1
|
Zhang Q, Zheng J, Sun H, Zheng J, Ma Y, Ji Q, Chen D, Tang Z, Zhang J, He Y, Song T. The Notch Signaling Pathway: A Potential Target for Mental Disorders. Mol Neurobiol 2025:10.1007/s12035-025-05034-w. [PMID: 40372672 DOI: 10.1007/s12035-025-05034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
The highly conserved Notch signaling pathway plays a critical role in cell fate determination during metazoan development through cell-to-cell communication. The classical pathway consists of Notch receptors, ligands, intracellular effectors, DNA-binding proteins, and other regulatory molecules. Recent research has highlighted its involvement in the pathogenesis of several diseases. In autism, bipolar disorder, and schizophrenia, the Notch signaling pathway is implicated in key processes such as neuronal development and synaptic plasticity. Furthermore, it has been shown to play significant roles in other mental health conditions, including anxiety, depression, post-traumatic stress disorder, and neurocognitive disorders. However, the precise mechanisms underlying the contribution of Notch to these conditions remain poorly understood. This review examines the current understanding of the Notch signaling pathway in mental disorders, highlighting its role in their pathophysiology and summarizing therapeutic strategies aimed at modulating this pathway to improve mental health outcomes.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jingxuan Zheng
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongqin Sun
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jishan Zheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yunyan Ma
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zhengzhen Tang
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Engineering Research Center of Key Technologies for Industrial Development of Dendrobium in Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China.
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Chen S, Tang D, Deng L, Xu S. Asian-European differentiation of schizophrenia-associated genes driven by admixture and natural selection. iScience 2024; 27:109560. [PMID: 38638564 PMCID: PMC11024917 DOI: 10.1016/j.isci.2024.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/29/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The European-centered genome-wide association studies of schizophrenia (SCZ) may not be well applied to non-European populations. We analyzed 1,592 reported SCZ-associated genes using the public genome data and found an overall higher Asian-European differentiation on the SCZ-associated variants than at the genome-wide level. Notable examples included 15 missense variants, a regulatory variant SLC5A10-rs1624825, and a damaging variant TSPAN18-rs1001292. Independent local adaptations in recent 25,000 years, after the Asian-European divergence, could have contributed to such genetic differentiation, as were identified at a missense mutation LTN1-rs57646126-A in Asians, and a non-risk allele ZSWIM6-rs72761442-G in Europeans. Altai-Neanderthal-derived alleles may have opposite effects on SCZ susceptibility between ancestries. Furthermore, adaptive introgression was detected on the non-risk haplotype at 1q21.2 in Europeans, while in Asians it was observed on the SCZ risk haplotype at 3p21.31 which is also potentially ultra-violet protective. This study emphasizes the importance of including more representative Asian samples in future SCZ studies.
Collapse
Affiliation(s)
- Sihan Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Die Tang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
4
|
Sharma N, Banerjee P, Sood A, Midha V, Thelma BK, Senapati S. Celiac disease-associated loci show considerable genetic overlap with neuropsychiatric diseases but with limited transethnic applicability. J Genet 2023. [PMID: 36814110 DOI: 10.1007/s12041-022-01413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Wang C, DeMeo DL, Kim ES, Cardenas A, Fong KC, Lee LO, Spiro A, Whitsel EA, Horvath S, Hou L, Baccarelli AA, Li Y, Stewart JD, Manson JE, Grodstein F, Kubzansky LD, Schwartz JD. Epigenome-Wide Analysis of DNA Methylation and Optimism in Women and Men. Psychosom Med 2023; 85:89-97. [PMID: 36201768 PMCID: PMC9771983 DOI: 10.1097/psy.0000000000001147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Higher optimism is associated with reduced mortality and a lower risk of age-related chronic diseases. DNA methylation (DNAm) may provide insight into mechanisms underlying these relationships. We hypothesized that DNAm would differ among older individuals who are more versus less optimistic. METHODS Using cross-sectional data from two population-based cohorts of women with diverse races/ethnicities ( n = 3816) and men (only White, n = 667), we investigated the associations of optimism with epigenome-wide leukocyte DNAm. Random-effects meta-analyses were subsequently used to pool the individual results. Significantly differentially methylated cytosine-phosphate-guanines (CpGs) were identified by the "number of independent degrees of freedom" approach: effective degrees of freedom correction using the number of principal components (PCs), explaining >95% of the variation of the DNAm data (PC-correction). We performed regional analyses using comb-p and pathway analyses using the Ingenuity Pathway Analysis software. RESULTS We found that essentially all CpGs (total probe N = 359,862) were homogeneous across sex and race/ethnicity in the DNAm-optimism association. In the single CpG site analyses based on homogeneous CpGs, we identified 13 significantly differentially methylated probes using PC-correction. We found four significantly differentially methylated regions and two significantly differentially methylated pathways. The annotated genes from the single CpG site and regional analyses are involved in psychiatric disorders, cardiovascular disease, cognitive impairment, and cancer. Identified pathways were related to cancer, and neurodevelopmental and neurodegenerative disorders. CONCLUSION Our findings provide new insights into possible mechanisms underlying optimism and health.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dawn L. DeMeo
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eric S. Kim
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Lee Kum Sheung Center for Health and Happiness, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Psychology, University of British Columbia, BC V6T 1Z4, Canada
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Kelvin C. Fong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Lewina O. Lee
- National Center for Posttraumatic Stress Disorder, VA Boston Healthcare System, Boston, MA 02130, USA
- Department Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Avron Spiro
- Department Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA 02130, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - James D. Stewart
- Cardiovascular Program, Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, 27599, USA
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Francine Grodstein
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Lee Kum Sheung Center for Health and Happiness, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
6
|
Contribution from MHC-Mediated Risk in Schizophrenia Can Reflect a More Ethnic-Specific Genetic and Comorbid Background. Cells 2022; 11:cells11172695. [PMID: 36078103 PMCID: PMC9454640 DOI: 10.3390/cells11172695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
The immune system seems to play a significant role in the development of schizophrenia. This becomes more evident with the emerging role of MHC complex and cytokines in schizophrenia. In the recent past, several GWAS have implied that the 6p21 region was associated with schizophrenia. However, the majority of these studies were performed in European populations. Considering tremendous variations in this region and the probability of South Indian populations being quite different from the European gene-pool from an immunogenetic point, the present study was initiated to screen SNPs in the 2.28 MB region, spanning the extended MHC locus, in 492 cases and controls from a South Indian population. We found a very strong association of rs3815087 with schizophrenia at both allelic and genotypic levels with a 7.3-fold increased risk in the recessive model. Interestingly, the association of none of the earlier reported GWAS hits, such as rs3130375, rs3131296, rs9272219, or rs3130297 were found to be replicable in our study population. rs3815087 lies in the 5′UTR region of the psoriasis susceptibility 1 candidate 1 (PSORS1C1) gene, which further suggests that inflammatory processes might be an important common pathogenic pathway leading to both schizophrenia and psoriasis. The study hints at ethnic specific gene–environment interaction in determining the critical threshold for disease initiation and progression.
Collapse
|
7
|
Casas BS, Arancibia-Altamirano D, Acevedo-La Rosa F, Garrido-Jara D, Maksaev V, Pérez-Monje D, Palma V. It takes two to tango: Widening our understanding of the onset of schizophrenia from a neuro-angiogenic perspective. Front Cell Dev Biol 2022; 10:946706. [PMID: 36092733 PMCID: PMC9448889 DOI: 10.3389/fcell.2022.946706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic debilitating mental disorder characterized by perturbations in thinking, perception, and behavior, along with brain connectivity deficiencies, neurotransmitter dysfunctions, and loss of gray brain matter. To date, schizophrenia has no cure and pharmacological treatments are only partially efficacious, with about 30% of patients describing little to no improvement after treatment. As in most neurological disorders, the main descriptions of schizophrenia physiopathology have been focused on neural network deficiencies. However, to sustain proper neural activity in the brain, another, no less important network is operating: the vast, complex and fascinating vascular network. Increasing research has characterized schizophrenia as a systemic disease where vascular involvement is important. Several neuro-angiogenic pathway disturbances have been related to schizophrenia. Alterations, ranging from genetic polymorphisms, mRNA, and protein alterations to microRNA and abnormal metabolite processing, have been evaluated in plasma, post-mortem brain, animal models, and patient-derived induced pluripotent stem cell (hiPSC) models. During embryonic brain development, the coordinated formation of blood vessels parallels neuro/gliogenesis and results in the structuration of the neurovascular niche, which brings together physical and molecular signals from both systems conforming to the Blood-Brain barrier. In this review, we offer an upfront perspective on distinctive angiogenic and neurogenic signaling pathways that might be involved in the biological causality of schizophrenia. We analyze the role of pivotal angiogenic-related pathways such as Vascular Endothelial Growth Factor and HIF signaling related to hypoxia and oxidative stress events; classic developmental pathways such as the NOTCH pathway, metabolic pathways such as the mTOR/AKT cascade; emerging neuroinflammation, and neurodegenerative processes such as UPR, and also discuss non-canonic angiogenic/axonal guidance factor signaling. Considering that all of the mentioned above pathways converge at the Blood-Brain barrier, reported neurovascular alterations could have deleterious repercussions on overall brain functioning in schizophrenia.
Collapse
|
8
|
Ghaffarian Zirak R, Tajik H, Asadi J, Hashemian P, Javid H. The Role of Micro RNAs in Regulating PI3K/AKT Signaling Pathways in Glioblastoma. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:122-136. [PMID: 35463721 PMCID: PMC9013863 DOI: 10.30699/ijp.2022.539029.2726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
Abstract
Glioblastoma is a type of brain cancer with aggressive and invasive nature. Such features result from increased proliferation and migration and also poor apoptosis of glioma cells leading to resistance to current treatments such as chemotherapy and radiotherapy. In recent studies, micro RNAs have been introduced as a novel target for treating glioblastoma via regulation of apoptotic signaling pathway, remarkably PI3K/AKT, which affect cellular functions and blockage or progression of the tumor. In this review, we focus on PI3K/AKT signaling pathway and other related apoptotic processes contributing to glioblastoma and investigate the role of micro RNAs interfering in apoptosis, invasion and proliferation of glioma through such apoptotic processes pathways. Databases NCBI, PubMed, and Web of Science were searched for published English articles using keywords such as 'miRNA OR microRNA', 'Glioblastoma', 'apoptotic pathways', 'PI3K and AKT', 'Caspase signaling Pathway' and 'Notch pathway'. Most articles were published from 7 May 2015 to 16 June 2020. This study focused on PI3K/AKT signaling pathway affecting glioma cells in separated subparts. Also, other related apoptotic pathways as the Caspase cycle and Notch have been also investigated. Nearly 40 miRNAs were found as tumor suppressors or onco-miRNA, and their targets, which regulated subcomponents participating in proliferation, invasion, and apoptosis of the tumoral cells. Our review reveals that miRNAs affect key molecules in signaling apoptotic pathways, partly PI3K/AKT, making them potential therapeutic targets to overcome the tumor. However, their utility as a novel treatment for glioblastoma requires further examination and investigation.
Collapse
Affiliation(s)
- Roshanak Ghaffarian Zirak
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hurie Tajik
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Science, Shahrekord, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Jahanbakhsh Asadi
- Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Hu L, Zhang L. Adult neural stem cells and schizophrenia. World J Stem Cells 2022; 14:219-230. [PMID: 35432739 PMCID: PMC8968214 DOI: 10.4252/wjsc.v14.i3.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a devastating and complicated mental disorder accompanied by variable positive and negative symptoms and cognitive deficits. Although many genetic risk factors have been identified, SCZ is also considered as a neurodevelopmental disorder. Elucidation of the pathogenesis and the development of treatment is challenging because complex interactions occur between these genetic risk factors and environment in essential neurodevelopmental processes. Adult neural stem cells share a lot of similarities with embryonic neural stem cells and provide a promising model for studying neuronal development in adulthood. These adult neural stem cells also play an important role in cognitive functions including temporal and spatial memory encoding and context discrimination, which have been shown to be closely linked with many psychiatric disorders, such as SCZ. Here in this review, we focus on the SCZ risk genes and the key components in related signaling pathways in adult hippocampal neural stem cells and summarize their roles in adult neurogenesis and animal behaviors. We hope that this would be helpful for the understanding of the contribution of dysregulated adult neural stem cells in the pathogenesis of SCZ and for the identification of potential therapeutic targets, which could facilitate the development of novel medication and treatment.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
10
|
Jaaro-Peled H, Landek-Salgado MA, Cascella NG, Nucifora FC, Coughlin JM, Nestadt G, Sedlak TW, Lavoie J, De Silva S, Lee S, Tajinda K, Hiyama H, Ishizuka K, Yang K, Sawa A. Sex-specific involvement of the Notch-JAG pathway in social recognition. Transl Psychiatry 2022; 12:99. [PMID: 35273151 PMCID: PMC8913639 DOI: 10.1038/s41398-022-01867-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Under the hypothesis that olfactory neural epithelium gene expression profiles may be useful to look for disease-relevant neuronal signatures, we examined microarray gene expression in olfactory neuronal cells and underscored Notch-JAG pathway molecules in association with schizophrenia (SZ). The microarray profiling study underscored JAG1 as the most promising candidate. Combined with further validation with real-time PCR, downregulation of NOTCH1 was statistically significant. Accordingly, we reverse-translated the significant finding from a surrogate tissue for neurons, and studied the behavioral profile of Notch1+/- mice. We found a specific impairment in social novelty recognition, whereas other behaviors, such as sociability, novel object recognition and olfaction of social odors, were normal. This social novelty recognition deficit was male-specific and was rescued by rapamycin treatment. Based on the results from the animal model, we next tested whether patients with psychosis might have male-specific alterations in social cognition in association with the expression of NOTCH1 or JAG1. In our first episode psychosis cohort, we observed a specific correlation between the expression of JAG1 and a face processing measure only in male patients. The expression of JAG1 was not correlated with any other cognitive and symptomatic scales in all subjects. Together, although we acknowledge the pioneering and exploratory nature, the present work that combines both human and animal studies in a reciprocal manner suggests a novel role for the Notch-JAG pathway in a behavioral dimension(s) related to social cognition in psychotic disorders in a male-specific manner.
Collapse
Affiliation(s)
- Hanna Jaaro-Peled
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Melissa A Landek-Salgado
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicola G Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Frederick C Nucifora
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jennifer M Coughlin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gerald Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas W Sedlak
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joelle Lavoie
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah De Silva
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Somin Lee
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katsunori Tajinda
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hideki Hiyama
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Yang SA, Salazar JL, Li-Kroeger D, Yamamoto S. Functional Studies of Genetic Variants Associated with Human Diseases in Notch Signaling-Related Genes Using Drosophila. Methods Mol Biol 2022; 2472:235-276. [PMID: 35674905 PMCID: PMC9396741 DOI: 10.1007/978-1-0716-2201-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare variants in the many genes related to Notch signaling cause diverse Mendelian diseases that affect myriad organ systems. In addition, genome- and exome-wide association studies have linked common and rare variants in Notch-related genes to common diseases and phenotypic traits. Moreover, somatic mutations in these genes have been observed in many types of cancer, some of which are classified as oncogenic and others as tumor suppressive. While functional characterization of some of these variants has been performed through experimental studies, the number of "variants of unknown significance" identified in patients with diverse conditions keeps increasing as high-throughput sequencing technologies become more commonly used in the clinic. Furthermore, as disease gene discovery efforts identify rare variants in human genes that have yet to be linked to a disease, the demand for functional characterization of variants in these "genes of unknown significance" continues to increase. In this chapter, we describe a workflow to functionally characterize a rare variant in a Notch signaling related gene that was found to be associated with late-onset Alzheimer's disease. This pipeline involves informatic analysis of the variant of interest using diverse human and model organism databases, followed by in vivo experiments in the fruit fly Drosophila melanogaster. The protocol described here can be used to study variants that affect amino acids that are not conserved between human and fly. By "humanizing" the almondex gene in Drosophila with mutant alleles and heterologous genomic rescue constructs, a missense variant in TM2D3 (TM2 Domain Containing 3) was shown to be functionally damaging. This, and similar approaches, greatly facilitate functional interpretations of genetic variants in the human genome and propel personalized medicine.
Collapse
Affiliation(s)
- Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
PVSN KK, Mitra P, Ghosh R, Gangam S, Sharma S, Nebhinani N, Sharma P. Association of the NOTCH4 gene polymorphism with schizophrenia in the Indian population. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Schizophrenia in a genomic era: a review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatr Genet 2020; 30:1-9. [PMID: 31764709 DOI: 10.1097/ypg.0000000000000245] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a common multigenic and debilitating neurological disorder characterized by chronic psychotic symptoms and psychosocial impairment. Complex interactions of genetics and environmental factors have been implicated in etiology of schizophrenia. There is no central pathophysiology mechanism, diagnostic neuropathology, or biological markers have been defined for schizophrenia. However, a number of different hypotheses including neurodevelopmental and neurochemical hypotheses have been proposed to explain the neuropathology of schizophrenia. This review provides an overview of pathogenesis, genetic and environmental etiologies to diagnosis and treatment insights in clinical management of schizophrenia in light of the recent discoveries of genetic loci associated with susceptibility to schizophrenia.
Collapse
|
14
|
Zhang Y, Li S, Li X, Yang Y, Li W, Xiao X, Li M, Lv L, Luo X. Convergent lines of evidence support NOTCH4 as a schizophrenia risk gene. J Med Genet 2020; 58:666-678. [PMID: 32900838 DOI: 10.1136/jmedgenet-2020-106830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/04/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022]
Abstract
The association between NOTCH4 and schizophrenia has been repeatedly reported. However, the results from different genetic studies are inconsistent, and the role of NOTCH4 in schizophrenia pathogenesis remains unknown. Here, we provide convergent lines of evidence that support NOTCH4 as a schizophrenia risk gene. We first performed a meta-analysis and found that a genetic variant (rs2071287) in NOTCH4 was significantly associated with schizophrenia (a total of 125 848 subjects, p=8.31×10-17), with the same risk allele across all tested samples. Expression quantitative trait loci (eQTL) analysis showed that rs2071287 was significantly associated with NOTCH4 expression (p=1.08×10-14) in human brain tissues, suggesting that rs2071287 may confer schizophrenia risk through regulating NOTCH4 expression. Sherlock integrative analysis using a large-scale schizophrenia GWAS and eQTL data from human brain tissues further revealed that NOTCH4 was significantly associated with schizophrenia (p=4.03×10-7 in CMC dataset and p=3.06×10-6 in xQTL dataset), implying that genetic variants confer schizophrenia risk through modulating NOTCH4 expression. Consistently, we found that NOTCH4 was significantly downregulated in brains of schizophrenia patients compared with controls (p=2.53×10-3), further suggesting that dysregulation of NOTCH4 may have a role in schizophrenia. Finally, we showed that NOTCH4 regulates proliferation, self-renewal, differentiation and migration of neural stem cells, suggesting that NOTCH4 may confer schizophrenia risk through affecting neurodevelopment. Our study provides convergent lines of evidence that support the involvement of NOTCH4 in schizophrenia. In addition, our study also elucidates a possible mechanism for the role of NOTCH4 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, Henan 453002, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, Henan 453002, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, Henan 453002, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, Henan 453002, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China .,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, Henan 453002, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, Henan 453002, China
| | - XiongJian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
15
|
Xie X, Zu M, Zhang L, Bai T, Wei L, Huang W, Ji GJ, Qiu B, Hu P, Tian Y, Wang K. A common variant of the NOTCH4 gene modulates functional connectivity of the occipital cortex and its relationship with schizotypal traits. BMC Psychiatry 2020; 20:363. [PMID: 32646407 PMCID: PMC7346398 DOI: 10.1186/s12888-020-02773-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Schizotypal traits are considered as inheritable traits and the endophenotype for schizophrenia. A common variant in the NOTCH4 gene, rs204993, has been linked with schizophrenia, but the neural underpinnings are largely unknown. METHODS In present study, we compared the differences of brain functions between different genotypes of rs204993 and its relationship with schizotypal traits among 402 Chinese Han healthy volunteers. The brain function was evaluated with functional connectivity strength (FCS) using the resting-state functional magnetic resonance image(rs-fMRI). The schizotypal traits were measured by the schizotypal personality questionnaire (SPQ). RESULTS Our results showed that carriers with the AA genotype showed reduced FCS in the left occipital cortex when compared with carriers with the AG and GG genotypes, and the carriers with the AG genotype showed reduced FCS in the left occipital cortex when compared with carriers with the GG genotype. The FCS values in the left occipital lobe were negatively associated with the SPQ scores and its subscale scores within the carriers with the GG genotype, but not within the carriers with AA or AG genotype. CONCLUSION Our results suggested that the common variant in the NOTCH4 gene, rs204993, modulates the function of the occipital cortex, which may contribute to schizotypal traits. These findings provide insight for genetic effects on schizotypal traits and its potential neural substrate.
Collapse
Affiliation(s)
- Xiaohui Xie
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Meidan Zu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Long Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ling Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Wanling Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Gong-Jun Ji
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei, 230022, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Salazar JL, Yang SA, Yamamoto S. Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules 2020; 10:biom10070985. [PMID: 32630239 PMCID: PMC7408554 DOI: 10.3390/biom10070985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in Drosophila, the Notch signaling pathway has been studied in numerous developmental contexts in diverse multicellular organisms. The role of Notch signaling in nervous system development has been extensively investigated by numerous scientists, partially because many of the core Notch signaling components were initially identified through their dramatic ‘neurogenic’ phenotype of developing fruit fly embryos. Components of the Notch signaling pathway continue to be expressed in mature neurons and glia cells, which is suggestive of a role in the post-developmental nervous system. The Notch pathway has been, so far, implicated in learning and memory, social behavior, addiction, and other complex behaviors using genetic model organisms including Drosophila and mice. Additionally, Notch signaling has been shown to play a modulatory role in several neurodegenerative disease model animals and in mediating neural toxicity of several environmental factors. In this paper, we summarize the knowledge pertaining to the post-developmental roles of Notch signaling in the nervous system with a focus on discoveries made using the fruit fly as a model system as well as relevant studies in C elegans, mouse, rat, and cellular models. Since components of this pathway have been implicated in the pathogenesis of numerous psychiatric and neurodegenerative disorders in human, understanding the role of Notch signaling in the mature brain using model organisms will likely provide novel insights into the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Jose L. Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, BCM, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8119
| |
Collapse
|
17
|
Yamamoto S. Making sense out of missense mutations: Mechanistic dissection of Notch receptors through structure-function studies in Drosophila. Dev Growth Differ 2020; 62:15-34. [PMID: 31943162 DOI: 10.1111/dgd.12640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Notch signaling is involved in the development of almost all organ systems and is required post-developmentally to modulate tissue homeostasis. Rare variants in Notch signaling pathway genes are found in patients with rare Mendelian disorders, while unique or recurrent somatic mutations in a similar set of genes are identified in cancer. The human genome contains four genes that encode Notch receptors, NOTCH1-4, all of which are linked to genetic diseases and cancer. Although some mutations have been classified as clear loss- or gain-of-function alleles based on cellular or rodent based assay systems, the functional consequence of many variants/mutations in human Notch receptors remain unknown. In this review, I will first provide an overview of the domain structure of Notch receptors and discuss how each module is known to regulate Notch signaling activity in vivo using the Drosophila Notch receptor as an example. Next, I will introduce some interesting mutant alleles that have been isolated in the fly Notch gene over the past > 100 years of research and discuss how studies of these mutations have facilitated the understanding of Notch biology. By identifying unique alleles of the fly Notch gene through forward genetic screens, mapping their molecular lesions and characterizing their phenotypes in depth, one can begin to unravel new mechanistic insights into how different domains of Notch fine-tune signaling output. Such information can be useful in deciphering the functional consequences of rare variants/mutations in human Notch receptors, which in turn can influence disease management and therapy.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.,Department of Neuroscience, BCM, Houston, TX, USA.,Program in Developmental Biology, BCM, Houston, TX, USA.,Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
18
|
Matsuzaki T, Yoshihara T, Ohtsuka T, Kageyama R. Hes1 expression in mature neurons in the adult mouse brain is required for normal behaviors. Sci Rep 2019; 9:8251. [PMID: 31160641 PMCID: PMC6546782 DOI: 10.1038/s41598-019-44698-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
Hes1 regulates the maintenance and proliferation of neural stem/progenitor cells as an essential effector of the Notch signaling pathway. Although Notch signaling is also involved in the functions of mature neurons in learning and memory and in the risk factors for mental disorders such as schizophrenia and bipolar disorder, the in-vivo role of Hes1 in mature neurons remains unknown. Here, we found that Hes1 is expressed by subsets of both excitatory and inhibitory neurons in the adult mouse brain, and that Hes1 expression is induced by neuronal stimulation. Furthermore, inactivation of Hes1 in excitatory neurons resulted in abnormal fear and anxiety behaviors concomitantly with higher neuronal excitability in the amygdala, while inactivation of Hes1 in inhibitory neurons resulted in increased sociability and perseverative tendencies. These results indicated that Hes1 is functionally important for normal behaviors not only in excitatory neurons but also in inhibitory neurons in the adult brain.
Collapse
Affiliation(s)
- Tadanobu Matsuzaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Toru Yoshihara
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan. .,Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan. .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
19
|
Integrated Analysis of Whole Exome Sequencing and Copy Number Evaluation in Parkinson's Disease. Sci Rep 2019; 9:3344. [PMID: 30833663 PMCID: PMC6399448 DOI: 10.1038/s41598-019-40102-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Genetic studies of the familial forms of Parkinson’s disease (PD) have identified a number of causative genes with an established role in its pathogenesis. These genes only explain a fraction of the diagnosed cases. The emergence of Next Generation Sequencing (NGS) expanded the scope of rare variants identification in novel PD related genes. In this study we describe whole exome sequencing (WES) genetic findings of 60 PD patients with 125 variants validated in 51 of these cases. We used strict criteria for variant categorization that generated a list of variants in 20 genes. These variants included loss of function and missense changes in 18 genes that were never previously linked to PD (NOTCH4, BCOR, ITM2B, HRH4, CELSR1, SNAP91, FAM174A, BSN, SPG7, MAGI2, HEPHL1, EPRS, PUM1, CLSTN1, PLCB3, CLSTN3, DNAJB9 and NEFH) and 2 genes that were previously associated with PD (EIF4G1 and ATP13A2). These genes either play a critical role in neuronal function and/or have mouse models with disease related phenotypes. We highlight NOTCH4 as an interesting candidate in which we identified a deleterious truncating and a splice variant in 2 patients. Our combined molecular approach provides a comprehensive strategy applicable for complex genetic disorders.
Collapse
|
20
|
Saffarzadeh F, Modarres Mousavi SM, Lotfinia AA, Alipour F, Hosseini Ravandi H, Karimzadeh F. Discrepancies of Notch 1 receptor during development of chronic seizures. J Cell Physiol 2019; 234:13773-13780. [DOI: 10.1002/jcp.28056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Sayed Mostafa Modarres Mousavi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital Tehran Iran
- Department of Nanobiotechnology Faculty of Biological Sciences, Tarbiat Modares University Tehran Iran
| | | | - Fatemeh Alipour
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital Tehran Iran
| | | | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
21
|
Attenuated Notch signaling in schizophrenia and bipolar disorder. Sci Rep 2018; 8:5349. [PMID: 29593239 PMCID: PMC5871764 DOI: 10.1038/s41598-018-23703-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway plays a crucial role in neurodevelopment and in adult brain homeostasis. We aimed to further investigate Notch pathway activity in bipolar disorder (BD) and schizophrenia (SCZ) by conducting a pathway analysis. We measured plasma levels of Notch ligands (DLL1 and DLK1) using enzyme immunoassays in a large sample of patients (SCZ n = 551, BD n = 246) and healthy controls (HC n = 639). We also determined Notch pathway related gene expression levels by microarray analyses from whole blood in a subsample (SCZ n = 338, BD n = 241 and HC n = 263). We found significantly elevated Notch ligand levels in plasma in both SCZ and BD compared to HC. Significant gene expression findings included increased levels of RFNG and KAT2B (p < 0.001), and decreased levels of PSEN1 and CREBBP in both patient groups (p < 0.001). RBPJ was significantly lower in SCZ vs HC (p < 0.001), and patients using lithium had higher levels of RBPJ (p < 0.001). We provide evidence of altered Notch signaling in both SCZ and BD compared to HC, and suggest that Notch signaling pathway may be disturbed in these disorders. Lithium may ameliorate aberrant Notch signaling. We propose that drugs targeting Notch pathway could be relevant in the treatment of psychotic disorders.
Collapse
|
22
|
Xue F, Chen YC, Zhou CH, Wang Y, Cai M, Yan WJ, Wu R, Wang HN, Peng ZW. Risperidone ameliorates cognitive deficits, promotes hippocampal proliferation, and enhances Notch signaling in a murine model of schizophrenia. Pharmacol Biochem Behav 2017; 163:101-109. [PMID: 29037878 DOI: 10.1016/j.pbb.2017.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Antipsychotic agents have been reported to promote hippocampal neurogenesis and improve cognitive deficits; yet, the molecular mechanisms underlying these actions remain unclear. In the present study, we used a murine model of schizophrenia induced by 5-day intraperitoneal injection with the non-competitive N-methyl-d-aspartate receptor antagonist MK801 (0.3mg/kg/day) to assess cognitive behavioral deficits, changes in Notch signaling, and cellular proliferation in the hippocampus of adult male C57BL/6 mice after 2-week administration of risperidone (Rip, 0.2mg/kg/day) or vehicle. We then utilized in vivo stereotaxic injections of a lentivirus expressing a short hairpin RNA (shRNA) for Notch1 into the dentate gyrus to examine the role of Notch1 in the observed actions of Rip. We found that Rip ameliorated cognitive deficits and restored cell proliferation in MK801-treated mice in a manner associated with the up-regulation of Notch signaling molecules, including Notch1, Hes1, and Hes5. Moreover, these effects were abolished by pretreatment with Notch1 shRNA. Our results suggest that the ability of Rip to improve cognitive function in schizophrenia is mediated in part by Notch signaling.
Collapse
Affiliation(s)
- Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yun-Chun Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wen-Jun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Rui Wu
- Xi'an Center for Disease Control and Prevention, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
23
|
Johnson EC, Border R, Melroy-Greif WE, de Leeuw C, Ehringer MA, Keller MC. No Evidence That Schizophrenia Candidate Genes Are More Associated With Schizophrenia Than Noncandidate Genes. Biol Psychiatry 2017; 82:702-708. [PMID: 28823710 PMCID: PMC5643230 DOI: 10.1016/j.biopsych.2017.06.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/12/2017] [Accepted: 06/28/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND A recent analysis of 25 historical candidate gene polymorphisms for schizophrenia in the largest genome-wide association study conducted to date suggested that these commonly studied variants were no more associated with the disorder than would be expected by chance. However, the same study identified other variants within those candidate genes that demonstrated genome-wide significant associations with schizophrenia. As such, it is possible that variants within historic schizophrenia candidate genes are associated with schizophrenia at levels above those expected by chance, even if the most-studied specific polymorphisms are not. METHODS The present study used association statistics from the largest schizophrenia genome-wide association study conducted to date as input to a gene set analysis to investigate whether variants within schizophrenia candidate genes are enriched for association with schizophrenia. RESULTS As a group, variants in the most-studied candidate genes were no more associated with schizophrenia than were variants in control sets of noncandidate genes. While a small subset of candidate genes did appear to be significantly associated with schizophrenia, these genes were not particularly noteworthy given the large number of more strongly associated noncandidate genes. CONCLUSIONS The history of schizophrenia research should serve as a cautionary tale to candidate gene investigators examining other phenotypes: our findings indicate that the most investigated candidate gene hypotheses of schizophrenia are not well supported by genome-wide association studies, and it is likely that this will be the case for other complex traits as well.
Collapse
Affiliation(s)
- Emma C. Johnson
- Department of Psychology and Neuroscience, University of Colorado at Boulder, USA,Institute for Behavioral Genetics, University of Colorado at Boulder, USA,Correspondence concerning this article should be addressed to Emma C. Johnson, Institute of Behavioral Genetics, 1480 30th Street, Boulder, CO, 80303.
| | - Richard Border
- Department of Psychology and Neuroscience, University of Colorado at Boulder, USA,Institute for Behavioral Genetics, University of Colorado at Boulder, USA
| | | | - Christiaan de Leeuw
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research/VU University Amsterdam, Amsterdam 1081 HV, Netherlands,Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen 6525 EC, Netherlands
| | - Marissa A. Ehringer
- Institute for Behavioral Genetics, University of Colorado at Boulder, USA,Deparment of Integrative Physiology, University of Colorado at Boulder, USA
| | - Matthew C. Keller
- Department of Psychology and Neuroscience, University of Colorado at Boulder, USA,Institute for Behavioral Genetics, University of Colorado at Boulder, USA
| |
Collapse
|
24
|
|
25
|
Norman PJ, Norberg SJ, Guethlein LA, Nemat-Gorgani N, Royce T, Wroblewski EE, Dunn T, Mann T, Alicata C, Hollenbach JA, Chang W, Shults Won M, Gunderson KL, Abi-Rached L, Ronaghi M, Parham P. Sequences of 95 human MHC haplotypes reveal extreme coding variation in genes other than highly polymorphic HLA class I and II. Genome Res 2017; 27:813-823. [PMID: 28360230 PMCID: PMC5411776 DOI: 10.1101/gr.213538.116] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/10/2017] [Indexed: 12/26/2022]
Abstract
The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B. It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome.
Collapse
Affiliation(s)
- Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Thomas Royce
- Illumina Incorporated, San Diego, California 92122, USA
| | - Emily E Wroblewski
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tamsen Dunn
- Illumina Incorporated, San Diego, California 92122, USA
| | - Tobias Mann
- Illumina Incorporated, San Diego, California 92122, USA
| | - Claudia Alicata
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jill A Hollenbach
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, California 94158, USA
| | - Weihua Chang
- Illumina Incorporated, San Diego, California 92122, USA
| | | | | | - Laurent Abi-Rached
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
26
|
Regulation of striatal dopamine responsiveness by Notch/RBP-J signaling. Transl Psychiatry 2017; 7:e1049. [PMID: 28267151 PMCID: PMC5416667 DOI: 10.1038/tp.2017.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 12/30/2016] [Accepted: 01/18/2017] [Indexed: 01/03/2023] Open
Abstract
Dopamine signaling is essential for reward learning and fear-related learning, and thought to be involved in neuropsychiatric diseases. However, the molecular mechanisms underlying the regulation of dopamine responsiveness is unclear. Here we show the critical roles of Notch/RBP-J signaling in the regulation of dopamine responsiveness in the striatum. Notch/RBP-J signaling regulates various neural cell fate specification, and neuronal functions in the adult central nervous system. Conditional deletion of RBP-J specifically in neuronal cells causes enhanced response to apomorphine, a non-selective dopamine agonist, and SKF38393, a D1 agonist, and impaired dopamine-dependent instrumental avoidance learning, which is corrected by SCH23390, a D1 antagonist. RBP-J deficiency drastically reduced dopamine release in the striatum and caused a subtle decrease in the number of dopaminergic neurons. Lentivirus-mediated gene transfer experiments showed that RBP-J deficiency in the striatum was sufficient for these deficits. These findings demonstrated that Notch/RBP-J signaling regulates dopamine responsiveness in the striatum, which may explain the mechanism whereby Notch/RBP-J signaling affects an individual's susceptibility to neuropsychiatric disease.
Collapse
|
27
|
Malavia TA, Chaparala S, Wood J, Chowdari K, Prasad KM, McClain L, Jegga AG, Ganapathiraju MK, Nimgaonkar VL. Generating testable hypotheses for schizophrenia and rheumatoid arthritis pathogenesis by integrating epidemiological, genomic, and protein interaction data. NPJ SCHIZOPHRENIA 2017; 3:11. [PMID: 28560257 PMCID: PMC5441529 DOI: 10.1038/s41537-017-0010-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/04/2023]
Abstract
Patients with schizophrenia and their relatives have reduced prevalence of rheumatoid arthritis. Schizophrenia and rheumatoid arthritis genome-wide association studies also indicate negative genetic correlations, suggesting that there may be shared pathogenesis at the DNA level or downstream. A portion of the inverse prevalence could be attributed to pleiotropy, i.e., variants of a single nucleotide polymorphism that could confer differential risk for these disorders. To study the basis for such an interrelationship, we initially compared lists of single nucleotide polymorphisms with significant genetic associations (p < 1e-8) for schizophrenia or rheumatoid arthritis, evaluating patterns of linkage disequilibrium and apparent pleiotropic risk profiles. Single nucleotide polymorphisms that conferred risk for both schizophrenia and rheumatoid arthritis were localized solely to the extended HLA region. Among single nucleotide polymorphisms that conferred differential risk for schizophrenia and rheumatoid arthritis, the majority were localized to HLA-B, TNXB, NOTCH4, HLA-C, HCP5, MICB, PSORS1C1, and C6orf10; published functional data indicate that HLA-B and HLA-C have the most plausible pathogenic roles in both disorders. Interactomes of these eight genes were constructed from protein-protein interaction information using publicly available databases and novel computational predictions. The genes harboring apparently pleiotropic single nucleotide polymorphisms are closely connected to rheumatoid arthritis and schizophrenia associated genes through common interacting partners. A separate and independent analysis of the interactomes of rheumatoid arthritis and schizophrenia genes showed a significant overlap between the two interactomes and that they share several common pathways, motivating functional studies suggesting a relationship in the pathogenesis of schizophrenia/rheumatoid arthritis.
Collapse
Affiliation(s)
- Tulsi A. Malavia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Srilakshmi Chaparala
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | | | | | - Lora McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Madhavi K. Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Vishwajit L. Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
28
|
Association of the NOTCH4 Gene Polymorphism rs204993 with Schizophrenia in the Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2015; 2015:408096. [PMID: 26605328 PMCID: PMC4641165 DOI: 10.1155/2015/408096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022]
Abstract
NOTCH4 regulates signaling pathways associated with neuronal maturation, a process involved in the development and patterning of the central nervous system. The NOTCH4 gene has also been identified as a possible susceptibility gene for schizophrenia (SCZ). The objective of this study was to examine the relationship between NOTCH4 polymorphisms and SCZ in the Chinese Han population. The rs2071287 and rs204993 polymorphisms of the NOTCH4 gene were analyzed in 443 patients with SCZ and 628 controls of Han Chinese descent. Single SNP allele-, genotype-, and gender-specific associations were analyzed using different models (i.e., additive, dominant, and recessive models). This association study revealed that the rs204993 polymorphism is significantly associated with susceptibility for SCZ and that the AA genotype of rs204993 is associated with a higher risk for SCZ (P = 0.027; OR = 1.460; 95% CI, 1.043–2.054). Our data are consistent with those obtained in previous studies that suggested that rs204993 is associated with SCZ and that the AA genotype of rs204993 demonstrates a higher risk. Further large-scale association analyses in Han Chinese populations are warranted.
Collapse
|
29
|
Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, O'Donovan MC, Corvin A, Cichon S, Sullivan PF. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry 2015; 20:555-62. [PMID: 25754081 PMCID: PMC4414705 DOI: 10.1038/mp.2015.16] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/14/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24 of these genes explicitly evaluated common variant hypotheses about schizophrenia. Our evaluation included a meta-analysis of the candidate gene literature, incorporation of the results of the largest genomic study yet published for schizophrenia, ratings from informed researchers who have published on these genes, and ratings from 24 schizophrenia geneticists. On the basis of current empirical evidence and mostly consensual assessments of informed opinion, it appears that the historical candidate gene literature did not yield clear insights into the genetic basis of schizophrenia. A likely reason why historical candidate gene studies did not achieve their primary aims is inadequate statistical power. However, the considerable efforts embodied in these early studies unquestionably set the stage for current successes in genomic approaches to schizophrenia.
Collapse
Affiliation(s)
- M S Farrell
- Center for Psychiatric Genomics, Department of Genetics, Genomic Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - T Werge
- 1] Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, Denmark [2] Department of Clinical Medicine, University of Copenhagen, Copenhagen, Aarhus, Denmark [3] The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - P Sklar
- 1] Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA [2] Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA [3] Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M J Owen
- 1] MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK [2] National Centre for Mental Health, Cardiff University, Cardiff, UK
| | - R A Ophoff
- 1] Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA [2] Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA [3] Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - M C O'Donovan
- 1] MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK [2] National Centre for Mental Health, Cardiff University, Cardiff, UK
| | - A Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Ireland
| | - S Cichon
- 1] Division of Medical Genetics, Department of Biomedicine, University Basel, Basel, Switzerland [2] Institute of Human Genetics, University of Bonn, Bonn, Germany [3] Department of Genomics, Life and Brain Center, Bonn, Germany
| | - P F Sullivan
- 1] Center for Psychiatric Genomics, Department of Genetics, Genomic Medicine, University of North Carolina, Chapel Hill, NC, USA [2] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden [3] Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Terzić T, Kastelic M, Dolžan V, Plesničar BK. Genetic variability testing of neurodevelopmental genes in schizophrenic patients. J Mol Neurosci 2014; 56:205-11. [PMID: 25529856 DOI: 10.1007/s12031-014-0482-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
This study investigated the associations between single nucleotide polymorphisms in the neurodevelopmental Disrupted In Schizophrenia 1 (DISC1 ), neuregulin 1 (NRG1), brain-derived neurotrophic factor (BDNF) and NOTCH4 genes and the clinical symptoms and the occurrence of treatment-resistant schizophrenia in the Slovenian population. We included 138 schizophrenia patients, divided into treatment-responsive and treatment-resistant group and 94 healthy blood donors. All subjects were genotyped for eight polymorphisms (DISC1 rs6675281, DISC1 rs821616, NRG1 rs3735781, NRG1 rs3735782, NRG1 rs10503929, NRG1 rs3924999, BDNF rs6265, NOTCH rs367398) and investigated for associations with clinical variables. NOTCH4 rs367398 AA/AG was significantly associated with worse Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression (CGI) score. NOTCH4 rs367398 was not statistically significantly associated with the occurrence of treatment-resistant schizophrenia after the correction for multiple testing. Our data indicate that NOTCH4 polymorphism can influence clinical symptoms in Slovenian patients with schizophrenia.
Collapse
Affiliation(s)
- Tea Terzić
- University Psychiatric Clinic Ljubljana, Studenec 48, 1260, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
31
|
Kodavali CV, Watson AM, Prasad KM, Celik C, Mansour H, Yolken RH, Nimgaonkar VL. HLA associations in schizophrenia: are we re-discovering the wheel? Am J Med Genet B Neuropsychiatr Genet 2014; 165B:19-27. [PMID: 24142843 DOI: 10.1002/ajmg.b.32195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/02/2013] [Indexed: 01/18/2023]
Abstract
Associations between human leukocyte antigen (HLA) polymorphisms on chromosome 6p and schizophrenia (SZ) risk have been evaluated for over five decades. Numerous case-control studies from the candidate gene era analyzed moderately sized samples and reported nominally significant associations with several loci in the HLA region (sample sizes, n = 100-400). The risk conferred by individual alleles was modest (odds ratios < 2.0). The basis for the associations could not be determined, though connections with known immune and auto-immune abnormalities in SZ were postulated. Interest in the HLA associations has re-emerged following several recent genome-wide association studies (GWAS); which utilized 10- to 100-fold larger samples and also identified associations on the short arm of chromosome 6. Unlike the earlier candidate gene studies, the associations are statistically significant following correction for multiple comparisons. Like the earlier studies; they have modest effect sizes, raising questions about their utility in risk prediction or pathogenesis research. In this review, we summarize the GWAS and reflect on possible bases for the associations. Suggestions for future research are discussed. We favor, in particular; efforts to evaluate local population sub-structure as well as further evaluation of immune-related variables in future studies.
Collapse
Affiliation(s)
- Chowdari V Kodavali
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
32
|
Neurogenic locus notch homolog protein 4 and brain-derived neurotrophic factor variants combined effect on schizophrenia susceptibility. Acta Neuropsychiatr 2013; 25:356-60. [PMID: 25287876 DOI: 10.1017/neu.2013.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES To investigate the relationships between single-nucleotide polymorphisms (SNPs) in NOTCH4 and brain-derived neurotrophic factor (BDNF) with schizophrenia among Han Chinese in Southern China. METHODS Two NOTCH4 SNPs (rs520688 and rs415929) and two BDNF SNPs (rs2030324 and rs12273539) were examined in 464 schizophrenics and 464 healthy controls from Hunan province in South China, using the Sequenom MassARRAY® iPLEX System. RESULTS In the study population, rs520688 and rs2030324 were significantly associated with schizophrenia. A decreased risk of schizophrenia was associated with the rs520688 GA genotype (p = 0.035), whereas an increased risk of schizophrenia was associated with the rs2030324 CC/CT genotype (p = 0.044). The genotype distributions of rs415929 in NOTCH4 and rs12273539 in BDNF did not differ significantly between the case and control groups. Although no allele-allele interactions were detected between rs520688 and rs2030324, recombination analysis revealed a combined effect of the two on the susceptibility to schizophrenia, with GA-TT decreasing and CT/CC-GG/GA increasing the risk of schizophrenia. CONCLUSION In conclusion, rs520688 in NOTCH4 and rs2030324 in BDNF are significantly associated with schizophrenia among Han Chinese in Southern China. The two had a combined effect on the susceptibility to schizophrenia among Han Chinese in Southern China, but this may not be caused by an allele-allele interaction.
Collapse
|
33
|
Takahashi S. Heterogeneity of schizophrenia: Genetic and symptomatic factors. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:648-52. [PMID: 24132896 DOI: 10.1002/ajmg.b.32161] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/14/2013] [Indexed: 11/08/2022]
Abstract
Schizophrenia may have etiological heterogeneity, and may reflect common symptomatology caused by many genetic and environmental factors. In this review, we show the potential existence of heterogeneity in schizophrenia based on the results of our previous studies. In our study of the NOTCH4 gene, there were no significant associations between any single nucleotide polymorphisms (SNPs) of NOTCH4 and schizophrenia. However, exploratory analyses suggested that the SNP, rs3134928 may be associated with early-onset schizophrenia, and that rs387071 may be associated with schizophrenia characterized by negative symptoms. In our highly familial schizophrenia study, the African-American cohort without environmental exposure showed a possible linkage at marker 8p23.1 in the dominant model and in the European-American cohort, a marker at 22q13.32 showed a probable linkage in the recessive model. In the less familial schizophrenia families, these linkages were not shown. Based on our eye movement study, a putative subtype of schizophrenia with severe symptoms related to excitement/hostility, negative symptoms and disorganization may be associated with chromosome 22q11. We consider that a sample stratification approach may clarify the heterogeneity of schizophrenia. Therefore, this approach may lead to a more straightforward way of identifying susceptibility genes of schizophrenia.
Collapse
Affiliation(s)
- Sakae Takahashi
- Division of Psychiatry, Department of Psychiatry, Nihon University, School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Mathieu P, Adami PVM, Morelli L. Notch signaling in the pathologic adult brain. Biomol Concepts 2013; 4:465-76. [DOI: 10.1515/bmc-2013-0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022] Open
Abstract
AbstractAlong the entire lifetime, Notch is actively involved in dynamic changes in the cellular architecture and function of the nervous system. It controls neurogenesis, the growth of axons and dendrites, synaptic plasticity, and ultimately neuronal death. The specific roles of Notch in adult brain plasticity and neurological disorders have begun to be unraveled in recent years, and pieces of experimental evidence suggest that Notch is operative in diverse brain pathologies including tumorigenesis, stroke, and neurological disorders such as Alzheimer’s disease, Down syndrome, and multiple sclerosis. In this review, we will cover the recent findings of Notch signaling and neural dysfunction in adult human brain and discuss its relevance in the pathogenesis of diseases of the central nervous system.
Collapse
Affiliation(s)
- Patricia Mathieu
- 1Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| | - Pamela V. Martino Adami
- 1Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| | - Laura Morelli
- 1Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| |
Collapse
|
35
|
Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol 2013; 49:633-44. [PMID: 23999872 DOI: 10.1007/s12035-013-8545-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Notch signaling in the nervous system is often regarded as a developmental pathway. However, recent studies have suggested that Notch is associated with neuronal discharges. Here, focusing on temporal lobe epilepsy, we found that Notch signaling was activated in the kainic acid (KA)-induced epilepsy model and in human epileptogenic tissues. Using an acute model of seizures, we showed that DAPT, an inhibitor of Notch, inhibited ictal activity. In contrast, pretreatment with exogenous Jagged1 to elevate Notch signaling before KA application had proconvulsant effects. In vivo, we demonstrated that the impacts of activated Notch signaling on seizures can in part be attributed to the regulatory role of Notch signaling on excitatory synaptic activity in CA1 pyramidal neurons. In vitro, we found that DAPT treatment impaired synaptic vesicle endocytosis in cultured hippocampal neurons. Taken together, our findings suggest a correlation between aberrant Notch signaling and epileptic seizures. Notch signaling is up-regulated in response to seizure activity, and its activation further promotes neuronal excitation of CA1 pyramidal neurons in acute seizures.
Collapse
|
36
|
Search for schizophrenia susceptibility variants at the HLA-DRB1 locus among a British population. Immunogenetics 2012; 65:1-7. [DOI: 10.1007/s00251-012-0652-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023]
|
37
|
Gershon ES, Badner JA. Incorporation of molecular data and redefinition of phenotype: new approaches to genetic epidemiology of bipolar manic depressive illness and schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034205 PMCID: PMC3181639 DOI: 10.31887/dcns.2001.3.1/esgershon] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considerable advances have been made in identifying specific genetic components of bipolar manic depressive illness (BP) and schizophrenia (SZ), despite their complex inheritance. Meta-analysis of all published whole-genome linkage scans reveals overall support for illness genes in several chromosomal regions. In two of these regions, on the lonq arm of chromosome 13 and on the long arm of chromosome 22, the combined studies of BP and SZ are consistent with a common susceptibility locus for the two disorders. This lends some plausibility to the hypothesis of some shared genetic predispositions for BP and SZ. Other linkages are supported by multiple studies of specific chromosomal regions, most notably two regions on chromosome 6 in SZ. The velocardiofacial syndrome is associated with deletions very close to the linkage region on chromosome 22, and with psychiatric manifestations of both BP and SZ. Endophenotypes of SZ, previously demonstrated to be heritable, have been found to have chromosomal linkage in at least one study. These include eye-tracking abnormalities linked to the short arm of chromosome 6, and abnormality of the P50 cortical evoked potential linked to chromosome 15. Variants in specific genes have been associated with susceptibility to illness, and other genes have been associated with susceptibility to side effects of pharmacological treatment. These genetic findings may eventually be part of an integrated genetic, environmental, and interactive-factor epidemiology of the major mental illnesses.
Collapse
Affiliation(s)
- E S Gershon
- Department of Psychiatry, University of Chicago, Chicago, III, USA
| | | |
Collapse
|
38
|
Shayevitz C, Cohen OS, Faraone SV, Glatt SJ. A re-review of the association between the NOTCH4 locus and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:477-83. [PMID: 22488909 DOI: 10.1002/ajmg.b.32050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/21/2012] [Indexed: 12/11/2022]
Abstract
NOTCH4 has long been identified as a candidate susceptibility gene for schizophrenia, but the collective body of genetic association studies of this gene has been less than conclusive. Recently a variant in NOTCH4 was implicated as one of the most reliably associated polymorphisms observed in a genome-wide association scan of the disorder, and the collective evidence for this polymorphism now surpasses criteria for genome-wide significance. To place these developments in context, we now summarize the initial work identifying NOTCH4 as a candidate gene for schizophrenia. The results of the genome-wide association studies that have confirmed this as a risk gene, and novel bioinformatics analyses that reveal potential functional profiles of the most likely risk-conferring polymorphisms. These analyses suggest that the NOTCH4 polymorphisms most strongly associated with schizophrenia exert their effects on susceptibility by altering the efficiency and/or alternative splicing of Notch4 transcripts. Further experimental evidence should be pursued to clarify the NOTCH4-regulated molecular and cellular phenotypes of relevance to the disorder, and the functional consequences of the implicated polymorphisms in the gene.
Collapse
Affiliation(s)
- Christina Shayevitz
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory, Department of Psychiatry & Behavioral Sciences, Medical Genetics Research Center, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
39
|
Zhu KJ, Lv YM, Yin XY, Wang ZX, Sun LD, He SM, Cheng H, Hu DY, Zhang Z, Li Y, Zuo XB, Zhou YW, Yang S, Fan X, Zhang XJ, Zhang FY. Psoriasis regression analysis of MHC loci identifies shared genetic variants with vitiligo. PLoS One 2011; 6:e23089. [PMID: 22125590 PMCID: PMC3220662 DOI: 10.1371/journal.pone.0023089] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 07/05/2011] [Indexed: 11/23/2022] Open
Abstract
Psoriasis is a common inflammatory skin disease with genetic components of both immune system and the epidermis. PSOR1 locus (6q21) has been strongly associated with psoriasis; however, it is difficult to identify additional independent association due to strong linkage disequilibrium in the MHC region. We performed stepwise regression analyses of more than 3,000 SNPs in the MHC region genotyped using Human 610-Quad (Illumina) in 1,139 cases with psoriasis and 1,132 controls of Han Chinese population to search for additional independent association. With four regression models obtained, two SNPs rs9468925 in HLA-C/HLA-B and rs2858881 in HLA-DQA2 were repeatedly selected in all models, suggesting that multiple loci outside PSOR1 locus were associated with psoriasis. More importantly we find that rs9468925 in HLA-C/HLA-B is associated with both psoriasis and vitiligo, providing first important evidence that two major skin diseases share a common genetic locus in the MHC, and a basis for elucidating the molecular mechanism of skin disorders.
Collapse
Affiliation(s)
- Kun-Ju Zhu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Yong-Mei Lv
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Xian-Yong Yin
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Zai-Xing Wang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Liang-Dan Sun
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Su-Min He
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Hui Cheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Da-Yan Hu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Zheng Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Yang Li
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Xian-Bo Zuo
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - You-Wen Zhou
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
- The State Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
| | - Xing Fan
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
- * E-mail: (F-YZ); (X-JZ); (XF)
| | - Xue-Jun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
- * E-mail: (F-YZ); (X-JZ); (XF)
| | - Feng-Yu Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, Anhui, China
- The State Key Laboratory Incubation Base of Dermatology, Hefei, Anhui, China
- * E-mail: (F-YZ); (X-JZ); (XF)
| |
Collapse
|
40
|
Figueiredo TC, de Oliveira JRM. Reconsidering the association between the major histocompatibility complex and bipolar disorder. J Mol Neurosci 2011; 47:26-30. [PMID: 21987052 DOI: 10.1007/s12031-011-9656-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/20/2011] [Indexed: 12/18/2022]
Abstract
Bipolar disorder (BD) is a cyclical and chronic affective disorder, globally recognized as an important public health problem and characterized by mood changes with recurring phases such as mania and depression. It is considered a complex disease, depending on the interaction of genetic and environmental triggers (stressors factors), but with a poorly known pathogenesis. Recent studies have implicated immune factors in the pathogenesis of BD and more particularly associated with different human major histocompatibility complex (MHC) regions. A major consortium study have recently linked BD to hundreds of variations with stronger associations in the MHC region, such as the rs3130297 SNP, located in the NOTCH4 gene, with an additional overlapping association with schizophrenia. This short review focuses on studies that investigated the association between bipolar disorder and the MHC, and the involvement of the immune system in the pathogenesis of the disease, in order to provide further information for additional diagnostic and therapeutic strategies. Fully understanding the etiology and pathophysiology of BD is extremely important to define new approaches for intervention and prevention, maybe through the modulation of the immune system.
Collapse
|
41
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 725] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
42
|
Singh B, Bera NK, De S, Nayak C, Chaudhuri TK. Study of HLA Class I gene in Indian schizophrenic patients of Siliguri, West Bengal. Psychiatry Res 2011; 189:215-9. [PMID: 21459456 DOI: 10.1016/j.psychres.2011.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
The authors studied the prevalence of the human leukocyte antigen (HLA) Class I gene in 136 (85 male, 51 female) India-born schizophrenia patients residing in and around the Siliguri subdivision of West Bengal by the PCR-SSP method. The control group consisted of 150 age- and sex-matched healthy individuals from the same ethnic group as the patients. Increased frequency of HLA A*03 as well as decreased frequencies of HLA A*31 and HLA B*51, was noted. The study suggests the possible existence of a susceptibility locus for schizophrenia within the HLA region.
Collapse
Affiliation(s)
- Bisu Singh
- Department of Zoology, University of North Bengal, Siliguri, West Bengal, India
| | | | | | | | | |
Collapse
|
43
|
Smith CL, Bolton A, Nguyen G. Genomic and epigenomic instability, fragile sites, schizophrenia and autism. Curr Genomics 2011; 11:447-69. [PMID: 21358990 PMCID: PMC3018726 DOI: 10.2174/138920210793176001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 05/26/2010] [Accepted: 06/01/2010] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence links genomic and epigenomic instability, including multiple fragile sites regions to neuropsychiatric diseases including schizophrenia and autism. Cancer is the only other disease associated with multiple fragile site regions, and genome and epigenomic instability is a characteristic of cancer. Research on cancer is far more advanced than research on neuropsychiatric disease; hence, insight into neuropsychiatric disease may be derived from cancer research results. Towards this end, this article will review the evidence linking schizophrenia and other neuropsychiatric diseases (especially autism) to genomic and epigenomic instability, and fragile sites. The results of studies on genetic, epigenetic and environmental components of schizophrenia and autism point to the importance of the folate-methionine-transulfuration metabolic hub that is diseases also perturbed in cancer. The idea that the folate-methionine-transulfuration hub is important in neuropsychiatric is exciting because this hub present novel targets for drug development, suggests some drugs used in cancer may be useful in neuropsychiatric disease, and raises the possibility that nutrition interventions may influence the severity, presentation, or dynamics of disease.
Collapse
Affiliation(s)
- Cassandra L Smith
- Molecular Biotechnology Research Laboratory, Departments of Biomedical Engineering, Biology and Pharmacology, Boston University, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Souza BR, Tropepe V. The role of dopaminergic signalling during larval zebrafish brain development: a tool for investigating the developmental basis of neuropsychiatric disorders. Rev Neurosci 2011; 22:107-19. [PMID: 21615265 DOI: 10.1515/rns.2011.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodevelopment depends on intrinsic and extrinsic factors that influence the overall pattern of neurogenesis and neural circuit formation, which has a direct impact on behaviour. Defects in dopamine signalling and brain morphology at a relatively early age, and mutations in neurodevelopmental genes are strongly correlated with several neuropsychiatric disorders. This evidence supports the hypothesis of a neurodevelopmental origin of at least some forms of mental illness. Zebrafish (Danio rerio) has emerged as an important vertebrate model system in biomedical research. The ease with which intrinsic and extrinsic factors can be altered during early development, the relatively conserved dopaminergic circuit organisation in the larval brain, and the emergence of simple sensorimotor behaviours very early in development are some of the appealing features that make this organism advantageous for developmental brain and behaviour research. Thus, examining the impact of altered dopamine signalling and disease related genetic aberrations during zebrafish development presents a unique opportunity to holistically analyse the in vivo biochemical, morphological and behavioural significance of altered dopamine signalling during a crucial period of development using a highly tractable vertebrate model organism. Ultimately, this information will shed new light on potential therapeutic targets for the treatment of schizophrenia and perhaps serve as a paradigm for investigating the neurodevelopmental origin of other psychiatric disorders.
Collapse
Affiliation(s)
- Bruno Rezende Souza
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto M5S 3G5, ON, Canada
| | | |
Collapse
|
45
|
Ren J, Jegga AG, Zhang M, Deng J, Liu J, Gordon CB, Aronow BJ, Lu LJ, Zhang B, Ma J. A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome. Hum Mol Genet 2011; 20:3424-36. [PMID: 21653638 DOI: 10.1093/hmg/ddr251] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expanded polyglutamine (polyQ) tract in the human TATA-box-binding protein (hTBP) causes the neurodegenerative disease spinocerebellar ataxia 17 (SCA17). To investigate the pathological effects of polyQ expansion, we established a SCA17 model in Drosophila. Similar to SCA17 patients, transgenic flies expressing a mutant hTBP protein with an expanded polyQ tract (hTBP80Q) exhibit progressive neurodegeneration, late-onset locomotor impairment and shortened lifespan. Microarray analysis reveals that hTBP80Q causes widespread and time-dependent transcriptional dysregulation in Drosophila. In a candidate screen for genetic modifiers, we identified RBP-J/Su(H), a transcription factor that contains Q/N-rich domains and participates in Notch signaling. Knockdown of Su(H) by RNAi further enhances hTBP80Q-induced eye defects, whereas overexpression of Su(H) suppresses such defects. While the Su(H) transcript level is not significantly altered in hTBP80Q-expressing flies, genes that contain Su(H)-binding sites are among those that are dysregulated. We further show that hTBP80Q interacts more efficiently with Su(H) than wild-type hTBP, suggesting that a reduction in the fraction of Su(H) available for its normal cellular functions contributes to hTBP80Q-induced phenotypes. While the Notch signaling pathway has been implicated in several neurological disorders, our study suggests a possibility that the activity of its nuclear component RBP-J/Su(H) may modulate the pathological progression in SCA17 patients.
Collapse
Affiliation(s)
- Jie Ren
- Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I, Ito Y, Nakamura Y, Kishi T, Okumura T, Fukuo Y, Williams HJ, Hamshere ML, Ivanov D, Inada T, Suzuki M, Hashimoto R, Ujike H, Takeda M, Craddock N, Kaibuchi K, Owen MJ, Ozaki N, O'Donovan MC, Iwata N. Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 2011; 69:472-8. [PMID: 20832056 DOI: 10.1016/j.biopsych.2010.07.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/09/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Genome-wide association studies have detected a small number of weak but strongly supported schizophrenia risk alleles. Moreover, a substantial polygenic component to the disorder consisting of a large number of such alleles has been reported by the International Schizophrenia Consortium. METHOD We report a Japanese genome-wide association study of schizophrenia comprising 575 cases and 564 controls. We attempted to replicate 97 markers, representing a nonredundant panel of markers derived mainly from the top 150 findings, in up to three data sets totaling 1990 cases and 5389 controls. We then attempted to replicate the observation of a polygenic component to the disorder in the Japanese and to determine whether this overlaps that seen in UK populations. RESULTS Single-locus analysis did not reveal genome-wide support for any locus in the genome-wide association study sample (best p = 6.2 × 10(-6)) or in the complete data set in which the best supported locus was SULT6B1 (rs11895771: p = 3.7 × 10(-5) in the meta-analysis). Of loci previously supported by genome-wide association studies, we obtained in the Japanese support for NOTCH4 (rs2071287: p(meta) = 5.1 × 10(-5)). Using the approach reported by the International Schizophrenia Consortium, we replicated the observation of a polygenic component to schizophrenia within the Japanese population (p = .005). Our trans Japan-UK analysis of schizophrenia also revealed a significant correlation (best p = 7.0 × 10(-5)) in the polygenic component across populations. CONCLUSIONS These results indicate a shared polygenic risk of schizophrenia between Japanese and Caucasian samples, although we did not detect unequivocal evidence for a novel susceptibility gene for schizophrenia.
Collapse
Affiliation(s)
- Masashi Ikeda
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Morikawa T, Manabe T. Aberrant regulation of alternative pre-mRNA splicing in schizophrenia. Neurochem Int 2010; 57:691-704. [DOI: 10.1016/j.neuint.2010.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/07/2010] [Accepted: 08/12/2010] [Indexed: 01/06/2023]
|
48
|
Abstract
Malignant gliomas are among the most devastating tumors for which conventional therapies have not significantly improved patient outcome. Despite advances in imaging, surgery, chemotherapy and radiotherapy, survival is still less than 2 years from diagnosis and more targeted therapies are urgently needed. Notch signaling is central to the normal and neoplastic development of the central nervous system, playing important roles in proliferation, differentiation, apoptosis and cancer stem cell regulation. Notch is also involved in the regulation response to hypoxia and angiogenesis, which are typical tumor and more specifically glioblastoma multiforme (GBM) features. Targeting Notch signaling is therefore a promising strategy for developing future therapies for the treatment of GBM. In this review we give an overview of the mechanisms of Notch signaling, its networking pathways in gliomas, and discuss its potential for designing novel therapeutic approaches.
Collapse
|
49
|
Association between autism and variants in the wingless-type MMTV integration site family member 2 ( WNT2) gene. Int J Neuropsychopharmacol 2010; 13:443-9. [PMID: 19895723 DOI: 10.1017/s1461145709990903] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Autism is a severe neurodevelopmental disorder with a complex genetic aetiology. The wingless-type MMTV integration site family member 2 (WNT2) gene has been considered as a candidate gene for autism. We conducted a case-control study and followed up with a transmission disequilibrium test (TDT) analysis to confirm replication of the significant results for the first time. We conducted a case-control study of nine single nucleotide polymorphisms (SNPs) within the WNT2 gene in 170 patients with autism and 214 normal controls in a Japanese population. We then conducted a TDT analysis in 98 autistic families (trios) to replicate the results of the case-control study. In the case-control study, three SNPs (rs3779547, rs4727847 and rs3729629), two major individual haplotypes (A-T-C and G-G-G, consisting of rs3779547, rs4727847, and rs3729629), and global probability values of the haplotype distributions in the same region (global p=0.0091) showed significant associations with autism. Furthermore, all of these significant associations were also observed in the TDT analysis. Our findings provide evidence for a significant association between WNT2 and autism. Considering the important role of the WNT2 gene in brain development, our results therefore indicate that the WNT2 gene is one of the strong candidate genes for autism.
Collapse
|
50
|
Abstract
Schizophrenia is a complex genetic disorder manifesting combined environmental and genetic causation. Recently, genome-wide association experiments yielded remarkable new experimental evidence that is leading to a better understanding of the genetic models and the biological risk factors involved in schizophrenia. These studies have discovered uncommon copy number variations (mainly deletions) and common single nucleotide polymorphisms with alleles associated with schizophrenia. The aggregate data provide support for polygenic inheritance and for genetic overlap of schizophrenia with autism and with bipolar disorder. It is anticipated that the application of a myriad of tools from systems biology, in combination with biological functional experiments, will lead to a delineation of biological pathways involved in the pathophysiology of schizophrenia, and eventually to new therapies.
Collapse
Affiliation(s)
- Pablo V Gejman
- Department of Psychiatry and Behavioral Sciences; and Research Institute, Center for Psychiatric Genetics, NorthShore University HealthSystem Research Institute, Evanston, IL 60201, USA.
| | | | | |
Collapse
|