1
|
Van Den Ham KM, Bower LK, Li S, Lorenzi H, Doumbo S, Doumtabe D, Kayentao K, Ongoiba A, Traore B, Crompton PD, Schmidt NW. The gut microbiome is associated with susceptibility to febrile malaria in Malian children. Nat Commun 2024; 15:9525. [PMID: 39500866 PMCID: PMC11538534 DOI: 10.1038/s41467-024-52953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Malaria is a major public health problem, but many of the factors underlying the pathogenesis of this disease are not well understood, including protection from the development of febrile symptoms, which is observed in individuals residing in areas with moderate-to-high transmission by early adolescence. Here, we demonstrate that susceptibility to febrile malaria following Plasmodium falciparum infection is associated with the composition of the gut microbiome prior to the malaria season in 10-year-old Malian children, but not in younger children. Gnotobiotic mice colonized with the fecal samples of malaria-susceptible children were shown to have a significantly higher parasite burden following Plasmodium infection compared to gnotobiotic mice colonized with the fecal samples of malaria-resistant children. The fecal microbiome of the susceptible children was determined to be enriched for bacteria associated with inflammation, mucin degradation and gut permeability, and to have increased levels of nitric oxide-derived DNA adducts and lower levels of mucus phospholipids compared to the resistant children. Overall, these results indicate that the composition of the gut microbiome is associated with the prospective risk of febrile malaria in Malian children and suggest that modulation of the gut microbiome could decrease malaria morbidity in endemic areas.
Collapse
Affiliation(s)
- Kristin M Van Den Ham
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Layne K Bower
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Hernan Lorenzi
- Infectious Diseases Group, J. Craig Venter Institute, Bethesda, MD, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Nathan W Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Kaden T, Alonso-Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2024:e2402756. [PMID: 39491534 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, 07745, Jena, Germany
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Raquel Alonso-Román
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV, Jena University Hospital, 07747, Jena, Germany
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| |
Collapse
|
3
|
Wang L, Deng Z, Huang J, Li T, Jiang J, Wang W, Sun Y, Deng Y. Zearalenone-induced hepatointestinal toxicity in laying hens: unveiling the role of gut microbiota and fecal metabolites. Poult Sci 2024; 103:104221. [PMID: 39241615 PMCID: PMC11406091 DOI: 10.1016/j.psj.2024.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024] Open
Abstract
Zearalenone (ZEN), a mycotoxin produced by Fusarium species, is known for its reproductive toxicity as an estrogen analogue. However, there are limited knowledge about its hepatointestinal toxicity, as well as the role that gut microbiota and metabolites play in this process. In this study, a total of 24 thirty-week-old hens were fed to investigate the hepatointestinal toxicity subjected to long-term ZEN consumption at 2.0 mg/kg for 90 d. And we employed uncultured 16S rRNA sequencing for gut microbiota and untargeted metabolomics for fecal metabolites assessment. Notably, ZEN induced significant hepatic damage, as evidenced by hepatocyte necrosis, inflammatory cell infiltrate, increased liver lipopolysaccharide (LPS) and blood aspartate aminotransferase (AST) levels (P < 0.05). The decreased villus height, disruption of simple columnar epithelial cells, and exposure of the mucosal intrinsic layer were observed in the intestine. The gut microbial community composition and metabolites differed between ZEN group and control group. ZEN group exhibited higher gut microbial diversity (P < 0.05), lower Firmicutes/Bacteroidetes ratio and Lactobacillus abundance, and higher abundance in the genus such as Bacteroidetes, Parabacteroidetes and Desulfovibrio. Metabolomic analysis showed that ZEN treatment altered biosynthesis of siderophore group nonribosomal peptides and phenylpropanoids, metabolism of amino acid, digestion and absorption of vitamin and ABC transporters. Differential metabolites suggested that ZEN increase the risk of estrogen disorder, nucleic acid degradation, intestinal oxidative stress and inflammation. Neural network analysis showed that Ruminococcus was positively correlated with glyceric acid, and Prevotella was positively correlated with phenylacetylglycine. Both metabolites were positively correlated with blood AST level (P < 0.05), suggesting that intestinal microbe Ruminococcus and Prevotella might exacerbate liver damage by producing these harmful metabolites. Overall, we conclude that ZEN has damaged hepatointestinal system and the altered gut microbiota with resultant metabolite changes contribute to the adverse hepatointestinal effects of ZEN on laying hens. This study underscores the need for monitoring and mitigating ZEN exposure in poultry diets, highlighting its broader implications for animal health and food safety.
Collapse
Affiliation(s)
- Lingling Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Zifeng Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Jieying Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Tingyuan Li
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yu Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China.
| |
Collapse
|
4
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
van Gogh M, Louwers JM, Celli A, Gräve S, Viveen MC, Bosch S, de Boer NKH, Verheijden RJ, Suijkerbuijk KPM, Brand EC, Top J, Oldenburg B, de Zoete MR. Next-generation IgA-SEQ allows for high-throughput, anaerobic, and metagenomic assessment of IgA-coated bacteria. MICROBIOME 2024; 12:211. [PMID: 39434178 PMCID: PMC11492651 DOI: 10.1186/s40168-024-01923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The intestinal microbiota plays a significant role in maintaining systemic and intestinal homeostasis, but can also influence diseases such as inflammatory bowel disease (IBD) and cancer. Certain bacterial species within the intestinal tract can chronically activate the immune system, leading to low-grade intestinal inflammation. As a result, plasma cells produce high levels of secretory antigen-specific immunoglobulin A (IgA), which coats the immunostimulatory bacteria. This IgA immune response against intestinal bacteria may be associated with the maintenance of homeostasis and health, as well as disease. Unraveling this dichotomy and identifying the immunostimulatory bacteria is crucial for understanding the relationship between the intestinal microbiota and the immune system, and their role in health and disease. IgA-SEQ technology has successfully identified immunostimulatory, IgA-coated bacteria from fecal material. However, the original technology is time-consuming and has limited downstream applications. In this study, we aimed to develop a next-generation, high-throughput, magnet-based sorting approach (ng-IgA-SEQ) to overcome the limitations of the original IgA-SEQ protocol. RESULTS We show, in various settings of complexity ranging from simple bacterial mixtures to human fecal samples, that our magnetic 96-well plate-based ng-IgA-SEQ protocol is highly efficient at sorting and identifying IgA-coated bacteria in a high-throughput and time efficient manner. Furthermore, we performed a comparative analysis between different IgA-SEQ protocols, highlighting that the original FACS-based IgA-SEQ approach overlooks certain nuances of IgA-coated bacteria, due to the low yield of sorted bacteria. Additionally, magnetic-based ng-IgA-SEQ allows for novel downstream applications. Firstly, as a proof-of-concept, we performed metagenomic shotgun sequencing on 10 human fecal samples to identify IgA-coated bacterial strains and associated pathways and CAZymes. Secondly, we successfully isolated and cultured IgA-coated bacteria by performing the isolation protocol under anaerobic conditions. CONCLUSIONS Our magnetic 96-well plate-based high-throughput next-generation IgA-SEQ technology efficiently identifies a great number of IgA-coated bacteria from fecal samples. This paves the way for analyzing large cohorts as well as novel downstream applications, including shotgun metagenomic sequencing, culturomics, and various functional assays. These downstream applications are essential to unravel the role of immunostimulatory bacteria in health and disease. Video Abstract.
Collapse
Affiliation(s)
- Merel van Gogh
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Jonas M Louwers
- Department of Gastroenterology and Hepatology, UMC Utrecht, Utrecht, The Netherlands
| | - Anna Celli
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Sanne Gräve
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Marco C Viveen
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Sofie Bosch
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rik J Verheijden
- Department of Medical Oncology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Eelco C Brand
- Department of Gastroenterology and Hepatology, UMC Utrecht, Utrecht, The Netherlands
| | - Janetta Top
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, UMC Utrecht, Utrecht, The Netherlands
| | - Marcel R de Zoete
- Medical Microbiology Department, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Misera A, Kaczmarczyk M, Łoniewski I, Liśkiewicz P, Podsiadło K, Misiak B, Skonieczna-Żydecka K, Samochowiec J. Comparative analysis of gut microbiota in major depressive disorder and schizophrenia during hospitalisation - the case-control, post hoc study. Psychoneuroendocrinology 2024; 171:107208. [PMID: 39426041 DOI: 10.1016/j.psyneuen.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The aim of this study was to investigate the relationship between gut microbiota and major depressive disorder (MDD) and schizophrenia (SCZ) by comparing 36 inpatients with these conditions to 29 healthy controls (HC) matched for age, sex, and body mass index (BMI). Individuals with SCZ exhibited greater microbiota richness compared to HC (FDR P(Q)=0.028). Taxonomically, while no significant differences were observed between the microbiota of MDD and SCZ patients in a head-to-head comparison, both patient groups differed significantly when compared to HC. Interestingly, besides common patterns (such as a higher abundance of Erysipelotrichaceae UCG-003 and Streptococcus, and a lower abundance of Lachnospiraceae ND3007 group), unique patterns were exhibited only in MDD (with a higher abundance of Anaerostipes, Q=0.004) or SCZ (with a higher abundance of Sutterella, Q=0.001, and a lower abundance of Clostridium sensu stricto 1, Q=0.002). The Random Forest algorithm identified Ruminococcus torques group, Lachnospiraceae UCG-001, and Erysipelotrichaceae UCG-003 as highly discriminative features for both SCZ and MDD, while Suturella and Holdemania were unique features for SZC, and Lachnospiraceae genus CAG-56 and Anaerostipes for MDD. Additionally, between 50 % and 60 % of the differentially abundant taxa were found among the top 10 influential features in the RF models. In conclusion, while no significant differences were found between the microbiota of MDD and SCZ patients, distinct microbial patterns were found in each group when compared to HC. The study did not confirm universal microbial biomarkers reported in other studies but showed that the observed differences concern the bacteria associated with inflammation, the production of short chain fatty acids (SCFA), and the synthesis of metabolites linked to mental health (lactic acid, gamma-aminobutyric acid - GABA). The application of machine learning holds promise for further understanding the complex relationship between microbiota and these psychiatric disorders. The observed results should be treated with caution due to the limitations of this study (mainly sample size), therefore further researches under standardized environmental conditions with consistent analytical and bioinformatics approaches are warranted.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mariusz Kaczmarczyk
- Sanprobi sp. z o. o. sp. k, Szczecin, Poland; Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Sanprobi sp. z o. o. sp. k, Szczecin, Poland; Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Błażej Misiak
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
7
|
Atugonza C, Muwonge A, Najjuka CF, Kateete DP, Katagirya E, Mwesigwa S, Asiimwe B. Early changes in the gut microbiome among HIV-infected Individuals in Uganda initiating daily TMP/SMX. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24315002. [PMID: 39417122 PMCID: PMC11482993 DOI: 10.1101/2024.10.07.24315002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Daily cotrimoxazole (TMP/SXT) prophylaxis is part of the HIV treatment package for all new HIV-infected individuals in Uganda. Although this treatment has shown reduced morbidity and mortality in HIV, it remains controversial due to its contribution to developing antibiotic-resistant bacteria. Moreover, the effects of daily use of a broad-spectrum antibiotic on the gut microbiome remain unknown. To study the early effects, we analysed shotgun metagenome sequence data from stool samples of five newly HIV-infected individuals initiating TMP/SXT prophylaxis longitudinally for the first 30 days of treatment. Using shotgun metagenomics sequencing, we generated both taxonomic and functional profiles from each patient and compared gut microbial changes Pre- TMP/SXT and post-TMP/SXT on Day 5, Day 14, and Day 30. Daily TMP/SXT prophylaxis resulted in a shift characterised by an enrichment of Prevetollea and Ruminococcus genera members and the depletion of Lactococcus and Bacteroides genera members. Furthermore, these microbial shifts were associated with changes in the functional profile revealed by a differential abundance of pathways of amino acid metabolism, carbohydrate metabolism, and nucleotide biosynthesis linked to members of the Bacteroidaceae and Enterobacteriaceae families. TMP/SXT daily prophylaxis in HIV-infected individuals is associated with dramatic changes in microbial composition and functional profiles; however, other factors such as Age, Gender, HIV clinical stage, and ART regiment are at play. Further investigation is needed to examine the implication of these shifts on clinical management and outcomes among HIV patients.
Collapse
Affiliation(s)
| | - Adrian Muwonge
- Genetics and genomics, Roslin Institute, University of Edinburgh
| | | | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University
| | | | | | | |
Collapse
|
8
|
Cheng LH, Wu CC, Wei YH, Wen PJ, Hsu CC, Tsai YC, Wang S. Anti-aging effects of Lacticaseibacillus paracasei PS117 on cognitive and intestinal health in naturally-aged mice: A focus on senescence-related proteins and microbiota composition. Exp Gerontol 2024; 195:112529. [PMID: 39079652 DOI: 10.1016/j.exger.2024.112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The rising global aging population underscores the urgency of maintaining the health and well-being of the elderly while reducing the healthcare burden. Anti-aging probiotics have emerged as a promising strategy. This study identified a novel anti-senescence probiotic, Lacticaseibacillus paracasei PS117 (PS117). The effects of PS117 and heat-treated PS117 (HT-PS117) supplementation on cognitive function of naturally-aged male mice were investigated. It was found that PS117 supplementation improved the cognitive performance of aged mice in the Y-maze test. Furthermore, the level of senescence-related protein p16INK4a (p16) were reduced, while anti-senescence protein sirtuin 1 (Sirt1) were increased in the hippocampus. In addition, there was an overall improvement in the intestinal function. Distinct changes in the gut microbiota were also identified, suggesting a potential contribution to the beneficial effects of PS117 supplementation. In conclusion, these results suggest that PS117 supplements could improve cognitive and intestinal functions in naturally-aged mice, while HT-117 improves only intestinal function, possibly by improving the gut microbiota composition.
Collapse
Affiliation(s)
- Li-Hao Cheng
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan, ROC
| | - Chien-Chen Wu
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan, ROC
| | - Yu-Hsuan Wei
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan, ROC
| | - Pei-Jun Wen
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan, ROC
| | | | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chial Tung University, Taipei, Taiwan, ROC
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| |
Collapse
|
9
|
Sminia TJ, Aalvink S, de Jong H, Tempelaars MH, Zuilhof H, Abee T, de Vos WM, Tytgat HLP, Wennekes T. Probing Peptidoglycan Synthesis in the Gut Commensal Akkermansia Muciniphila with Bioorthogonal Chemical Reporters. Chembiochem 2024; 25:e202400037. [PMID: 38688858 DOI: 10.1002/cbic.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Our gut microbiota directly influences human physiology in health and disease. The myriad of surface glycoconjugates in both the bacterial cell envelope and our gut cells dominate the microbiota-host interface and play a critical role in host response and microbiota homeostasis. Among these, peptidoglycan is the basic glycan polymer offering the cell rigidity and a basis on which many other glycoconjugates are anchored. To directly study peptidoglycan in gut commensals and obtain the molecular insight required to understand their functional activities we need effective techniques like chemical probes to label peptidoglycan in live bacteria. Here we report a chemically guided approach to study peptidoglycan in a key mucin-degrading gut microbiota member of the Verrucomicrobia phylum, Akkermansia muciniphila. Two novel non-toxic tetrazine click-compatible peptidoglycan probes with either a cyclopropene or isonitrile handle allowed for the detection and imaging of peptidoglycan synthesis in this intestinal species.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The, Netherlands
| | - Marcel H Tempelaars
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
- Current address: Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The, Netherlands
| |
Collapse
|
10
|
Willemsen Y, Ou Y, Belzer C, Arias Vásquez A, Smidt H, Beijers R, de Weerth C. A longitudinal study of the gut microbiota during the first three years of life: Links with problem behavior and executive functions at preschool age. Dev Psychopathol 2024; 36:2032-2048. [PMID: 37994488 DOI: 10.1017/s0954579423001402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Early life is a sensitive period when microbiota-gut-brain interactions may have important impact on development. This study investigated the associations of the gut microbiota in the first three years of life (two, six, and 12 weeks, and one and three years) with problem behavior and executive functions in N = 64 three-year-old children. Higher relative abundance of Streptococcus at the age of two weeks, as well as its trajectory over time (including ages two, six and 12 weeks, and one and three years), was related to worse executive functions. Higher relative abundance of [Ruminococcus] torques group at the age of three years, as well as its trajectory from one to three years, was associated with less internalizing behavior. Besides, several robust age-specific associations were identified: higher Bifidobacterium relative abundance (age three years) was associated with more internalizing and externalizing issues; higher Blautia relative abundance (age three years) was linked to less internalizing behavior; and increased relative abundance of an unidentified Enterobacteriaceae genus (age two weeks) was related to more externalizing behavior. Our findings provide important longitudinal evidence that early-life gut microbiota may be linked to behavioral and cognitive development in low-risk children.
Collapse
Affiliation(s)
- Yvonne Willemsen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yangwenshan Ou
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alejandro Arias Vásquez
- Department of Psychiatry and Human Genetics, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Zhang Y, Wang Y, Zhang X, Wang P, Shi F, Zhang Z, Wang R, Wu D, She J. Gastrointestinal Self-Adaptive and Nutrient Self-Sufficient Akkermansia muciniphila-Gelatin Porous Microgels for Synergistic Therapy of Ulcerative Colitis. ACS NANO 2024; 18:26807-26827. [PMID: 39301762 DOI: 10.1021/acsnano.4c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
To realize effective and long-term synergistic therapy of ulcerative colitis (UC) with probiotics, we developed gastrointestinal self-adaptive and nutrient self-sufficient Akkermansia muciniphila (AKK)-gelatin porous microgels (AKK@GPMGs). In AKK@GPMGs, AKK was covered with sequential layers of proanthocyanidins (PAs), mucin (MUC), and phosphatidylcholine (PC) to obtain AKK@PAs-MUC-PC (AKK@PMP), and then encapsulated within the methacrylate-modified gelatin porous microgels. AKK@GPMGs provide sufficient mucus as a nutrition source for AKK and boost resistance to stomach acid by 30.49-fold, and colonization in the intestines is enhanced by 83.46 times. The microgels can be dissociated by matrix metalloproteinase at the inflammatory sites of the intestine, and release AKK@PMP, which acts as "band-aid" that adheres to the inflamed colon for a long time and offers improved synergistic therapy for UC. Compared to uncoated AKK, AKK@GPMGs increase reactive oxygen species scavenging capacity by 26.47 times, improve the intestinal mucus layer thickness by 5.63 times, increase the goblet cells abundance by 3.93 times, reduce intestinal permeability by 5.60 times and significantly enhance beneficial gut microbiota while repressing harmful microbiota. These results indicate that AKK@GPMGs can restore mucus layer and tight junction integrity, reduce inflammation and oxidative stress, and regulate gut microbiota homeostasis to effectively treat intestinal inflammation.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Ya Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xiaojiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Pengqian Wang
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, P.R. China
| | - Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Ruochen Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
12
|
Kang EJ, Cha MG, Kwon GH, Han SH, Yoon SJ, Lee SK, Ahn ME, Won SM, Ahn EH, Suk KT. Akkermansia muciniphila improve cognitive dysfunction by regulating BDNF and serotonin pathway in gut-liver-brain axis. MICROBIOME 2024; 12:181. [PMID: 39342324 PMCID: PMC11438137 DOI: 10.1186/s40168-024-01924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
BACKRGROUND Akkermansia muciniphila, a next-generation probiotic, is known as a cornerstone regulating the gut-organ axis in various diseases, but the underlying mechanism remains poorly understood. Here, we revealed the neuronal and antifibrotic effects of A. muciniphila on the gut-liver-brain axis in liver injury. RESULTS To investigate neurologic dysfunction and characteristic gut microbiotas, we performed a cirrhosis cohort (154 patients with or without hepatic encephalopathy) and a community cognition cohort (80 participants in one region for three years) and validated the existence of cognitive impairment in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced hepatic injury mouse model. The effects of the candidate strain on cognition were evaluated in animal models of liver injury. The expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors was accessed in patients with fibrosis (100 patients) according to the fibrosis grade and hepatic venous pressure gradient. The proportion of A. muciniphila decreased in populations with hepatic encephalopathy and cognitive dysfunction. Tissue staining techniques confirmed gut-liver-brain damage in liver injury, with drastic expression of BDNF and serotonin in the gut and brain. The administration of A. muciniphila significantly reduced tissue damage and improved cognitive dysfunction and the expression of BDNF and serotonin. Isolated vagus nerve staining showed a recovery of serotonin expression without affecting the dopamine pathway. Conversely, in liver tissue, the inhibition of injury through the suppression of serotonin receptor (5-hydroxytryptamine 2A and 2B) expression was confirmed. The severity of liver injury was correlated with the abundance of serotonin, BDNF, and A. muciniphila. CONCLUSIONS A. muciniphila, a next-generation probiotic, is a therapeutic candidate for alleviating the symptoms of liver fibrosis and cognitive impairment.
Collapse
Affiliation(s)
- Eun Ji Kang
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-Gil 1, Chuncheon-Si, Gangwon-Do, 24252, South Korea
| | - Min-Gi Cha
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea
| | - Goo-Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea
| | - Sang Hak Han
- Department of Pathology, College of Medicine, Hallym University, Hallymdaehak-Gil 1, Chuncheon-Si, Gangwon-Do, 24252, South Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea
| | - Sang Kyu Lee
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon-si, Gangwon-Do, 24253, Chuncheon-Si, South Korea
| | - Moo Eob Ahn
- Department of Emergency Medicine, Hallym University, Chuncheon Sacred Heart Hospital, Chuncheon-Si, Gangwon-Do, 24253, South Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea.
| | - Eun Hee Ahn
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-Gil 1, Chuncheon-Si, Gangwon-Do, 24252, South Korea.
- Department of Neurology, College of Medicine, Hallym University, Hallymdaehak-Gil 1, Chuncheon-Si, Gangwon-Do, 24252, South Korea.
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon-Si, Gangwon-Do, 24253, South Korea.
| |
Collapse
|
13
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and beneficial metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:367-409. [PMID: 39396841 DOI: 10.1016/bs.adgen.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. In recent years, the impact of the gut microbiota on the development of CRC has become clear. The gut microbiota is the community of microorganisms living in the gut symbiotic relationship with the host. These microorganisms contribute to the development of CRC through various mechanisms that are not yet fully understood. Increasing scientific evidence suggests that metabolites produced by the gut microbiota may influence CRC development by exerting protective and deleterious effects. This article reviews the metabolites produced by the gut microbiota, which are derived from the intake of complex carbohydrates, proteins, dairy products, and phytochemicals from plant foods and are associated with a reduced risk of CRC. These metabolites include short-chain fatty acids (SCFAs), indole and its derivatives, conjugated linoleic acid (CLA) and polyphenols. Each metabolite, its association with CRC risk, the possible mechanisms by which they exert anti-tumour functions and their relationship with the gut microbiota are described. In addition, other gut microbiota-derived metabolites that are gaining importance for their role as CRC suppressors are included.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
14
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
16
|
Zitvogel L, Fidelle M, Kroemer G. Long-distance microbial mechanisms impacting cancer immunosurveillance. Immunity 2024; 57:2013-2029. [PMID: 39151425 DOI: 10.1016/j.immuni.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
17
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Chang H, Liu Y, Wang Y, Li L, Mu Y, Zheng M, Liu J, Zhang J, Bai R, Li Y, Zuo X. Unveiling the Links Between Microbial Alteration and Host Gene Disarray in Crohn's Disease via TAHMC. Adv Biol (Weinh) 2024; 8:e2400064. [PMID: 38837746 DOI: 10.1002/adbi.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/03/2024] [Indexed: 06/07/2024]
Abstract
A compelling correlation method linking microbial communities and host gene expression in tissues is currently absent. A novel pipeline is proposed, dubbed Transcriptome Analysis of Host-Microbiome Crosstalk (TAHMC), designed to concurrently restore both host gene expression and microbial quantification from bulk RNA-seq data. Employing this approach, it discerned associations between the tissue microbiome and host immunity in the context of Crohn's disease (CD). Further, machine learning is utilized to separately construct networks of associations among host mRNA, long non-coding RNA, and tissue microbes. Unique host genes and tissue microbes are extracted from these networks for potential utility in CD diagnosis. Experimental validation of the predicted host gene regulation by microbes from the association network is achieved through the co-culturing of Faecalibacterium prausnitzii with Caco-2 cells. Collectively, the TAHMC pipeline accurately recovers both host gene expression and microbial quantification from CD RNA-seq data, thereby illuminating potential causal links between shifts in microbial composition as well as diversity within CD mucosal tissues and aberrant host gene expression.
Collapse
Affiliation(s)
- Huijun Chang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yongshuai Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, Shandong, 250012, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yijun Mu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Mengqi Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Junfei Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jinghui Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Runze Bai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, Shandong, 250012, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, Shandong, 250012, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
19
|
Lötstedt B, Stražar M, Xavier R, Regev A, Vickovic S. Spatial host-microbiome sequencing reveals niches in the mouse gut. Nat Biotechnol 2024; 42:1394-1403. [PMID: 37985876 PMCID: PMC11392810 DOI: 10.1038/s41587-023-01988-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2023] [Indexed: 11/22/2023]
Abstract
Mucosal and barrier tissues, such as the gut, lung or skin, are composed of a complex network of cells and microbes forming a tight niche that prevents pathogen colonization and supports host-microbiome symbiosis. Characterizing these networks at high molecular and cellular resolution is crucial for understanding homeostasis and disease. Here we present spatial host-microbiome sequencing (SHM-seq), an all-sequencing-based approach that captures tissue histology, polyadenylated RNAs and bacterial 16S sequences directly from a tissue by modifying spatially barcoded glass surfaces to enable simultaneous capture of host transcripts and hypervariable regions of the 16S bacterial ribosomal RNA. We applied our approach to the mouse gut as a model system, used a deep learning approach for data mapping and detected spatial niches defined by cellular composition and microbial geography. We show that subpopulations of gut cells express specific gene programs in different microenvironments characteristic of regional commensal bacteria and impact host-bacteria interactions. SHM-seq should enhance the study of native host-microbe interactions in health and disease.
Collapse
Affiliation(s)
- Britta Lötstedt
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- New York Genome Center, New York, NY, USA
| | | | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts, General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| | - Sanja Vickovic
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- New York Genome Center, New York, NY, USA.
- Department of Biomedical Engineering and Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA.
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Tewari N, Dey P. Navigating commensal dysbiosis: Gastrointestinal host-pathogen interplay orchestrating opportunistic infections. Microbiol Res 2024; 286:127832. [PMID: 39013300 DOI: 10.1016/j.micres.2024.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
The gut commensals, which are usually symbiotic or non-harmful bacteria that live in the gastrointestinal tract, have a positive impact on the health of the host. This review, however, specifically discuss distinct conditions where commensals aid in the development of pathogenic opportunistic infections. We discuss that the categorization of gut bacteria as either pathogens or non-pathogens depends on certain circumstances, which are significantly affected by the tissue microenvironment and the dynamic host-microbe interaction. Under favorable circumstances, commensals have the ability to transform into opportunistic pathobionts by undergoing overgrowth. These conditions include changes in the host's physiology, simultaneous infection with other pathogens, effective utilization of nutrients, interactions between different species of bacteria, the formation of protective biofilms, genetic mutations that enhance pathogenicity, acquisition of genes associated with virulence, and the ability to avoid the host's immune response. These processes allow commensals to both initiate infections themselves and aid other pathogens in populating the host. This review highlights the need of having a detailed and sophisticated knowledge of the two-sided nature of gut commensals. Although commensals mostly promote health, they may also become harmful in certain changes in the environment or the body's functioning. This highlights the need of acknowledging the intricate equilibrium in interactions between hosts and microbes, which is crucial for preserving intestinal homeostasis and averting diseases. Finally, we also emphasize the further need of research to better understand and anticipate the behavior of gut commensals in different situations, since they play a crucial and varied role in human health and disease.
Collapse
Affiliation(s)
- Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
21
|
Zhou S, Yang L, Qiu X, Li B, Hu L, Tang Z, Li H, Li S, Fang Z, Chen H. Okra extract alleviates lipopolysaccharide-induced inflammation response through the regulation of bile acids, the receptor-mediated pathway, and gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7501-7513. [PMID: 38757804 DOI: 10.1002/jsfa.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/24/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Okra contains flavonoids and vitamin C as antioxidants and it contains polysaccharides as immunomodulators. Flavonoids regulate the inflammatory response in mice and may be related to gut microbiota. This study therefore aimed to investigate the impact of okra extract (OE) on inflammation in mice and to elucidate its underlying mechanism. METHOD Forty male Kunming (KM) mice were categorized into four groups: the control (CON) group, the lipopolysaccharide stimulation (LPS) group, the 5 mg mL-1 OE intervention (LPS + OE) group, and the 5 mg mL-1 OE supplementation plus mixed antibiotics (LPS + OE + ABX) group. RESULTS The results showed that, compared with the OE group, the expression of inflammatory signaling pathway genes was upregulated and gut barrier genes were inhibited in the OE + ABX group. The Fxr receptor was activated and the abundance of Akkermansia was increased after OE supplementation, whereas the effect was reversed in the OE + ABX group. Meanwhile, Fxr was correlated positively with Akkermansia. CONCLUSION The OE supplementation alleviated the inflammatory response in mice under LPS stimulation, accompanied by changes in gut microbiota and bile acid receptors, whereas the addition of antibiotics caused a disturbance to the gut microbiota in the OE group, thus reducing the effect of OE in alleviating the inflammatory response. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanshan Zhou
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Xia Qiu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Bohui Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zizhong Tang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
22
|
Wang X, Lang F, Liu D. High-Salt Diet and Intestinal Microbiota: Influence on Cardiovascular Disease and Inflammatory Bowel Disease. BIOLOGY 2024; 13:674. [PMID: 39336101 PMCID: PMC11429420 DOI: 10.3390/biology13090674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Salt, or sodium chloride, is an essential component of the human diet. Recent studies have demonstrated that dietary patterns characterized by a high intake of salt can influence the abundance and diversity of the gut microbiota, and may play a pivotal role in the etiology and exacerbation of certain diseases, including inflammatory bowel disease and cardiovascular disease. The objective of this review is to synthesize the effects of elevated salt consumption on the gut microbiota, including its influence on gut microbial metabolites and the gut immune system. Additionally, this review will investigate the potential implications of these effects for the development of cardiovascular disease and inflammatory bowel disease. The findings of this study offer novel insights and avenues for the management of two common conditions with significant clinical implications.
Collapse
Affiliation(s)
- Xueyang Wang
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.W.); (F.L.)
| | - Fuyuan Lang
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.W.); (F.L.)
| | - Dan Liu
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.W.); (F.L.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
23
|
Mohr AE, Jasbi P, van Woerden I, Chi J, Gu H, Bruening M, Whisner CM. Microbial Ecology and Metabolism of Emerging Adulthood: Gut Microbiome Insights from a College Freshman Cohort. GUT MICROBES REPORTS 2024; 1:1-23. [PMID: 39221110 PMCID: PMC11361303 DOI: 10.1080/29933935.2024.2387936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The human gut microbiome (GM) undergoes dynamic changes throughout life, transitioning from infancy to adulthood. Despite improved understanding over the past years about how genetics, lifestyle, and the external environment impact the GM, limited research has explored the GM's evolution during late-stage adolescence, especially among college students. This study addresses this gap by investigating the longitudinal dynamics of fecal microbial, functional, and metabolomic signatures in a diverse group of first-year, dormitory-housed college students. A total of 485 stool samples from 246 participants were analyzed, identifying four primary GM community types, predominantly led by Bacteroides (66.8% of samples), as well as Blautia and Prevotella. The Prevotella/Bacteroides (P/B) ratio emerged as a robust GM composition indicator, predictively associated with 15 metabolites. Notably, higher P/B ratios correlated negatively with p-cresol sulfate and cholesterol sulfate, implying potential health implications, while positively correlating with kynurenic acid. Distinct GM transition and stability patterns were found from a detailed longitudinal subset of 93 participants over an academic year. Parasutterella and the Ruminococcus gnavus group exhibited positive associations with compositional variability, whereas Faecalibacterium and Eubacterium ventriosum group displayed negative associations, the latter suggesting stabilizing roles in the GM. Most notably, nearly half of the longitudinal cohort experienced GM community shifts, emphasizing long-term GM adaptability. Comparing individuals with stable community types to those undergoing transitions, we observed significant differences in microbial composition and diversity, signifying substantial shifts in the microbiota during transitions. Although diet-related variables contributed to some observed variance, diet did not independently predict the probability of switching between community types within the study's timeframe via multi-state Markov modeling. Furthermore, exploration of stability within dynamic microbiomes among the longitudinal cohort experiencing shifts in community types revealed that microbiome taxa at the genus level exhibited significantly higher total variance than estimated functional and fecal metabolomic features. This suggests tight control of function and metabolism, despite community shifting. Overall, this study highlights the dynamic nature of the late-stage adolescent GM, the role of core taxa, metabolic pathways, the fecal metabolome, and lifestyle and dietary factors, contributing to our understanding of GM assembly and potential health implications during this life phase.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Center for Personalized Diagnostics, School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Irene van Woerden
- Community and Public Health, Idaho State University, Pocatello, ID, USA
| | - Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Meg Bruening
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Department of Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
24
|
Schaus SR, Vasconcelos Pereira G, Luis AS, Madlambayan E, Terrapon N, Ostrowski MP, Jin C, Henrissat B, Hansson GC, Martens EC. Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron. mBio 2024; 15:e0003924. [PMID: 38975756 PMCID: PMC11323728 DOI: 10.1128/mbio.00039-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques-a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)-degrades mucin glycoproteins or their component O-linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and β1,4-galactosidase activities. There was a lack of detectable sulfatase and weak β1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron. This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD.IMPORTANCEAn important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron. Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.
Collapse
Affiliation(s)
- Sadie R. Schaus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ana S. Luis
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Emily Madlambayan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolas Terrapon
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Marseille, France
| | - Matthew P. Ostrowski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
26
|
Khalili L, Park G, Nagpal R, Salazar G. The Role of Akkermansia muciniphila on Improving Gut and Metabolic Health Modulation: A Meta-Analysis of Preclinical Mouse Model Studies. Microorganisms 2024; 12:1627. [PMID: 39203469 PMCID: PMC11356609 DOI: 10.3390/microorganisms12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila) and its derivatives, including extracellular vesicles (EVs) and outer membrane proteins, are recognized for enhancing intestinal balance and metabolic health. However, the mechanisms of Akkermansia muciniphila's action and its effects on the microbiome are not well understood. In this study, we examined the influence of A. muciniphila and its derivatives on gastrointestinal (GI) and metabolic disorders through a meta-analysis of studies conducted on mouse models. A total of 39 eligible studies were identified through targeted searches on PubMed, Web of Science, Science Direct, and Embase until May 2024. A. muciniphila (alive or heat-killed) and its derivatives positively affected systemic and gut inflammation, liver enzyme level, glycemic response, and lipid profiles. The intervention increased the expression of tight-junction proteins in the gut, improving gut permeability in mouse models of GI and metabolic disorders. Regarding body weight, A. muciniphila and its derivatives prevented weight loss in animals with GI disorders while reducing body weight in mice with metabolic disorders. Sub-group analysis indicated that live bacteria had a more substantial effect on most analyzed biomarkers. Gut microbiome analysis using live A. muciniphila identified a co-occurrence cluster, including Desulfovibrio, Family XIII AD3011 group, and Candidatus Saccharimonas. Thus, enhancing the intestinal abundance of A. muciniphila and its gut microbial clusters may provide more robust health benefits for cardiometabolic, and age-related diseases compared with A. muciniphila alone. The mechanistic insight elucidated here will pave the way for further exploration and potential translational applications in human health.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gwoncheol Park
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Ravinder Nagpal
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gloria Salazar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
27
|
Jauregui-Amezaga A, Smet A. The Microbiome in Inflammatory Bowel Disease. J Clin Med 2024; 13:4622. [PMID: 39200765 PMCID: PMC11354561 DOI: 10.3390/jcm13164622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The management of patients with inflammatory bowel disease (IBD) aims to control inflammation through the use of immunosuppressive treatments that target various points in the inflammatory cascade. However, the efficacy of these therapies in the long term is limited, and they often are associated with severe side effects. Although the pathophysiology of the disease is not completely understood, IBD is regarded as a multifactorial disease that occurs due to an inappropriate immune response in genetically susceptible individuals. The gut microbiome is considered one of the main actors in the development of IBD. Gut dysbiosis, characterised by significant changes in the composition and functionality of the gut microbiota, often leads to a reduction in bacterial diversity and anti-inflammatory anaerobic bacteria. At the same time, bacteria with pro-inflammatory potential increase. Although changes in microbiome composition upon biological agent usage have been observed, their role as biomarkers is still unclear. While most studies on IBD focus on the intestinal bacterial population, recent studies have highlighted the importance of other microbial populations, such as viruses and fungi, in gut dysbiosis. In order to modulate the aberrant immune response in patients with IBD, researchers have developed therapies that target different players in the gut microbiome. These innovative approaches hold promise for the future of IBD treatment, although safety concerns are the main limitations, as their effects on humans remain unknown.
Collapse
Affiliation(s)
- Aranzazu Jauregui-Amezaga
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, 2650 Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
28
|
Yang J, Gould TJ, Jeon B, Ji Y. Broad-Spectrum Antibacterial Activity of Antioxidant Octyl Gallate and Its Impact on Gut Microbiome. Antibiotics (Basel) 2024; 13:731. [PMID: 39200031 PMCID: PMC11350663 DOI: 10.3390/antibiotics13080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
In this study, we investigated the antibacterial activity of octyl gallate (OG), an antioxidant food additive, against both Gram-positive and Gram-negative bacterial pathogens. OG demonstrated robust bactericidal activity against Gram-positive bacterial pathogens with minimum inhibitory concentrations (MIC) of 4 to 8 µg/mL and minimum bactericidal concentrations (MBC) of 8 to 16 µg/mL in vitro. However, OG exhibited limited antibacterial activity against Gram-negative bacteria, including E. coli, although it could inhibit bacterial growth in vitro. Importantly, OG administration in mice altered the fecal microbiome, significantly reducing microbial diversity, modifying community structure, and increasing the abundance of beneficial bacteria. Additionally, OG displayed low cytotoxicity and hemolytic activity. These findings suggest that OG could be developed as a novel antibacterial agent, particularly against multi-drug-resistant MRSA. Our results provide new insights into the therapeutic potential of OG in modulating the gut microbiome, especially in conditions associated with microbial imbalance, while ensuring food safety.
Collapse
Affiliation(s)
- Junshu Yang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Trevor J. Gould
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
29
|
Mo C, Lou X, Xue J, Shi Z, Zhao Y, Wang F, Chen G. The influence of Akkermansia muciniphila on intestinal barrier function. Gut Pathog 2024; 16:41. [PMID: 39097746 PMCID: PMC11297771 DOI: 10.1186/s13099-024-00635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024] Open
Abstract
Intestinal barriers play a crucial role in human physiology, both in homeostatic and pathological conditions. Disruption of the intestinal barrier is a significant factor in the pathogenesis of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. The profound influence of the gut microbiota on intestinal diseases has sparked considerable interest in manipulating it through dietary interventions, probiotics, and fecal microbiota transplantation as potential approaches to enhance the integrity of the intestinal barrier. Numerous studies have underscored the protective effects of specific microbiota and their associated metabolites. In recent years, an increasing body of research has demonstrated that Akkermansia muciniphila (A. muciniphila, Am) plays a beneficial role in various diseases, including diabetes, obesity, aging, cancer, and metabolic syndrome. It is gaining popularity as a regulator that influences the intestinal flora and intestinal barrier and is recognized as a 'new generation of probiotics'. Consequently, it may represent a potential target and promising therapy option for intestinal diseases. This article systematically summarizes the role of Am in the gut. Specifically, we carefully discuss key scientific issues that need resolution in the future regarding beneficial bacteria represented by Am, which may provide insights for the application of drugs targeting Am in clinical treatment.
Collapse
Affiliation(s)
- Chunyan Mo
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Zhuange Shi
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Yifang Zhao
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China.
| |
Collapse
|
30
|
Du Y, An Y, Song Y, Li N, Zheng J, Lu Y. Live and pasteurized Akkermansia muciniphila ameliorates diabetic cognitive impairment by modulating gut microbiota and metabolites in db/db mice. Exp Neurol 2024; 378:114823. [PMID: 38782351 DOI: 10.1016/j.expneurol.2024.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The established role of disturbances in the microbiota-gut-brain axis in the development of diabetic cognitive impairment (DCI) has long been recognized. It has shown the potential of Akkermansia muciniphila (A. muciniphila) in improving metabolic disorders and exerting anti-inflammatory effects. However, there remains a lack of comprehensive understanding regarding the specific effects and mechanisms underlying the treatment of DCI with A. muciniphila. This study aimed to evaluate the potential of A. muciniphila in alleviating DCI in db/db mice. Eleven-week-old db/db mice were administered either live or pasteurized A. muciniphila (5 × 109 CFU/200 μL) for a duration of eight weeks. Administering live A. muciniphila significantly ameliorated cognitive impairments, improved the synaptic ultrastructure, and inhibited hippocampal neuron loss in the CA1 and CA3 subregions in db/db mice. Both live and pasteurized A. muciniphila effectively mitigated neuroinflammation. Moreover, live A. muciniphila increased the relative abundance of Lactococcus and Staphylococcus, whereas pasteurized A. muciniphila increased the relative abundance of Lactobacillus, Prevotellaceae_UCG_001, and Alistipes. Supplementation of A. muciniphila also induced alterations in serum and brain metabolites, with a particular enrichment observed in tryptophan metabolism, glyoxylate and dicarboxylate metabolism, nitrogen metabolism, and pentose and glucuronate interconversions. Correlation analysis further demonstrated a direct and substantial correlation between the altered gut microbiota and the metabolites in the serum and brain tissue. In conclusion, the results indicate that live A. muciniphila demonstrated greater efficacy compared to pasteurized A. muciniphila. The observed protective effects of A. muciniphila against DCI are likely mediated through the neuroinflammation and microbiota-metabolites-brain axis.
Collapse
Affiliation(s)
- Yage Du
- School of Nursing, Peking University, Beijing 100191, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Song
- School of Nursing, Peking University, Beijing 100191, China
| | - Nan Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jie Zheng
- School of Nursing, Peking University, Beijing 100191, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
31
|
Reeves KD, Figuereo YF, Weis VG, Hsu FC, Engevik MA, Krigsman A, Walker SJ. Mapping the geographical distribution of the mucosa-associated gut microbiome in GI-symptomatic children with autism spectrum disorder. Am J Physiol Gastrointest Liver Physiol 2024; 327:G217-G234. [PMID: 38887795 DOI: 10.1152/ajpgi.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by cognitive, behavioral, and communication impairments. In the past few years, it has been proposed that alterations in the gut microbiota may contribute to an aberrant communication between the gut and brain in children with ASD. Consistent with this notion, several studies have demonstrated that children with ASD have an altered fecal microbiota compared with typically developing (TD) children. However, it is unclear where along the length of the gastrointestinal (GI) tract these alterations in microbial communities occur. In addition, the variation between specific mucosa-associated communities remains unknown. To address this gap in knowledge of the microbiome associated with ASD, biopsies from the antrum, duodenum, ileum, right colon, and rectum of children with ASD and age- and sex-matched TD children were examined by 16S rRNA sequencing. We observed an overall elevated abundance of Bacillota and Bacteroidota and a decreased abundance of Pseudomonadota in all GI tract regions of both male and female children with ASD compared with TD children. Further analysis at the genera level revealed unique differences in the microbiome in the different regions of the GI tract in children with ASD compared with TD children. We also observed sex-specific differences in the gut microbiota composition in children with ASD. These data indicate that the microbiota of children with ASD is altered in multiple regions of the GI tract and that different anatomic locations have unique alterations in mucosa-associated bacterial genera.NEW & NOTEWORTHY Analysis in stool samples has shown gut microbiota alterations in children with autism spectrum disorder (ASD) compared with typically developing (TD) children. However, it is unclear which segment(s) of the gut exhibit alterations in microbiome composition. In this study, we examined microbiota composition along the gastrointestinal (GI) tract in the stomach, duodenum, ileum, right colon, and rectum. We found site-specific and sex-specific differences in the gut microbiota of children with ASD, compared with controls.
Collapse
Affiliation(s)
- Kimberly D Reeves
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem North Carolina, United States
| | - Yosauri F Figuereo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Victoria G Weis
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Melinda A Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Arthur Krigsman
- Pediatric Gastroenterology Resources, Georgetown, Texas, United States
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| |
Collapse
|
32
|
Huang LS, Yeh YM, Chiu SF, Huang PJ, Chu LJ, Huang CY, Cheng FW, Chen LC, Lin HC, Shih YW, Lin WN, Huang KY. Intestinal microbiota analysis of different Blastocystis subtypes and Blastocystis-negative individuals in Taiwan. Biomed J 2024; 47:100661. [PMID: 37774792 PMCID: PMC11341923 DOI: 10.1016/j.bj.2023.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Intestinal parasitic infections are the most common infectious diseases among Southeast Asian migrant workers in Taiwan, especially for infections with Blastocystis hominis. However, little is known about the impact of Blastocystis subtypes (STs) on the gut microbiota. METHODS We retrospectively evaluated the prevalence of intestinal parasites in a teaching hospital in Northern Taiwan in the period of 2015-2019. Blastocystis-positive stool specimens were collected for ST analysis by polymerase chain reaction in 2020. Intestinal microbiota analyses of different Blastocystis STs and Blastocystis-free individuals were conducted by 16S rRNA sequencing. RESULTS A total of 13,859 subjects were analyzed, of which 1802 cases (13%) were diagnosed with intestinal parasitic infections. B. hominis infections were the most prevalent (n = 1546, 85.7%). ST analysis of Blastocystis-positive samples (n = 150) indicated that ST1 was the most common type, followed by ST3, ST4, ST2, ST7, and ST5. Different Blastocystis STs (ST1, ST3, and ST4) were associated with distinct richness and diversity of the microbiota. Taxonomic profiles revealed that Akkermansia muciniphila was significantly enriched for all analyzed Blastocystis STs, whereas Holdemanella biformis was more abundant in the Blastocystis-free group. Additionally, Succinivibrio dextrinosolvens and Coprococcus eutactus were specifically more abundant in ST3 carriers than in non-infected individuals. CONCLUSION This study demonstrates that A. muciniphila is positively associated with all Blastocystis STs, while H. biformis was negatively associated with them. Several bacteria were enriched in specific STs, highlighting the need for further microbiota analysis at the ST level to elucidate the pathogenicity of Blastocystis.
Collapse
Affiliation(s)
- Li-San Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan; Department of Inspection, Taipei City Hospital, Renai Branch, Taipei, Taiwan; Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Shu-Fang Chiu
- Department of Inspection, Taipei City Hospital, Renai Branch, Taipei, Taiwan; Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jung Huang
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Lichieh Julie Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ching-Yun Huang
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Wen Cheng
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan; Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsin-Chung Lin
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan; Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Wen Shih
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan; Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
33
|
Ouyang C, Liu P, Liu Y, Lan J, Liu Q. Metabolites mediate the causal associations between gut microbiota and NAFLD: a Mendelian randomization study. BMC Gastroenterol 2024; 24:244. [PMID: 39085775 PMCID: PMC11292861 DOI: 10.1186/s12876-024-03277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Although gut microbiota and serum metabolite composition have been observed to be altered in patients with non-alcoholic fatty liver disease (NAFLD), previous observational studies have demonstrated inconsistent results. As this may be influenced by factors such as confounders and reverse causality, we used Mendelian randomization to clarify the causal effect of gut microbiota and blood metabolites on NAFLD. METHODS In this research, we performed a two-step Mendelian randomization analysis by utilizing genome-wide association study (GWAS) data obtained from MiBioGen and UK Biobank. To mitigate potential errors, we employed False Discovery Rate (FDR) correction and linkage unbalanced regression (LDSC) analysis. Sensitivity analyses including cML-MA and bidirectional Mendelian randomization were performed to ensure the robustness of the results. RESULTS In this study, a total of nine gut microbiota and seven metabolites were found to be significantly associated with NAFLD. MR analysis of the above findings revealed a causal relationship between Ruminococcus2 and cysteine-glutathione disulfide (OR = 1.17, 95%CI = 1.006-1.369, P = 0.041), as well as 3-indoleglyoxylic acid (OR = 1.18, 95%CI = 1.011-1.370, P = 0.036). For each incremental standard deviation in Ruminococcus2 abundance, there was a corresponding 26% reduction in NAFLD risk (OR = 0.74, 95%CI = 0.61-0.89, P = 0.0012), accompanied by a 17% increase in cysteine-glutathione disulfide levels (OR = 1.17, 95%CI = 1.01-1.37, P = 0.041) and an 18% increase in 3-indoleglyoxylic acid levels (OR = 1.18, 95%CI = 0.81-1.00, P = 0.036). The proportion mediated by cysteine-glutathione disulfide is 11.2%, while the proportion mediated by 3-indoleglyoxylic acid is 7.5%. CONCLUSION Our study suggests that increased abundance of specific gut microbiota may reduce the risk of developing NAFLD, and this relationship could potentially be mediated through blood metabolites.
Collapse
Affiliation(s)
- Chen Ouyang
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Pengpeng Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Yiwei Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Jianwei Lan
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Quanyan Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China.
| |
Collapse
|
34
|
Perruzza L, Rezzonico Jost T, Raneri M, Gargari G, Palatella M, De Ponte Conti B, Seehusen F, Heckmann J, Viemann D, Guglielmetti S, Grassi F. Protection from environmental enteric dysfunction and growth improvement in malnourished newborns by amplification of secretory IgA. Cell Rep Med 2024; 5:101639. [PMID: 38959887 PMCID: PMC11293325 DOI: 10.1016/j.xcrm.2024.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Environmental enteric dysfunction (EED) is a condition associated with malnutrition that can progress to malabsorption and villous atrophy. Severe EED results in linear growth stunting, slowed neurocognitive development, and unresponsiveness to oral vaccines. Prenatal exposure to malnutrition and breast feeding by malnourished mothers replicates EED. Pups are characterized by deprivation of secretory IgA (SIgA) and altered development of the gut immune system and microbiota. Extracellular ATP (eATP) released by microbiota limits T follicular helper (Tfh) cell activity and SIgA generation in Peyer's patches (PPs). Administration of a live biotherapeutic releasing the ATP-degrading enzyme apyrase to malnourished pups restores SIgA levels and ameliorates stunted growth. SIgA is instrumental in improving the growth and intestinal immune competence of mice while they are continuously fed a malnourished diet. The analysis of microbiota composition suggests that amplification of endogenous SIgA may exert a dominant function in correcting malnourishment dysbiosis and its consequences on host organisms, irrespective of the actual microbial ecology.
Collapse
Affiliation(s)
- Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland.
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Matteo Raneri
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Giorgio Gargari
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Martina Palatella
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Benedetta De Ponte Conti
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Frauke Seehusen
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Dorothee Viemann
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; Cluster of Excellence RESIST (EXC 2355), Hannover Medical School, 30625 Hannover, Germany; Center for Infection Research, University Würzburg, 97080 Würzburg, Germany
| | - Simone Guglielmetti
- Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, 20126 Milan, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland.
| |
Collapse
|
35
|
Chen J, Xu W, Liu Y, Liang X, Chen Y, Liang J, Cao J, Lu B, Sun C, Wang Y. Lonicera japonica Thunb. and its characteristic component chlorogenic acid alleviated experimental colitis by promoting Lactobacillus and fecal short‐chain fatty acids production. FOOD FRONTIERS 2024; 5:1583-1602. [DOI: 10.1002/fft2.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractUlcerative colitis is intricately linked to intestinal oxidative stress and dysbiosis of the gut microbiota. Lonicera japonica Thunb. (LJ) is a traditional edible and medical flower in China, and chlorogenic acid (CGA) is one of its characteristic components. However, it remains unclear whether gut microbiota plays a role in the therapeutic effects of LJ and GCA on colitis. Here, we first observed that oral administration of LJ and CGA for 3 weeks dramatically promoted the growth of Lactobacillus and fecal short‐chain fatty acids (SCFAs) production in healthy mice. Subsequently, the alleviating effects of LJ and CGA on colitis were explored with a dextran sulfate sodium‐induced colitis mice model. The intervention of LJ and CGA notably alleviated inflammation, intestinal barrier impairment, and oxidative stress in colitis and led to a significant elevation in Lactobacillus and fecal SCFAs. Eventually, the key role of gut microbiota and their metabolites on the therapeutic effects was validated by performing fecal microbiota transplantation and sterile fecal suspensions transplantation from LJ and CGA‐treated healthy mice to colitis mice. Our findings demonstrated that consumption of LJ and CGA could benefit the host both in healthy condition and colitis. The beneficial effects were attributed to the improvement of the endogenous antioxidant system and promotion of the probiotic Lactobacillus and SCFAs production. Our study highlighted the great potential of LJ and CGA to be consumed as functional foods and provided novel mechanisms by which they alleviated colitis.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Wanhua Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Yang Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Shandong (Linyi) Institute of Modern Agriculture Zhejiang University Linyi Shandong People's Republic of China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Yunyi Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Jiaojiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Hainan Institute of Zhejiang University, Zhejiang University Sanya Hainan People's Republic of China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro‐Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro‐Products Storage and Preservation of Ministry of Agriculture and Rural Affairs Zhejiang University Hangzhou People's Republic of China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Hainan Institute of Zhejiang University, Zhejiang University Sanya Hainan People's Republic of China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Shandong (Linyi) Institute of Modern Agriculture Zhejiang University Linyi Shandong People's Republic of China
| |
Collapse
|
36
|
Valdés‐Bango M, Gracia M, Rubio E, Vergara A, Casals‐Pascual C, Ros C, Rius M, Martínez‐Zamora MÁ, Mension E, Quintas L, Carmona F. Comparative analysis of endometrial, vaginal, and gut microbiota in patients with and without adenomyosis. Acta Obstet Gynecol Scand 2024; 103:1271-1282. [PMID: 38661227 PMCID: PMC11168268 DOI: 10.1111/aogs.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Alterations in microbiota composition have been implicated in a variety of human diseases. Patients with adenomyosis present immune dysregulation leading to a persistent chronic inflammatory response. In this context, the hypothesis that alterations in the microbiota may be involved in the pathogenesis of adenomyosis, by affecting the epigenetic, immunologic, and biochemical functions of the host, has recently been postulated. The aim of the present study was to compare the microbiota composition in the vagina, endometrium, and gut of individuals with and without adenomyosis. MATERIAL AND METHODS Cross-sectional study including 38 adenomyosis patients and 46 controls, performed between September 2021 and October 2022 in a university hospital-based research center. The diagnosis of adenomyosis was based on sonographic criteria. Fecal, vaginal, and endometrial samples were collected. Study of the microbiota using 16S rRNA gene sequencing. RESULTS Patients with adenomyosis exhibited a significant reduction in the gut microbial alpha diversity compared with healthy controls (Chao1 p = 0.012, Fisher p = 0.005, Observed species p = 0.005). Beta-diversity analysis showed significant differences in the compositions of both gut and vaginal microbiota between adenomyosis patients and the control group (Adonis p-value = 0.001; R2 = 0.03 and Adonis p-value = 0.034; R2 = 0.04 respectively). Specific bacterial taxa were found to be either overrepresented (Rhodospirillales, Ruminococcus gauvreauii group, Ruminococcaceae, and Actinomyces) or underrepresented in the gut and endometrial microbiota of adenomyosis patients compared with controls. Distinct microbiota profiles were identified among patients with internal and external adenomyosis phenotypes. CONCLUSIONS The study revealed reduced gut microbiota diversity in adenomyosis patients, accompanied by distinct compositions in gut and vaginal microbiota compared with controls. Overrepresented or underrepresented bacterial taxa were noted in the gut and endometrial microbiota of adenomyosis patients, with variations in microbiota profiles among those with internal and external adenomyosis phenotypes. These findings suggest a potential association between microbiota and adenomyosis, indicating the need for further research to comprehensively understand the implications of these differences.
Collapse
Affiliation(s)
- Marta Valdés‐Bango
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Meritxell Gracia
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Elisa Rubio
- Department of Clinical Microbiology, Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Andrea Vergara
- Department of Clinical Microbiology, Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- CIBER Enfermedades Infecciosas (CIBERINFEC)Instituto Salud Carlos IIIMadridSpain
| | - Climent Casals‐Pascual
- Department of Clinical Microbiology, Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
- Barcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- CIBER Enfermedades Infecciosas (CIBERINFEC)Instituto Salud Carlos IIIMadridSpain
| | - Cristina Ros
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Mariona Rius
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Maria Ángeles Martínez‐Zamora
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Eduard Mension
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Lara Quintas
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| | - Francisco Carmona
- Endometriosis Unit, Gynecology Department, Institute Clinic of Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic of BarcelonaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
37
|
Oliero M, Cuisiniere T, Ajayi AS, Gerkins C, Hajjar R, Fragoso G, Calvé A, Vennin Rendos H, Mathieu-Denoncourt A, Dagbert F, De Broux É, Loungnarath R, Schwenter F, Sebajang H, Ratelle R, Wassef R, Richard C, Duperthuy M, Gravel AE, Vincent AT, Santos MM. Putrescine Supplementation Limits the Expansion of pks+ Escherichia coli and Tumor Development in the Colon. CANCER RESEARCH COMMUNICATIONS 2024; 4:1777-1792. [PMID: 38934090 PMCID: PMC11261243 DOI: 10.1158/2767-9764.crc-23-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Escherichia coli that harbor the polyketide synthase (pks) genomic island produce colibactin and are associated with sporadic colorectal cancer development. Given the considerable prevalence of pks+ bacteria in healthy individuals, we sought to identify strategies to limit the growth and expansion of pks+ E. coli. We found that culture supernatants of the probiotic strain E. coli Nissle 1917 were able to inhibit the growth of the murine pathogenic strain pks+ E. coli NC101 (EcNC101). We performed a nontargeted analysis of the metabolome in supernatants from several E. coli strains and identified putrescine as a potential postbiotic capable of suppressing EcNC101 growth in vitro. The effect of putrescine supplementation was then evaluated in the azoxymethane/dextran sulfate sodium mouse model of colorectal cancer in mice colonized with EcNC101. Putrescine supplementation inhibited the growth of pks+ E. coli, reduced the number and size of colonic tumors, and downmodulated the release of inflammatory cytokines in the colonic lumen. Additionally, putrescine supplementation led to shifts in the composition and function of gut microbiota, characterized by an increase in the Firmicutes/Bacteroidetes ratio and enhanced acetate production. The effect of putrescine was further confirmed in vitro using a pks+ E. coli strain isolated from a patient with colorectal cancer. These results suggest that probiotic-derived metabolites can be used as an alternative to live bacteria in individuals at risk of developing colorectal cancer due to the presence of pks+ bacteria in their colon. SIGNIFICANCE Putrescine supplementation inhibits the growth of cancer-promoting bacteria in the gut, lowers inflammation, and reduces colon cancer development. The consumption of healthy foods rich in putrescine may be a potential prophylactic approach for individuals at risk of developing colorectal cancer due to the presence of pks+ bacteria in their colon.
Collapse
Affiliation(s)
- Manon Oliero
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Thibault Cuisiniere
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Ayodeji S. Ajayi
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Claire Gerkins
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Roy Hajjar
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Canada.
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Hervé Vennin Rendos
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Annabelle Mathieu-Denoncourt
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Canada.
| | - François Dagbert
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Éric De Broux
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Rasmy Loungnarath
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Frank Schwenter
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Herawaty Sebajang
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Richard Ratelle
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Ramses Wassef
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Carole Richard
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Canada.
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Marylise Duperthuy
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Canada.
| | - Andrée E. Gravel
- Drug Discovery Platform, Research Institute McGill University Health Centre, Montreal, Canada.
| | - Antony T. Vincent
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Canada.
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Canada.
| | - Manuela M. Santos
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
38
|
Li N, Yuan Q, Qi Y, Wu P, Cui S, Zheng G. The Potential Implications of Sex-Specific Differences in the Intestinal Bacteria of the Overwintering Wolf Spider Pardosa astrigera (Araneae: Lycosidae). INSECTS 2024; 15:490. [PMID: 39057223 PMCID: PMC11276740 DOI: 10.3390/insects15070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Gut microbiota can promote the resistance of host arthropods to low-temperature stress. Female Pardosa astrigera have a lower anti-freeze compound level and weaker resistance to cold temperatures than the males in winter, which implies that their intestinal bacteria may be different during overwintering. This study primarily compared the intestinal bacterial communities between the two sexes of P. astrigera in a temperate region using 16S rRNA gene sequencing. Our findings indicated that the Chao1 and Shannon indices of intestinal bacteria in females were significantly higher than those in males, while the Simpson index in females was significantly lower than that in males. The male intestinal bacterial community was characterized by Proteobacteria and Actinobacteriota at the phylum level and by Pseudomonas and Rhodococcus at the genus level, with total relative abundances of 89.58% and 85.22%, respectively, which were also significantly higher than those in females, whose total relative abundances were 47.49% and 43.68%, respectively. In contrast, the total relative abundances of Bacteroidota and Firmicutes were significantly lower in males (4.26% and 4.75%, respectively) than in females (26.25% and 22.31%, respectively). Noteworthy divergences in bacterial communities were also found through an LEfSe analysis between females and males. Additionally, the results of the PICRUSt2 analysis showed that six out of eleven level-2 pathways related to key metabolic functions were significantly (or marginally significantly) higher in females than males, and five other level-2 pathways were significantly (or marginally significantly) lower in females than males. Our results imply that significant gender differences exist in intestinal bacterial communities of overwintering P. astrigera. We suggest that Pseudomonas versuta (belonging to Proteobacteria) and Rhodococcus erythropolis (belonging to Actinobacteriota) may have the potential to play key roles in overwintering P. astrigera.
Collapse
Affiliation(s)
- Ningkun Li
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Quan Yuan
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Yaru Qi
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Pengfeng Wu
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Shuyan Cui
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Guo Zheng
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
- Liaoning Key Laboratory for Biological Evolution and Agricultural Ecology, Shenyang 110034, China
| |
Collapse
|
39
|
Raba G, Luis AS, Schneider H, Morell I, Jin C, Adamberg S, Hansson GC, Adamberg K, Arike L. Metaproteomics reveals parallel utilization of colonic mucin glycans and dietary fibers by the human gut microbiota. iScience 2024; 27:110093. [PMID: 38947523 PMCID: PMC11214529 DOI: 10.1016/j.isci.2024.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
A diet lacking dietary fibers promotes the expansion of gut microbiota members that can degrade host glycans, such as those on mucins. The microbial foraging on mucin has been associated with disruptions of the gut-protective mucus layer and colonic inflammation. Yet, it remains unclear how the co-utilization of mucin and dietary fibers affects the microbiota composition and metabolic activity. Here, we used 14 dietary fibers and porcine colonic and gastric mucins to study the dynamics of mucin and dietary fiber utilization by the human fecal microbiota in vitro. Combining metaproteome and metabolites analyses revealed the central role of the Bacteroides genus in the utilization of complex fibers together with mucin while Akkermansia muciniphila was the main utilizer of sole porcine colonic mucin but not gastric mucin. This study gives a broad overview of the colonic environment in response to dietary and host glycan availability.
Collapse
Affiliation(s)
- Grete Raba
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Ana S. Luis
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Hannah Schneider
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Indrek Morell
- Center of Food and Fermentation Technologies, 12618 Tallinn, Estonia
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
- Center of Food and Fermentation Technologies, 12618 Tallinn, Estonia
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| |
Collapse
|
40
|
Yang X, Huang J, Peng J, Wang P, Wong FS, Wang R, Wang D, Wen L. Gut microbiota from B-cell-specific TLR9-deficient NOD mice promote IL-10 + Breg cells and protect against T1D. Front Immunol 2024; 15:1413177. [PMID: 38903498 PMCID: PMC11187306 DOI: 10.3389/fimmu.2024.1413177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β cells. Toll-like receptor 9 (TLR9) plays a role in autoimmune diseases, and B cell-specific TLR9 deficiency delays T1D development. Gut microbiota are implicated in T1D, although the relationship is complex. However, the impact of B cell-specific deficiency of TLR9 on intestinal microbiota and the impact of altered intestinal microbiota on the development of T1D are unclear. Objectives This study investigated how gut microbiota and the intestinal barrier contribute to T1D development in B cell-specific TLR9-deficient NOD mice. Additionally, this study explored the role of microbiota in immune regulation and T1D onset. Methods The study assessed gut permeability, gene expression related to gut barrier integrity, and gut microbiota composition. Antibiotics depleted gut microbiota, and fecal samples were transferred to germ-free mice. The study also examined IL-10 production, Breg cell differentiation, and their impact on T1D development. Results B cell-specific TLR9-deficient NOD mice exhibited increased gut permeability and downregulated gut barrier-related gene expression. Antibiotics restored gut permeability, suggesting microbiota influence. Altered microbiota were enriched in Lachnospiraceae, known for mucin degradation. Transferring this microbiota to germ-free mice increased gut permeability and promoted IL-10-expressing Breg cells. Rag-/- mice transplanted with fecal samples from Tlr9 fl/fl Cd19-Cre+ mice showed delayed diabetes onset, indicating microbiota's impact. Conclusion B cell-specific TLR9 deficiency alters gut microbiota, increasing gut permeability and promoting IL-10-expressing Breg cells, which delay T1D. This study uncovers a link between TLR9, gut microbiota, and immune regulation in T1D, with implications for microbiota-targeted T1D therapies.
Collapse
Affiliation(s)
- Xin Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Jian Peng
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Pai Wang
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - F. Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ruirui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine (TCM) Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
41
|
Nieva C, Pryor J, Williams GM, Hoedt EC, Burns GL, Eslick GD, Talley NJ, Duncanson K, Keely S. The Impact of Dietary Interventions on the Microbiota in Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2024; 18:920-942. [PMID: 38102104 PMCID: PMC11147801 DOI: 10.1093/ecco-jcc/jjad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND AIMS Diet plays an integral role in the modulation of the intestinal environment, with the potential to be modified for management of individuals with inflammatory bowel disease [IBD]. It has been hypothesised that poor 'Western-style' dietary patterns select for a microbiota that drives IBD inflammation and, that through dietary intervention, a healthy microbiota may be restored. This study aimed to systematically review the literature and assess current available evidence regarding the influence of diet on the intestinal microbiota composition in IBD patients, and how this may affect disease activity. METHODS MEDLINE, EMBASE, Scopus, Web of Science, and Cochrane Library were searched from January 2013 to June 2023, to identify studies investigating diet and microbiota in IBD. RESULTS Thirteen primary studies met the inclusion criteria and were selected for narrative synthesis. Reported associations between diet and microbiota in IBD were conflicting due to the considerable degree of heterogeneity between studies. Nine intervention studies trialled specific diets and did not demonstrate significant shifts in the diversity and abundance of intestinal microbial communities or improvement in disease outcomes. The remaining four cross-sectional studies did not find a specific microbial signature associated with habitual dietary patterns in IBD patients. CONCLUSIONS Diet modulates the gut microbiota, and this may have implications for IBD; however, the body of evidence does not currently support clear dietary patterns or food constituents that are associated with a specific microbiota profile or disease marker in IBD patients. Further research is required with a focus on robust and consistent methodology to achieve improved identification of associations.
Collapse
Affiliation(s)
- Cheenie Nieva
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jennifer Pryor
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Georgina M Williams
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C Hoedt
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L Burns
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Guy D Eslick
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J Talley
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kerith Duncanson
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon Keely
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- National Health and Medical Research Council [NHMRC], Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
42
|
Xu M, Kiss AJ, Jones JA, McMurray MS, Shi H. Effect of oral tryptamines on the gut microbiome of rats-a preliminary study. PeerJ 2024; 12:e17517. [PMID: 38846751 PMCID: PMC11155674 DOI: 10.7717/peerj.17517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Background Psilocybin and related tryptamines have come into the spotlight in recent years as potential therapeutics for depression. Research on the mechanisms of these effects has historically focused on the direct effects of these drugs on neural processes. However, in addition to such neural effects, alterations in peripheral physiology may also contribute to their therapeutic effects. In particular, substantial support exists for a gut microbiome-mediated pathway for the antidepressant efficacy of other drug classes, but no prior studies have determined the effects of tryptamines on microbiota. Methods To address this gap, in this preliminary study, male Long Evans rats were treated with varying dosages of oral psilocybin (0.2 or 2 mg/kg), norbaeocystin (0.25 or 2.52 mg/kg), or vehicle and their fecal samples were collected 1 week and 3 weeks after exposure for microbiome analysis using integrated 16S ribosomal DNA sequencing to determine gut microbiome composition. Results We found that although treatment with neither psilocybin nor norbaeocystin significantly affected overall microbiome diversity, it did cause significant dose- and time-dependent changes in bacterial abundance at the phylum level, including increases in Verrucomicrobia and Actinobacteria, and decreases in Proteobacteria. Conclusion and Implications These preliminary findings support the idea that psilocybin and other tryptamines may act on the gut microbiome in a dose- and time-dependent manner, potentially identifying a novel peripheral mechanism for their antidepressant activity. The results from this preliminary study also suggest that norbaeocystin may warrant further investigation as a potential antidepressant, given the similarity of its effects to psilocybin.
Collapse
Affiliation(s)
- Mengyang Xu
- Biology, Miami University, Oxford, OH, United States
| | - Andor J. Kiss
- Center for Bioinformatics and Functional Genomics, Miami University, Oxford, OH, United States
| | - J. Andrew Jones
- Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, United States
| | | | - Haifei Shi
- Biology, Miami University, Oxford, OH, United States
| |
Collapse
|
43
|
Filippo D, Guardone L, Listorti V, Elisabetta R. Microbiome in cancer: A comparative analysis between humans and dogs. Vet J 2024; 305:106145. [PMID: 38788999 DOI: 10.1016/j.tvjl.2024.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Cancer is a major cause of death in humans and animals worldwide. While cancer survival rates have increased over recent decades, further research to identify risk factors for the onset and progression of disease, and safe and highly efficacious treatments, is needed. Spontaneous tumours in pets represent an excellent model for neoplastic disease in humans. In this regard, dogs are an interesting species, as the divergence between the dog and human genome is low, humans and dogs have important similarities in the development and functioning of the immune system, and both species often share the same physical environment. There is also a higher homology between the canine and human microbiome than murine model. This review aims to describe and organize recently published information on canine microbiome assemblages and their relationship with the onset and progression of colorectal cancer, breast cancer and lymphoma, and to compare this with human disease. In both species, dysbiosis can induce variations in the gut microbiota that strongly influence shifts in status between health and disease. This can produce an inflammatory state, potentially leading to neoplasia, especially in the intestine, thus supporting canine studies in comparative oncology. Intestinal dysbiosis can also alter the efficacy and side effects of cancer treatments. Fewer published studies are available on changes in the relevant microbiomes in canine lymphoma and mammary cancer, and further research in this area could improve our understanding of the role of microbiota in the development of these cancers.
Collapse
Affiliation(s)
- Dell'Anno Filippo
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy; Department of Public Health, Experimental and Forensic Medicine, Section of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Lisa Guardone
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy
| | - Valeria Listorti
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy
| | - Razzuoli Elisabetta
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy.
| |
Collapse
|
44
|
Hou L, Wang H, Yan M, Cai Y, Zheng R, Ma Y, Tang W, Jiang W. Obeticholic acid attenuates the intestinal barrier disruption in a rat model of short bowel syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167221. [PMID: 38718845 DOI: 10.1016/j.bbadis.2024.167221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Short bowel syndrome (SBS) features nutrients malabsorption and impaired intestinal barrier. Patients with SBS are prone to sepsis, intestinal flora dysbiosis and intestinal failure associated liver disease. Protecting intestinal barrier and preventing complications are potential strategies for SBS treatment. This study aims to investigate the effects of farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), have on intestinal barrier and ecological environment in SBS. METHODS AND RESULTS Through testing the small intestine and serum samples of patients with SBS, impaired intestinal barrier was verified, as evidenced by reduced expressions of intestinal tight junction proteins (TJPs), increased levels of apoptosis and epithelial cell damage. The intestinal expressions of FXR and related downstream molecules were decreased in SBS patients. Then, global FXR activator OCA was used to further dissect the potential role of the FXR in a rat model of SBS. Low expressions of FXR-related molecules were observed on the small intestine of SBS rats, along with increased proinflammatory factors and damaged barrier function. Furthermore, SBS rats possessed significantly decreased body weight and elevated death rate. Supplementation with OCA mitigated the damaged intestinal barrier and increased proinflammatory factors in SBS rats, accompanied by activated FXR-related molecules. Using 16S rDNA sequencing, the regulatory role of OCA on gut microbiota in SBS rats was witnessed. LPS stimulation to Caco-2 cells induced apoptosis and overexpression of proinflammatory factors in vitro. OCA incubation of LPS-pretreated Caco-2 cells activated FXR-related molecules, increased the expressions of TJPs, ameliorated apoptosis and inhibited overexpression of proinflammatory factors. CONCLUSIONS OCA supplementation could effectively ameliorate the intestinal barrier disruption and inhibit overexpression of proinflammatory factors in a rat model of SBS and LPS-pretreated Caco-2 cells. As a selective activator of FXR, OCA might realize its protective function through FXR activation.
Collapse
Affiliation(s)
- Li Hou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanfei Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Yan
- Department of Pediatrics, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Yaoyao Cai
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruifei Zheng
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yujun Ma
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Weiwei Jiang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Nanlohy NM, Johannesson N, Wijnands L, Arroyo L, de Wit J, den Hartog G, Wolthers KC, Sridhar A, Fuentes S. Exploring host-commensal-pathogen dynamics in cell line and organotypic human intestinal epithelial models. iScience 2024; 27:109771. [PMID: 38711444 PMCID: PMC11070716 DOI: 10.1016/j.isci.2024.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Host and microbiome intricately interact in the ecosystem of the human digestive tract, playing a crucial role in our health. These interactions can initiate immune responses in the epithelial cells, which, in turn, activate downstream responses in other immune cells. Here, we used a CaCo-2 and a human intestinal enteroid (HIE) model to explore epithelial responses to both commensal and pathogenic bacteria, individually and combined. CaCo-2 cells were co-cultured with peripheral blood mononuclear cells, revealing downstream activation of immune cells. While both systems showed comparable cytokine profiles, they differed in their responses to the different bacteria, with the organoid system being more representative of responses observed in humans. We provide evidence of the pro-inflammatory responses associated with these bacteria. These models contribute to a deeper understanding of the interactions between the microbiota, intestinal epithelium, and immune cells in the gut, promoting advances in the field of host-microbe interactions.
Collapse
Affiliation(s)
- Nening M. Nanlohy
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Nina Johannesson
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Lucas Wijnands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Laura Arroyo
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Gerco den Hartog
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Laboratory of Medical Immunology, Radboudumc, Nijmegen, the Netherlands
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Susana Fuentes
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
46
|
Uehara M, Inoue T, Hase S, Sasaki E, Toyoda A, Sakakibara Y. Decoding host-microbiome interactions through co-expression network analysis within the non-human primate intestine. mSystems 2024; 9:e0140523. [PMID: 38557130 PMCID: PMC11097647 DOI: 10.1128/msystems.01405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene FBP1, a cancer marker, and polysaccharide degradation-related genes (pfkA and fucI) coded by Bacteroides vulgatus, as well as relationships between host B cell-specific genes (CD19, CD22, CD79B, and PTPN6) and a tryptophan synthesis gene (trpB) coded by Parabacteroides distasonis. Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.
Collapse
Affiliation(s)
- Mika Uehara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Sumitaka Hase
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| |
Collapse
|
47
|
Han S, Bian R, Chen Y, Liang J, Zhao P, Gu Y, Zhang D. Dysregulation of the Gut Microbiota Contributes to Sevoflurane-Induced Cognitive Dysfunction in Aged Mice by Activating the NLRP3 Inflammasome. Mol Neurobiol 2024:10.1007/s12035-024-04229-x. [PMID: 38740706 DOI: 10.1007/s12035-024-04229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Postoperative cognitive dysfunction (POCD), a common complication in elderly patients after surgery, seriously affects patients' quality of life. Long-term or repeated inhalation of sevoflurane can cause neuroinflammation, which is a risk factor for POCD. However, the underlying mechanism needs to be further explored. Recent research had revealed a correlation between neurological disorders and changes in the gut microbiota. Dysfunction of the gut microbiota is involved in the occurrence and development of central nervous system diseases. Here, we found that cognitive dysfunction in aged mice induced by sevoflurane exposure (3%, 2 hours daily, for 3 days) was related to gut microbiota dysbiosis, while probiotics improved cognitive function by alleviating dysbiosis. Sevoflurane caused a significant decrease in the abundance of Akkermansia (P<0.05), while probiotics restored the abundance of Akkermansia. Compared to those in the control group, sevoflurane significantly increased the expression of NLRP3 inflammasome-associated proteins in the gut and brain in the sevoflurane-exposed group, thus causing neuroinflammation and synaptic damage, which probiotics can mitigate (con vs. sev, P < 0.01; p+sev vs. sev, P < 0.05). In conclusion, for the first time, our study revealed that dysbiosis of the gut microbiota caused by sevoflurane anesthesia contributes to the NLRP3 inflammasome-mediated neuroinflammation and cognitive dysfunction from the perspective of the gut-brain axis. Perhaps postoperative cognitive impairment in elderly patients can be alleviated or even prevented by regulating the gut microbiota. This study provides new insights and methods for the prevention and treatment of cognitive impairment induced by sevoflurane.
Collapse
Affiliation(s)
- Shanshan Han
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi, 214002, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Ruxi Bian
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yuxuan Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Junjie Liang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yanfang Gu
- Department of Gynecology, Jiangnan University Affiliated Hospital, Wuxi, 214002, China.
| | - Dengxin Zhang
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi, 214002, China.
| |
Collapse
|
48
|
Duda-Madej A, Stecko J, Szymańska N, Miętkiewicz A, Szandruk-Bender M. Amyloid, Crohn's disease, and Alzheimer's disease - are they linked? Front Cell Infect Microbiol 2024; 14:1393809. [PMID: 38779559 PMCID: PMC11109451 DOI: 10.3389/fcimb.2024.1393809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including β-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Marta Szandruk-Bender
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
49
|
Pereira-Caro G, Cáceres-Jiménez S, Moreno-Ortega A, Dobani S, Pourshahidi K, Gill CIR, Mena P, Del Rio D, Moreno-Rojas JM, Taurino G, Bussolati O, Almutairi TM, Crozier A, Bianchi MG. Colon-available mango (poly)phenols exhibit mitigating effects on the intestinal barrier function in human intestinal cell monolayers under inflammatory conditions. Food Funct 2024; 15:5118-5131. [PMID: 38682277 DOI: 10.1039/d4fo00451e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
This study investigated the impact of in vivo available colon-mango (poly)phenols on stress-induced impairment of intestinal barrier function. Caco-2/HT29-MTX cells were incubated with six extracts of ileal fluid collected pre- and 4-8 h post-mango consumption before being subjected to inflammatory stress. (Poly)phenols in ileal fluids were analysed by UHPLC-HR-MS. Epithelial barrier function was monitored by measurement of trans-epithelial electrical resistance (TEER) and the production of selected inflammatory markers (interleukin-8 (IL-8) and nitric oxide (NO)) and the major mucin of the mucosal layer (MUC2). Post-mango intake ileal fluids contained principally benzoic acids, hydroxybenzenes and galloyl derivatives. There was a high interindividual variability in the levels of these compounds, which was reflected by the degree of variability in the protective effects of individual ileal extracts on inflammatory changes in the treated cell cultures. The 24 h treatment with non-cytotoxic doses of extracts of 4-8 h post-mango intake ileal fluid significantly reduced the TEER decrease in monolayers treated with the inflammatory cytomix. This effect was not associated with changes in IL-8 expression and secretion or claudine-7 expression. The mango derived-ileal fluid extract (IFE) also mitigated cytomix-dependent nitrite secretion, as a proxy of NO production, and the MUC2 reduction observed upon the inflammatory challenge. These insights shed light on the potential protective effect of mango (poly)phenols on the intestinal barrier exposed to inflammatory conditions.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Córdoba, Spain.
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Salud Cáceres-Jiménez
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo Universidad de Córdoba, Córdoba, Spain
| | - Alicia Moreno-Ortega
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Córdoba, Spain.
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy.
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Córdoba, Spain.
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Massimiliano G Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
50
|
Goswami M, Bose PD. Gut microbial dysbiosis in the pathogenesis of leukemia: an immune-based perspective. Exp Hematol 2024; 133:104211. [PMID: 38527589 DOI: 10.1016/j.exphem.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Leukemias are a set of clonal hematopoietic malignant diseases that develop in the bone marrow. Several factors influence leukemia development and progression. Among these, the gut microbiota is a major factor influencing a wide array of its processes. The gut microbial composition is linked to the risk of tumor development and the host's ability to respond to treatment, mostly due to the immune-modulatory effects of their metabolites. Despite such strong evidence, its role in the development of hematologic malignancies still requires attention of investigators worldwide. In this review, we make an effort to discuss the role of host gut microbiota-immune crosstalk in leukemia development and progression. Additionally, we highlight certain recently developed strategies to modify the gut microbial composition that may help to overcome dysbiosis in leukemia patients in the near future.
Collapse
Affiliation(s)
- Mayuri Goswami
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India.
| |
Collapse
|