1
|
Krumm BE, Roth BL. Intracellular GPCR modulators enable precision pharmacology. NPJ DRUG DISCOVERY 2025; 2:8. [PMID: 40371403 PMCID: PMC12069105 DOI: 10.1038/s44386-025-00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/20/2025] [Indexed: 05/16/2025]
Abstract
G-protein-coupled receptors (GPCRs) have proven to be the most successful target class for drug discovery but their complicated signal transduction pathways cause difficulties for drug development. Recently, ligands have been identified that engage an intracellular binding site which promotes pathway biased signal in cooperation with orthosteric ligands. Here, we explore the topic of biased signaling and intracellular modulators to understand their application for precision pharmacology of Class A or Rhodopsin-Like GPCRs.
Collapse
Affiliation(s)
- Brian E. Krumm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Bryan L. Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
2
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
3
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
4
|
Cooper D, DePaolo-Boisvert J, Nicholson SA, Gad B, Minh DDL. Intracellular Pocket Conformations Determine Signaling Efficacy through the μ Opioid Receptor. J Chem Inf Model 2025; 65:1465-1475. [PMID: 39824514 PMCID: PMC11817682 DOI: 10.1021/acs.jcim.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025]
Abstract
It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins. We hypothesized that signaling through the μ opioid receptor, a prototypical 7TMR, is linearly proportional to the equilibrium probability of observing intracellular pocket conformations in the receptor-ligand complex. Here, we show that a machine learning model based on this hypothesis accurately calculates the efficacy of both G protein and β-arrestin-2 signaling. Structural features that the model associates with activation are intracellular pocket expansion, toggle switch rotation, and sodium binding pocket collapse. Distinct pathways are activated by different arrangements of the ligand and sodium binding pockets and the intracellular pocket. While recent work has categorized ligands as active or inactive (or partially active) based on binding affinities to two conformations, our approach accurately computes signaling efficacy along multiple pathways.
Collapse
Affiliation(s)
- David
A. Cooper
- Department
of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Joseph DePaolo-Boisvert
- Department
of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Stanley A. Nicholson
- Department
of Applied Mathematics, Illinois Institute
of Technology, Chicago, Illinois 60616, United States
| | - Barien Gad
- Department
of Applied Mathematics, Illinois Institute
of Technology, Chicago, Illinois 60616, United States
- Department
of Biology, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - David D. L. Minh
- Department
of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
- Department
of Biology, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
5
|
Chan CB, Pottie E, Simon IA, Rossebø AG, Herth MM, Harpsøe K, Kristensen JL, Stove CP, Poulie CBM. Synthesis, Pharmacological Characterization, and Binding Mode Analysis of 8-Hydroxy-Tetrahydroisoquinolines as 5-HT 7 Receptor Inverse Agonists. ACS Chem Neurosci 2025; 16:439-451. [PMID: 39836645 DOI: 10.1021/acschemneuro.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
The serotonin 7 receptor (5-HT7R) regulates various processes in the central nervous system, including mood, learning, and circadian rhythm control, among others. Receptor activation can lead to activation of the Gαs protein and a subsequent increase of intracellular cyclic adenosine monophosphate (cAMP). Receptor interaction with inverse agonists results in a decrease of basal cAMP levels and therefore a downstream effect of reduced neuronal excitability and neurotransmission. Recently, pellotine (1a), a Lophophora alkaloid, was unexpectedly shown to be an inverse agonist of the 5-HT7R. Therefore, we evaluated close analogs of compound 1a, both naturally occurring and synthetic analogs, as inverse agonists of the 5-HT7R. Functional evaluation in a GloSensor cAMP assay revealed a preference for an 8-hydroxy-6,7-dimethoxy substitution pattern over 6,7,8-trimethoxy analogs or 8-hydroxy-6,7-methylenedioxy analogs. This was supported by molecular dynamics simulations, where the 8-hydroxy substitution allowed more robust interaction with the 5-HT7R, which correlated with inverse agonism efficacy. Additionally, N-methylation (as in 1a) improved the potency of the evaluated analogs. In this series, the most potent inverse agonist was anhalidine (1b) (EC50 = 219 nM, Emax = -95.4%), which lacks the 1-methyl, compared to pellotine (1a), and showed a 2-fold higher functional potency. Altogether, these results provide key insights for the further development of potent low molecular weight inverse agonists of the 5-HT7R.
Collapse
Affiliation(s)
- Camilla B Chan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Icaro A Simon
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Adrian G Rossebø
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Gerrard EJ, Tichy AM, Janovjak H. Automated Plate Reader-Based Assays of Light-Activated GPCRs. Methods Mol Biol 2025; 2840:217-229. [PMID: 39724355 DOI: 10.1007/978-1-0716-4047-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
In the emerging field of optogenetics, light-sensitive G-protein coupled receptors (GPCRs) allow for the temporally precise control of canonical cell signaling pathways. Expressing, stimulating, and measuring the activity of light-sensitive GPCRs (e.g., opsins or chimeric OptoXRs) in mammalian cells is a nontrivial task as many standard assay practices are not compatible with light-sensitive molecular tools. In this chapter, we present a method for quantifying opsin activity in automated plate reader-based assays without the need for additional optical hardware (i.e., light sources). The protocol is applied to assess cAMP levels downstream of a chimeric OptoXR but can be expanded to other opsins and second messengers, such as Ca2+ mobilization. We describe how the internal optical components in commonly available plate readers can be utilized to both activate and detect kinetic and dose-response relationships, as well as provide general guidance for optimizing assays with light-sensitive molecular tools.
Collapse
Affiliation(s)
- Elliot J Gerrard
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton, VIC, Australia
| | - Alexandra-Madelaine Tichy
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton, VIC, Australia
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton, VIC, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
7
|
Pearce A, Redfern-Nichols T, Wills E, Rosa M, Manulak I, Sisk C, Huang X, Atakpa-Adaji P, Prole DL, Ladds G. Quantitative approaches for studying G protein-coupled receptor signalling and pharmacology. J Cell Sci 2025; 138:JCS263434. [PMID: 39810711 PMCID: PMC11828474 DOI: 10.1242/jcs.263434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs. Recent progress in this area has been rapid and extensive. In this Review, we provide a critical overview of these new, state-of-the-art approaches to investigate GPCR signalling pathways. These include novel sensors, Förster or bioluminescence resonance energy transfer assays, libraries of tagged G proteins and transcriptional reporters. These approaches enable improved quantitative studies of different stages of GPCR signalling, including GPCR activation, G protein activation, second messenger (cAMP and Ca2+) signalling, β-arrestin recruitment and the internalisation and intracellular trafficking of GPCRs.
Collapse
Affiliation(s)
- Abigail Pearce
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Theo Redfern-Nichols
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Edward Wills
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Matthew Rosa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Iga Manulak
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Claudia Sisk
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Xianglin Huang
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - David L. Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
8
|
Endzhievskaya S, Chahal K, Resnick J, Khare E, Roy S, Handel TM, Kufareva I. Essential strategies for the detection of constitutive and ligand-dependent Gi-directed activity of 7TM receptors using bioluminescence resonance energy transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626681. [PMID: 39713355 PMCID: PMC11661105 DOI: 10.1101/2024.12.04.626681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The constitutive (ligand-independent) signaling of G protein-coupled receptors (GPCRs) is being increasingly appreciated as an integral aspect of their function; however, it can be technically hard to detect for poorly characterized, e.g. orphan, receptors of the cAMP-inhibitory Gi-coupled (GiPCR) family. In this study, we delineate the optimal strategies for the detection of such activity across several GiPCRs in two cell lines. As our study examples, we chose two canonical GiPCRs - the constitutively active Smoothened and the ligand-activated CXCR4, - and one atypical GPCRs, the chemokine receptor ACKR3. We verified the applicability of three Bioluminescence Resonance Energy Transfer (BRET)-based assays - one measuring changes in intracellular cAMP, another in Gβγ/GRK3ct association and third in Gαi-Gβγ dissociation, - for assessing both constitutive and ligand-modulated activity of these receptors. We also revealed the possible caveats and sources of false positives, and proposed optimization strategies. All three types of assays confirmed the ligand-dependent activity of CXCR4, the controversial G protein incompetence of ACKR3, the constitutive Gi-directed activity of SMO, and its modulation by PTCH1. We also demonstrated that PTCH1 promotes SMO localization to the cell surface, thus enhancing its responsiveness not only to agonists but also to antagonists, which is a novel mechanism of regulation of a Class F GiPCR Smoothened.
Collapse
Affiliation(s)
- Sofia Endzhievskaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kirti Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- LigronBio Inc., San Diego, CA, USA
| | - Julie Resnick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ekta Khare
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Cooper DA, DePaolo-Boisvert J, Nicholson SA, Gad B, Minh DDL. Intracellular pocket conformations determine signaling efficacy through the μ opioid receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588021. [PMID: 39677660 PMCID: PMC11642773 DOI: 10.1101/2024.04.03.588021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins. We hypothesized that signaling through the μ opioid receptor, a prototypical 7TMR, is linearly proportional to the equilibrium probability of observing intracellular pocket conformations in the receptor-ligand complex. Here we show that a machine learning model based on this hypothesis accurately calculates the efficacy of both G protein and β -arrestin-2 signaling. Structural features that the model associates with activation are intracellular pocket expansion, toggle switch rotation, and sodium binding pocket collapse. Distinct pathways are activated by different arrangements of the ligand and sodium binding pockets and the intracellular pocket. While recent work has categorized ligands as active or inactive (or partially active) based on binding affinities to two conformations, our approach accurately computes signaling efficacy along multiple pathways.
Collapse
Affiliation(s)
- David A. Cooper
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Joseph DePaolo-Boisvert
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Stanley A. Nicholson
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Barien Gad
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, United States
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
10
|
Galdino GT, Mailhot O, Najmanovich R. Understanding and Predicting Ligand Efficacy in the μ-Opioid Receptor through Quantitative Dynamical Analysis of Complex Structures. J Chem Inf Model 2024; 64:8549-8561. [PMID: 39496284 DOI: 10.1021/acs.jcim.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The μ-opioid receptor (MOR) is a G-protein coupled receptor involved in nociception and the primary target of opioid drugs. Understanding the relationships among the ligand structure, receptor dynamics, and efficacy in activating MOR is crucial for drug discovery and development. Here, we use coarse-grained normal-mode analysis to predict ligand-induced changes in receptor dynamics with the Quantitative Dynamics Activity Relationship (QDAR) DynaSig-ML methodology, training a LASSO regression model on the entropic signatures (ESs) computed from ligand-receptor complexes. We train and validate the methodology using a data set of 179 MOR ligands with experimentally measured efficacies split into strictly chemically different cross-validation sets. By analyzing the coefficients of the ES LASSO model, we identified key residues involved in MOR activation, several of which have mutational data supporting their role in MOR activation. Additionally, we explored a contact-only LASSO model based on ligand-protein interactions. While the model showed predictive power, it failed at predicting efficacy for ligands with low structural similarity to the training set, emphasizing the importance of receptor dynamics for predicting ligand-induced receptor activation. Moreover, the low computational cost of our approach, at 3 CPU s per ligand-receptor complex, opens the door to its application in large-scale virtual screening contexts. Our work contributes to a better understanding of dynamics-function relationships in the μ-opioid receptor and provides a framework for predicting ligand efficacy based on ligand-induced changes in receptor dynamics.
Collapse
Affiliation(s)
- Gabriel T Galdino
- Department of Pharmacology and Physiology Faculty of Medicine, University of Montreal, 2960 Chemin de la Tour, H3T 1J4 Montréal, Quebec, Canada
| | - Olivier Mailhot
- Department of Pharmacology and Physiology Faculty of Medicine, University of Montreal, 2960 Chemin de la Tour, H3T 1J4 Montréal, Quebec, Canada
| | - Rafael Najmanovich
- Department of Pharmacology and Physiology Faculty of Medicine, University of Montreal, Room 3147, Pavillon Paul-G.-Desmarais 2960 Chemin de la Tour, H3T 1J4 Montréal, Quebec, Canada
| |
Collapse
|
11
|
Weirath NA, Haskell-Luevano C. Recommended Tool Compounds for the Melanocortin Receptor (MCR) G Protein-Coupled Receptors (GPCRs). ACS Pharmacol Transl Sci 2024; 7:2706-2724. [PMID: 39296259 PMCID: PMC11406693 DOI: 10.1021/acsptsci.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
De Vrieze LM, Walton SE, Pottie E, Papsun D, Logan BK, Krotulski AJ, Stove CP, Vandeputte MM. In vitro structure-activity relationships and forensic case series of emerging 2-benzylbenzimidazole 'nitazene' opioids. Arch Toxicol 2024; 98:2999-3018. [PMID: 38877156 PMCID: PMC11324687 DOI: 10.1007/s00204-024-03774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 06/16/2024]
Abstract
2-Benzylbenzimidazole 'nitazene' opioids are presenting a growing threat to public health. Although various nitazenes were previously studied, systematic comparisons of the effects of different structural modifications to the 2-benzylbenzimidazole core structure on μ-opioid receptor (MOR) activity are limited. Here, we assessed in vitro structure-activity relationships of 9 previously uncharacterized nitazenes alongside known structural analogues. Specifically, we focused on MOR activation by 'ring' substituted analogues (i.e., N-pyrrolidino and N-piperidinyl modifications), 'desnitazene' analogues (lacking the 5-nitro group), and N-desethyl analogues. The results from two in vitro MOR activation assays (β-arrestin 2 recruitment and inhibition of cAMP accumulation) showed that 'ring' modifications overall yield highly active drugs. With the exception of 4'-OH analogues (which are metabolites), N-pyrrolidino substitutions were generally more favorable for MOR activation than N-piperidine substitutions. Furthermore, removal of the 5-nitro group on the benzimidazole ring consistently caused a pronounced decrease in potency. The N-desethyl modifications showed important MOR activity, and generally resulted in a slightly lowered potency than comparator nitazenes. Intriguingly, N-desethyl isotonitazene was the exception and was consistently more potent than isotonitazene. Complementing the in vitro findings and demonstrating the high harm potential associated with many of these compounds, we describe 85 forensic cases from North America and the United Kingdom involving etodesnitazene, N-desethyl etonitazene, N-desethyl isotonitazene, N-pyrrolidino metonitazene, and N-pyrrolidino protonitazene. The low-to-sub ng/mL blood concentrations observed in most cases underscore the drugs' high potencies. Taken together, by bridging pharmacology and case data, this study may aid to increase awareness and guide legislative and public health efforts.
Collapse
Affiliation(s)
- Liam M De Vrieze
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sara E Walton
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA, 19090, USA
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Barry K Logan
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA, 19090, USA
- NMS Labs, Horsham, PA, 19044, USA
| | - Alex J Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA, 19090, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Peng Y, Du J, Li R, Günther S, Wettschureck N, Offermanns S, Wang Y, Schneider A, Braun T. RhoA-mediated G 12-G 13 signaling maintains muscle stem cell quiescence and prevents stem cell loss. Cell Discov 2024; 10:76. [PMID: 39009565 PMCID: PMC11251043 DOI: 10.1038/s41421-024-00696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
Multiple processes control quiescence of muscle stem cells (MuSCs), which is instrumental to guarantee long-term replenishment of the stem cell pool. Here, we describe that the G-proteins G12-G13 integrate signals from different G-protein-coupled receptors (GPCRs) to control MuSC quiescence via activation of RhoA. Comprehensive screening of GPCR ligands identified two MuSC-niche-derived factors, endothelin-3 (ET-3) and neurotensin (NT), which activate G12-G13 signaling in MuSCs. Stimulation with ET-3 or NT prevented MuSC activation, whereas pharmacological inhibition of ET-3 or NT attenuated MuSC quiescence. Inactivation of Gna12-Gna13 or Rhoa but not of Gnaq-Gna11 completely abrogated MuSC quiescence, which depleted the MuSC pool and was associated with accelerated sarcopenia during aging. Expression of constitutively active RhoA prevented exit from quiescence in Gna12-Gna13 mutant MuSCs, inhibiting cell cycle entry and differentiation via Rock and formins without affecting Rac1-dependent MuSC projections, a hallmark of quiescent MuSCs. The study uncovers a critical role of G12-G13 and RhoA signaling for active regulation of MuSC quiescence.
Collapse
Affiliation(s)
- Yundong Peng
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Jingjing Du
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Andre Schneider
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
14
|
Zhang T, An W, You S, Chen S, Zhang S. G protein-coupled receptors and traditional Chinese medicine: new thinks for the development of traditional Chinese medicine. Chin Med 2024; 19:92. [PMID: 38956679 PMCID: PMC11218379 DOI: 10.1186/s13020-024-00964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) widely exist in vivo and participate in many physiological processes, thus emerging as important targets for drug development. Approximately 30% of the Food and Drug Administration (FDA)-approved drugs target GPCRs. To date, the 'one disease, one target, one molecule' strategy no longer meets the demands of drug development. Meanwhile, small-molecule drugs account for 60% of FDA-approved drugs. Traditional Chinese medicine (TCM) has garnered widespread attention for its unique theoretical system and treatment methods. TCM involves multiple components, targets and pathways. Centered on GPCRs and TCM, this paper discusses the similarities and differences between TCM and GPCRs from the perspectives of syndrome of TCM, the consistency of TCM's multi-component and multi-target approaches and the potential of GPCRs and TCM in the development of novel drugs. A novel strategy, 'simultaneous screening of drugs and targets', was proposed and applied to the study of GPCRs. We combine GPCRs with TCM to facilitate the modernisation of TCM, provide valuable insights into the rational application of TCM and facilitate the research and development of novel drugs. This study offers theoretical support for the modernisation of TCM and introduces novel ideas for development of safe and effective drugs.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Wenqiao An
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Shengjie You
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China.
| |
Collapse
|
15
|
Wu Y, Jensen N, Rossner MJ, Wehr MC. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:5474. [PMID: 38791511 PMCID: PMC11121687 DOI: 10.3390/ijms25105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are relevant targets for health and disease as they regulate various aspects of metabolism, proliferation, differentiation, and immune pathways. They are implicated in several disease areas, including cancer, diabetes, cardiovascular diseases, and mental disorders. It is worth noting that about a third of all marketed drugs target GPCRs, making them prime pharmacological targets for drug discovery. Numerous functional assays have been developed to assess GPCR activity and GPCR signaling in living cells. Here, we review the current literature of genetically encoded cell-based assays to measure GPCR activation and downstream signaling at different hierarchical levels of signaling, from the receptor to transcription, via transducers, effectors, and second messengers. Singleplex assay formats provide one data point per experimental condition. Typical examples are bioluminescence resonance energy transfer (BRET) assays and protease cleavage assays (e.g., Tango or split TEV). By contrast, multiplex assay formats allow for the parallel measurement of multiple receptors and pathways and typically use molecular barcodes as transcriptional reporters in barcoded assays. This enables the efficient identification of desired on-target and on-pathway effects as well as detrimental off-target and off-pathway effects. Multiplex assays are anticipated to accelerate drug discovery for GPCRs as they provide a comprehensive and broad identification of compound effects.
Collapse
Affiliation(s)
- Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Niels Jensen
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| |
Collapse
|
16
|
De Neve J, Elhabazi K, Gonzalez S, Herby C, Schneider S, Utard V, Fellmann-Clauss R, Petit-Demouliere N, Lecat S, Kremer M, Ces A, Daubeuf F, Martin C, Ballet S, Bihel F, Simonin F. Multitarget μ-Opioid Receptor Agonists─Neuropeptide FF Receptor Antagonists Induce Potent Antinociception with Reduced Adverse Side Effects. J Med Chem 2024; 67:7603-7619. [PMID: 38687204 DOI: 10.1021/acs.jmedchem.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The design of bifunctional compounds is a promising approach toward the development of strong analgesics with reduced side effects. We here report the optimization of the previously published lead peptide KGFF09, which contains opioid receptor agonist and neuropeptide FF receptor antagonist pharmacophores and is shown to induce potent antinociception and reduced side effects. We evaluated the novel hybrid peptides for their in vitro activity at MOP, NPFFR1, and NPFFR2 and selected four of them (DP08/14/32/50) for assessment of their acute antinociceptive activity in mice. We further selected DP32 and DP50 and observed that their antinociceptive activity is mostly peripherally mediated; they produced no respiratory depression, no hyperalgesia, significantly less tolerance, and strongly attenuated withdrawal syndrome, as compared to morphine and the recently FDA-approved TRV130. Overall, these data suggest that MOP agonist/NPFF receptor antagonist hybrids might represent an interesting strategy to develop novel analgesics with reduced side effects.
Collapse
MESH Headings
- Animals
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Mice
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/metabolism
- Male
- Analgesics/pharmacology
- Analgesics/chemistry
- Analgesics/therapeutic use
- Analgesics/chemical synthesis
- Humans
- Structure-Activity Relationship
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/chemistry
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Simon Gonzalez
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Claire Herby
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Séverine Schneider
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Valérie Utard
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Rosine Fellmann-Clauss
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Nathalie Petit-Demouliere
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Sandra Lecat
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Mélanie Kremer
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), 67000 Strasbourg, France
| | - Aurelia Ces
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), 67000 Strasbourg, France
| | - François Daubeuf
- Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de la Recherche Scientifique, Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
17
|
Shivshankar S, Nimely J, Puhl H, Iyer MR. Pharmacological Evaluation of Cannabinoid Receptor Modulators Using GRAB eCB2.0 Sensor. Int J Mol Sci 2024; 25:5012. [PMID: 38732230 PMCID: PMC11084632 DOI: 10.3390/ijms25095012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.
Collapse
Affiliation(s)
- Samay Shivshankar
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Josephine Nimely
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Henry Puhl
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA;
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
18
|
Adamczuk K, Ngo TH, Czapiński J, Rivero-Müller A. Glycoprotein-glycoprotein Receptor Binding Detection Using Bioluminescence Resonance Energy Transfer. Endocrinology 2024; 165:bqae052. [PMID: 38679471 DOI: 10.1210/endocr/bqae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The glycoprotein receptors, members of the large G protein-coupled receptor family, are characterized by a large extracellular domains responsible for binding their glycoprotein hormones. Hormone-receptor interactions are traditionally analyzed by ligand-binding assays, most often using radiolabeling but also by thermal shift assays. Despite their high sensitivity, these assays require appropriate laboratory conditions and, often, purified plasma cell membranes, which do not provide information on receptor localization or activity because the assays typically focus on measuring binding only. Here, we apply bioluminescence resonance energy transfer in living cells to determine hormone-receptor interactions between a Gaussia luciferase (Gluc)-luteinizing hormone/chorionic gonadotropin receptor (LHCGR) fusion and its ligands (human chorionic gonadotropin or LH) fused to the enhanced green fluorescent protein. The Gluc-LHCGR, as well as other Gluc-G protein-coupled receptors such as the somatostatin and the C-X-C motif chemokine receptors, is expressed on the plasma membrane, where luminescence activity is equal to membrane receptor expression, and is fully functional. The chimeric enhanced green fluorescent protein-ligands are properly secreted from cells and able to bind and activate the wild-type LHCGR as well as the Gluc-LHCGR. Finally, bioluminescence resonance energy transfer was used to determine the interactions between clinically relevant mutations of the hormones and the LHCGR that show that this bioassay provides a fast and effective, safe, and cost-efficient tool to assist the molecular characterization of mutations in either the receptor or ligand and that it is compatible with downstream cellular assays to determine receptor activation/function.
Collapse
Affiliation(s)
- Kamila Adamczuk
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Thu Ha Ngo
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
19
|
Oliveira PF, Guedes RC, Falcao AO. Inferring molecular inhibition potency with AlphaFold predicted structures. Sci Rep 2024; 14:8252. [PMID: 38589418 PMCID: PMC11001998 DOI: 10.1038/s41598-024-58394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Even though in silico drug ligand-based methods have been successful in predicting interactions with known target proteins, they struggle with new, unassessed targets. To address this challenge, we propose an approach that integrates structural data from AlphaFold 2 predicted protein structures into machine learning models. Our method extracts 3D structural protein fingerprints and combines them with ligand structural data to train a single machine learning model. This model captures the relationship between ligand properties and the unique structural features of various target proteins, enabling predictions for never before tested molecules and protein targets. To assess our model, we used a dataset of 144 Human G-protein Coupled Receptors (GPCRs) with over 140,000 measured inhibition constants (Ki) values. Results strongly suggest that our approach performs as well as state-of-the-art ligand-based methods. In a second modeling approach that used 129 targets for training and a separate test set of 15 different protein targets, our model correctly predicted interactions for 73% of targets, with explained variances exceeding 0.50 in 22% of cases. Our findings further verified that the usage of experimentally determined protein structures produced models that were statistically indistinct from the Alphafold synthetic structures. This study presents a proteo-chemometric drug screening approach that uses a simple and scalable method for extracting protein structural information for usage in machine learning models capable of predicting protein-molecule interactions even for orphan targets.
Collapse
Affiliation(s)
- Pedro F Oliveira
- Lasige, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Andre O Falcao
- Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| |
Collapse
|
20
|
Otanuly M, Kubitschke M, Masseck OA. A Bright Future? A Perspective on Class C GPCR Based Genetically Encoded Biosensors. ACS Chem Neurosci 2024; 15:889-897. [PMID: 38380648 PMCID: PMC10921406 DOI: 10.1021/acschemneuro.3c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
One of the major challenges in molecular neuroscience today is to accurately monitor neurotransmitters, neuromodulators, peptides, and various other biomolecules in the brain with high temporal and spatial resolution. Only a comprehensive understanding of neuromodulator dynamics, their release probability, and spatial distribution will unravel their ultimate role in cognition and behavior. This Perspective offers an overview of potential design strategies for class C GPCR-based biosensors. It briefly highlights current applications of GPCR-based biosensors, with a primary focus on class C GPCRs and their unique structural characteristics compared with other GPCR subfamilies. The discussion offers insights into plausible future design approaches for biosensor development targeting members of this specific GPCR subfamily. It is important to note that, at this stage, we are contemplating possibilities rather than presenting a concrete guide, as the pipeline is still under development.
Collapse
Affiliation(s)
- Margulan Otanuly
- Synthetische Biologie, Universität Bremen, Bremen 28359, Germany
| | | | | |
Collapse
|
21
|
Xu C, Zhou Y, Liu Y, Lin L, Liu P, Wang X, Xu Z, Pin JP, Rondard P, Liu J. Specific pharmacological and G i/o protein responses of some native GPCRs in neurons. Nat Commun 2024; 15:1990. [PMID: 38443355 PMCID: PMC10914727 DOI: 10.1038/s41467-024-46177-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins and are important drug targets. The discovery of drugs targeting these receptors and their G protein signaling properties are based on assays mainly performed with modified receptors expressed in heterologous cells. However, GPCR responses may differ in their native environment. Here, by using highly sensitive Gi/o sensors, we reveal specific properties of Gi/o protein-mediated responses triggered by GABAB, α2 adrenergic and cannabinoid CB1 receptors in primary neurons, different from those in heterologous cells. These include different profiles in the Gi/o protein subtypes-mediated responses, and differences in the potencies of some ligands even at similar receptor expression levels. Altogether, our results show the importance of using biosensors compatible with primary cells for evaluating the activities of endogenous GPCRs in their native environment.
Collapse
Affiliation(s)
- Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China
| | - Yiwei Zhou
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Yuxuan Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Lin
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomei Wang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengyuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China.
| |
Collapse
|
22
|
Kim S, Mollaei P, Antony A, Magar R, Barati Farimani A. GPCR-BERT: Interpreting Sequential Design of G Protein-Coupled Receptors Using Protein Language Models. J Chem Inf Model 2024; 64:1134-1144. [PMID: 38340054 PMCID: PMC10900288 DOI: 10.1021/acs.jcim.3c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
With the rise of transformers and large language models (LLMs) in chemistry and biology, new avenues for the design and understanding of therapeutics have been opened up to the scientific community. Protein sequences can be modeled as language and can take advantage of recent advances in LLMs, specifically with the abundance of our access to the protein sequence data sets. In this letter, we developed the GPCR-BERT model for understanding the sequential design of G protein-coupled receptors (GPCRs). GPCRs are the target of over one-third of Food and Drug Administration-approved pharmaceuticals. However, there is a lack of comprehensive understanding regarding the relationship among amino acid sequence, ligand selectivity, and conformational motifs (such as NPxxY, CWxP, and E/DRY). By utilizing the pretrained protein model (Prot-Bert) and fine-tuning with prediction tasks of variations in the motifs, we were able to shed light on several relationships between residues in the binding pocket and some of the conserved motifs. To achieve this, we took advantage of attention weights and hidden states of the model that are interpreted to extract the extent of contributions of amino acids in dictating the type of masked ones. The fine-tuned models demonstrated high accuracy in predicting hidden residues within the motifs. In addition, the analysis of embedding was performed over 3D structures to elucidate the higher-order interactions within the conformations of the receptors.
Collapse
Affiliation(s)
- Seongwon Kim
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Parisa Mollaei
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Akshay Antony
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Rishikesh Magar
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Amir Barati Farimani
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Machine
Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Velloso JPL, Kovacs AS, Pires DEV, Ascher DB. AI-driven GPCR analysis, engineering, and targeting. Curr Opin Pharmacol 2024; 74:102427. [PMID: 38219398 DOI: 10.1016/j.coph.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
This article investigates the role of recent advances in Artificial Intelligence (AI) to revolutionise the study of G protein-coupled receptors (GPCRs). AI has been applied to many areas of GPCR research, including the application of machine learning (ML) in GPCR classification, prediction of GPCR activation levels, modelling GPCR 3D structures and interactions, understanding G-protein selectivity, aiding elucidation of GPCRs structures, and drug design. Despite progress, challenges in predicting GPCR structures and addressing the complex nature of GPCRs remain, providing avenues for future research and development.
Collapse
Affiliation(s)
- João P L Velloso
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Aaron S Kovacs
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Douglas E V Pires
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia.
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
24
|
Anastasiadou DP, Quesnel A, Duran CL, Filippou PS, Karagiannis GS. An emerging paradigm of CXCL12 involvement in the metastatic cascade. Cytokine Growth Factor Rev 2024; 75:12-30. [PMID: 37949685 DOI: 10.1016/j.cytogfr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF1), has emerged as a pivotal regulator in the intricate molecular networks driving cancer progression. As an influential factor in the tumor microenvironment, CXCL12 plays a multifaceted role that spans beyond its traditional role as a chemokine inducing invasion and metastasis. Indeed, CXCL12 has been assigned functions related to epithelial-to-mesenchymal transition, cancer cell stemness, angiogenesis, and immunosuppression, all of which are currently viewed as specialized biological programs contributing to the "metastatic cascade" among other cancer hallmarks. Its interaction with its cognate receptor, CXCR4, initiates a cascade of events that not only shapes the metastatic potential of tumor cells but also defines the niches within the secondary organs that support metastatic colonization. Given the profound implications of CXCL12 in the metastatic cascade, understanding its mechanistic underpinnings is of paramount importance for the targeted elimination of rate-limiting steps in the metastatic process. This review aims to provide a comprehensive overview of the current knowledge surrounding the role of CXCL12 in cancer metastasis, especially its molecular interactions rationalizing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dimitra P Anastasiadou
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - Camille L Duran
- Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment & Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
25
|
Li H, Sun X, Cui W, Xu M, Dong J, Ekundayo BE, Ni D, Rao Z, Guo L, Stahlberg H, Yuan S, Vogel H. Computational drug development for membrane protein targets. Nat Biotechnol 2024; 42:229-242. [PMID: 38361054 DOI: 10.1038/s41587-023-01987-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024]
Abstract
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.
Collapse
Affiliation(s)
- Haijian Li
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Xiaolin Sun
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Wenqiang Cui
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Marc Xu
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junlin Dong
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Babatunde Edukpe Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zhili Rao
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Liwei Guo
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Shuguang Yuan
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
| | - Horst Vogel
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
26
|
Arman S, Tilley RD, Gooding JJ. A review of electrochemical impedance as a tool for examining cell biology and subcellular mechanisms: merits, limits, and future prospects. Analyst 2024; 149:269-289. [PMID: 38015145 DOI: 10.1039/d3an01423a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein the development of cellular impedance biosensors, electrochemical impedance spectroscopy, and the general principles and terms associated with the cell-electrode interface is reviewed. This family of techniques provides quantitative and sensitive information into cell responses to stimuli in real-time with high temporal resolution. The applications of cell-based impedance biosensors as a readout in cell biology is illustrated with a diverse range of examples. The current state of the field, its limitations, the possible available solutions, and the potential benefits of developing biosensors are discussed.
Collapse
Affiliation(s)
- Seyedyousef Arman
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
27
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
28
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
29
|
Masuho I, Kise R, Gainza P, Von Moo E, Li X, Tany R, Wakasugi-Masuho H, Correia BE, Martemyanov KA. Rules and mechanisms governing G protein coupling selectivity of GPCRs. Cell Rep 2023; 42:113173. [PMID: 37742189 PMCID: PMC10842385 DOI: 10.1016/j.celrep.2023.113173] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to heterotrimeric G proteins of four classes: Gi/o, Gq, Gs, and G12/13. However, our understanding of the G protein selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living cells and reveal the G protein selectivity of 124 GPCRs with the exact rank order of their G protein preference. Using this information, we establish a classification of GPCRs by functional selectivity, discover the existence of a G12/13-coupled receptor, G15-coupled receptors, and a variety of subclasses for Gi/o-, Gq-, and Gs-coupled receptors, culminating in development of the predictive algorithm of G protein selectivity. We further identify the structural determinants of G protein selectivity, allowing us to synthesize non-existent GPCRs with de novo G protein selectivity and efficiently identify putative pathogenic variants.
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Ryoji Kise
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Pablo Gainza
- Laboratory of Protein Design and Immunoengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ee Von Moo
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Xiaona Li
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ryosuke Tany
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hideko Wakasugi-Masuho
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kirill A Martemyanov
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA.
| |
Collapse
|
30
|
Zheng C, Javitch JA, Lambert NA, Donthamsetti P, Gurevich VV. In-Cell Arrestin-Receptor Interaction Assays. Curr Protoc 2023; 3:e890. [PMID: 37787634 PMCID: PMC10566372 DOI: 10.1002/cpz1.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
G protein-coupled receptors (GPCRs) represent ∼30% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which function in different signaling pathways. Given that functionally selective or biased ligands preferentially activate one of these two groups of pathways, they may be superior medications for certain disease states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for assays that monitor reversible arrestin recruitment to GPCRs in living cells using either bioluminescence resonance energy transfer (BRET) or nanoluciferase complementation (NanoLuc). Two types of assays can be used: one configuration directly measures arrestin recruitment to a GPCR fused to a protein tag at its intracellular C-terminus, whereas the other configuration detects arrestin translocation to the plasma membrane in response to activation of an unmodified GPCR. Together, these assays are powerful tools for studying dynamic interactions between GPCRs and arrestins. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Receptor-arrestin BRET assay to measure ligand-induced recruitment of arrestin to receptors Basic Protocol 2: Receptor-arrestin NANOBIT assay to measure ligand-induced recruitment of arrestin to receptors Alternative Protocol 1: BRET assay to measure ligand-induced recruitment of arrestin to the plasma membrane Alternative Protocol 2: NANOBIT assay to measure ligand-induced recruitment of arrestin to the plasma membrane Support Protocol 1: Optimization of polyethylenimine (PEI) concentration for transfection.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | | | | |
Collapse
|
31
|
Pottie E, Suresh RR, Jacobson KA, Stove CP. Assay-Dependent Inverse Agonism at the A 3 Adenosine Receptor: When Neutral Is Not Neutral. ACS Pharmacol Transl Sci 2023; 6:1266-1274. [PMID: 37705594 PMCID: PMC10496142 DOI: 10.1021/acsptsci.3c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/15/2023]
Abstract
The A3 adenosine receptor (A3AR) is implicated in a variety of (patho)physiological conditions. While most research has focused on agonists and antagonists, inverse agonism at A3AR has been scarcely studied. Therefore, this study aimed at exploring inverse agonism, using two previously engineered cell lines (hA3ARLgBiT-SmBiTβarr2 and hA3ARLgBiT-SmBiTminiGαi), both employing the NanoBiT technology. The previously established inverse agonist PSB-10 showed a decrease in basal signal in the β-arrestin 2 (βarr2) but not the miniGαi recruitment assay, indicative of inverse agonism in the former assay. Control experiments confirmed the specificity and reversibility of this observation. Evaluation of a set of presumed neutral antagonists (MRS7907, MRS7799, XAC, and MRS1220) revealed that all displayed concentration-dependent signal decreases when tested in the A3AR-βarr2 recruitment assay, yielding EC50 and Emax values for inverse agonism. Conversely, in the miniGαi recruitment assay, no signal decreases were observed. To assess whether this observation was caused by the inability of the ligands to induce inverse agonism in the G protein pathway, or rather by a limitation inherent to the employed A3AR-miniGαi recruitment assay, a GloSensor cAMP assay was performed. The outcome of the latter also suggests inverse agonism by the presumed neutral antagonists in this latter assay. These findings emphasize the importance of prior characterization of ligands in the relevant test system. Moreover, it showed the suitability of the NanoBiT βarr2 recruitment and the GloSensor cAMP assays to capture inverse agonism at the A3AR, as opposed to the NanoBiT miniGαi recruitment assay.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - R. Rama Suresh
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes & Digestive & Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20802, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes & Digestive & Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20802, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| |
Collapse
|
32
|
Zhao M, Zheng Z, Yin Z, Zhang J, Qin J, Wan J, Wang M. Resolvin D2 and its receptor GPR18 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Pharmacol Res 2023; 195:106832. [PMID: 37364787 DOI: 10.1016/j.phrs.2023.106832] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Juanjuan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430060, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
33
|
Kim DY, Sung JH. The effects of GPR40 agonists on hair growth are mediated by ANGPTL4. Biomed Pharmacother 2023; 161:114509. [PMID: 37002580 DOI: 10.1016/j.biopha.2023.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
GPR40 is found primarily in pancreatic β cells, and is well known to regulate insulin secretion. Despite numerous studies on GPR40, the role and functions of GPR40 related to hair growth are not yet known. The current study investigated hair growth promoting effect of the GPR40 agonists and its mechanism of action using various bio-informatics tools, in vitro and animal experiments. GPR40 may affect the hair cycle, according to clustering and Gene Set Enrichment Analysis (GSEA). Hair growth effect of GPR40 was validated by telogen-to-anagen transition and vibrissae organ culture in the mouse. GPR40 was predominantly expressed in the outer root sheath (ORS) in anagen stage, suggesting that ORS cell is the target of GPR40 agonists. To investigate the mechanism of action for GPR40 agonists' hair growth effect, Gene Ontology (GO) enrichment analysis was performed and it revealed that GPR40 agonists were associated with angiogenesis. ANGPTL4, known for promoting angiogenesis, was highly up-regulated after GPR40 agonists treatment in the hORS cells, and also increased the proliferation and migration. Furthermore, GPR40 agonists promoted hair growth by inducing angiogenesis via ANGPTL4 in the animal experiment. GPR40 agonists activated MAPK and peroxisome proliferator-activated receptors (PPARγ) pathway in hORS cells, while the inhibition of MAPK pathway attenuated ANGPTL4 expression. Finally, GPR40 agonists increased hair growth via autocrine effects in the ORS cells, and induced angiogenesis through paracrine effects by upregulating ANGPTL4 via p38 and PPARγ pathways. As a result, GPR40 agonists have potential as a therapeutic drug for hair loss treatment.
Collapse
Affiliation(s)
- Doo Yeong Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; Epi Biotech Co., Ltd. Incheon, South Korea.
| |
Collapse
|
34
|
Tucci P, Brown I, Bewick GS, Pertwee RG, Marini P. The Plant Derived 3-3'-Diindolylmethane (DIM) Behaves as CB 2 Receptor Agonist in Prostate Cancer Cellular Models. Int J Mol Sci 2023; 24:ijms24043620. [PMID: 36835033 PMCID: PMC9962283 DOI: 10.3390/ijms24043620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
3-3'-Diindolylmethane (DIM) is a biologically active dimer derived from the endogenous conversion of indole-3-carbinol (I3C), a naturally occurring glucosinolate found in many cruciferous vegetables (i.e., Brassicaceae). DIM was the first pure androgen receptor antagonist isolated from the Brassicaceae family and has been recently investigated for its potential pharmacological use in prostate cancer prevention and treatment. Interestingly, there is evidence that DIM can also interact with cannabinoid receptors. In this context, by considering the well-known involvement of the endocannabinoid system in prostate cancer, we have pharmacologically characterized the properties of DIM on both CB1 and CB2 cannabinoid receptors in two human prostate cancer cell lines: PC3 (androgen-independent/androgen receptor negative) and LNCaP (androgen-dependent). In the PC3 cell line, DIM was able to activate CB2 receptors and potentially associated apoptotic pathways. On the other hand, although DIM was also able to activate CB2 receptors in the LNCaP cell line, no apoptotic effects were observed. Our evidence confirms that DIM is a CB2 receptor ligand and, moreover, it has a potential anti-proliferative effect on androgen-independent/androgen receptor-negative prostate cancer cells.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| | - Iain Brown
- Division of Applied Medicine, School of Medicine and Dentistry, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Guy S. Bewick
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Roger G. Pertwee
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
35
|
Morales A, Mohan R, Chen X, Coffman BL, Bendahmane M, Watch L, West JL, Bakshi S, Traynor JR, Giovannucci DR, Kammermeier PJ, Axelrod D, Currie KP, Smrcka AV, Anantharam A. PACAP and acetylcholine cause distinct Ca2+ signals and secretory responses in chromaffin cells. J Gen Physiol 2023; 155:e202213180. [PMID: 36538657 PMCID: PMC9770323 DOI: 10.1085/jgp.202213180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The adrenomedullary chromaffin cell transduces chemical messages into outputs that regulate end organ function throughout the periphery. At least two important neurotransmitters are released by innervating preganglionic neurons to stimulate exocytosis in the chromaffin cell-acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). Although PACAP is widely acknowledged as an important secretagogue in this system, the pathway coupling PACAP stimulation to chromaffin cell secretion is poorly understood. The goal of this study is to address this knowledge gap. Here, it is shown that PACAP activates a Gαs-coupled pathway that must signal through phospholipase C ε (PLCε) to drive Ca2+ entry and exocytosis. PACAP stimulation causes a complex pattern of Ca2+ signals in chromaffin cells, leading to a sustained secretory response that is kinetically distinct from the form stimulated by ACh. Exocytosis caused by PACAP is associated with slower release of peptide cargo than exocytosis stimulated by ACh. Importantly, only the secretory response to PACAP, not ACh, is eliminated in cells lacking PLCε expression. The data show that ACh and PACAP, acting through distinct signaling pathways, enable nuanced and variable secretory outputs from chromaffin cells.
Collapse
Affiliation(s)
- Alina Morales
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ramkumar Mohan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | | | - Lester Watch
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua L. West
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Shreeya Bakshi
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - John R. Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Paul J. Kammermeier
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Daniel Axelrod
- Department of Physics and LSA Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Kevin P.M. Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
36
|
Comparative Study on the Sensing Kinetics of Carbon and Nitrogen Nutrients in Cancer Tissues and Normal Tissues Based Electrochemical Biosensors. Molecules 2023; 28:molecules28031453. [PMID: 36771115 PMCID: PMC9920597 DOI: 10.3390/molecules28031453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, an electrochemical sensor was developed by immobilizing colon cancer and the adjacent tissues (peripheral healthy tissues on both sides of the tumor) and was used to investigate the receptor sensing kinetics of glucose, sodium glutamate, disodium inosinate, and sodium lactate. The results showed that the electrical signal triggered by the ligand-receptor interaction presented hyperbolic kinetic characteristics similar to the interaction of an enzyme with its substrate. The results indicated that the activation constant values of the colon cancer tissue and adjacent tissues differed by two orders of magnitude for glucose and sodium glutamate and around one order of magnitude for disodium inosinate. The cancer tissues did not sense sodium lactate, whereas the adjacent tissues could sense sodium lactate. Compared with normal cells, cancer cells have significantly improved nutritional sensing ability, and the improvement of cancer cells' sensing ability mainly depends on the cascade amplification of intracellular signals. However, unlike tumor-adjacent tissues, colon cancer cells lose the ability to sense lactate. This provides key evidence for the Warburg effect of cancer cells. The methods and results in this study are expected to provide a new way for cancer research, treatment, the screening of anticancer drugs, and clinical diagnoses.
Collapse
|
37
|
He S, Lim GE. The Application of High-Throughput Approaches in Identifying Novel Therapeutic Targets and Agents to Treat Diabetes. Adv Biol (Weinh) 2023; 7:e2200151. [PMID: 36398493 DOI: 10.1002/adbi.202200151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Indexed: 11/19/2022]
Abstract
During the past decades, unprecedented progress in technologies has revolutionized traditional research methodologies. Among these, advances in high-throughput drug screening approaches have permitted the rapid identification of potential therapeutic agents from drug libraries that contain thousands or millions of molecules. Moreover, high-throughput-based therapeutic target discovery strategies can comprehensively interrogate relationships between biomolecules (e.g., gene, RNA, and protein) and diseases and significantly increase the authors' knowledge of disease mechanisms. Diabetes is a chronic disease primarily characterized by the incapacity of the body to maintain normoglycemia. The prevalence of diabetes in modern society has become a severe public health issue that threatens the well-being of millions of patients. Although a number of pharmacological treatments are available, there is no permanent cure for diabetes, and discovering novel therapeutic targets and agents continues to be an urgent need. The present review discusses the technical details of high-throughput screening approaches in drug discovery, followed by introducing the applications of such approaches to diabetes research. This review aims to provide an example of the applicability of high-throughput technologies in facilitating different aspects of disease research.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| |
Collapse
|
38
|
Greenwald E, Posner C, Bharath A, Lyons A, Salmerón C, Sriram K, Wiley SZ, Insel PA, Zhang J. GPCR Signaling Measurement and Drug Profiling with an Automated Live-Cell Microscopy System. ACS Sens 2023; 8:19-27. [PMID: 36602887 PMCID: PMC9994309 DOI: 10.1021/acssensors.2c01341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A major limitation of time-lapse microscopy combined with fluorescent biosensors, a powerful tool for quantifying spatiotemporal dynamics of signaling in single living cells, is low-experimental throughput. To overcome this limitation, we created a highly customizable, MATLAB-based platform: flexible automated liquid-handling combined microscope (FALCOscope) that coordinates an OpenTrons liquid handler and a fluorescence microscope to automate drug treatments, fluorescence imaging, and single-cell analysis. To test the feasibility of the FALCOscope, we quantified G protein-coupled receptor (GPCR)-stimulated Protein Kinase A activity and cAMP responses to GPCR agonists and antagonists. We also characterized cAMP dynamics induced by GPR68/OGR1, a proton-sensing GPCR, in response to variable extracellular pH values. GPR68-induced cAMP responses were more transient in acidic than neutral pH values, suggesting a pH-dependence for signal attenuation. Ogerin, a GPR68 positive allosteric modulator, enhanced cAMP response most strongly at pH 7.0 and sustained cAMP response for acidic pH values, thereby demonstrating the capability of the FALCOscope to capture allosteric modulation. At a high concentration, ogerin increased cAMP signaling independent of GPR68, likely via phosphodiesterase inhibition. The FALCOscope system thus enables enhanced throughput single-cell dynamic measurements and is a versatile system for interrogating spatiotemporal regulation of signaling molecules in living cells and for drug profiling and screening.
Collapse
Affiliation(s)
- Eric Greenwald
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Clara Posner
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ananya Bharath
- Department of Chemical Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Anne Lyons
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Cristina Salmerón
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Shu Z Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States.,Department of Medicine, University of California, San Diego, La Jolla, California 92093 United States
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
39
|
Miyasato S, Iwata K, Mura R, Nakamura S, Yanagida K, Shindou H, Nagata Y, Kawahara M, Yamaguchi S, Aoki J, Inoue A, Nagamune T, Shimizu T, Nakamura M. Constitutively active GPR43 is crucial for proper leukocyte differentiation. FASEB J 2023; 37:e22676. [PMID: 36468834 DOI: 10.1096/fj.202201591r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
The G protein-coupled receptors, GPR43 (free fatty acid receptor 2, FFA2) and GPR41 (free fatty acid receptor 3, FFA3), are activated by short-chain fatty acids produced under various conditions, including microbial fermentation of carbohydrates. Previous studies have implicated this receptor energy homeostasis and immune responses as well as in cell growth arrest and apoptosis. Here, we observed the expression of both receptors in human blood cells and a remarkable enhancement in leukemia cell lines (HL-60, U937, and THP-1 cells) during differentiation. A reporter assay revealed that GPR43 is coupled with Gαi and Gα12/13 and is constitutively active without any stimuli. Specific blockers of GPR43, GLPG0974 and CATPB function as inverse agonists because treatment with these compounds significantly reduces constitutive activity. In HL-60 cells, enhanced expression of GPR43 led to growth arrest through Gα12/13 . In addition, the blockage of GPR43 activity in these cells significantly impaired their adherent properties due to the reduction of adhesion molecules. We further revealed that enhanced GPR43 activity induces F-actin formation. However, the activity of GPR43 did not contribute to butyrate-induced apoptosis in differentiated HL-60 cells because of the ineffectiveness of the inverse agonist on cell death. Collectively, these results suggest that GPR43, which possesses constitutive activity, is crucial for growth arrest, followed by the proper differentiation of leukocytes.
Collapse
Affiliation(s)
- Sosuke Miyasato
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Kurumi Iwata
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Reika Mura
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Shou Nakamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Nagata
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Laboratory of Cell Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Satoshi Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Inoue
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Institute of Microbial Chemistry, Tokyo, Japan
| | - Motonao Nakamura
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
40
|
Wu Y, von Hauff IV, Jensen N, Rossner MJ, Wehr MC. Improved Split TEV GPCR β-arrestin-2 Recruitment Assays via Systematic Analysis of Signal Peptide and β-arrestin Binding Motif Variants. BIOSENSORS 2022; 13:48. [PMID: 36671883 PMCID: PMC9855867 DOI: 10.3390/bios13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
G protein-coupled receptors (GPCRs) are major disease-relevant drug targets; robust monitoring of their activities upon drug treatment is key to drug discovery. The split TEV cell-based assay technique monitors the interaction of an activated GPCR with β-arrestin-2 through TEV protein fragment complementation using a luminescent signal as the readout. In this work, split TEV GPCR β-arrestin-2 recruitment assays were optimized to monitor the endogenous ligand-induced activities of six GPCRs (DRD1, DRD2, HTR2A, GCGR, AVPR2, and GLP1R). Each GPCR was tested in four forms; i.e., its wildtype form, a variant with a signal peptide (SP) to facilitate receptor expression, a variant containing the C-terminal tail from the V2 vasopressin receptor (V2R tail) to promote β-arrestin-2 recruitment, and a variant containing both the SP and V2R tail. These 24 GPCR variants were systematically tested for assay performance in four cell lines (HEK-293, PC12 Tet-Off, U-2 OS, and HeLa). We found that the assay performance differed significantly for each GPCR variant and was dependent on the cell line. We found that V2R improved the DRD2 split TEV assays and that HEK-293 cells were the preferred cell line across the GPCRs tested. When taking these considerations into account, the defined selection of assay modifications and conditions may improve the performance of drug development campaigns that apply the split TEV technique as a screening tool.
Collapse
Affiliation(s)
- Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Isabelle V. von Hauff
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Niels Jensen
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81699 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81699 Munich, Germany
| |
Collapse
|
41
|
Grätz L, Müller C, Pegoli A, Schindler L, Bernhardt G, Littmann T. Insertion of Nanoluc into the Extracellular Loops as a Complementary Method To Establish BRET-Based Binding Assays for GPCRs. ACS Pharmacol Transl Sci 2022; 5:1142-1155. [PMID: 36407949 PMCID: PMC9667534 DOI: 10.1021/acsptsci.2c00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/13/2022]
Abstract
Luminescence-based techniques play an increasingly important role in all areas of biochemical research, including investigations on G protein-coupled receptors (GPCRs). One quite recent and popular addition has been made by introducing bioluminescence resonance energy transfer (BRET)-based binding assays for GPCRs, which are based on the fusion of nanoluciferase (Nluc) to the N-terminus of the receptor and the occurring energy transfer via BRET to a bound fluorescent ligand. However, being based on BRET, the technique is strongly dependent on the distance/orientation between the luciferase and the fluorescent ligand. Here we describe an alternative strategy to establish BRET-based binding assays for GPCRs, where the N-terminal fusion of Nluc did not result in functioning test systems with our fluorescent ligands (e.g., for the neuropeptide Y Y1 receptor (Y1R) and the neurotensin receptor type 1 (NTS1R)). Instead, we introduced Nluc into their second extracellular loop and we obtained binding data for the fluorescent ligands and reported standard ligands (in saturation and competition binding experiments, respectively) comparable to data from the literature. The strategy was transferred to the angiotensin II receptor type 1 (AT1R) and the M1 muscarinic acetylcholine receptor (M1R), which led to affinity estimates comparable to data from radioligand binding experiments. Additionally, an analysis of the binding kinetics of all fluorescent ligands at their respective target was performed using the newly described receptor/Nluc-constructs.
Collapse
Affiliation(s)
| | - Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | - Lisa Schindler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | |
Collapse
|
42
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
43
|
Paul SM, Yohn SE, Popiolek M, Miller AC, Felder CC. Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. Am J Psychiatry 2022; 179:611-627. [PMID: 35758639 DOI: 10.1176/appi.ajp.21101083] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenia remains a challenging disease to treat effectively with current antipsychotic medications due to their limited efficacy across the entire spectrum of core symptoms as well as their often burdensome side-effect profiles and poor tolerability. An unmet need remains for novel, mechanistically unique, and better tolerated therapeutic agents for treating schizophrenia, especially those that treat not only positive symptoms but also the negative and cognitive symptoms of the disease. Almost 25 years ago, the muscarinic acetylcholine receptor (mAChR) agonist xanomeline was reported to reduce psychotic symptoms and improve cognition in patients with Alzheimer's disease. The antipsychotic and procognitive properties of xanomeline were subsequently confirmed in a small study of acutely psychotic patients with chronic schizophrenia. These unexpected clinical findings have prompted considerable efforts across academia and industry to target mAChRs as a new approach to potentially treat schizophrenia and other psychotic disorders. The authors discuss recent advances in mAChR biology and pharmacology and the current understanding of the relative roles of the various mAChR subtypes, their downstream cellular effectors, and key neural circuits mediating the reduction in the core symptoms of schizophrenia in patients treated with xanomeline. They also provide an update on the status of novel mAChR agonists currently in development for potential treatment of schizophrenia and other neuropsychiatric disorders.
Collapse
|
44
|
Cumberbatch D, Mori T, Yang J, Mi D, Vinson P, Weaver CD, Johnson CH. A BRET Ca 2+ sensor enables high-throughput screening in the presence of background fluorescence. Sci Signal 2022; 15:eabq7618. [PMID: 35973028 PMCID: PMC9930640 DOI: 10.1126/scisignal.abq7618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The intrinsic fluorescence of samples confounds the use of fluorescence-based sensors. This is of particular concern in high-throughput screening (HTS) applications using large chemical libraries containing intrinsically fluorescent compounds. To overcome this problem, we developed a bioluminescence resonance energy transfer (BRET) Ca2+ sensor, CalfluxCTN. We demonstrated that it reliably reported changes in intracellular Ca2+ concentrations evoked by an agonist and an antagonist of the human muscarinic acetylcholine receptor M1 (hM1R) even in the presence of the fluorescent compound fluorescein, which interfered with a standard fluorescent HTS sensor (Fluo-8). In an HTS using a chemical library containing fluorescent compounds, CalfluxCTN accurately identified agonists and antagonists that were missed or miscategorized using Fluo-8. Moreover, we showed that a luciferase substrate that becomes activated only when inside cells generated long-lasting BRET signals in HTS, enabling results to be reliably compared among replicate samples for hours. Thus, the use of a self-luminescent sensor instead of a fluorescent sensor could facilitate the complete screening of chemical libraries in a high-throughput context and enable analysis of autofluorescent samples in many different applications.
Collapse
Affiliation(s)
- Derrick Cumberbatch
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jie Yang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Dehui Mi
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | | | - C. David Weaver
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
45
|
Guo S, Zhao T, Yun Y, Xie X. Recent Progress in Assays for GPCR Drug Discovery. Am J Physiol Cell Physiol 2022; 323:C583-C594. [PMID: 35816640 DOI: 10.1152/ajpcell.00464.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-protein coupled receptors (GPCRs), also known as 7 transmembrane receptors, are the largest family of cell surface receptors in eukaryotes. There are ~800 GPCRs in human, regulating diverse physiological processes. GPCRs are the most intensively studied drug targets. Drugs that target GPCRs account for about a quarter of the global market share of therapeutic drugs. Therefore, to develop physiologically relevant and robust assays to search new GPCR ligands or modulators remain the major focus of drug discovery research worldwide. Early functional GPCR assays are mainly depend on the measurement of G protein-mediated second messenger generation. Recent development in GPCR biology indicate the signaling of these receptors is much more complex than the oversimplified classical view. GPCRs have been found to activate multiple G proteins simultaneously and induce b-arrestin-mediated signaling. GPCRs have also been found to interacte with other cytosolic scaffolding proteins and form dimer or heteromer with GPCRs or other transmembrane proteins. Here we mainly discuss technologies focused on detecting protein-protein interactions, such as FRET/BRET, NanoBiT, Tango, etc, and their applications in measuring GPCRs interacting with various signaling partners. In the final part, we also discuss the species differences in GPCRs when using animal models to study the in vivofunctions of GPCR ligands, and possible ways to solve this problem with modern genetic tools.
Collapse
Affiliation(s)
- Shimeng Guo
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Tingting Zhao
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Ying Yun
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| | - Xin Xie
- grid.419093.6Shanghai Institute of Materia Medica, Shanghai, China
| |
Collapse
|
46
|
Quantum chemical evaluation, QSAR analysis, molecular docking and dynamics investigation of s-triazine derivatives as potential anticancer agents. Struct Chem 2022. [DOI: 10.1007/s11224-022-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Wang W, He J, Yang J, Zhang C, Cheng Z, Zhang Y, Zhang Q, Wang P, Tang S, Wang X, Liu M, Lu W, Zhang HK. Scaffold Hopping Strategy to Identify Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem 2022; 65:7896-7917. [PMID: 35640059 DOI: 10.1021/acs.jmedchem.2c00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells can effectively suppress the natural immune response in humans, and prostaglandin E2 (PGE2) is a key mediator in the development of tumor cell resistance to immunotherapy. As a major contributor to PGE2-elicited immunosuppressive activity, the EP4 receptor promotes tumor development and progression in the tumor microenvironment, and the development of selective and potent EP4 receptor antagonists should have promising potential for tumor immunotherapy. Aiming at improving the drug-like properties, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives were designed and synthesized through a scaffold hopping strategy. The most promising compound 47 exhibited good EP4 antagonistic activity and excellent subtype selectivity, as well as favorable drug-like properties. It effectively suppressed the expression of multiple immunosuppression-related genes in macrophages. Meanwhile, oral administration of compound 47, alone or in combination with anti-PD-1 antibody, significantly enhanced the antitumor immune response and inhibited tumor growth in the mouse CT26 colon carcinoma model.
Collapse
Affiliation(s)
- Wei Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiacheng He
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Junjie Yang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chan Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhiyuan Cheng
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yao Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiansen Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Peili Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shuowen Tang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xin Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Han-Kun Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
48
|
Carbone AM, Borges JI, Suster MS, Sizova A, Cora N, Desimine VL, Lymperopoulos A. Regulator of G-Protein Signaling-4 Attenuates Cardiac Adverse Remodeling and Neuronal Norepinephrine Release-Promoting Free Fatty Acid Receptor FFAR3 Signaling. Int J Mol Sci 2022; 23:5803. [PMID: 35628613 PMCID: PMC9147283 DOI: 10.3390/ijms23105803] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Propionic acid is a cell nutrient but also a stimulus for cellular signaling. Free fatty acid receptor (FFAR)-3, also known as GPR41, is a Gi/o protein-coupled receptor (GPCR) that mediates some of the propionate's actions in cells, such as inflammation, fibrosis, and increased firing/norepinephrine release from peripheral sympathetic neurons. The regulator of G-protein Signaling (RGS)-4 inactivates (terminates) both Gi/o- and Gq-protein signaling and, in the heart, protects against atrial fibrillation via calcium signaling attenuation. RGS4 activity is stimulated by β-adrenergic receptors (ARs) via protein kinase A (PKA)-dependent phosphorylation. Herein, we examined whether RGS4 modulates cardiac FFAR3 signaling/function. We report that RGS4 is essential for dampening of FFAR3 signaling in H9c2 cardiomyocytes, since siRNA-mediated RGS4 depletion significantly enhanced propionate-dependent cAMP lowering, Gi/o activation, p38 MAPK activation, pro-inflammatory interleukin (IL)-1β and IL-6 production, and pro-fibrotic transforming growth factor (TGF)-β synthesis. Additionally, catecholamine pretreatment blocked propionic acid/FFAR3 signaling via PKA-dependent activation of RGS4 in H9c2 cardiomyocytes. Finally, RGS4 opposes FFAR3-dependent norepinephrine release from sympathetic-like neurons (differentiated Neuro-2a cells) co-cultured with H9c2 cardiomyocytes, thereby preserving the functional βAR number of the cardiomyocytes. In conclusion, RGS4 appears essential for propionate/FFAR3 signaling attenuation in both cardiomyocytes and sympathetic neurons, leading to cardioprotection against inflammation/adverse remodeling and to sympatholysis, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA; (A.M.C.); (J.I.B.); (M.S.S.); (A.S.); (N.C.); (V.L.D.)
| |
Collapse
|
49
|
Mutations in rhodopsin, endothelin B receptor, and CC chemokine receptor 5 in large animals: Modeling human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:155-178. [PMID: 35595348 DOI: 10.1016/bs.pmbts.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors involved in modulating almost all physiological processes by transducing extracellular signals into the cytoplasm. Dysfunctions of GPCR-regulated signaling result in diverse human diseases, making GPCRs the most popular drug targets for human medicine. Large animals share higher similarities (in physiology and metabolism) with humans than rodents. Similar to findings in human genetics, diverse diseases caused by mutations in GPCR genes have also been discovered in large animals. Rhodopsin, endothelin B receptor, and CC chemokine receptor type 5 have been shown to be involved in human retinitis pigmentosa, Hirschsprung disease, and HIV infection/AIDS, respectively, and several mutations of these GPCRs have also been identified from large animals. The large animals with naturally occurring mutations of these GPCRs provide an opportunity to gain a better understanding of the pathogenesis of human diseases, and can be used for preclinical trials of therapies for human diseases. In this review, we aim to summarize the naturally occurring mutations of these three GPCRs in large animals and humans.
Collapse
|
50
|
Levine PM, Craven TW, Li X, Balana AT, Bird GH, Godes M, Salveson PJ, Erickson PW, Lamb M, Ahlrichs M, Murphy M, Ogohara C, Said MY, Walensky LD, Pratt MR, Baker D. Generation of Potent and Stable GLP-1 Analogues Via "Serine Ligation". ACS Chem Biol 2022; 17:804-809. [PMID: 35319882 PMCID: PMC9173702 DOI: 10.1021/acschembio.2c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide and protein bioconjugation technologies have revolutionized our ability to site-specifically or chemoselectively install a variety of functional groups for applications in chemical biology and medicine, including the enhancement of bioavailability. Here, we introduce a site-specific bioconjugation strategy inspired by chemical ligation at serine that relies on a noncanonical amino acid containing a 1-amino-2-hydroxy functional group and a salicylaldehyde ester. More specifically, we harness this technology to generate analogues of glucagon-like peptide-1 that resemble Semaglutide, a long-lasting blockbuster drug currently used in the clinic to regulate glucose levels in the blood. We identify peptides that are more potent than unmodified peptide and equipotent to Semaglutide in a cell-based activation assay, improve the stability in human serum, and increase glucose disposal efficiency in vivo. This approach demonstrates the potential of "serine ligation" for various applications in chemical biology, with a particular focus on generating stabilized peptide therapeutics.
Collapse
Affiliation(s)
- Paul M. Levine
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Timothy W. Craven
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Xinting Li
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | | | | | | | - Patrick J. Salveson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Patrick W. Erickson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Mila Lamb
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Maggie Ahlrichs
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Michael Murphy
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Cassandra Ogohara
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Meerit Y. Said
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | | | | | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|