1
|
Werlen G, Hernandez T, Jacinto E. Food for thought: Nutrient metabolism controlling early T cell development. Bioessays 2024:e2400179. [PMID: 39504233 DOI: 10.1002/bies.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
T cells develop in the thymus by expressing a diverse repertoire of either αβ- or γδ-T cell receptors (TCR). While many studies have elucidated how TCR signaling and gene expression control T cell ontogeny, the role of nutrient metabolism is just emerging. Here, we discuss how metabolic reprogramming and nutrient availability impact the fate of developing thymic T cells. We focus on how the PI3K/mTOR signaling mediates various extracellular inputs and how this signaling pathway controls metabolic rewiring during highly proliferative and anabolic developmental stages. We highlight the role of the hexosamine biosynthetic pathway that generates metabolites that are utilized for N- and O-linked glycosylation of proteins and how it impacts TCR expression during T cell ontogeny. We consider the dichotomy in metabolic needs during αβ- versus γδ-T cell lineage commitment as well as how metabolism is also coupled to molecular signaling that controls cell fate.
Collapse
Affiliation(s)
- Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tatiana Hernandez
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
Saini N, Naaz A, Metur SP, Gahlot P, Walvekar A, Dutta A, Davathamizhan U, Sarin A, Laxman S. Methionine uptake via the SLC43A2 transporter is essential for regulatory T-cell survival. Life Sci Alliance 2022; 5:5/12/e202201663. [PMID: 36260753 PMCID: PMC9463494 DOI: 10.26508/lsa.202201663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Regulatory T cells survive after IL-2 withdrawal by taking up and using methionine through the SLC43A2 transporter in a Notch1-dependent manner. Cell death, survival, or growth decisions in T-cell subsets depend on interplay between cytokine-dependent and metabolic processes. The metabolic requirements of T-regulatory cells (Tregs) for their survival and how these are satisfied remain unclear. Herein, we identified a necessary requirement of methionine uptake and usage for Tregs survival upon IL-2 deprivation. Activated Tregs have high methionine uptake and usage to S-adenosyl methionine, and this uptake is essential for Tregs survival in conditions of IL-2 deprivation. We identify a solute carrier protein SLC43A2 transporter, regulated in a Notch1-dependent manner that is necessary for this methionine uptake and Tregs viability. Collectively, we uncover a specifically regulated mechanism of methionine import in Tregs that is required for cells to adapt to cytokine withdrawal. We highlight the need for methionine availability and metabolism in contextually regulating cell death in this immunosuppressive population of T cells.
Collapse
Affiliation(s)
- Neetu Saini
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Afsana Naaz
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Shree Padma Metur
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Pinki Gahlot
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Adhish Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Anupam Dutta
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | | | - Apurva Sarin
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| |
Collapse
|
3
|
Ding C, Xu H, Yu Z, Roulis M, Qu R, Zhou J, Oh J, Crawford J, Gao Y, Jackson R, Sefik E, Li S, Wei Z, Skadow M, Yin Z, Ouyang X, Wang L, Zou Q, Su B, Hu W, Flavell RA, Li HB. RNA m 6A demethylase ALKBH5 regulates the development of γδ T cells. Proc Natl Acad Sci U S A 2022; 119:e2203318119. [PMID: 35939687 PMCID: PMC9388086 DOI: 10.1073/pnas.2203318119] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
γδ T cells are an abundant T cell population at the mucosa and are important in providing immune surveillance as well as maintaining tissue homeostasis. However, despite γδ T cells' origin in the thymus, detailed mechanisms regulating γδ T cell development remain poorly understood. N6-methyladenosine (m6A) represents one of the most common posttranscriptional modifications of messenger RNA (mRNA) in mammalian cells, but whether it plays a role in γδ T cell biology is still unclear. Here, we show that depletion of the m6A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells, which confers enhanced protection against gastrointestinal Salmonella typhimurium infection. Mechanistically, loss of ALKBH5 favors the development of γδ T cell precursors by increasing the abundance of m6A RNA modification in thymocytes, which further reduces the expression of several target genes including Notch signaling components Jagged1 and Notch2. As a result, impairment of Jagged1/Notch2 signaling contributes to enhanced proliferation and differentiation of γδ T cell precursors, leading to an expanded mature γδ T cell repertoire. Taken together, our results indicate a checkpoint role of ALKBH5 and m6A modification in the regulation of γδ T cell early development.
Collapse
Affiliation(s)
- Chenbo Ding
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Hao Xu
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zhibin Yu
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Manolis Roulis
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Rihao Qu
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- dProgram of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
- eDepartment of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Jing Zhou
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Joonseok Oh
- fDepartment of Chemistry, Yale University, New Haven, CT 06520
- gChemical Biology Institute, Yale University, West Haven, CT 06516
| | - Jason Crawford
- fDepartment of Chemistry, Yale University, New Haven, CT 06520
- gChemical Biology Institute, Yale University, West Haven, CT 06516
- hDepartment of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Yimeng Gao
- iSection of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- jYale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520
- kYale RNA Center, Yale University School of Medicine, New Haven, CT 06520
| | - Ruaidhrí Jackson
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Esen Sefik
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Simiao Li
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zheng Wei
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Mathias Skadow
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zhinan Yin
- lZhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai 519000, Guangdong, China
- mBiomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xinshou Ouyang
- nSection of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Lei Wang
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Zou
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Su
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Weiguo Hu
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- 2To whom correspondence may be addressed. , , or
| | - Richard A. Flavell
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- oHHMI, Yale University School of Medicine, New Haven, CT 06520
- 2To whom correspondence may be addressed. , , or
| | - Hua-Bing Li
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
- 2To whom correspondence may be addressed. , , or
| |
Collapse
|
4
|
Lombard‐Vadnais F, Lacombe J, Chabot‐Roy G, Ferron M, Lesage S. OCA‐B does not act as a transcriptional coactivator in T cells. Immunol Cell Biol 2022; 100:338-351. [DOI: 10.1111/imcb.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Félix Lombard‐Vadnais
- Immunologie‐oncologie Centre de recherche de l’Hôpital Maisonneuve‐Rosemont Montréal QC H1T 2M4 Canada
- Department of Microbiology & Immunology McGill University Montreal QC H3A 0G4 Canada
| | - Julie Lacombe
- Molecular Physiology Research Unit Institut de recherches cliniques de Montréal Montréal QC H2W 1R7 Canada
| | - Geneviève Chabot‐Roy
- Immunologie‐oncologie Centre de recherche de l’Hôpital Maisonneuve‐Rosemont Montréal QC H1T 2M4 Canada
| | - Mathieu Ferron
- Molecular Physiology Research Unit Institut de recherches cliniques de Montréal Montréal QC H2W 1R7 Canada
- Département de médecine Université de Montréal Montréal QC H3T 1J4 Canada
- Division of Experimental Medicine McGill University Montreal QC H3A 0G4 Canada
| | - Sylvie Lesage
- Immunologie‐oncologie Centre de recherche de l’Hôpital Maisonneuve‐Rosemont Montréal QC H1T 2M4 Canada
- Département de microbiologie, infectiologie et immunologie Université de Montréal Montréal QC H3T 1J4 Canada
| |
Collapse
|
5
|
Saini N, Lakshminarayanan S, Kundu P, Sarin A. Notch1 Modulation of Cellular Calcium Regulates Mitochondrial Metabolism and Anti-Apoptotic Activity in T-Regulatory Cells. Front Immunol 2022; 13:832159. [PMID: 35222416 PMCID: PMC8866856 DOI: 10.3389/fimmu.2022.832159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
As the major hub of metabolic activity and an organelle sequestering pro-apoptogenic intermediates, mitochondria lie at the crossroads of cellular decisions of death and survival. Intracellular calcium is a key regulator of these outcomes with rapid, uncontrolled uptake into mitochondria, activating pro-apoptotic cascades that trigger cell death. Here, we show that calcium uptake and mitochondrial metabolism in murine T-regulatory cells (Tregs) is tuned by Notch1 activity. Based on analysis of Tregs and the HEK cell line, we present evidence that modulation of cellular calcium dynamics underpins Notch1 regulation of mitochondrial homeostasis and consequently anti-apoptotic activity. Targeted siRNA-mediated ablations reveal dependency on molecules controlling calcium release from the endoplasmic reticulum (ER) and the chaperone, glucose-regulated protein 75 (Grp75), the associated protein Voltage Dependent Anion Channel (VDAC)1 and the Mitochondrial Calcium Uniporter (MCU), which together facilitate ER calcium transfer and uptake into the mitochondria. Endogenous Notch1 is detected in immune-complexes with Grp75 and VDAC1. Deficits in mitochondrial oxidative and survival in Notch1 deficient Tregs, were corrected by the expression of recombinant Notch1 intracellular domain, and in part by recombinant Grp75. Thus, the modulation of calcium dynamics and consequently mitochondrial metabolism underlies Treg survival in conditions of nutrient stress. This work positions a key role for Notch1 activity in these outcomes.
Collapse
Affiliation(s)
- Neetu Saini
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India.,Department of Biology, Manipal Academy of Higher Education, Manipal, India
| | - Sowmya Lakshminarayanan
- National Centre for Biological Science, TATA Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Priyanka Kundu
- National Centre for Biological Science, TATA Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Apurva Sarin
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India
| |
Collapse
|
6
|
Cova G, Taroni C, Deau MC, Cai Q, Mittelheisser V, Philipps M, Jung M, Cerciat M, Le Gras S, Thibault-Carpentier C, Jost B, Carlsson L, Thornton AM, Shevach EM, Kirstetter P, Kastner P, Chan S. Helios represses megakaryocyte priming in hematopoietic stem and progenitor cells. J Exp Med 2021; 218:e20202317. [PMID: 34459852 PMCID: PMC8406645 DOI: 10.1084/jem.20202317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of cell fate decisions in hematopoietic stem cells is incomplete. Here, we show that the transcription factor Helios is highly expressed in murine hematopoietic stem and progenitor cells (HSPCs), where it is required to suppress the separation of the platelet/megakaryocyte lineage from the HSPC pool. Helios acts mainly in quiescent cells, where it directly represses the megakaryocyte gene expression program in cells as early as the stem cell stage. Helios binding promotes chromatin compaction, notably at the regulatory regions of platelet-specific genes recognized by the Gata2 and Runx1 transcriptional activators, implicated in megakaryocyte priming. Helios null HSPCs are biased toward the megakaryocyte lineage at the expense of the lymphoid and partially resemble cells of aging animals. We propose that Helios acts as a guardian of HSPC pluripotency by continuously repressing the megakaryocyte fate, which in turn allows downstream lymphoid priming to take place. These results highlight the importance of negative and positive priming events in lineage commitment.
Collapse
Affiliation(s)
- Giovanni Cova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Chiara Taroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Marie-Céline Deau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Qi Cai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Vincent Mittelheisser
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Muriel Philipps
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Marie Cerciat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Christelle Thibault-Carpentier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Bernard Jost
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Plateforme GenomEast, Infrastructure France Génomique, Illkirch, France
| | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Angela M. Thornton
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ethan M. Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Peggy Kirstetter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
7
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
8
|
Tindemans I, van Schoonhoven A, KleinJan A, de Bruijn MJ, Lukkes M, van Nimwegen M, van den Branden A, Bergen IM, Corneth OB, van IJcken WF, Stadhouders R, Hendriks RW. Notch signaling licenses allergic airway inflammation by promoting Th2 cell lymph node egress. J Clin Invest 2021; 130:3576-3591. [PMID: 32255764 DOI: 10.1172/jci128310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Allergic asthma is mediated by Th2 responses to inhaled allergens. Although previous experiments indicated that Notch signaling activates expression of the key Th2 transcription factor Gata3, it remains controversial how Notch promotes allergic airway inflammation. Here we show that T cell-specific Notch deficiency in mice prevented house dust mite-driven eosinophilic airway inflammation and significantly reduced Th2 cytokine production, serum IgE levels, and airway hyperreactivity. However, transgenic Gata3 overexpression in Notch-deficient T cells only partially rescued this phenotype. We found that Notch signaling was not required for T cell proliferation or Th2 polarization. Instead, Notch-deficient in vitro-polarized Th2 cells showed reduced accumulation in the lungs upon in vivo transfer and allergen challenge, as Notch-deficient Th2 cells were retained in the lung-draining lymph nodes. Transcriptome analyses and sequential adoptive transfer experiments revealed that while Notch-deficient lymph node Th2 cells established competence for lung migration, they failed to upregulate sphingosine-1-phosphate receptor 1 (S1PR1) and its critical upstream transcriptional activator Krüppel-like factor 2 (KLF2). As this KLF2/S1PR1 axis represents the essential cell-intrinsic regulator of T cell lymph node egress, we conclude that the druggable Notch signaling pathway licenses the Th2 response in allergic airway inflammation via promoting lymph node egress.
Collapse
|
9
|
Brandes N, Mitkovska SH, Botermann DS, Maurer W, Müllen A, Scheile H, Zabel S, Frommhold A, Heß I, Hahn H, Uhmann A. Spreading of Isolated Ptch Mutant Basal Cell Carcinoma Precursors Is Physiologically Suppressed and Counteracts Tumor Formation in Mice. Int J Mol Sci 2020; 21:ijms21239295. [PMID: 33291515 PMCID: PMC7730243 DOI: 10.3390/ijms21239295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Basal cell carcinoma (BCC) originate from Hedgehog/Patched signaling-activated epidermal stem cells. However, the chemically induced tumorigenesis of mice with a CD4Cre-mediated biallelic loss of the Hedgehog signaling repressor Patched also induces BCC formation. Here, we identified the cellular origin of CD4Cre-targeted BCC progenitors as rare Keratin 5+ epidermal cells and show that wildtype Patched offspring of these cells spread over the hair follicle/skin complex with increasing mouse age. Intriguingly, Patched mutant counterparts are undetectable in age-matched untreated skin but are getting traceable upon applying the chemical tumorigenesis protocol. Together, our data show that biallelic Patched depletion in rare Keratin 5+ epidermal cells is not sufficient to drive BCC development, because the spread of these cells is physiologically suppressed. However, bypassing the repression of Patched mutant cells, e.g., by exogenous stimuli, leads to an accumulation of BCC precursor cells and, finally, to tumor development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anja Uhmann
- Correspondence: ; Tel.: +49-551-3914-100; Fax: +49-551-396-580
| |
Collapse
|
10
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Dolens A, Durinck K, Lavaert M, Van der Meulen J, Velghe I, De Medts J, Weening K, Roels J, De Mulder K, Volders P, De Preter K, Kerre T, Vandekerckhove B, Leclercq G, Vandesompele J, Mestdagh P, Van Vlierberghe P, Speleman F, Taghon T. Distinct Notch1 and BCL11B requirements mediate human γδ/αβ T cell development. EMBO Rep 2020; 21:e49006. [PMID: 32255245 PMCID: PMC7202205 DOI: 10.15252/embr.201949006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
γδ and αβ T cells have unique roles in immunity and both originate in the thymus from T-lineage committed precursors through distinct but unclear mechanisms. Here, we show that Notch1 activation is more stringently required for human γδ development compared to αβ-lineage differentiation and performed paired mRNA and miRNA profiling across 11 discrete developmental stages of human T cell development in an effort to identify the potential Notch1 downstream mechanism. Our data suggest that the miR-17-92 cluster is a Notch1 target in immature thymocytes and that miR-17 can restrict BCL11B expression in these Notch-dependent T cell precursors. We show that enforced miR-17 expression promotes human γδ T cell development and, consistently, that BCL11B is absolutely required for αβ but less for γδ T cell development. This study suggests that human γδ T cell development is mediated by a stage-specific Notch-driven negative feedback loop through which miR-17 temporally restricts BCL11B expression and provides functional insights into the developmental role of the disease-associated genes BCL11B and the miR-17-92 cluster in a human context.
Collapse
Affiliation(s)
| | - Kaat Durinck
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Marieke Lavaert
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | - Imke Velghe
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Jelle De Medts
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Karin Weening
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Juliette Roels
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | | | | | - Tessa Kerre
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | | | - Jo Vandesompele
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Pieter Mestdagh
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | - Frank Speleman
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Tom Taghon
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| |
Collapse
|
12
|
Salz A, Gurniak C, Jönsson F, Witke W. Cofilin1-driven actin dynamics controls migration of thymocytes and is essential for positive selection in the thymus. J Cell Sci 2020; 133:jcs238048. [PMID: 31974112 DOI: 10.1242/jcs.238048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/14/2020] [Indexed: 11/20/2022] Open
Abstract
Actin dynamics is essential for T-cell development. We show here that cofilin1 is the key molecule for controlling actin filament turnover in this process. Mice with specific depletion of cofilin1 in thymocytes showed increased steady-state levels of actin filaments, and associated alterations in the pattern of thymocyte migration and adhesion. Our data suggest that cofilin1 is controlling oscillatory F-actin changes, a parameter that influences the migration pattern in a 3-D environment. In a collagen matrix, cofilin1 controls the speed and resting intervals of migrating thymocytes. Cofilin1 was not involved in thymocyte proliferation, cell survival, apoptosis or surface receptor trafficking. However, in cofilin1 mutant mice, impaired adhesion and migration resulted in a specific block of thymocyte differentiation from CD4/CD8 double-positive thymocytes towards CD4 and CD8 single-positive cells. Our data suggest that tuning of the dwelling time of thymocytes in the thymic niches is tightly controlled by cofilin1 and essential for positive selection during T-cell differentiation. We describe a novel role of cofilin1 in the physiological context of migration-dependent cell differentiation.
Collapse
Affiliation(s)
- Andree Salz
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Christine Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, 75015 Paris, France
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| |
Collapse
|
13
|
Preglej T, Hamminger P, Luu M, Bulat T, Andersen L, Göschl L, Stolz V, Rica R, Sandner L, Waltenberger D, Tschismarov R, Faux T, Boenke T, Laiho A, Elo LL, Sakaguchi S, Steiner G, Decker T, Bohle B, Visekruna A, Bock C, Strobl B, Seiser C, Boucheron N, Ellmeier W. Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation. JCI Insight 2020; 5:133393. [PMID: 32102981 PMCID: PMC7101144 DOI: 10.1172/jci.insight.133393] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
Some effector CD4+ T cell subsets display cytotoxic activity, thus breaking the functional dichotomy of CD4+ helper and CD8+ cytotoxic T lymphocytes. However, molecular mechanisms regulating CD4+ cytotoxic T lymphocyte (CD4+ CTL) differentiation are poorly understood. Here we show that levels of histone deacetylases 1 and 2 (HDAC1-HDAC2) are key determinants of CD4+ CTL differentiation. Deletions of both Hdac1 and 1 Hdac2 alleles (HDAC1cKO-HDAC2HET) in CD4+ T cells induced a T helper cytotoxic program that was controlled by IFN-γ-JAK1/2-STAT1 signaling. In vitro, activated HDAC1cKO-HDAC2HET CD4+ T cells acquired cytolytic activity and displayed enrichment of gene signatures characteristic of effector CD8+ T cells and human CD4+ CTLs. In vivo, murine cytomegalovirus-infected HDAC1cKO-HDAC2HET mice displayed a stronger induction of CD4+ CTL features compared with infected WT mice. Finally, murine and human CD4+ T cells treated with short-chain fatty acids, which are commensal-produced metabolites acting as HDAC inhibitors, upregulated CTL genes. Our data demonstrate that HDAC1-HDAC2 restrain CD4+ CTL differentiation. Thus, HDAC1-HDAC2 might be targets for the therapeutic induction of CD4+ CTLs.
Collapse
Affiliation(s)
- Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Tanja Bulat
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Göschl
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Darina Waltenberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Faux
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Thorina Boenke
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Asta Laiho
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Günter Steiner
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, and
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Abstract
The evolutionarily conserved Notch signalling pathway regulates the differentiation and function of mature T lymphocytes with major context-dependent consequences in host defence, autoimmunity and alloimmunity. The emerging effects of Notch signalling in T cell responses build upon a more established role for Notch in T cell development. Here, we provide a critical review of this burgeoning literature to make sense of what has been learned so far and highlight the experimental strategies that have been most useful in gleaning physiologically relevant information. We outline the functional consequences of Notch signalling in mature T cells in addition to key specific Notch ligand–receptor interactions and downstream molecular signalling pathways. Our goal is to help clarify future directions for this expanding body of work and the best approaches to answer important open questions.
Collapse
Affiliation(s)
- Joshua D Brandstadter
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Demeyer A, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Muyllaert D, Staal J, Beyaert R. MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. Front Immunol 2019; 10:2330. [PMID: 31632405 PMCID: PMC6779721 DOI: 10.3389/fimmu.2019.02330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
MALT1 plays an important role in innate and adaptive immune signaling by acting as a scaffold protein that mediates NF-κB signaling. In addition, MALT1 is a cysteine protease that further fine tunes proinflammatory signaling by cleaving specific substrates. Deregulated MALT1 activity has been associated with immunodeficiency, autoimmunity, and cancer in mice and humans. Genetically engineered mice expressing catalytically inactive MALT1, still exerting its scaffold function, were previously shown to spontaneously develop autoimmunity due to a decrease in Tregs associated with increased effector T cell activation. In contrast, complete absence of MALT1 does not lead to autoimmunity, which has been explained by the impaired effector T cell activation due to the absence of MALT1-mediated signaling. However, here we report that MALT1-deficient mice develop atopic-like dermatitis upon aging, which is preceded by Th2 skewing, an increase in serum IgE, and a decrease in Treg frequency and surface expression of the Treg functionality marker CTLA-4.
Collapse
Affiliation(s)
- Annelies Demeyer
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Nuffel
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Baudelet
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - David Muyllaert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Demeyer A, Skordos I, Driege Y, Kreike M, Hochepied T, Baens M, Staal J, Beyaert R. MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner. Front Immunol 2019; 10:1898. [PMID: 31474984 PMCID: PMC6702287 DOI: 10.3389/fimmu.2019.01898] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 01/31/2023] Open
Abstract
MALT1 is a central signaling component in innate and adaptive immunity by regulating NF-κB and other key signaling pathways in different cell types. Activities of MALT1 are mediated by its scaffold and protease functions. Because of its role in lymphocyte activation and proliferation, inhibition of MALT1 proteolytic activity is of high interest for therapeutic targeting in autoimmunity and certain lymphomas. However, recent studies showing that Malt1 protease-dead knock-in (Malt1-PD) mice suffer from autoimmune disease have somewhat tempered the initial enthusiasm. Although it has been proposed that an imbalance between immune suppressive regulatory T cells (Tregs) and activated effector CD4+ T cells plays a key role in the autoimmune phenotype of Malt1-PD mice, the specific contribution of MALT1 proteolytic activity in T cells remains unclear. Using T cell-conditional Malt1 protease-dead knock-in (Malt1-PDT) mice, we here demonstrate that MALT1 has a T cell-intrinsic role in regulating the homeostasis and function of thymic and peripheral T cells. T cell-specific ablation of MALT1 proteolytic activity phenocopies mice in which MALT1 proteolytic activity has been genetically inactivated in all cell types. The Malt1-PDT mice have a reduced number of Tregs in the thymus and periphery, although the effect in the periphery is less pronounced compared to full-body Malt1-PD mice, indicating that also other cell types may promote Treg induction in a MALT1 protease-dependent manner. Despite the difference in peripheral Treg number, both T cell-specific and full-body Malt1-PD mice develop ataxia and multi-organ inflammation to a similar extent. Furthermore, reconstitution of the full-body Malt1-PD mice with T cell-specific expression of wild-type human MALT1 eliminated all signs of autoimmunity. Together, these findings establish an important T cell-intrinsic role of MALT1 proteolytic activity in the suppression of autoimmune responses.
Collapse
Affiliation(s)
- Annelies Demeyer
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ioannis Skordos
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathijs Baens
- Center for Innovation and Stimulation of Drug Discovery (CISTIM), Leuven, Belgium
| | - Jens Staal
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Seitz C, Huang J, Geiselhöringer AL, Galbani-Bianchi P, Michalek S, Phan TS, Reinhold C, Dietrich L, Schmidt C, Corazza N, Delgado ME, Schnalzger T, Schoonjans K, Brunner T. The orphan nuclear receptor LRH-1/NR5a2 critically regulates T cell functions. SCIENCE ADVANCES 2019; 5:eaav9732. [PMID: 31328159 PMCID: PMC6636985 DOI: 10.1126/sciadv.aav9732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
LRH-1 (liver receptor homolog-1/NR5a2) is an orphan nuclear receptor, which regulates glucose and lipid metabolism, as well as intestinal inflammation via the transcriptional control of intestinal glucocorticoid synthesis. Predominantly expressed in epithelial cells, its expression and role in immune cells are presently enigmatic. LRH-1 was found to be induced in immature and mature T lymphocytes upon stimulation. T cell-specific deletion of LRH-1 causes a drastic loss of mature peripheral T cells. LRH-1-depleted CD4+ T cells exert strongly reduced activation-induced proliferation in vitro and in vivo and fail to mount immune responses against model antigens and to induce experimental intestinal inflammation. Similarly, LRH-1-deficient cytotoxic CD8+ T cells fail to control viral infections. This study describes a novel and critical role of LRH-1 in T cell maturation, functions, and immopathologies and proposes LRH-1 as an emerging pharmacological target in the treatment of T cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Carina Seitz
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Juan Huang
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Sichuan, P.R. China
| | - Anna-Lena Geiselhöringer
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Svenja Michalek
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Truong San Phan
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Cindy Reinhold
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lea Dietrich
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christian Schmidt
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nadia Corazza
- Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - M. Eugenia Delgado
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Theresa Schnalzger
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas Brunner
- Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
18
|
Gamradt P, Laoubi L, Nosbaum A, Mutez V, Lenief V, Grande S, Redoulès D, Schmitt AM, Nicolas JF, Vocanson M. Inhibitory checkpoint receptors control CD8+ resident memory T cells to prevent skin allergy. J Allergy Clin Immunol 2019; 143:2147-2157.e9. [DOI: 10.1016/j.jaci.2018.11.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023]
|
19
|
Sgolastra F, Kuksin CA, Gonzalez-Perez G, Minter LM, Tew GN. Enhanced TAT-Cre Protein Transduction for Efficient Gene Recombination in T cells. ACS APPLIED BIO MATERIALS 2018; 1:444-451. [PMID: 35016365 DOI: 10.1021/acsabm.8b00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic manipulation has increased our understanding of gene function and led to the discovery of new therapeutic targets. Cre/LoxP DNA recombination is widely used for genetic studies in mammalian cells. The direct delivery of Cre recombinase fused to protein transduction domains (PTDs), such as TAT, has been described as a valid alternative to the conditional, site-specific Cre expression in transgenic mice. However, efficiently conveying proteins into live cells, especially primary T cells, remains a major challenge. In this study, we show that one of our recently developed PTDs synthetic mimic greatly enhances the cellular uptake of the TAT-Cre fusion protein, enabling significantly smaller amounts of the protein to be used. We used this technique in primary mouse T cells to successfully delete, ex vivo, two essential genes involved in regulating T cell activation, Notch1 and Rbpjκ. Ex vivo gene deletion resulted in substantial protein reduction, comparable to that obtained in vivo when Cre-expressing Notch1-floxed (MxCre±Notch1fl/fl) mice were treated with polyinosinic-polycytidylic acid (polyl/C), but in considerably less time, and without altering normal cell physiology. These results highlight several key advantages that include the ability to use less expensive protein (TAT-Cre), a major reduction in total experimental time and labor, and fewer side effects on the treated cells. This method should offer new opportunities for immunological studies, especially in the context of identifying novel therapeutic targets.
Collapse
|
20
|
Stage-specific roles for Zmiz1 in Notch-dependent steps of early T-cell development. Blood 2018; 132:1279-1292. [PMID: 30076146 DOI: 10.1182/blood-2018-02-835850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Notch1 signaling must elevate to high levels in order to drive the proliferation of CD4-CD8- double-negative (DN) thymocytes and progression to the CD4+CD8+ double-positive (DP) stage through β-selection. During this critical phase of pre-T-cell development, which is also known as the DN-DP transition, it is unclear whether the Notch1 transcriptional complex strengthens its signal output as a discrete unit or through cofactors. We previously showed that the protein inhibitor of activated STAT-like coactivator Zmiz1 is a context-dependent cofactor of Notch1 in T-cell leukemia. We also showed that withdrawal of Zmiz1 generated an early T-lineage progenitor (ETP) defect. Here, we show that this early defect seems inconsistent with loss-of-Notch1 function. In contrast, at the later pre-T-cell stage, withdrawal of Zmiz1 impaired the DN-DP transition by inhibiting proliferation, like withdrawal of Notch. In pre-T cells, but not ETPs, Zmiz1 cooperatively regulated Notch1 target genes Hes1, Lef1, and Myc. Enforced expression of either activated Notch1 or Myc partially rescued the Zmiz1-deficient DN-DP defect. We identified residues in the tetratricopeptide repeat (TPR) domain of Zmiz1 that bind Notch1. Mutating only a single residue impaired the Zmiz1-Notch1 interaction, Myc induction, the DN-DP transition, and leukemic proliferation. Similar effects were seen using a dominant-negative TPR protein. Our studies identify stage-specific roles of Zmiz1. Zmiz1 is a context-specific cofactor for Notch1 during Notch/Myc-dependent thymocyte proliferation, whether normal or malignant. Finally, we highlight a vulnerability in leukemic cells that originated from a developmentally important Zmiz1-Notch1 interaction that is hijacked during transformation from normal pre-T cells.
Collapse
|
21
|
MALT1 Controls Attenuated Rabies Virus by Inducing Early Inflammation and T Cell Activation in the Brain. J Virol 2018; 92:JVI.02029-17. [PMID: 29367251 PMCID: PMC5874405 DOI: 10.1128/jvi.02029-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
MALT1 is involved in the activation of immune responses, as well as in the proliferation and survival of certain cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, further promoting the expression of immunoregulatory genes. Deregulated MALT1 activity has been associated with autoimmunity and cancer, implicating MALT1 as a new therapeutic target. Although MALT1 deficiency has been shown to protect against experimental autoimmune encephalomyelitis, nothing is known about the impact of MALT1 on virus infection in the central nervous system. Here, we studied infection with an attenuated rabies virus, Evelyn-Rotnycki-Abelseth (ERA) virus, and observed increased susceptibility with ERA virus in MALT1−/− mice. Indeed, after intranasal infection with ERA virus, wild-type mice developed mild transient clinical signs with recovery at 35 days postinoculation (dpi). Interestingly, MALT1−/− mice developed severe disease requiring euthanasia at around 17 dpi. A decreased induction of inflammatory gene expression and cell infiltration and activation was observed in MALT1−/− mice at 10 dpi compared to MALT1+/+ infected mice. At 17 dpi, however, the level of inflammatory cell activation was comparable to that observed in MALT1+/+ mice. Moreover, MALT1−/− mice failed to produce virus-neutralizing antibodies. Similar results were obtained with specific inactivation of MALT1 in T cells. Finally, treatment of wild-type mice with mepazine, a MALT1 protease inhibitor, also led to mortality upon ERA virus infection. These data emphasize the importance of early inflammation and activation of T cells through MALT1 for controlling the virulence of an attenuated rabies virus in the brain. IMPORTANCE Rabies virus is a neurotropic virus which can infect any mammal. Annually, 59,000 people die from rabies. Effective therapy is lacking and hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protein involved in innate and adaptive immunity and is an interesting therapeutic target because MALT1-deregulated activity has been associated with autoimmunity and cancers. The role of MALT1 in viral infection is, however, largely unknown. Here, we study the impact of MALT1 on virus infection in the brain, using the attenuated ERA rabies virus in different models of MALT1-deficient mice. We reveal the importance of MALT1-mediated inflammation and T cell activation to control ERA virus, providing new insights in the biology of MALT1 and rabies virus infection.
Collapse
|
22
|
Abstract
The immune system is remarkably responsive to a myriad of invading microorganisms and provides continuous surveillance against tissue damage and developing tumor cells. To achieve these diverse functions, multiple soluble and cellular components must react in an orchestrated cascade of events to control the specificity, magnitude and persistence of the immune response. Numerous catabolic and anabolic processes are involved in this process, and prominent roles for l-arginine and l-glutamine catabolism have been described, as these amino acids serve as precursors of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines spermidine and spermine. Polyamines have several purported roles and high levels of polyamines are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the tumor microenvironment, l-arginine catabolism by both tumor cells and suppressive myeloid cells is known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.
Collapse
Affiliation(s)
- Rebecca S Hesterberg
- University of South Florida Cancer Biology Graduate Program, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA.
- Department Immunology, PharmD, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, 23033 SRB, Tampa, FL 33612, USA.
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | - Pearlie K Epling-Burnette
- Department Immunology, PharmD, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, 23033 SRB, Tampa, FL 33612, USA.
| |
Collapse
|
23
|
Abstract
Notch drives critical decisions in a multitude of developmental decisions in many invertebrate and vertebrate organisms including flies, worms, fish, mice and humans. Therefore, it is not surprising that Notch family members also play a key role in cell fate choices in the vertebrate immune system. This review highlights the critical function of Notch in the development of mature T lymphocytes from hematopoietic precursors and describes the role of Notch in mature T cell activation, proliferation and differentiation.
Collapse
|
24
|
Müller L, Hainberger D, Stolz V, Hamminger P, Hassan H, Preglej T, Boucheron N, Sakaguchi S, Wiegers GJ, Villunger A, Auwerx J, Ellmeier W. The corepressor NCOR1 regulates the survival of single-positive thymocytes. Sci Rep 2017; 7:15928. [PMID: 29162920 PMCID: PMC5698297 DOI: 10.1038/s41598-017-15918-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional regulator bridging repressive chromatin modifying enzymes with transcription factors. NCOR1 regulates many biological processes, however its role in T cells is not known. Here we show that Cd4-Cre-mediated deletion of NCOR1 (NCOR1 cKOCd4) resulted in a reduction of peripheral T cell numbers due to a decrease in single-positive (SP) thymocytes. In contrast, double-positive (DP) thymocyte numbers were not affected in the absence of NCOR1. The reduction in SP cells was due to diminished survival of NCOR1-null postselection TCRβhiCD69+ and mature TCRβhiCD69- thymocytes. NCOR1-null thymocytes expressed elevated levels of the pro-apoptotic factor BIM and showed a higher fraction of cleaved caspase 3-positive cells upon TCR stimulation ex vivo. However, staphylococcal enterotoxin B (SEB)-mediated deletion of Vβ8+ CD4SP thymocytes was normal, suggesting that negative selection is not altered in the absence of NCOR1. Finally, transgenic expression of the pro-survival protein BCL2 restored the population of CD69+ thymocytes in NCOR1 cKOCd4 mice to a similar percentage as observed in WT mice. Together, these data identify NCOR1 as a crucial regulator of the survival of SP thymocytes and revealed that NCOR1 is essential for the proper generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hammad Hassan
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.,Department of Biochemistry (Shankar Campus), Abdul Wali Khan University (AWKUM) Mardan, KPK, Pakistan
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - G Jan Wiegers
- Innsbruck Medical University, Biocenter, Division of Developmental Immunology, Innsbruck, Austria
| | - Andreas Villunger
- Innsbruck Medical University, Biocenter, Division of Developmental Immunology, Innsbruck, Austria
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Integrative and Systems Physiology, Lausanne, Switzerland
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Nobs SP, Natali S, Pohlmeier L, Okreglicka K, Schneider C, Kurrer M, Sallusto F, Kopf M. PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. J Exp Med 2017; 214:3015-3035. [PMID: 28798029 PMCID: PMC5626395 DOI: 10.1084/jem.20162069] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/05/2017] [Accepted: 07/10/2017] [Indexed: 01/17/2023] Open
Abstract
Type-2 immune responses are well-established drivers of chronic inflammatory diseases, such as asthma, and represent a large burden on public health systems. The transcription factor PPARγ is known to promote M2-macrophage and alveolar macrophage development. Here, we report that PPARγ plays a key role in both T cells and dendritic cells (DCs) for development of type-2 immune responses. It is predominantly expressed in mouse Th2 cells in vitro and in vivo as well as human Th2 cells from allergic patients. Using conditional knockouts, we show that PPARγ signaling in T cells, although largely dispensable for IL-4 induction, is critical for IL-33-driven Th2 effector function in type-2 allergic airway responses. Furthermore, we demonstrate that IL-4 and IL-33 promote up-regulation of PPARγ in lung-resident CD11b+ DCs, which enhances migration to draining lymph nodes and Th2 priming capacity. Thus, we uncover a surprising proinflammatory role for PPARγ and establish it as a novel, important mediator of DC-T cell interactions in type-2 immunity.
Collapse
Affiliation(s)
- Samuel Philip Nobs
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sara Natali
- Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Lea Pohlmeier
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Katarzyna Okreglicka
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christoph Schneider
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | | | - Federica Sallusto
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Manfred Kopf
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
JunB promotes Th17 cell identity and restrains alternative CD4 + T-cell programs during inflammation. Nat Commun 2017; 8:301. [PMID: 28824171 PMCID: PMC5563507 DOI: 10.1038/s41467-017-00380-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/12/2017] [Indexed: 12/19/2022] Open
Abstract
T helper 17 (Th17) cell plasticity contributes to both immunity and autoimmunity; however, the factors that control lineage flexibility are mostly unknown. Here we show the activator protein-1 (AP-1) factor JunB is an essential regulator of Th17 cell identity. JunB activates expression of Th17 lineage-specifying genes and coordinately represses genes controlling Th1 and regulatory T-cell fate. JunB supports Th17 cell identity by regulating key AP-1 complex constituents. In particular, JunB limits the expression of the subset repressor IRF8, and impedes access of JunD to regulatory regions of alternative effector loci. Although dispensable for homeostatic Th17 cell development, JunB is required for induction and maintenance of Th17 effector responses in the inflammatory contexts of both acute infection and chronic autoimmunity in mice. Through regulatory network analysis, we show that JunB is a core regulator of global transcriptional programs that promote Th17 cell identity and restrict alternative CD4+ T-cell potential. AP-1 family transcription factors regulate CD4+ T helper cell differentiation. Here the authors show that the AP-1 member JunB is a nonredundant regulator of transcriptional programs that support Th17 cell identity and restrain alternative Th1 and Treg cell fates in inflammatory contexts of acute fungal infection and chronic autoimmunity.
Collapse
|
27
|
Cortini A, Ellinghaus U, Malik TH, Cunninghame Graham DS, Botto M, Vyse TJ. B cell OX40L supports T follicular helper cell development and contributes to SLE pathogenesis. Ann Rheum Dis 2017; 76:2095-2103. [PMID: 28818832 PMCID: PMC5705841 DOI: 10.1136/annrheumdis-2017-211499] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/01/2017] [Indexed: 01/27/2023]
Abstract
Objectives TNFSF4 (encodes OX40L) is a susceptibility locus for systemic lupus erythematosus (SLE). Risk alleles increase TNFSF4 expression in cell lines, but the mechanism linking this effect to disease is unclear, and the OX40L-expressing cell types mediating the risk are not clearly established. Blockade of OX40L has been demonstrated to reduce disease severity in several models of autoimmunity, but not in SLE. We sought to investigate its potential therapeutic role in lupus. Methods We used a conditional knockout mouse system to investigate the function of OX40L on B and T lymphocytes in systemic autoimmunity. Results Physiologically, OX40L on both B and T cells contributed to the humoral immune response, but B cell OX40L supported the secondary humoral response and antibody affinity maturation. Our data also indicated that loss of B cell OX40L impeded the generation of splenic T follicular helper cells. We further show that in two models of SLE—a spontaneous congenic model and the H2-IAbm12 graft-versus-host-induced model—loss of B cell OX40L ameliorates the autoimmune phenotype. This improvement was, in each case, accompanied by a decline in T follicular helper cell numbers. Importantly, the germline knockout did not exhibit a markedly different phenotype from the B cell knockout in these models. Conclusions These findings contribute to a model in which genetically determined increased OX40L expression promotes human SLE by several mechanisms, contingent on its cellular expression. The improvement in pathology in two models of systemic autoimmunity indicates that OX40L is an excellent therapeutic target in SLE.
Collapse
Affiliation(s)
- Andrea Cortini
- Division of Medical and Molecular Genetics and Immunology, Infection and Inflammatory Disease, King's College London, London, UK
| | - Ursula Ellinghaus
- Division of Medical and Molecular Genetics and Immunology, Infection and Inflammatory Disease, King's College London, London, UK
| | - Talat H Malik
- Department of Medicine, Centre for Complement and Inflammation Research, Imperial College London, London, UK
| | - Deborah S Cunninghame Graham
- Division of Medical and Molecular Genetics and Immunology, Infection and Inflammatory Disease, King's College London, London, UK
| | - Marina Botto
- Department of Medicine, Centre for Complement and Inflammation Research, Imperial College London, London, UK
| | - Timothy James Vyse
- Division of Medical and Molecular Genetics and Immunology, Infection and Inflammatory Disease, King's College London, London, UK
| |
Collapse
|
28
|
Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M, Binsfeld C, Hao Z, Brüstle A, Itsumi M, Jäger C, Chen Y, Pinkenburg O, Camara B, Ollert M, Bindslev-Jensen C, Vasiliou V, Gorrini C, Lang PA, Lohoff M, Harris IS, Hiller K, Brenner D. Glutathione Primes T Cell Metabolism for Inflammation. Immunity 2017; 46:675-689. [PMID: 28423341 DOI: 10.1016/j.immuni.2017.03.019] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/31/2017] [Accepted: 03/29/2017] [Indexed: 01/19/2023]
Abstract
Activated T cells produce reactive oxygen species (ROS), which trigger the antioxidative glutathione (GSH) response necessary to buffer rising ROS and prevent cellular damage. We report that GSH is essential for T cell effector functions through its regulation of metabolic activity. Conditional gene targeting of the catalytic subunit of glutamate cysteine ligase (Gclc) blocked GSH production specifically in murine T cells. Gclc-deficient T cells initially underwent normal activation but could not meet their increased energy and biosynthetic requirements. GSH deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc prevented autoimmune disease but blocked antiviral defense. The antioxidative GSH pathway thus plays an unexpected role in metabolic integration and reprogramming during inflammatory T cell responses.
Collapse
Affiliation(s)
- Tak W Mak
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada; Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, ON M5G 2M9, Canada.
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg
| | - Gordon S Duncan
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada
| | - Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg
| | - Yannic Nonnenmacher
- Technische Universität Braunschweig, Braunschweig Integrated Center of Systems Biology, Braunschweig D-38106, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Maureen Cox
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada
| | - Carole Binsfeld
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg
| | - Zhenyue Hao
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1 Canada
| | - Anne Brüstle
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Momoe Itsumi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, CT 06520, New Haven, USA
| | - Olaf Pinkenburg
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, D-35032 Germany
| | - Bärbel Camara
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, D-35032 Germany
| | - Markus Ollert
- Department of Infection and Immunity, Allergy and Clinical Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Carsten Bindslev-Jensen
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, CT 06520, New Haven, USA
| | - Chiara Gorrini
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, University of Düsseldorf, Düsseldorf, D-40225, Germany
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, D-35032 Germany
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Karsten Hiller
- Technische Universität Braunschweig, Braunschweig Integrated Center of Systems Biology, Braunschweig D-38106, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg; Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, D-38124, Germany
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, DK-5000, Denmark.
| |
Collapse
|
29
|
Qiu G, Liu J, Cheng Q, Wang Q, Jing Z, Pei Y, Zhao M, Wang J, Guo JY, Zhang J. Impaired Autophagy and Defective T Cell Homeostasis in Mice with T Cell-Specific Deletion of Receptor for Activated C Kinase 1. Front Immunol 2017; 8:575. [PMID: 28572806 PMCID: PMC5435764 DOI: 10.3389/fimmu.2017.00575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Autophagy plays a central role in maintaining T cell homeostasis. Our previous study has shown that hepatocyte-specific deficiency of receptor for activated C kinase 1 (RACK1) leads to lipid accumulation in the liver, accompanied by impaired autophagy, but its in vivo role in T cells remains unclear. Here, we report that mice with T cell-specific deletion of RACK1 exhibit normal intrathymic development of conventional T cells and regulatory T (Treg) cells but reduced numbers of peripheral CD4+ and CD8+ T cells. Such defects are cell intrinsic with impaired mitochondrial clearance, increased sensitivity to cell death, and decreased proliferation that could be explained by impaired autophagy. Furthermore, RACK1 is essential for invariant natural T cell development. In vivo, T cell-specific loss of RACK1 dampens concanavalin A-induced acute liver injury. Our data suggest that RACK1 is a key regulator of T cell homeostasis.
Collapse
Affiliation(s)
- Guihua Qiu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China.,Graduate School, Guangxi Medical University, Nanning, China
| | - Jian Liu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China.,Graduate School, Guangxi Medical University, Nanning, China
| | - Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Zhaofei Jing
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yujun Pei
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Min Zhao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jing Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jessie Yanxiang Guo
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, RBHS-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China.,Graduate School, Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Marcel N, Perumalsamy LR, Shukla SK, Sarin A. The lysine deacetylase Sirtuin 1 modulates the localization and function of the Notch1 receptor in regulatory T cells. Sci Signal 2017; 10:10/473/eaah4679. [PMID: 28377411 DOI: 10.1126/scisignal.aah4679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to tune cellular functions in response to nutrient availability has important consequences for immune homeostasis. The activity of the receptor Notch in regulatory T (Treg) cells, which suppress the functions of effector T cells, is indispensable for Treg cell survival under conditions of diminished nutrient supply. Anti-apoptotic signaling induced by the Notch1 intracellular domain (NIC) originates from the cytoplasm and is spatially decoupled from the nuclear, largely transcriptional functions of NIC. We showed that Sirtuin 1 (Sirt1), which is an NAD+ (nicotinamide adenine dinucleotide)-dependent lysine deacetylase that inhibits NIC-dependent gene transcription, stabilized NIC proximal to the plasma membrane to promote the survival and function of activated Treg cells. Sirt1 was required for NIC-dependent protection from apoptosis in cell lines but not for the activity of the anti-apoptotic protein Bcl-xL. In addition, a variant NIC protein in which four lysines were mutated to arginines (NIC4KR) retained anti-apoptotic activity, but was not regulated by Sirt1, and reconstituted the functions of nonnuclear NIC in Notch1-deficient Treg cells. Loss of Sirt1 compromised Treg cell survival, resulting in antigen-induced T cell proliferation and inflammation in two mouse models. Thus, the Sirt1-Notch interaction may constitute an important checkpoint that tunes noncanonical Notch1 signaling.
Collapse
Affiliation(s)
- Nimi Marcel
- National Centre for Biological Sciences, Bengaluru, Karnataka 560065, India.,Manipal University, Manipal, Karnataka, India
| | | | - Sanjay K Shukla
- National Centre for Biological Sciences, Bengaluru, Karnataka 560065, India.,Manipal University, Manipal, Karnataka, India
| | - Apurva Sarin
- National Centre for Biological Sciences, Bengaluru, Karnataka 560065, India. .,Institute for Stem Cell Biology and Regenerative Medicine, Bengaluru, Karnataka 560065, India
| |
Collapse
|
31
|
Dashtsoodol N, Shigeura T, Aihara M, Ozawa R, Kojo S, Harada M, Endo TA, Watanabe T, Ohara O, Taniguchi M. Alternative pathway for the development of Vα14+ NKT cells directly from CD4–CD8– thymocytes that bypasses the CD4+CD8+ stage. Nat Immunol 2017; 18:274-282. [DOI: 10.1038/ni.3668] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
|
32
|
Hao Z, Sheng Y, Duncan GS, Li WY, Dominguez C, Sylvester J, Su YW, Lin GHY, Snow BE, Brenner D, You-Ten A, Haight J, Inoue S, Wakeham A, Elford A, Hamilton S, Liang Y, Zúñiga-Pflücker JC, He HH, Ohashi PS, Mak TW. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression. Nat Commun 2017; 8:14003. [PMID: 28084302 PMCID: PMC5241832 DOI: 10.1038/ncomms14003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022] Open
Abstract
T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8+ T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo. The E3 ligase Mule has been previously reported to be essential for B cell development and function by modulating p53 ubiquitination and degradation. Here Hao et al. identify KLF4 as a novel ubiquitination target of Mule and show it controls T cell proliferation and autoimmunity.
Collapse
Affiliation(s)
- Zhenyue Hao
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S3E1
| | - Yi Sheng
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Gordon S Duncan
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Wanda Y Li
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Carmen Dominguez
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Jennifer Sylvester
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Yu-Wen Su
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Gloria H Y Lin
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Bryan E Snow
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, Esch-sur-Alzette L-4354, Luxembourg.,Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense DK-5000 Denmark
| | - Annick You-Ten
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Jillian Haight
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Satoshi Inoue
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Andrew Wakeham
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Alisha Elford
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Sara Hamilton
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Yi Liang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Juan C Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada M4N 3M5
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Pamela S Ohashi
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| |
Collapse
|
33
|
Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nat Commun 2016; 7:13353. [PMID: 27857075 PMCID: PMC5120208 DOI: 10.1038/ncomms13353] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is essential for innate immunity in mice and humans, yet its role in adaptive immunity is unclear. Here we show that the LUBAC components HOIP, HOIL-1 and SHARPIN have essential roles in late thymocyte differentiation, FOXP3+ regulatory T (Treg)-cell development and Treg cell homeostasis. LUBAC activity is not required to prevent TNF-induced apoptosis or necroptosis but is necessary for the transcriptional programme of the penultimate stage of thymocyte differentiation. Treg cell-specific ablation of HOIP causes severe Treg cell deficiency and lethal immune pathology, revealing an ongoing requirement of LUBAC activity for Treg cell homeostasis. These data reveal stage-specific requirements for LUBAC in coordinating the signals required for T-cell differentiation. LUBAC is a ubiquitin ligase complex of HOIL-1, HOIP and SHARPIN important for signal transduction of a range of stimuli. Here the authors define the function of all three LUBAC components in T cell development and homeostasis.
Collapse
|
34
|
Newman DM, Voss AK, Thomas T, Allan RS. Essential role for the histone acetyltransferase KAT7 in T cell development, fitness, and survival. J Leukoc Biol 2016; 101:887-892. [PMID: 27733580 DOI: 10.1189/jlb.1ma0816-338r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation has an important role in gene regulation, DNA replication, and repair. Because these processes are central to the development of the immune system, we investigated the role of a previously unstudied histone acetyltransferase named KAT7 (also known as Myst2 or HBO1) in the regulation of thymopoiesis and observed a critical role in the regulation of conventional and innate-like T cell development. We found that KAT7-deficient thymocytes displayed normal, positive selection and development into mature single-positive αβ thymocytes; however, we observed few peripheral CD4+ or CD8+ T cells. The observed effects did not appear to arise from alterations to DNA replication, the TCR repertoire, or a block in thymocyte maturation and, more likely, was linked to survival defects related to gene deregulation because KAT7 deficiency led to an almost complete and specific loss of global histone-H3 lysine 14 acetylation (H3K14ac). Overall, we demonstrated a nonredundant role for KAT7 in the maintenance of H3K14ac, which is intimately linked with the ability to develop a normal immune system.
Collapse
Affiliation(s)
- Dane M Newman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A 2016; 113:10631-6. [PMID: 27582468 DOI: 10.1073/pnas.1524490113] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNMT3a is a de novo DNA methyltransferase expressed robustly after T-cell activation that regulates plasticity of CD4(+) T-cell cytokine expression. Here we show that DNMT3a is critical for directing early CD8(+) T-cell effector and memory fate decisions. Whereas effector function of DNMT3a knockout T cells is normal, they develop more memory precursor and fewer terminal effector cells in a T-cell intrinsic manner compared with wild-type animals. Rather than increasing plasticity of differentiated effector CD8(+) T cells, loss of DNMT3a biases differentiation of early effector cells into memory precursor cells. This is attributed in part to ineffective repression of Tcf1 expression in knockout T cells, as DNMT3a localizes to the Tcf7 promoter and catalyzes its de novo methylation in early effector WT CD8(+) T cells. These data identify DNMT3a as a crucial regulator of CD8(+) early effector cell differentiation and effector versus memory fate decisions.
Collapse
|
36
|
Marcel N, Sarin A. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells. eLife 2016; 5. [PMID: 27267497 PMCID: PMC4894756 DOI: 10.7554/elife.14023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1(-/-) Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation.
Collapse
Affiliation(s)
- Nimi Marcel
- National Centre for Biological Sciences, Bengaluru, India.,Department of Biology, Manipal University, Manipal, India
| | - Apurva Sarin
- National Centre for Biological Sciences, Bengaluru, India.,Institute for Stem Cell Biology & Regenerative Medicine, Bengaluru, India
| |
Collapse
|
37
|
Höfer T, Busch K, Klapproth K, Rodewald HR. Fate Mapping and Quantitation of Hematopoiesis In Vivo. Annu Rev Immunol 2016; 34:449-78. [DOI: 10.1146/annurev-immunol-032414-112019] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Kay Klapproth
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| |
Collapse
|
38
|
Seo W, Taniuchi I. Transcriptional regulation of early T-cell development in the thymus. Eur J Immunol 2016; 46:531-8. [DOI: 10.1002/eji.201545821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/30/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Wooseok Seo
- Laboratory for Transcriptional Regulation; RIKEN Center for Integrative Medical Sciences; Yokohama Kanagawa Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation; RIKEN Center for Integrative Medical Sciences; Yokohama Kanagawa Japan
| |
Collapse
|
39
|
Ohmura S, Mizuno S, Oishi H, Ku CJ, Hermann M, Hosoya T, Takahashi S, Engel JD. Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs. J Clin Invest 2016; 126:865-78. [PMID: 26808502 DOI: 10.1172/jci83894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2015] [Indexed: 01/09/2023] Open
Abstract
The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell-specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte-specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte-specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell-regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell-specific transcriptional activity.
Collapse
|
40
|
Wakabayashi N, Chartoumpekis DV, Kensler TW. Crosstalk between Nrf2 and Notch signaling. Free Radic Biol Med 2015; 88:158-167. [PMID: 26003520 PMCID: PMC4628857 DOI: 10.1016/j.freeradbiomed.2015.05.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/17/2022]
Abstract
The transcription factor Nrf2 (nuclear factor, erythroid derived 2, like 2) belongs to the CNC-bZip protein family, forming a transcriptosome with its direct heterodimer partner, sMaf, and co-factors such as CBP/p300. Nrf2 binds to one or more AREs (antioxidant response elements) that are located in the gene regulatory regions of the hundreds of Nrf2 target genes. The AREs are key enhancers that are activated in response to endogenous or exogenous stresses to maintain cellular and tissue homeostasis. Data emanating from gene expression microarray analyses comparing Nrf2-disrupted and wild-type mouse embryonic fibroblasts (MEF) showed that expression of Notch1 and Notch-signaling-related genes were decreased in Nrf2-disrupted cells. This observation triggered our research on Nrf2-Notch crosstalk. A functional ARE has been identified upstream of the Notch1 major transcription start site. Furthermore, an Rbpjκ binding site is conserved on the promoters of Nrf2 among animal species. Notch1 is one of the transmembrane Notch family receptors that drive Notch signaling, together with the Rbpjκ transcription factor. After canonically accepting ligands such as Jags and Deltas, the receptor undergoes cleavage to yield the Notch intracellular domain, which translocates to the nucleus. Recent studies using conditional knockout mice indicate that Notch1 as well as Notch2 plays an important role postnatally in liver development and in maintenance of hepatic function. In this review, we summarize current understanding of the role of reciprocal transcriptional regulation between Nrf2 and Notch in adult liver from studies using Nrf2, Keap1, and Notch1 genetically engineered mice.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Dionysios V Chartoumpekis
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thomas W Kensler
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Environmental Health Science, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Iguchi T, Aoki K, Ikawa T, Taoka M, Taya C, Yoshitani H, Toma-Hirano M, Koiwai O, Isobe T, Kawamoto H, Masai H, Miyatake S. BTB-ZF Protein Znf131 Regulates Cell Growth of Developing and Mature T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:982-93. [PMID: 26136427 DOI: 10.4049/jimmunol.1500602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/31/2015] [Indexed: 02/01/2023]
Abstract
Many members of the BTB-ZF family have been shown to play important roles in lymphocyte development and function. The role of zinc finger Znf131 (also known as Zbtb35) in T cell lineage was elucidated through the production of mice with floxed allele to disrupt at different stages of development. In this article, we present that Znf131 is critical for T cell development during double-negative to double-positive stage, with which significant cell expansion triggered by the pre-TCR signal is coupled. In mature T cells, Znf131 is required for the activation of effector genes, as well as robust proliferation induced upon TCR signal. One of the cyclin-dependent kinase inhibitors, p21(Cip1) encoded by cdkn1a gene, is one of the targets of Znf131. The regulation of T cell proliferation by Znf131 is in part attributed to its suppression on the expression of p21(Cip1).
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Laboratory of Self Defense Gene Regulation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Kazuhisa Aoki
- Laboratory of Self Defense Gene Regulation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tomokatsu Ikawa
- Young Chief Investigators Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Masato Taoka
- Laboratory of Biochemistry, Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Choji Taya
- Animal Research Division, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hiroshi Yoshitani
- Laboratory of Self Defense Gene Regulation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Osamu Koiwai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Toshiaki Isobe
- Laboratory of Biochemistry, Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Hiroshi Kawamoto
- Department of Immunology, Field of Regeneration Control, Institute of Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; and
| | - Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Shoichiro Miyatake
- Laboratory of Self Defense Gene Regulation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| |
Collapse
|
42
|
Wu Q, Gupta PK, Suzuki H, Wagner SR, Zhang C, W.Cummings O, Fan L, Kaplan MH, Wilkes DS, Shilling RA. CD4 T Cells but Not Th17 Cells Are Required for Mouse Lung Transplant Obliterative Bronchiolitis. Am J Transplant 2015; 15:1793-1804. [PMID: 25773063 PMCID: PMC4679154 DOI: 10.1111/ajt.13215] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 12/16/2014] [Accepted: 01/05/2015] [Indexed: 01/25/2023]
Abstract
Lung transplant survival is limited by obliterative bronchiolitis (OB), but the mechanisms of OB development are unknown. Previous studies in a mouse model of orthotopic lung transplantation suggested a requirement for IL-17. We have used this orthotopic mouse model to investigate the source of IL-17A and the requirement for T cells producing IL-17A. The major sources of IL-17A were CD4(+) T cells and γδ T cells. Depletion of CD4(+) T cells led to a significantly decreased frequency and number of IL-17A(+) lymphocytes and was sufficient to prevent acute rejection and OB. However, mice with STAT3-deficient T cells, which are unable to differentiate into Th17 cells, rejected lung allografts and developed OB similar to control mice. The frequency of IL-17A(+) cells was not decreased in mice with STAT3-deficient T cells due mainly to the presence of IL-17A(+) γδ T cells. Deficiency of γδ T cells also did not affect the development of airway fibrosis. Our data suggest that CD4(+) T cells are required for OB development and expansion of IL-17A responses in the lung, while Th17 and γδ T cells are not absolutely required and may compensate for each other.
Collapse
Affiliation(s)
- Qiang Wu
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine and Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Pawan Kumar Gupta
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine and Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Hidemi Suzuki
- Pulmonary and Critical Care Medicine and Center for Immunobiology, Departments of Medicine and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sarah R. Wagner
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine and Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Chen Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oscar W.Cummings
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lin Fan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine and Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Mark H. Kaplan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David S. Wilkes
- Pulmonary and Critical Care Medicine and Center for Immunobiology, Departments of Medicine and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rebecca A. Shilling
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine and Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
43
|
Hirano KI, Negishi N, Yazawa M, Yagita H, Habu S, Hozumi K. Delta-like 4-mediated Notch signaling is required for early T-cell development in a three-dimensional thymic structure. Eur J Immunol 2015; 45:2252-62. [DOI: 10.1002/eji.201445123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Ken-ichi Hirano
- Department of Immunology; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Naoko Negishi
- Department of Immunology; Juntendo University School of Medicine; Bunkyo-ku, Tokyo Japan
| | - Masaki Yazawa
- Department of Immunology; Tokai University School of Medicine; Isehara Kanagawa Japan
- Department of Biochemistry; Tokai University; Hiratsuka Kanagawa Japan
| | - Hideo Yagita
- Department of Immunology; Juntendo University School of Medicine; Bunkyo-ku, Tokyo Japan
| | - Sonoko Habu
- Department of Immunology; Juntendo University School of Medicine; Bunkyo-ku, Tokyo Japan
| | - Katsuto Hozumi
- Department of Immunology; Tokai University School of Medicine; Isehara Kanagawa Japan
| |
Collapse
|
44
|
Li J, Li J, Jia Y. Levels of soluble delta-like ligand 1 in the serum and cerebrospinal fluid of tuberculous meningitis patients. Neural Regen Res 2015; 7:874-8. [PMID: 25737717 PMCID: PMC4342717 DOI: 10.3969/j.issn.1673-5374.2012.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 01/20/2023] Open
Abstract
In this study, the levels of soluble delta-like ligand 1 in cerebrospinal fluid and serum of 50 patients with tuberculous meningitis, 30 patients with viral meningitis, 20 patients with purulent meningitis and 40 subjects without central nervous system disease were determined using an enzyme-linked immunosorbent assay. The mean levels of soluble delta-like ligand 1 in both cerebrospinal fluid and serum from patients with tuberculous meningitis were significantly higher compared with those from patients with viral meningitis or purulent meningitis or from subjects without central nervous system disease. Meanwhile, the level of soluble delta-like ligand 1 gradually decreased as tuberculous meningitis patients recovered. If patients deteriorated after treatment, the level of soluble delta-like ligand 1 in cerebrospinal fluid gradually increased. There was no correlation between the level of soluble delta-like ligand 1 and the protein level/cell number in cerebrospinal fluid. Our findings indicate that the levels of soluble delta-like ligand 1 in cerebrospinal fluid and serum are reliable markers for the diagnosis of tuberculous meningitis and for monitoring treatment progress. At the same time, this index is not influenced by protein levels or cell numbers in cerebrospinal fluid.
Collapse
Affiliation(s)
- Jinghong Li
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jinyi Li
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yanjie Jia
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
45
|
Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, Bilic I, Moser MA, Hainberger D, Mayer H, Seiser C, Bergthaler A, Taniuchi I, Ellmeier W. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol 2014; 97:635-44. [PMID: 25548254 DOI: 10.1189/jlb.1hi1113-597rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CD8 coreceptor expression is dynamically regulated during thymocyte development and is tightly controlled by the activity of at least 5 different cis-regulatory elements. Despite the detailed characterization of the Cd8 loci, the regulation of the complex expression pattern of CD8 cannot be fully explained by the activity of the known Cd8 enhancers. In this study, we revisited the Cd8ab gene complex with bioinformatics and transgenic reporter gene expression approaches to search for additional Cd8 cis-regulatory elements. This led to the identification of an ECR (ECR-4), which in transgenic reporter gene expression assays, directed expression preferentially in CD44(hi)CD62L(+) CD8(+) T cells, including innate-like CD8(+) T cells. ECR-4, designated as Cd8 enhancer E8VI, was bound by Runx/CBFβ complexes and Bcl11b, indicating that E8VI is part of the cis-regulatory network that recruits transcription factors to the Cd8ab gene complex in CD8(+) T cells. Transgenic reporter expression was maintained in LCMV-specific CD8(+) T cells upon infection, although short-term, in vitro activation led to a down-regulation of E8VI activity. Finally, E8VI directed transgene expression also in CD8αα(+) DCs but not in CD8αα-expressing IELs. Taken together, we have identified a novel Cd8 enhancer that directs expression in CD44(hi)CD62L(+) CD8(+) T cells, including innate-like and antigen-specific effector/memory CD8(+) T cells and in CD8αα(+) DCs, and thus, our data provide further insight into the cis-regulatory networks that control CD8 expression.
Collapse
Affiliation(s)
- Shinya Sakaguchi
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Hombauer
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hammad Hassan
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hirokazu Tanaka
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nighat Yasmin
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yoshinori Naoe
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ivan Bilic
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mirjam A Moser
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Hainberger
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Herbert Mayer
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Seiser
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Bergthaler
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ichiro Taniuchi
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wilfried Ellmeier
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
46
|
Maekawa Y, Ishifune C, Tsukumo SI, Hozumi K, Yagita H, Yasutomo K. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nat Med 2014; 21:55-61. [PMID: 25501905 DOI: 10.1038/nm.3758] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
CD4+ T cells differentiate into memory T cells that protect the host from subsequent infection. In contrast, autoreactive memory CD4+ T cells harm the body by persisting in the tissues. The underlying pathways controlling the maintenance of memory CD4+ T cells remain undefined. We show here that memory CD4+ T cell survival is impaired in the absence of the Notch signaling protein known as recombination signal binding protein for immunoglobulin κ J region (Rbpj). Treatment of mice with a Notch inhibitor reduced memory CD4+ T cell numbers and prevented the recurrent induction of experimental autoimmune encephalomyelitis. Rbpj-deficient CD4+ memory T cells exhibit reduced glucose uptake due to impaired AKT phosphorylation, resulting in low Glut1 expression. Treating mice with pyruvic acid, which bypasses glucose uptake and supplies the metabolite downstream of glucose uptake, inhibited the decrease of autoimmune memory CD4+ T cells in the absence of Notch signaling, suggesting memory CD4+ T cell survival relies on glucose metabolism. Together, these data define a central role for Notch signaling in maintaining memory CD4+ T cells through the regulation of glucose uptake.
Collapse
Affiliation(s)
- Yoichi Maekawa
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Chieko Ishifune
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Shin-ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Katsuto Hozumi
- Department of Immunology and Research Center for Embryogenesis and Organogenesis, Tokai University School of Medicine, Kanagawa, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| |
Collapse
|
47
|
Wong C, Chen C, Wu Q, Liu Y, Zheng P. A critical role for the regulated wnt-myc pathway in naive T cell survival. THE JOURNAL OF IMMUNOLOGY 2014; 194:158-67. [PMID: 25429066 DOI: 10.4049/jimmunol.1401238] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt signaling is involved in T cell development, activation, and differentiation. However, the role for Wnt signaling in mature naive T cells has not been investigated. In this article, we report that activation of Wnt signaling in T cell lineages by deletion of the Apc (adenomatous polyposis coli) gene causes spontaneous T cell activation and severe T cell lymphopenia. The lymphopenia is the result of rapid apoptosis of newly exported, mature T cells in the periphery and is not due to defects in thymocyte development or emigration. Using chimera mice consisting of both wild-type and Apc-deficient T cells, we found that loss of naive T cells is due to T cell intrinsic dysregulation of Wnt signaling. Because Apc deletion causes overexpression of the Wnt target gene cMyc, we generated mice with combined deletion of the cMyc gene. Because combined deletion of cMyc and Apc attenuated T cell loss, cMyc overexpression is partially responsible for spontaneous T cell apoptosis and lymphopenia. Cumulatively, our data reveal a missing link between Wnt signaling and survival of naive T cells.
Collapse
Affiliation(s)
- Chunshu Wong
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010; Immunology Graduate Program, Program in Biomedical Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Chong Chen
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Qi Wu
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109; and
| | - Yang Liu
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010;
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010; Division of Pathology, Children's National Medical Center, Washington, DC 20010
| |
Collapse
|
48
|
De Tullio G, De Fazio V, Sgherza N, Minoia C, Serratì S, Merchionne F, Loseto G, Iacobazzi A, Rana A, Petrillo P, Silvestris N, Iacopino P, Guarini A. Challenges and opportunities of microRNAs in lymphomas. Molecules 2014; 19:14723-81. [PMID: 25232701 PMCID: PMC6271734 DOI: 10.3390/molecules190914723] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control the expression of many target messenger RNAs (mRNAs) involved in normal cell functions (differentiation, proliferation and apoptosis). Consequently their aberrant expression and/or functions are related to pathogenesis of many human diseases including cancers. Haematopoiesis is a highly regulated process controlled by a complex network of molecular mechanisms that simultaneously regulate commitment, differentiation, proliferation, and apoptosis of hematopoietic stem cells (HSC). Alterations on this network could affect the normal haematopoiesis, leading to the development of haematological malignancies such as lymphomas. The incidence of lymphomas is rising and a significant proportion of patients are refractory to standard therapies. Accurate diagnosis, prognosis and therapy still require additional markers to be used for diagnostic and prognostic purpose and evaluation of clinical outcome. The dysregulated expression or function of miRNAs in various types of lymphomas has been associated with lymphoma pathogenesis. Indeed, many recent findings suggest that almost all lymphomas seem to have a distinct and specific miRNA profile and some miRNAs are related to therapy resistance or have a distinct kinetics during therapy. MiRNAs are easily detectable in fresh or paraffin-embedded diagnostic tissue and serum where they are highly stable and quantifiable within the diagnostic laboratory at each consultation. Accordingly they could be specific biomarkers for lymphoma diagnosis, as well as useful for evaluating prognosis or disease response to the therapy, especially for evaluation of early relapse detection and for greatly assisting clinical decisions making. Here we summarize the current knowledge on the role of miRNAs in normal and aberrant lymphopoiesis in order to highlight their clinical value as specific diagnosis and prognosis markers of lymphoid malignancies or for prediction of therapy response. Finally, we discuss their controversial therapeutic role and future applications in therapy by modulating miRNA.
Collapse
Affiliation(s)
- Giacoma De Tullio
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy.
| | - Vincenza De Fazio
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Nicola Sgherza
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Carla Minoia
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Simona Serratì
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Francesca Merchionne
- Haematology and Bone Marrow Transplantation Unit, Antonio Perrino Hospital, Brindisi 72100, Italy
| | - Giacomo Loseto
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Angela Iacobazzi
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Antonello Rana
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Patrizia Petrillo
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Pasquale Iacopino
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Attilio Guarini
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| |
Collapse
|
49
|
Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. Nat Commun 2014; 5:4814. [PMID: 25215520 DOI: 10.1038/ncomms5814] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/25/2014] [Indexed: 01/28/2023] Open
Abstract
Calcium ions (Ca(2+)) function as universal second messengers in eukaryotic cells, including immune cells. Ca(2+) is crucial for peripheral T-lymphocyte activation and effector functions, and influences thymocyte selection and motility in the developing thymus. However, the role of Ca(2+) signalling in early T-lymphocyte development is not well understood. Here we show that the inositol triphosphate receptors (IP3Rs) Ca(2+) ion channels are required for proliferation, survival and developmental progression of T-lymphocyte precursors. Our studies indicate that signalling via IP3Rs represses Sox13, an antagonist of the developmentally important transcription factor Tcf-1. In the absence of IP3R-mediated Ca(2+) signalling, repression of key Notch transcriptional targets--including Hes1--fail to occur in post β-selection thymocytes, and mice develop aggressive T-cell malignancies that resemble human T-cell acute lymphoblastic leukemia (T-ALL). These data indicate that IP3R-mediated Ca(2+) signalling reinforces Tcf-1 activity to both ensure normal development and prevent thymocyte neoplasia.
Collapse
|
50
|
Abstract
Differentiation of naïve CD4(+) T cells into effector (Th1, Th2, and Th17) and induced regulatory (iTreg) T cells requires lineage-specifying transcription factors and epigenetic modifications that allow appropriate repression or activation of gene transcription. The epigenetic silencing of cytokine genes is associated with the repressive H3K27 trimethylation mark, mediated by the Ezh2 or Ezh1 methyltransferase components of the polycomb repressive complex 2 (PRC2). Here we show that silencing of the Ifng, Gata3, and Il10 loci in naïve CD4(+) T cells is dependent on Ezh2. Naïve CD4(+) T cells lacking Ezh2 were epigenetically primed for overproduction of IFN-γ in Th2 and iTreg and IL-10 in Th2 cells. In addition, deficiency of Ezh2 accelerated effector Th cell death via death receptor-mediated extrinsic and intrinsic apoptotic pathways, confirmed in vivo for Ezh2-null IFN-γ-producing CD4(+) and CD8(+) T cells responding to Listeria monocytogenes infection. These findings demonstrate the key role of PRC2/Ezh2 in differentiation and survival of peripheral T cells and reveal potential immunotherapeutic targets.
Collapse
|