Barrington F, Masson C, Cathery W, May C, Tuffin J, Roberts T, Mollet G, Chu CJ, McIntosh J, Coward RJ, Antignac C, Nathwani A, Welsh GI, Saleem MA. Adeno-associated virus gene therapy prevents progression of kidney disease in genetic models of nephrotic syndrome. Sci Transl Med 2023; 15:eabc8226. [PMID: 37556557 DOI: 10.1126/scitranslmed.abc8226] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.
Collapse
Affiliation(s)
- Wen Y Ding
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Sarah Hunter
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Abigail Lay
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Bryony Hayes
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Matthew Beesley
- Department of Histopathology, Cheltenham General Hospital, Cheltenham GL53 7AN, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jennifer A Hurcombe
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Fern Barrington
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Catrin Masson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - William Cathery
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jack Tuffin
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Timothy Roberts
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Geraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Colin J Chu
- Academic Unit of Ophthalmology, Bristol Medical School, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jenny McIntosh
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Amit Nathwani
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| |
Collapse
|
33
|
Williams AE, Esezobor CI, Lane BM, Gbadegesin RA. Hiding in plain sight: genetics of childhood steroid-resistant nephrotic syndrome in Sub-Saharan Africa. Pediatr Nephrol 2023; 38:2003-2012. [PMID: 36459247 PMCID: PMC10416081 DOI: 10.1007/s00467-022-05831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is the most severe form of childhood nephrotic syndrome with an increased risk of progression to chronic kidney disease stage 5. Research endeavors to date have identified more than 80 genes that are associated with SRNS. Most of these genes regulate the structure and function of the podocyte, the visceral epithelial cells of the glomerulus. Although individuals of African ancestry have the highest prevalence of SRNS, especially those from Sub-Saharan Africa (SSA), with rates as high as 30-40% of all cases of nephrotic syndrome, studies focusing on the characterization and understanding of the genetic basis of SRNS in the region are negligible compared with Europe and North America. Therefore, it remains unclear if some of the variants in SRNS genes that are deemed pathogenic for SRNS are truly disease causing, and if the leading causes of monogenic nephrotic syndrome in other populations are the same for children in SSA with SRNS. Other implications of this lack of genetic data for SRNS in the region include the exclusion of children from the region from clinical trials aimed at identifying potential novel therapeutic agents for this severe form of nephrotic syndrome. This review underlines a need for concerted efforts to advance the genetic basis of SRNS in children in SSA. Such endeavors will complement global efforts at understanding the genetic basis of nephrotic syndrome.
Collapse
Affiliation(s)
- Anna Elizabeth Williams
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher I Esezobor
- Department of Pediatrics, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Brandon M Lane
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Rasheed A Gbadegesin
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
34
|
Gerlach GF, Imseis ZH, Cooper SL, Santos AN, O’Brien LL. Mapping of the podocin proximity-dependent proteome reveals novel components of the kidney podocyte foot process. Front Cell Dev Biol 2023; 11:1195037. [PMID: 37325559 PMCID: PMC10262054 DOI: 10.3389/fcell.2023.1195037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The unique architecture of glomerular podocytes is integral to kidney filtration. Interdigitating foot processes extend from the podocyte cell body, wrap around fenestrated capillaries, and form specialized junctional complexes termed slit diaphragms to create a molecular sieve. However, the full complement of proteins which maintain foot process integrity, and how this localized proteome changes with disease, remain to be elucidated. Methods: Proximity-dependent biotin identification (BioID) enables the identification of spatially localized proteomes. To this end, we developed a novel in vivo BioID knock-in mouse model. We utilized the slit diaphragm protein podocin (Nphs2) to create a podocin-BioID fusion. Podocin-BioID localizes to the slit diaphragm, and biotin injection leads to podocyte-specific protein biotinylation. We isolated the biotinylated proteins and performed mass spectrometry to identify proximal interactors. Results and Discussion: Gene ontology analysis of 54 proteins specifically enriched in our podocin-BioID sample revealed 'cell junctions,' 'actin binding,' and 'cytoskeleton organization' as top terms. Known foot process components were identified, and we further uncovered two novel proteins: the tricellular junctional protein Ildr2 and the CDC42 and N-WASP interactor Fnbp1l. We confirmed that Ildr2 and Fnbp1l are expressed by podocytes and partially colocalize with podocin. Finally, we investigated how this proteome changes with age and uncovered a significant increase in Ildr2. This was confirmed by immunofluorescence on human kidney samples and suggests altered junctional composition may preserve podocyte integrity. Together, these assays have led to new insights into podocyte biology and support the efficacy of utilizing BioID in vivo to interrogate spatially localized proteomes in health, aging, and disease.
Collapse
Affiliation(s)
| | | | | | | | - Lori L. O’Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
35
|
Huang SUS, Kulatunge O, O'Sullivan KM. Deciphering the Genetic Code of Autoimmune Kidney Diseases. Genes (Basel) 2023; 14:genes14051028. [PMID: 37239388 DOI: 10.3390/genes14051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmune kidney diseases occur due to the loss of tolerance to self-antigens, resulting in inflammation and pathological damage to the kidneys. This review focuses on the known genetic associations of the major autoimmune kidney diseases that result in the development of glomerulonephritis: lupus nephritis (LN), anti-neutrophil cytoplasmic associated vasculitis (AAV), anti-glomerular basement disease (also known as Goodpasture's disease), IgA nephropathy (IgAN), and membranous nephritis (MN). Genetic associations with an increased risk of disease are not only associated with polymorphisms in the human leukocyte antigen (HLA) II region, which governs underlying processes in the development of autoimmunity, but are also associated with genes regulating inflammation, such as NFkB, IRF4, and FC γ receptors (FCGR). Critical genome-wide association studies are discussed both to reveal similarities in gene polymorphisms between autoimmune kidney diseases and to explicate differential risks in different ethnicities. Lastly, we review the role of neutrophil extracellular traps, critical inducers of inflammation in LN, AAV, and anti-GBM disease, where inefficient clearance due to polymorphisms in DNase I and genes that regulate neutrophil extracellular trap production are associated with autoimmune kidney diseases.
Collapse
Affiliation(s)
- Stephanie U-Shane Huang
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| | - Oneli Kulatunge
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| | - Kim Maree O'Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
36
|
Zhang L, Chen Z, Gao Q, Liu G, Zheng J, Ding F. Preterm birth leads to a decreased number of differentiated podocytes and accelerated podocyte differentiation. Front Cell Dev Biol 2023; 11:1142929. [PMID: 36936687 PMCID: PMC10018169 DOI: 10.3389/fcell.2023.1142929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Preterm birth was previously identified as a high-risk factor for the long-term development of chronic kidney disease. However, the detailed pattern of podocyte (PD) changes caused by preterm birth and the potential mechanism underlying this process have not been well clarified. In present study, a rat model of preterm birth was established by delivery of pups 2 days early and podometric methods were applied to identify the changes in PDs number caused by preterm birth. In addition, single-cell RNA sequencing (scRNA-seq) and subsequent bioinformatic analysis were performed in the preterm rat kidney to explore the possible mechanism caused by preterm birth. As results, when the kidney completely finished nephrogenesis at the age of 3 weeks, a reduction in the total number of differentiated PDs in kidney sections was detected. In addition, 20 distinct clusters and 12 different cell types were identified after scRNA-seq in preterm rats (postnatal day 2) and full-term rats (postnatal day 0). The numbers of PDs and most types of inherent kidney cells were decreased in the preterm birth model. In addition, 177 genes were upregulated while 82 genes were downregulated in the PDs of full-term rats compared with those of preterm rats. Further functional GO analysis revealed that ribosome-related genes were enriched in PDs from full-term rats, and kidney development-related genes were enriched in PDs from preterm rats. Moreover, known PD-specific and PD precursor genes were highly expressed in PDs from preterm rats, and pseudotemporal analysis showed that PDs were present earlier in preterm rats than in full-term rats. In conclusion, the present study showed that preterm birth could cause a reduction in the number of differentiated PDs and accelerate the differentiation of PDs.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Zhihui Chen
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Qi Gao
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Ge Liu
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Jun Zheng
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Fangrui Ding
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| |
Collapse
|
37
|
Hureaux M, Heidet L, Vargas-Poussou R, Dorval G. [Major advances in pediatric nephro-genetics]. Med Sci (Paris) 2023; 39:234-245. [PMID: 36943120 DOI: 10.1051/medsci/2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The rise of genetics in the last decades has allowed major advances in the understanding of the mechanisms leading to inherited kidney diseases. From the first positional cloning studies to the advent of high-throughput sequencing (NGS), genome analysis technologies have become increasingly efficient, with an extraordinary level of resolution. Moreover, sequencing prices have decreased from one million dollars for the sequencing of James Watson's genome in 2008, to a few hundred dollars for the sequencing of a genome today. Thus, molecular diagnosis has a central place in the diagnosis of these patients and influences the therapeutic management in many situations. However, although NGS is a powerful tool for the identification of variants involved in diseases, it also exposes to the risk of over-interpretation of certain variants, leading to erroneous diagnoses, requiring the use of specialists. In this review, we first propose a brief retrospective of the essential steps that led to the current knowledge and the development of NGS for the study of hereditary nephropathies in children. This review is then an opportunity to present the main hereditary nephropathies and the underlying molecular mechanisms. Among them, we emphasize ciliopathies, congenital anomalies of the kidney and urinary tract, podocytopathies and tubulopathies.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Inserm U970, Paris CardioVascular Research Center, université Paris Cité, faculté de médecine, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France
| | - Laurence Heidet
- Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - Service de néphrologie pédiatrique, AP-HP, université Paris Cité, France - CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne université, université Paris Cité, France
| | - Rosa Vargas-Poussou
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne université, université Paris Cité, France
| | - Guillaume Dorval
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - Inserm U1163, Laboratoire des maladies rénales héréditaires, institut Imagine, université Paris Cité, France
| |
Collapse
|
38
|
Dirix M, Gribouval O, Arrondel C, Benjelloun S, Boyer O, Charbit M, Antignac C, Heidet L, Dorval G. Overcoming the challenges associated with identification of deep intronic variants by whole genome sequencing. Clin Genet 2023; 103:693-698. [PMID: 36705481 DOI: 10.1111/cge.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Whole-genome sequencing (WGS) now allows identification of multiple variants in non-coding regions. The large number of variants identified by WGS however complicates their interpretation. Through identification of the first deep intronic variant in NPHS2, which encodes podocin, a protein implicated in autosomal recessive steroid resistant nephrotic syndrome (SRNS), we compare herein three different tools including a newly developed targeted NGS-based RNA-sequencing to explore the splicing effect of intronic variations. WGS identified two different variants in NPHS2 eventually involved in the disease. Through RT-PCR, exon-trapping Minigene assay and targeted RNA sequencing, we were able to identify the splicing defect in NPHS2 mRNA from patient kidney tissue. Only targeted RNA-seq simultaneously analyzed the effect of multiple variants and offered the opportunity to quantify consequences on splicing. Identifying deep intronic variants and their role in disease is of utmost importance. Alternative splicing can be predicted by in silico tools but always requires confirmation through functional testing with RNA analysis from the implicated tissue remaining the gold standard. When several variants with potential effects on splicing are identified by WGS, a targeted RNA sequencing panel could be of great value.
Collapse
Affiliation(s)
- Marie Dirix
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris-Cité, France
| | - Olivier Gribouval
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris-Cité, France
| | - Christelle Arrondel
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris-Cité, France
| | | | - Olivia Boyer
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris-Cité, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte MARHEA, Hôpital Necker-Enfants Malades, Paris, France
| | - Marina Charbit
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte MARHEA, Hôpital Necker-Enfants Malades, Paris, France
| | - Corinne Antignac
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris-Cité, France.,Service de Médecine Génomique des Maladies Rares, APHP, Université Paris-Cité, France
| | - Laurence Heidet
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris-Cité, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte MARHEA, Hôpital Necker-Enfants Malades, Paris, France
| | - Guillaume Dorval
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, Institut Imagine, Université Paris-Cité, France.,Service de Médecine Génomique des Maladies Rares, APHP, Université Paris-Cité, France
| |
Collapse
|
39
|
Tian P, Lennon R. Pinpointing Podocin Trafficking Defects in Kidney Organoids. J Am Soc Nephrol 2023; 34:2-4. [PMID: 36719143 PMCID: PMC10101581 DOI: 10.1681/asn.0000000000000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
40
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
41
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
42
|
Dryer SE, Kim EY. The Effects of TRPC6 Knockout in Animal Models of Kidney Disease. Biomolecules 2022; 12:1710. [PMID: 36421724 PMCID: PMC9687984 DOI: 10.3390/biom12111710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2023] Open
Abstract
Diseases that induce a loss of renal function affect a substantial portion of the world's population and can range from a slight decline in the glomerular filtration rate or microalbuminuria to complete kidney failure. Kidney disorders can be acute or chronic, but any significant reduction in renal function is associated with increased all-cause morbidity and mortality, especially when the conditions become chronic. There is an urgent need for new therapeutic approaches to slow or halt the progression of kidney disease. One potential target of considerable interest is the canonical transient receptor potential-6 (TRPC6) channel. TRCP6 is a cationic channel with a significant permeability to Ca2+. It is expressed in several tissues, including in multiple cell types of the kidney in glomeruli, microvasculature, and tubules. Here, we will describe TRPC6 channels and their roles in signal transduction, with an emphasis on renal cells, and the studies implicating TRPC6 channels in the progression of inherited and acquired kidney diseases. We then describe studies using TRPC6 knockout mice and rats subjected to treatments that model human diseases, including nephrotic syndromes, diabetic nephropathy, autoimmune glomerulonephritis, and acute kidney injuries induced by renal ischemia and by obstruction of the urinary tract. TRPC6 knockout has been shown to reduce glomerular manifestations of disease in several of these models and reduces renal fibrosis caused by urinary tract obstruction. TRPC6 knockout has proven to be less effective at reducing diabetic nephropathy in mouse and rat models. We also summarize the implications of these studies for drug development.
Collapse
Affiliation(s)
- Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204-5001, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
43
|
Cirillo L, Lugli G, Raglianti V, Ravaglia F, Buti E, Landini S, Becherucci F. Defining diagnostic trajectories in patients with podocytopathies. Clin Kidney J 2022; 15:2006-2019. [PMID: 36325008 PMCID: PMC9613436 DOI: 10.1093/ckj/sfac123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
Podocytopathies are glomerular disorders in which podocyte injury drives proteinuria and progressive kidney disease. They encompass a broad spectrum of aetiologies, resulting in pathological pictures of minimal-changes, focal segmental glomerulosclerosis, diffuse mesangial sclerosis or collapsing glomerulopathy. Despite improvement in classifying podocytopathies as a distinct group of disorders, the histological definition fails to capture the relevant biological heterogeneity underlying each case, manifesting as extensive variability in disease progression and response to therapies. Increasing evidence suggests that podocytopathies can result from a single causative factor or a combination of multiple genetic and/or environmental risk factors with different relative contributions, identifying complex physiopathological mechanisms. Consequently, the diagnosis can still be challenging. In recent years, significant advances in genetic, microscopy and biological techniques revolutionized our understanding of the molecular mechanisms underlying podocytopathies, pushing nephrologists to integrate innovative information with more conventional data obtained from kidney biopsy in the diagnostic workflow. In this review, we will summarize current approaches in the diagnosis of podocytopathies, focusing on strategies aimed at elucidating the aetiology underlying the histological picture. We will provide several examples of an integrative view of traditional concepts and new data in patients with suspected podocytopathies, along with a perspective on how a reclassification could help to improve not only diagnostic pathways and therapeutic strategies, but also the management of disease recurrence after kidney transplantation. In the future, the advantages of precision medicine will probably allow diagnostic trajectories to be increasingly focused, maximizing therapeutic results and long-term prognosis.
Collapse
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences ‘Mario Serio’, University of Florence, Florence, Italy
| | - Gianmarco Lugli
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences ‘Mario Serio’, University of Florence, Florence, Italy
| | | | | | - Elisa Buti
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's Hospital, Florence, Italy
| | | |
Collapse
|
44
|
Muacevic A, Adler JR, Hamaz S, Belefqih I, Malki S, Bennani A, Alaoui H, Serraj K. Focal Segmental Glomerulosclerosis Followed by Granuloma and Preceding T-Cell Lymphoma by 46 Months: A Continuation Process or Coincidence. Cureus 2022; 14:e31847. [PMID: 36579279 PMCID: PMC9792300 DOI: 10.7759/cureus.31847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
Focal segmental glomerulosclerosis is a severe renal disease with a complex and unclear pathophysiology. Nephrotic syndrome is the clinical presentation of this renal disease. The recurrence of the disease after renal transplantation and the remission obtained after immune-adsorption treatment illustrate the implication of a circulating factor that requires characterization. Granulomatous inflammation is a tissue reaction caused by several conditions, including neoplastic diseases. In the literature, focal segmental glomerulosclerosis and granulomatous inflammation have both been associated with lymphoma. We report the case of a 56-year-old woman who initially developed focal and segmental glomerulosclerosis. After one year, the granulomatous inflammation was treated as tuberculosis infection and then as sarcoidosis. Finally, after another year, non-specified peripheral T-cell lymphoma was diagnosed.
Collapse
|
45
|
Zuzda K, Grycuk W, Małyszko J, Małyszko J. Kidney and lipids: novel potential therapeutic targets for dyslipidemia in kidney disease? Expert Opin Ther Targets 2022; 26:995-1009. [PMID: 36548906 DOI: 10.1080/14728222.2022.2161887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Altered lipid distribution and metabolism may lead to the development and/or progression of chronic kidney disease (CKD). Dyslipidemia is a major risk factor for CKD and increases the risk of cardiovascular events and mortality. Therefore, lipid-lowering treatments may decrease cardiovascular risk and prevent death. AREAS COVERED Key players involved in regulating lipid accumulation in the kidney; contribution of lipids to CKD progression, lipotoxicity, and mitochondrial dysfunction in kidney disease; recent therapeutic approaches for dyslipidemia. EXPERT OPINION The precise mechanisms for regulating lipid metabolism, particularly in kidney disease, are poorly understood. Guidelines for lipid-lowering therapy for CKD are controversial. Several hypolipemic therapies are available, but compared to others, statin therapy is the most common. No clinical trial has evaluated the efficacy of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) in preventing cardiovascular events or improving kidney function among patients with CKD or kidney transplant recipients. Attractive alternatives, such as PCSK9-small interfering RNA (siRNA) molecules or evinacumab are available. Additionally, several promising agents, such as cyclodextrins and the FXR/TGR5 dual agonist, INT-767, can improve renal lipid metabolism disorders and delay CKD progression. Drugs targeting mitochondrial dysfunction could be an option for the treatment of dyslipidemia and lipotoxicity, particularly in renal diseases.
Collapse
Affiliation(s)
- Konrad Zuzda
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| | - Wiktoria Grycuk
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| | - Jacek Małyszko
- 1st Department of Nephrology and Transplantology, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| |
Collapse
|
46
|
A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nat Commun 2022; 13:6446. [PMID: 36307401 PMCID: PMC9616960 DOI: 10.1038/s41467-022-33748-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins. The network constituents cover distinct classes of proteins including signaling-receptors, kinases/phosphatases, transporters and scaffolds. Knockout or knock-down of either the core components or the selected network constituents tyrosine kinase MER (MERTK), atrial natriuretic peptide-receptor C (ANPRC), integral membrane protein 2B (ITM2B), membrane-associated guanylate-kinase, WW and PDZ-domain-containing protein1 (MAGI1) and amyloid protein A4 resulted in target-specific impairment or disruption of the filtration process. Our results identify the slit-diaphragm as a multi-component system that is endowed with context-dependent dynamics via a co-assembled protein network.
Collapse
|
47
|
Nandlal L, Winkler CA, Bhimma R, Cho S, Nelson GW, Haripershad S, Naicker T. Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa. Eur J Pediatr 2022; 181:3595-3606. [PMID: 35920919 PMCID: PMC10673688 DOI: 10.1007/s00431-022-04581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
There is a paucity of data identifying genetic mutations that account for the high rate of steroid-resistant nephrotic syndrome (SRNS) in a South African paediatric population. The aim was to identify causal mutations in genes implicated in SRNS within a South African paediatric population. We enrolled 118 children with primary nephrotic syndrome (NS), 70 SRNS and 48 steroid-sensitive NS. All children with SRNS underwent kidney biopsy. We first genotyped the NPHS2 gene for the p.V260E variant in all NS cases (n = 118) and controls (n = 219). To further identify additional variants, we performed whole-exome sequencing and interrogated ten genes (NPHS1, NPHS2, WT1, LAMB2, ACTN4, TRPC6, INF2, CD2AP, PLCE1, MYO1E) implicated in SRNS with histopathological features of focal segmental glomerulosclerosis (FSGS) in 56 SRNS cases and 29 controls; we also performed exome sequencing on two patients carrying the NPHS2 p.V260E mutation as positive controls. The overall detection rate of causal and putative pathogenic mutations in children with SRNS was 27/70 (39%): 15 (21%) carried the NPHS2 p.V260E causal mutation in the homozygous state, and 12 (17%) SRNS cases carried a putative pathogenic mutation in the heterozygous state in genes (INF2 (n = 8), CD2AP (n = 3) and TRPC6 (n = 1)) known to have autosomal dominant inheritance mode. NPHS2 p.V260E homozygosity was specifically associated with biopsy-proven FSGS, accounting for 24% of children of Black ethnicity (15 of 63) with steroid-resistant FSGS. No causal or putative pathogenic mutations were identified in NPHS1, WT1, LAMB2, PLCE1, MYO1E and ACTN4. We report four novel variants in INF2, PLCE1, ACTN4 and TRPC6. Conclusion: We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant-FSGS children. However, the NPHS2 p.V260E mutation is a prevalent cause of steroid-resistant FSGS among Black South African children occurring in 24% of children with SRNS. Screening all Black African children presenting with NS for NPHS2 p.V260E will provide a precision diagnosis of steroid-resistant FSGS and inform clinical management. What is Known: • Limited data is available on the genetic disparity of SNRS in a South African paediatric setting. • The high rate of steroid resistance in Black South African children with FSGS compared to other racial groups is partially explained by the founder variant NPHS2 p.V260E. What is New: • We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant FSGS children. • NPHS2 p.V260E mutation remains a prevalent cause of steroid-resistant FSGS among Black South African children, demonstrating precision diagnostic utility.
Collapse
Affiliation(s)
- Louansha Nandlal
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa.
| | - Cheryl A Winkler
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - Rajendra Bhimma
- Department of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sungkweon Cho
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - George W Nelson
- Frederick National Laboratory for Cancer Research, Frederick Advanced Biomedical Computational Science, Washington, DC, USA
| | - Sudesh Haripershad
- Department of Nephrology, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
48
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
49
|
Bejoy J, Farry JM, Peek JL, Cabatu MC, Williams FM, Welch RC, Qian ES, Woodard LE. Podocytes derived from human induced pluripotent stem cells: characterization, comparison, and modeling of diabetic kidney disease. Stem Cell Res Ther 2022; 13:355. [PMID: 35883199 PMCID: PMC9327311 DOI: 10.1186/s13287-022-03040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In diabetic kidney disease, high glucose damages specialized cells called podocytes that filter blood in the glomerulus. In vitro culture of podocytes is crucial for modeling of diabetic nephropathy and genetic podocytopathies and to complement animal studies. Recently, several methods have been published to derive podocytes from human-induced pluripotent stem cells (iPSCs) by directed differentiation. However, these methods have major variations in media composition and have not been compared. METHODS We characterized our accelerated protocol by guiding the cells through differentiation with four different medias into MIXL1+ primitive streak cells with Activin A and CHIR for Wnt activation, intermediate mesoderm PAX8+ cells via increasing the CHIR concentration, nephron progenitors with FGF9 and Heparin for stabilization, and finally into differentiated podocytes with Activin A, BMP-7, VEGF, reduced CHIR, and retinoic acid. The podocyte morphology was characterized by scanning and transmission electron microscopy and by flow cytometry analysis for podocyte markers. To confirm cellular identity and niche localization, we performed cell recombination assays combining iPSC-podocytes with dissociated mouse embryonic kidney cells. Finally, to test iPSC-derived podocytes for the modeling of diabetic kidney disease, human podocytes were exposed to high glucose. RESULTS Podocyte markers were expressed at similar or higher levels for our accelerated protocol as compared to previously published protocols that require longer periods of tissue culture. We confirmed that the human podocytes derived from induced pluripotent stem cells in twelve days integrated into murine glomerular structures formed following seven days of culture of cellular recombinations. We found that the high glucose-treated human podocytes displayed actin rearrangement, increased cytotoxicity, and decreased viability. CONCLUSIONS We found that our accelerated 12-day method for the differentiation of podocytes from human-induced pluripotent stem cells yields podocytes with comparable marker expression to longer podocytes. We also demonstrated that podocytes created with this protocol have typical morphology by electron microscopy. The podocytes have utility for diabetes modeling as evidenced by lower viability and increased cytotoxicity when treated with high glucose. We found that multiple, diverse methods may be utilized to create iPSC-podocytes, but closely mimicking developmental cues shortened the time frame required for differentiation.
Collapse
Affiliation(s)
- Julie Bejoy
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin M Farry
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jennifer L Peek
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mariana C Cabatu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Felisha M Williams
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Richard C Welch
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eddie S Qian
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Lauren E Woodard
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
| |
Collapse
|
50
|
Lang K, Milosavljevic J, Heinkele H, Chen M, Gerstner L, Spitz D, Kayser S, Helmstädter M, Walz G, Köttgen M, Spracklen A, Poulton J, Hermle T. Selective endocytosis controls slit diaphragm maintenance and dynamics in Drosophila nephrocytes. eLife 2022; 11:79037. [PMID: 35876643 PMCID: PMC9355562 DOI: 10.7554/elife.79037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022] Open
Abstract
The kidneys generate about 180 l of primary urine per day by filtration of plasma. An essential part of the filtration barrier is the slit diaphragm, a multiprotein complex containing nephrin as major component. Filter dysfunction typically manifests with proteinuria and mutations in endocytosis regulating genes were discovered as causes of proteinuria. However, it is unclear how endocytosis regulates the slit diaphragm and how the filtration barrier is maintained without either protein leakage or filter clogging. Here, we study nephrin dynamics in podocyte-like nephrocytes of Drosophila and show that selective endocytosis either by dynamin- or flotillin-mediated pathways regulates a stable yet highly dynamic architecture. Short-term manipulation of endocytic functions indicates that dynamin-mediated endocytosis of ectopic nephrin restricts slit diaphragm formation spatially while flotillin-mediated turnover of nephrin within the slit diaphragm is needed to maintain filter permeability by shedding of molecules bound to nephrin in endosomes. Since slit diaphragms cannot be studied in vitro and are poorly accessible in mouse models, this is the first analysis of their dynamics within the slit diaphragm multiprotein complex. Identification of the mechanisms of slit diaphragm maintenance will help to develop novel therapies for proteinuric renal diseases that are frequently limited to symptomatic treatment.
Collapse
Affiliation(s)
- Konrad Lang
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Helena Heinkele
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Lea Gerstner
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Spitz
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Severine Kayser
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Gerd Walz
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Köttgen
- Department of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew Spracklen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - John Poulton
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Tobias Hermle
- Department of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|