1
|
Chen P, Wang W, Ban W, Zhang K, Dai Y, Yang Z, You Y. Deciphering Post-Stroke Sleep Disorders: Unveiling Neurological Mechanisms in the Realm of Brain Science. Brain Sci 2024; 14:307. [PMID: 38671959 PMCID: PMC11047862 DOI: 10.3390/brainsci14040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sleep disorders are the most widespread mental disorders after stroke and hurt survivors' functional prognosis, response to restoration, and quality of life. This review will address an overview of the progress of research on the biological mechanisms associated with stroke-complicating sleep disorders. Extensive research has investigated the negative impact of stroke on sleep. However, a bidirectional association between sleep disorders and stroke exists; while stroke elevates the risk of sleep disorders, these disorders also independently contribute as a risk factor for stroke. This review aims to elucidate the mechanisms of stroke-induced sleep disorders. Possible influences were examined, including functional changes in brain regions, cerebrovascular hemodynamics, neurological deficits, sleep ion regulation, neurotransmitters, and inflammation. The results provide valuable insights into the mechanisms of stroke complicating sleep disorders.
Collapse
Affiliation(s)
- Pinqiu Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (P.C.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (P.C.)
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Kecan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yanan Dai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Li J, Zhang H, Du Q, Gu J, Wu J, Liu Q, Li Z, Zhang T, Xu J, Xie R. Research Progress on TRPA1 in Diseases. J Membr Biol 2023; 256:301-316. [PMID: 37039840 PMCID: PMC10667463 DOI: 10.1007/s00232-023-00277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.
Collapse
Affiliation(s)
- Jiajing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hongfei Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Junyu Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jiangbo Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Martínez-Gil N, Kutsyr O, Fernández-Sánchez L, Sánchez-Sáez X, Albertos-Arranz H, Sánchez-Castillo C, Vidal-Gil L, Cuenca N, Lax P, Maneu V. Ischemia-Reperfusion Increases TRPM7 Expression in Mouse Retinas. Int J Mol Sci 2023; 24:16068. [PMID: 38003256 PMCID: PMC10671235 DOI: 10.3390/ijms242216068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Ischemia is the main cause of cell death in retinal diseases such as vascular occlusions, diabetic retinopathy, glaucoma, or retinopathy of prematurity. Although excitotoxicity is considered the primary mechanism of cell death during an ischemic event, antagonists of glutamatergic receptors have been unsuccessful in clinical trials with patients suffering ischemia or stroke. Our main purpose was to analyze if the transient receptor potential channel 7 (TRPM7) could contribute to retinal dysfunction in retinal pathologies associated with ischemia. By using an experimental model of acute retinal ischemia, we analyzed the changes in retinal function by electroretinography and the changes in retinal morphology by optical coherence tomography (OCT) and OCT-angiography (OCTA). Immunohistochemistry was performed to assess the pattern of TRPM7 and its expression level in the retina. Our results show that ischemia elicited a decrease in retinal responsiveness to light stimuli along with reactive gliosis and a significant increase in the expression of TRPM7 in Müller cells. TRPM7 could emerge as a new drug target to be explored in retinal pathologies associated with ischemia.
Collapse
Affiliation(s)
- Natalia Martínez-Gil
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (N.M.-G.); (X.S.-S.); (H.A.-A.); (C.S.-C.); (L.V.-G.); (N.C.); (P.L.)
| | - Oksana Kutsyr
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (O.K.); (L.F.-S.)
| | - Laura Fernández-Sánchez
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (O.K.); (L.F.-S.)
| | - Xavier Sánchez-Sáez
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (N.M.-G.); (X.S.-S.); (H.A.-A.); (C.S.-C.); (L.V.-G.); (N.C.); (P.L.)
| | - Henar Albertos-Arranz
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (N.M.-G.); (X.S.-S.); (H.A.-A.); (C.S.-C.); (L.V.-G.); (N.C.); (P.L.)
| | - Carla Sánchez-Castillo
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (N.M.-G.); (X.S.-S.); (H.A.-A.); (C.S.-C.); (L.V.-G.); (N.C.); (P.L.)
| | - Lorena Vidal-Gil
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (N.M.-G.); (X.S.-S.); (H.A.-A.); (C.S.-C.); (L.V.-G.); (N.C.); (P.L.)
| | - Nicolás Cuenca
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (N.M.-G.); (X.S.-S.); (H.A.-A.); (C.S.-C.); (L.V.-G.); (N.C.); (P.L.)
| | - Pedro Lax
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (N.M.-G.); (X.S.-S.); (H.A.-A.); (C.S.-C.); (L.V.-G.); (N.C.); (P.L.)
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, 03690 San Vicente del Raspeig, Alicante, Spain; (O.K.); (L.F.-S.)
| |
Collapse
|
4
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Xu J, Zhang W, Dong J, Cao L, Huang Z. A New Potential Strategy for Treatment of Ischemic Stroke: Targeting TRPM2-NMDAR Association. Neurosci Bull 2023; 39:703-706. [PMID: 36342656 PMCID: PMC10073358 DOI: 10.1007/s12264-022-00971-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jiayun Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liying Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
6
|
Turlova E, Ji D, Deurloo M, Wong R, Fleig A, Horgen FD, Sun HS, Feng ZP. Hypoxia-Induced Neurite Outgrowth Involves Regulation Through TRPM7. Mol Neurobiol 2023; 60:836-850. [PMID: 36378470 DOI: 10.1007/s12035-022-03114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed divalent cation channel that plays a key role in cell functions such as ion homeostasis, cell proliferation, survival, and cytoskeletal dynamics and mediates cells death in hypoxic and ischemic conditions. Previously, TRPM7 was found to play a role in the neurite outgrowth and maturation of primary hippocampal neurons. Either knockdown of TRPM7 with target-specific shRNA or blocking channel conductance by a specific blocker waixenicin A enhanced axonal outgrowth in the primary neuronal culture. In this study, we investigated whether and how TPRM7 is involved in hypoxia-altered neurite outgrowth patterns in E16 hippocampal neuron cultures. We demonstrate that short-term hypoxia activated the MEK/ERK and PI3K/Akt pathways, reduced TRPM7 activity, and enhanced axonal outgrowth of neuronal cultures. On the other hand, long-term hypoxia caused a progressive retraction of axons and dendrites that could be attenuated by the TRPM7-specific inhibitor waixenicin A. Further, we demonstrate that in the presence of astrocytes, axonal retraction in long-term hypoxic conditions was enhanced, and TRPM7 block by waixenicin A prevented this retraction. Our data demonstrate the effect of hypoxia on TRPM7 activity and axonal outgrowth/retraction in cultures with or without astrocytes present.
Collapse
Affiliation(s)
- Ekaterina Turlova
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Ontario, M5S 1A8, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Ontario, M5S 1A8, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Marielle Deurloo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Raymond Wong
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Ontario, M5S 1A8, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the, University of Hawaii, Honolulu, HI, 96720, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Ontario, M5S 1A8, Toronto, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
7
|
Mack ML, Huang W, Chang SL. Involvement of TRPM7 in Alcohol-Induced Damage of the Blood-Brain Barrier in the Presence of HIV Viral Proteins. Int J Mol Sci 2023; 24:1910. [PMID: 36768230 PMCID: PMC9916124 DOI: 10.3390/ijms24031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood-brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.
Collapse
Affiliation(s)
- Michelle L. Mack
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
8
|
Fernández-Serra R, Martínez-Alonso E, Alcázar A, Chioua M, Marco-Contelles J, Martínez-Murillo R, Ramos M, Guinea GV, González-Nieto D. Postischemic Neuroprotection of Aminoethoxydiphenyl Borate Associates Shortening of Peri-Infarct Depolarizations. Int J Mol Sci 2022; 23:ijms23137449. [PMID: 35806455 PMCID: PMC9266990 DOI: 10.3390/ijms23137449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022] Open
Abstract
Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.
Collapse
Affiliation(s)
- Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
| | - Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (E.M.-A.); (A.A.)
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (E.M.-A.); (A.A.)
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | | | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-910679280
| |
Collapse
|
9
|
Al Dera H, Alassiri M, Al Kahtani R, Eleawa SM, AlMulla MK, Alamri A. Melatonin attenuates cerebral hypoperfusion-induced hippocampal damage and memory deficits in rats by suppressing TRPM7 channels. Saudi J Biol Sci 2022; 29:2958-2968. [PMID: 35531206 PMCID: PMC9073071 DOI: 10.1016/j.sjbs.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
This study was conducted to examine if modulating transporters like transient receptor potential cation channels, subfamily M, member 7 (TRPM7) underlies the hippocampal neuroprotection afforded by melatonin (Mel) in rats exposed to cerebral hypoperfusion (CHP). Experimental groups included control, Mel-treated (1.87 g/kg), CHP, and CHP + Mel (1.87 g/kg)-treated rats. CHP was induced by the permanent bilateral occlusion of the common carotid arteries (2VO) method and treatments were conducted for 7 days, orally. Mel prevented the damage of the dental gyrus and memory loss in CHP rats and inhibited the hippocampal reactive oxygen species (ROS), lipid peroxidation levels of tumor necrosis factor-α (TNF-α), interleukine-6 (IL-6), interleukine-1 beta (IL-1β), and prostaglandin E2 (PGE2). It also reduced the hippocampal transcription of the TRPM7 channels and lowered levels of calcium (Ca2+) and zinc (Zn2+). Mel Also enhanced the levels of total glutathione (GSH) and superoxide dismutase (SOD) in the hippocampus of the control and CHP-treated rats. In conclusion, downregulation of TRPM7 seems to be one mechanism underlying the neuroprotective effect of Mel against global ischemia and is triggered by its antioxidant potential.
Collapse
|
10
|
Ji D, Fleig A, Horgen FD, Feng ZP, Sun HS. Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium 2021; 101:102521. [PMID: 34953296 DOI: 10.1016/j.ceca.2021.102521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, Hawaii 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
11
|
Jeong JH, Lee SH, Kho AR, Hong DK, Kang DH, Kang BS, Park MK, Choi BY, Choi HC, Lim MS, Suh SW. The Transient Receptor Potential Melastatin 7 (TRPM7) Inhibitors Suppress Seizure-Induced Neuron Death by Inhibiting Zinc Neurotoxicity. Int J Mol Sci 2020; 21:ijms21217897. [PMID: 33114331 PMCID: PMC7663745 DOI: 10.3390/ijms21217897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is an ion channel that mediates monovalent cations out of cells, as well as the entry of divalent cations, such as zinc, magnesium, and calcium, into the cell. It has been reported that inhibitors of TRPM7 are neuroprotective in various neurological diseases. Previous studies in our lab suggested that seizure-induced neuronal death may be caused by the excessive release of vesicular zinc and the subsequent accumulation of zinc in the neurons. However, no studies have evaluated the effects of carvacrol and 2-aminoethoxydiphenyl borate (2-APB), both inhibitors of TRPM7, on the accumulation of intracellular zinc in dying neurons following seizure. Here, we investigated the therapeutic efficacy of carvacrol and 2-APB against pilocarpine-induced seizure. Carvacrol (50 mg/kg) was injected once per day for 3 or 7 days after seizure. 2-APB (2 mg/kg) was also injected once per day for 3 days after seizure. We found that inhibitors of TRPM7 reduced seizure-induced TRPM7 overexpression, intracellular zinc accumulation, and reactive oxygen species production. Moreover, there was a suppression of oxidative stress, glial activation, and the blood–brain barrier breakdown. In addition, inhibitors of TRPM7 remarkably decreased apoptotic neuron death following seizure. Taken together, the present study demonstrates that TRPM7-mediated zinc translocation is involved in neuron death after seizure. The present study suggests that inhibitors of TRPM7 may have high therapeutic potential to reduce seizure-induced neuron death.
Collapse
Affiliation(s)
- Jeong Hyun Jeong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Song Hee Lee
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - A Ra Kho
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dae Ki Hong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dong Hyeon Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Beom Seok Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Min Kyu Park
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Bo Young Choi
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Hui Chul Choi
- Department of Neurology, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Man-Sup Lim
- Department of Medical Education, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Sang Won Suh
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| |
Collapse
|
12
|
Current Synthesis and Systematic Review of Main Effects of Calf Blood Deproteinized Medicine (Actovegin ®) in Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21093181. [PMID: 32365943 PMCID: PMC7246744 DOI: 10.3390/ijms21093181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Stroke is one of the largest problems and clinical-social challenges within neurology and, in general, pathology. Here, we briefly reviewed the main pathophysiological mechanisms of ischemic stroke, which represent targets for medical interventions, including for a calf blood deproteinized hemodialysate/ultrafiltrate. Methods: We conducted a systematic review of current related literature concerning the effects of Actovegin®, of mainly the pleiotropic type, applied to the injury pathways of ischemic stroke. Results: The bibliographic resources regarding the use of Actovegin® in ischemic stroke are scarce. The main Actovegin® actions refer to the ischemic stroke lesion items’ ensemble, targeting tissue oxidation, energy metabolism, and glucose availability through their augmentation, combating ischemic processes and oxidative stress, and decreasing inflammation (including with modulatory connotations, by the nuclear factor-κB pathway) and apoptosis-like processes, counteracting them by mitigating the caspase-3 activation induced by amyloid β-peptides. Conclusion: Since no available therapeutic agents are capable of curing the central nervous system’s lesions, any contribution, such as that of Actovegin® (with consideration of a positive balance between benefits and risks), is worthy of further study and periodic reappraisal, including investigation into further connected aspects.
Collapse
|
13
|
Chambers L, Dorrance AM. Regulation of ion channels in the microcirculation by mineralocorticoid receptor activation. CURRENT TOPICS IN MEMBRANES 2020; 85:151-185. [PMID: 32402638 DOI: 10.1016/bs.ctm.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mineralocorticoid receptor (MR) has classically been studied in the renal epithelium for its role in regulating sodium and water balance and, subsequently, blood pressure. However, the MR also plays a critical role in the microvasculature by regulating ion channel expression and function. Activation of the MR by its endogenous agonist aldosterone results in translocation of the MR into the nucleus, where it can act as a transcription factor. Although most of the actions of the aldosterone can be attributed to its genomic activity though MR activation, it can also act by nongenomic mechanisms. Activation of this ubiquitous receptor increases the expression of epithelial sodium channels (ENaC) in both the endothelium and smooth muscle cells of peripheral and cerebral vessels. MR activation also regulates activity of calcium channels, calcium-activated potassium channels, and various transient receptor potential (TRP) channels. Modification of these ion channels results in a myriad of negative consequences, including impaired endothelium-dependent vasodilation, alterations in generation of myogenic tone, and increased inflammation and oxidative stress. Taken together, these studies demonstrate the importance of studying the impact of the MR on ion channel function in the vasculature. While research in this area has made advances in recent years, there are still many large gaps in knowledge that need to be filled. Crucial future directions of study include defining the molecular mechanisms involved in this interaction, as well as elucidating the potential sex differences that may exist, as these areas of understanding are currently lacking.
Collapse
Affiliation(s)
- Laura Chambers
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
14
|
Redox TRPs in diabetes and diabetic complications: Mechanisms and pharmacological modulation. Pharmacol Res 2019; 146:104271. [PMID: 31096011 DOI: 10.1016/j.phrs.2019.104271] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/04/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels have shown to be involved in a wide variety of physiological functions and pathophysiological conditions. Modulation of TRP channels reported to play a major role in number of disorders starting from central nervous system related disorders to cardiovascular, inflammatory, cancer, gastrointestinal and metabolic diseases. Recently, a subset of TRP ion channels called redox TRPs gained importance on account of their ability to sense the cellular redox environment and respond accordingly to such redox stimuli. Diabetes, the silent epidemic of the world is increasing at an alarming rate in spite of novel therapeutic interventions. Moreover, diabetes and its associated complications are reported to arise due to a change in oxidative status of cell induced by hyperglycemia. Such a change in cellular oxidative status can modulate the activities of various redox TRP channels (TRPA1, TRPC5, TRPMs and TRPV1). Targeting redox TRPs have potential in diabetes and diabetic complications like neuropathy, cardiomyopathy, retinopathy, cystopathy, and encephalopathy. Thus in this review, we have discussed the activities of different redox sensing TRPs in diabetes and diabetic complications and how they can be modulated pharmacologically, so as to consider them a potential novel therapeutic target in treating diabetes and its comorbidity.
Collapse
|
15
|
The role of TRPM2 channels in neurons, glial cells and the blood-brain barrier in cerebral ischemia and hypoxia. Acta Pharmacol Sin 2018. [PMID: 29542681 PMCID: PMC5943904 DOI: 10.1038/aps.2017.194] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stroke is one of the major causes of mortality and morbidity worldwide, yet novel therapeutic treatments for this condition are lacking. This review focuses on the roles of the transient receptor potential melastatin 2 (TRPM2) ion channels in cellular damage following hypoxia-ischemia and their potential as a future therapeutic target for stroke. Here, we highlight the complex molecular signaling that takes place in neurons, glial cells and the blood-brain barrier following ischemic insult. We also describe the evidence of TRPM2 involvement in these processes, as shown from numerous in vitro and in vivo studies that utilize genetic and pharmacological approaches. This evidence implicates TRPM2 in a broad range of pathways that take place every stage of cerebral ischemic injury, thus making TRPM2 a promising target for drug development for stroke and other neurodegenerative conditions of the central nervous system.
Collapse
|
16
|
Abumaria N, Li W, Liu Y. TRPM7 functions in non-neuronal and neuronal systems: Perspectives on its role in the adult brain. Behav Brain Res 2018; 340:81-86. [DOI: 10.1016/j.bbr.2016.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/30/2022]
|
17
|
Gotru SK, Chen W, Kraft P, Becker IC, Wolf K, Stritt S, Zierler S, Hermanns HM, Rao D, Perraud AL, Schmitz C, Zahedi RP, Noy PJ, Tomlinson MG, Dandekar T, Matsushita M, Chubanov V, Gudermann T, Stoll G, Nieswandt B, Braun A. TRPM7 Kinase Controls Calcium Responses in Arterial Thrombosis and Stroke in Mice. Arterioscler Thromb Vasc Biol 2018; 38:344-352. [DOI: 10.1161/atvbaha.117.310391] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Sanjeev K. Gotru
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Wenchun Chen
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Peter Kraft
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Isabelle C. Becker
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Karen Wolf
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Simon Stritt
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Susanna Zierler
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Heike M. Hermanns
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Deviyani Rao
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Anne-Laure Perraud
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Carsten Schmitz
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - René P. Zahedi
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Peter J. Noy
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Michael G. Tomlinson
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Thomas Dandekar
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Masayuki Matsushita
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Vladimir Chubanov
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Thomas Gudermann
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Guido Stoll
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Bernhard Nieswandt
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| | - Attila Braun
- From the Institute of Experimental Biomedicine, University Hospital of Würzburg (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), Rudolf Virchow Center (S.K.G., W.C., I.C.B., K.W., S.S., B.N., A.B.), and Institute of Clinical Epidemiology and Biometry, Comprehensive Heart Failure Center (P.K.), University of Würzburg, Germany; Department of Hepatology (H.M.H.) and Department of Neurology (P.K., G.S.), University Hospital of Würzburg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology,
| |
Collapse
|
18
|
Hernández DE, Salvadores NA, Moya-Alvarado G, Catalán RJ, Bronfman FC, Court FA. Axonal degeneration induced by glutamate-excitotoxicity is mediated by necroptosis. J Cell Sci 2018; 131:jcs.214684. [DOI: 10.1242/jcs.214684] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
Neuronal excitotoxicity induced by glutamate leads to cell death and functional impairment in a variety of central nervous system pathologies. Glutamate-mediated excitotoxicity triggers neuronal apoptosis in the cell soma as well as degeneration of axons and dendrites by a process associated to calcium increase and mitochondrial dysfunction. Importantly, degeneration of axons initiated by diverse stimuli, including excitotoxicity, has been proposed as an important pathological event leading to functional impairment in neurodegenerative conditions. Here we demonstrate that excitotoxicity-induced axonal degeneration proceeds by a mechanism dependent on the necroptotic kinases RIPK1, RIPK3 and the necroptotic mediator MLKL. Inhibition of RIPK1, RIPK3 or MLKL prevent key steps in the axonal degeneration cascade including mitochondrial depolarization, the opening of the permeability transition pore and calcium dysregulation in the axon. Interestingly, the same excitotoxic stimuli lead to apoptosis in the cell soma, demonstrating the co-activation of two independent degenerative mechanisms in different compartments of the same cell. The identification of necroptosis as a key mechanism of axonal degeneration after excitotoxicity is an important initial step to develop novel therapeutic strategies for nervous system disorders.
Collapse
Affiliation(s)
- Diego E. Hernández
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Chile
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Center of Advanced Microscopy (CMA), Universidad de Concepción, Concepción, Chile
| | - Natalia A. Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Guillermo Moya-Alvarado
- Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Romina J. Catalán
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Francisca C. Bronfman
- Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe A. Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Buck Institute for Research on Ageing, Novato, San Francisco, USA
| |
Collapse
|
19
|
Hu HJ, Song M. Disrupted Ionic Homeostasis in Ischemic Stroke and New Therapeutic Targets. J Stroke Cerebrovasc Dis 2017; 26:2706-2719. [PMID: 29054733 DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Stroke is a leading cause of long-term disability. All neuroprotectants targeting excitotoxicity have failed to become stroke medications. In order to explore and identify new therapeutic targets for stroke, we here reviewed present studies of ionic transporters and channels that are involved in ischemic brain damage. METHOD We surveyed recent literature from animal experiments and clinical reports in the databases of PubMed and Elsevier ScienceDirect to analyze ionic mechanisms underlying ischemic cell damage and suggest promising ideas for stroke therapy. RESULTS Dysfunction of ionic transporters and disrupted ionic homeostasis are most early changes that underlie ischemic brain injury, thus receiving sustained attention in translational stroke research. The Na+/K+-ATPase, Na+/Ca2+ Exchanger, ionotropic glutamate receptor, acid-sensing ion channels (ASICs), sulfonylurea receptor isoform 1 (SUR1)-regulated NCCa-ATP channels, and transient receptor potential (TRP) channels are critically involved in ischemia-induced cellular degenerating processes such as cytotoxic edema, excitotoxicity, necrosis, apoptosis, and autophagic cell death. Some ionic transporters/channels also act as signalosomes to regulate cell death signaling. For acute stroke treatment, glutamate-mediated excitotoxicity must be interfered within 2 hours after stroke. The SUR1-regulated NCCa-ATP channels, Na+/K+-ATPase, ASICs, and TRP channels have a much longer therapeutic window, providing new therapeutic targets for developing feasible pharmacological treatments toward acute ischemic stroke. CONCLUSION The next generation of stroke therapy can apply a polypharmacology strategy for which drugs are designed to target multiple ion transporters/channels or their interaction with neurotoxic signaling pathways. But a successful translation of neuroprotectants relies on in-depth analyses of cell death mechanisms and suitable animal models resembling human stroke.
Collapse
Affiliation(s)
- Hui-Jie Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingke Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Abiria SA, Krapivinsky G, Sah R, Santa-Cruz AG, Chaudhuri D, Zhang J, Adstamongkonkul P, DeCaen PG, Clapham DE. TRPM7 senses oxidative stress to release Zn 2+ from unique intracellular vesicles. Proc Natl Acad Sci U S A 2017; 114:E6079-E6088. [PMID: 28696294 PMCID: PMC5544332 DOI: 10.1073/pnas.1707380114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TRPM7 (transient receptor potential cation channel subfamily M member 7) regulates gene expression and stress-induced cytotoxicity and is required in early embryogenesis through organ development. Here, we show that the majority of TRPM7 is localized in abundant intracellular vesicles. These vesicles (M7Vs) are distinct from endosomes, lysosomes, and other familiar vesicles or organelles. M7Vs accumulate Zn2+ in a glutathione-enriched, reduced lumen when cytosolic Zn2+ concentrations are elevated. Treatments that increase reactive oxygen species (ROS) trigger TRPM7-dependent Zn2+ release from the vesicles, whereas reduced glutathione prevents TRPM7-dependent cytosolic Zn2+ influx. These observations strongly support the notion that ROS-mediated TRPM7 activation releases Zn2+ from intracellular vesicles after Zn2+ overload. Like the endoplasmic reticulum, these vesicles are a distributed system for divalent cation uptake and release, but in this case the primary divalent ion is Zn2+ rather than Ca2.
Collapse
Affiliation(s)
- Sunday A Abiria
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Grigory Krapivinsky
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Rajan Sah
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Ana G Santa-Cruz
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112
| | - Jin Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | | | - Paul G DeCaen
- Department of Pharmacology, Northwestern University, Chicago, IL 60611
| | - David E Clapham
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115;
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
21
|
Xu HL, Liu MD, Yuan XH, Liu CX. Suppression of cortical TRPM7 protein attenuates oxidative damage after traumatic brain injury via Akt/endothelial nitric oxide synthase pathway. Neurochem Int 2017; 112:197-205. [PMID: 28736242 DOI: 10.1016/j.neuint.2017.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/06/2017] [Accepted: 07/19/2017] [Indexed: 01/05/2023]
Abstract
Neuronal death after traumatic brain injury (TBI) is a complex process resulting from a combination of factors, many of which are still unknown. Transient receptor potential melastatin 7 (TRPM7) is a transient receptor potential channel that has been demonstrated to mediate ischemic and traumatic neuronal injury in vitro. In the present study, TRPM7 was suppressed in the rat cerebral cortex by intracortical injections of viral vectors bearing shRNA specific for TRPM7 to investigate its potential role in an in vivo TBI model. We found that TRPM7 suppression significantly reduced brain edema, brain contusion volume and motor functional deficits, which was sustained for at least 2 weeks after the insult. These protective effects were accompanied by inhibited apoptosis in injured cortex. Also, TRPM7 suppression attenuated lipid peroxidation, decreased the expression of protein carbonyl, and preserved the endogenous antioxidant enzyme activities. The results of western blot analysis showed that TRPM7 suppression markedly increased the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS). In addition, blocking Akt/eNOS pathway activation by the specific inhibitor LY294002 (LY, 10 μL, 10 mmol/L) or L-NIO (0.5 mg/kg) partially reversed the protective effects of TRPM7 suppression and its anti-oxidative activities. Taken together, these findings demonstrated that regional inhibition of TRPM7 in cerebral cortex exerts neuroprotective effects against TBI through activation of Akt/eNOS pathway. Thus, TRPM7 might represent a potential drug development target for the treatment of TBI.
Collapse
Affiliation(s)
- Hong-Liang Xu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Meng-Dong Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Hong Yuan
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Chun-Xi Liu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
22
|
Huang S, Turlova E, Li F, Bao MH, Szeto V, Wong R, Abussaud A, Wang H, Zhu S, Gao X, Mori Y, Feng ZP, Sun HS. Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp Neurol 2017; 296:32-40. [PMID: 28668375 DOI: 10.1016/j.expneurol.2017.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 06/27/2017] [Indexed: 02/01/2023]
Abstract
Transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, is reported to mediate brain damage following ischemic insults in adult mice. However, the role of TRPM2 channels in neonatal hypoxic-ischemic brain injury remains unknown. We hypothesize that TRPM2+/- and TRPM2-/- neonatal mice have reduced hypoxic-ischemic brain injury. To study the effect of TRPM2 on neonatal brain damage, we used 2,3,5-triphenyltetrazolium chloride (TTC) staining to assess the infarct volume and whole brain imaging to assess morphological changes in the brain. In addition, we also evaluated neurobehavioral outcomes for sensorimotor function 7days following hypoxic-ischemic brain injury. We report that the infarct volumes were significantly smaller and behavioral outcomes were improved in both TRPM2+/- and TRPM2-/- mice compared to that of wildtype mice. Next, we found that TRPM2-null mice showed reduced dephosphorylation of GSK-3β following hypoxic ischemic injury unlike sham mice. TRPM2+/- and TRPM2-/- mice also had reduced activation of astrocytes and microglia in ipsilateral hemispheres, compared to wildtype mice. These findings suggest that TRPM2 channels play an essential role in mediating hypoxic-ischemic brain injury in neonatal mice. Genetically eliminating TRPM2 channels can provide neuroprotection against hypoxic-ischemic brain injury and this effect is elicited in part through regulation of GSK-3β.
Collapse
Affiliation(s)
- Sammen Huang
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Feiya Li
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mei-Hua Bao
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Vivian Szeto
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Raymond Wong
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ahmed Abussaud
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Haitao Wang
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuzhen Zhu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xinzheng Gao
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
23
|
Chen J, Li Z, Hatcher JT, Chen QH, Chen L, Wurster RD, Chan SL, Cheng Z. Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca 2+ Entry and Ca 2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation. Front Neurosci 2017; 11:138. [PMID: 28400714 PMCID: PMC5368256 DOI: 10.3389/fnins.2017.00138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na+ and Ca2+ and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca2+ levels ([Ca2+]i), we found that OGD induced a significant higher increase in glutamate-evoked Ca2+ influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca2+]i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca2+]i in TRPC6 infected cells, indicating that such a Ca2+ influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca2+ influx was blunted by blockade of Na+ entry in TRPC6 infected cells. Finally, OGD-enhanced Ca2+ influx was reduced, but not completely blocked, in the presence of voltage-dependent Na+ channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na+ entry which activated NMDAR, thus leading to a damaging Ca2+ overload. These findings may provide a potential target for future intervention in stroke-induced brain damage.
Collapse
Affiliation(s)
- Jin Chen
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Zhaozhong Li
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Jeffery T Hatcher
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University Houghton, MI, USA
| | - Li Chen
- Department of Clinical Laboratory, The First Central Hospital of Tianjin Tianjin, China
| | - Robert D Wurster
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Maywood, IL, USA
| | - Sic L Chan
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Zixi Cheng
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA; Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA
| |
Collapse
|
24
|
Modulation of Human Cardiac TRPM7 Current by Extracellular Acidic pH Depends upon Extracellular Concentrations of Divalent Cations. PLoS One 2017; 12:e0170923. [PMID: 28129376 PMCID: PMC5271359 DOI: 10.1371/journal.pone.0170923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/12/2017] [Indexed: 11/19/2022] Open
Abstract
TRPM7 channels participate in a variety of physiological/pathological processes. TRPM7 currents are modulated by protons but opposing effects of external pH (pHo) (potentiation vs inhibition) have been reported. TRPM7 has been less studied in human cardiomyocytes than in heart-derived non-cardiomyocyte cells. We used the whole-cell patch-clamp technique on isolated human atrial cardiomyocytes to investigate the impact of an acidic pHo on the TRPM7 current. With voltage-dependent and other ion channels inhibited, cardiomyocytes were challenged with external acidification in either the presence or the absence of extracellular divalent cations. TRPM7 outward and inward currents were increased by acidic pHo in extracellular medium containing Ca2+ and Mg2+, but suppressed by acidic pHo in the absence of extracellular Ca2+ and Mg2+. The potentiating effect in the presence of extracellular divalents occurred at pHo below 6 and was voltage-dependent. The inhibitory effect in the absence of extracellular divalents was already marked at pHo of 6 and was practically voltage-independent. TRPM7 current density was higher in cardiomyocytes from patients with history of coronary vascular disease and the difference compared to cardiomyocytes from patients without history of myocardial ischemia increased with acidic pHo. We demonstrate that proton-induced modification of TRPM7 currents depends on the presence of extracellular Ca2+ and Mg2+. Variability of the TRPM7 current density in human cardiomyocytes is related to the clinical history, being higher in atrial fibrillation and in ischemic cardiomyopathy.
Collapse
|
25
|
Kim BJ, Hong C. Role of transient receptor potential melastatin type 7 channel in gastric cancer. Integr Med Res 2016; 5:124-130. [PMID: 28462107 PMCID: PMC5381434 DOI: 10.1016/j.imr.2016.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023] Open
Abstract
Transient receptor potential (TRP) proteins are a family of ion channels, which are responsible for a wide array of cellular functions. In particular, TRP melastatin type (TRPM) 7 is expressed everywhere and permeable to divalent cations such as Mg2+ and Ca2+. It contains a channel and a kinase domain. Recent studies indicate that activation of TRPM7 plays an important role in the growth and survival of gastric cancer cells. In this review, we describe and discuss the findings of recent studies that have provided novel insights of the relation between TRPM7 and gastric cancer.
Collapse
Affiliation(s)
- Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea.,Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University, College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Carvacrol attenuates traumatic neuronal injury through store-operated Ca2+ entry-independent regulation of intracellular Ca2+ homeostasis. Neurochem Int 2015. [DOI: 10.1016/j.neuint.2015.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Fukuta T, Ishii T, Asai T, Sato A, Kikuchi T, Shimizu K, Minamino T, Oku N. Treatment of stroke with liposomal neuroprotective agents under cerebral ischemia conditions. Eur J Pharm Biopharm 2015; 97:1-7. [PMID: 26455340 DOI: 10.1016/j.ejpb.2015.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 08/21/2015] [Accepted: 09/30/2015] [Indexed: 01/09/2023]
Abstract
Since the proportion of patients given thrombolytic therapy with tissue plasminogen activator (t-PA) is very limited because of the narrow therapeutic window, the development of new therapies for ischemic stroke has been desired. We previously reported that liposomes injected intravenously accumulate in the ischemic region of the brain via disruption of the blood-brain barrier that occurs under cerebral ischemia. In the present study, we investigated the efficacy of a liposomal neuroprotective agent in middle cerebral artery occlusion (MCAO) rats to develop ischemic stroke therapy prior to the recovery of cerebral blood flow. For this purpose, PEGylated liposomes encapsulating FK506 (FK506-liposomes) were prepared and injected intravenously into MCAO rats after a 1-h occlusion. This treatment significantly suppressed the expansion of oxidative stress and brain cell damage. In addition, administration of FK506-liposomes before reperfusion significantly ameliorated motor function deficits of the rats caused by ischemia/reperfusion injury. These findings suggest that FK506-liposomes effectively exerted a neuroprotective effect during ischemic conditions, and that combination therapy with a liposomal neuroprotectant plus t-PA could be a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Japan Society for the Promotion of Science (JSPS), 8 Ichiban-cho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Takayuki Ishii
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akihiko Sato
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Kikuchi
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kosuke Shimizu
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tetsuo Minamino
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
28
|
Abstract
Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuyang Sun
- a Department of Basic Science ; School of Medicine and Health Sciences, University of North Dakota ; Grand Forks , ND USA
| | - Pramod Sukumaran
- a Department of Basic Science ; School of Medicine and Health Sciences, University of North Dakota ; Grand Forks , ND USA
| | - Anne Schaar
- a Department of Basic Science ; School of Medicine and Health Sciences, University of North Dakota ; Grand Forks , ND USA
| | - Brij B Singh
- a Department of Basic Science ; School of Medicine and Health Sciences, University of North Dakota ; Grand Forks , ND USA
| |
Collapse
|
29
|
Abstract
Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, California 95616
| | - Edward Y. Skolnik
- Division of Nephrology, New York University School of Medicine, New York, NY 10016
- Department of Molecular Pathogenesis, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
30
|
Ehling P, Cerina M, Budde T, Meuth SG, Bittner S. The CNS under pathophysiologic attack--examining the role of K₂p channels. Pflugers Arch 2014; 467:959-72. [PMID: 25482672 DOI: 10.1007/s00424-014-1664-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Members of the two-pore domain K(+) channel (K2P) family are increasingly recognized as being potential targets for therapeutic drugs and could play a role in the diagnosis and treatment of neurologic disorders. Their broad and diverse expression pattern in pleiotropic cell types, importance in cellular function, unique biophysical properties, and sensitivity toward pathophysiologic parameters represent the basis for their involvement in disorders of the central nervous system (CNS). This review will focus on multiple sclerosis (MS) and stroke, as there is growing evidence for the involvement of K2P channels in these two major CNS disorders. In MS, TASK1-3 channels are expressed on T lymphocytes and are part of a signaling network regulating Ca(2+)- dependent pathways that are mandatory for T cell activation, differentiation, and effector functions. In addition, TASK1 channels are involved in neurodegeneration, resulting in autoimmune attack of CNS cells. On the blood-brain barrier, TREK1 channels regulate immune cell trafficking under autoinflammatory conditions. Cerebral ischemia shares some pathophysiologic similarities with MS, including hypoxia and extracellular acidosis. On a cellular level, K2P channels can have both proapoptotic and antiapoptotic effects, either promoting neurodegeneration or protecting neurons from ischemic cell death. TASK1 and TREK1 channels have a neuroprotective effect on stroke development, whereas TASK2 channels have a detrimental effect on neuronal survival under ischemic conditions. Future research in preclinical models is needed to provide a more detailed understanding of the contribution of K2P channel family members to neurologic disorders, before translation to the clinic is an option.
Collapse
Affiliation(s)
- Petra Ehling
- Department of Neurology, University of Münster, Münster, Germany,
| | | | | | | | | |
Collapse
|
31
|
Visser D, Middelbeek J, van Leeuwen FN, Jalink K. Function and regulation of the channel-kinase TRPM7 in health and disease. Eur J Cell Biol 2014; 93:455-65. [DOI: 10.1016/j.ejcb.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022] Open
|
32
|
Smirnov AV, Spasov AA, Shmidt MV, Snigur GL, Evsyukov OY, Zheltova AA. Patterns of TRPM7 expression in hypothalamic and hippocampal neurons in modeling of nutritional magnesium deficiency. Bull Exp Biol Med 2014; 156:736-9. [PMID: 24824683 DOI: 10.1007/s10517-014-2436-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Indexed: 11/29/2022]
Abstract
Patterns of expression of TRPM7, the major cellular magnesium transporters in neurons of the hypothalamic region and hippocampus, were studied immunohistochemically. Multidirectional nature and different levels of the expression of the above antigen were revealed during modeled magnesium deficiency with regard to structural and functional features of neuron organization in the hypothalamic paraventricular and supraoptic nuclei as well as hippocampal field CA1 and CA3. Changes in the structural characteristics of neurons in the studied areas (absolute and relative indicators) and TRPM7 expression patterns were quantitatively analyzed considering the data on the role of the studied antigen in magnesium homeostasis, cell damage, and compensation.
Collapse
Affiliation(s)
- A V Smirnov
- Department of Pharmacology, Department of Pathological Anatomy, Volgograd State Medical University, Volgograd, Russia
| | | | | | | | | | | |
Collapse
|
33
|
Park HS, Hong C, Kim BJ, So I. The Pathophysiologic Roles of TRPM7 Channel. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:15-23. [PMID: 24634592 PMCID: PMC3951819 DOI: 10.4196/kjpp.2014.18.1.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a member of the melastatin-related subfamily and contains a channel and a kinase domain. TRPM7 is known to be associated with cell proliferation, survival, and development. It is ubiquitously expressed, highly permeable to Mg2+ and Ca2+, and its channel activity is negatively regulated by free Mg2+ and Mg-complexed nucleotides. Recent studies have investigated the relationships between TRPM7 and a number of diseases. TRPM7 regulates cell proliferation in several cancers, and is associated with ischemic cell death and vascular smooth muscle cell (VSMC) function. This review discusses the physiologic and pathophysiologic functions and significance of TRPM7 in several diseases.
Collapse
Affiliation(s)
- Hyun Soo Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea
| |
Collapse
|
34
|
Neumann JT, Cohan CH, Dave KR, Wright CB, Perez-Pinzon MA. Global cerebral ischemia: synaptic and cognitive dysfunction. Curr Drug Targets 2013; 14:20-35. [PMID: 23170794 PMCID: PMC5800514 DOI: 10.2174/138945013804806514] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/27/2012] [Accepted: 11/16/2012] [Indexed: 11/22/2022]
Abstract
Cardiopulmonary arrest is one of the leading causes of death and disability, primarily occurring in the aged population. Numerous global cerebral ischemia animal models induce neuronal damage similar to cardiac arrest. These global cerebral ischemia models range from vessel occlusion to total cessation of cardiac function, both of which have allowed for the investigation of this multifaceted disease and detection of numerous agents that are neuroprotective. Synapses endure a variety of alterations after global cerebral ischemia from the resulting excitotoxicity and have been a major target for neuroprotection; however, neuroprotective agents have proven unsuccessful in clinical trials, as neurological outcomes have not displayed significant improvements in patients. A majority of these neuroprotective agents have specific neuronal targets, where the success of future neuroprotective agents may depend on non-specific targets and numerous cognitive improvements. This review focuses on the different models of global cerebral ischemia, neuronal synaptic alterations, synaptic neuroprotection and behavioral tests that can be used to determine deficits in cognitive function after global cerebral ischemia.
Collapse
Affiliation(s)
- Jake T Neumann
- Cerebral Vascular Disease Research Laboratories, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Ischemic stroke is one of the leading causes of disability and death in the world. Elucidation of the underlying mechanisms associated with neuronal death during this detrimental process has been of significant interest in the field of research. One principle component vital to the maintenance of cellular integrity is the cytoskeleton. Studies suggest that abnormalities at the level of this fundamental structure are directly linked to adverse effects on cellular well-being, including cell death. In recent years, evidence has also emerged regarding an imperative role for the transient receptor potential (TRP) family member TRPM7 in the mediation of excitotoxic-independent neuronal demise. In this review, we will elaborate on the current knowledge and unique properties associated with the functioning of this structure. In addition, we will deliberate the involvement of distinct mechanistic pathways during TRPM7-dependent cell death, including modifications at the level of the cytoskeleton.
Collapse
Affiliation(s)
- Suhail Asrar
- Department of Biological Sciences, University of Toronto, Scarborough, ON, Canada
| | | |
Collapse
|
36
|
Proton-gated ion channels in mouse bone marrow stromal cells. Stem Cell Res 2012; 9:59-68. [DOI: 10.1016/j.scr.2012.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/05/2012] [Accepted: 04/30/2012] [Indexed: 01/07/2023] Open
|
37
|
Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M. The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 2012; 7:e39959. [PMID: 22761937 PMCID: PMC3384594 DOI: 10.1371/journal.pone.0039959] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/30/2012] [Indexed: 02/03/2023] Open
Abstract
The polymodal transient receptor potential vanilloid 4 (TRPV4) channel, a member of the TRP channel family, is a calcium-permeable cationic channel that is gated by various stimuli such as cell swelling, low pH and high temperature. Therefore, TRPV4-mediated calcium entry may be involved in neuronal and glia pathophysiology associated with various disorders of the central nervous system, such as ischemia. The TRPV4 channel has been recently found in adult rat cortical and hippocampal astrocytes; however, its role in astrocyte pathophysiology is still not defined. In the present study, we examined the impact of cerebral hypoxia/ischemia (H/I) on the functional expression of astrocytic TRPV4 channels in the adult rat hippocampal CA1 region employing immunohistochemical analyses, the patch-clamp technique and microfluorimetric intracellular calcium imaging on astrocytes in slices as well as on those isolated from sham-operated or ischemic hippocampi. Hypoxia/ischemia was induced by a bilateral 15-minute occlusion of the common carotids combined with hypoxic conditions. Our immunohistochemical analyses revealed that 7 days after H/I, the expression of TRPV4 is markedly enhanced in hippocampal astrocytes of the CA1 region and that the increasing TRPV4 expression coincides with the development of astrogliosis. Additionally, adult hippocampal astrocytes in slices or cultured hippocampal astrocytes respond to the TRPV4 activator 4-alpha-phorbol-12,-13-didecanoate (4αPDD) by an increase in intracellular calcium and the activation of a cationic current, both of which are abolished by the removal of extracellular calcium or exposure to TRP antagonists, such as Ruthenium Red or RN1734. Following hypoxic/ischemic injury, the responses of astrocytes to 4αPDD are significantly augmented. Collectively, we show that TRPV4 channels are involved in ischemia-induced calcium entry in reactive astrocytes and thus, might participate in the pathogenic mechanisms of astroglial reactivity following ischemic insult.
Collapse
Affiliation(s)
- Olena Butenko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - David Dzamba
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Jana Benesova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavel Honsa
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Valentina Benfenati
- Institute for the Study of Nanostructured Material, National Research Council, Bologna, Italy
| | - Vendula Rusnakova
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stefano Ferroni
- Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
38
|
Feske S, Skolnik EY, Prakriya M. Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 2012; 12:532-47. [PMID: 22699833 DOI: 10.1038/nri3233] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lymphocyte function is regulated by a network of ion channels and transporters in the plasma membrane of B and T cells. These proteins modulate the cytoplasmic concentrations of diverse cations, such as calcium, magnesium and zinc ions, which function as second messengers to regulate crucial lymphocyte effector functions, including cytokine production, differentiation and cytotoxicity. The repertoire of ion-conducting proteins includes calcium release-activated calcium (CRAC) channels, P2X receptors, transient receptor potential (TRP) channels, potassium channels, chloride channels and magnesium and zinc transporters. This Review discusses the roles of ion conduction pathways in lymphocyte function and immunity.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University Langone Medical Center, New York, New York 10016, USA.
| | | | | |
Collapse
|
39
|
Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 2011; 33:223-37. [PMID: 22044990 DOI: 10.1007/s10072-011-0828-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/20/2011] [Indexed: 12/21/2022]
Abstract
Although being a physiologically important excitatory neurotransmitter, glutamate plays a pivotal role in various neurological disorders including ischemic neurological diseases. Its level is increased during cerebral ischemia with excessive neurological stimulation causing the glutamate-induced neuronal toxicity, excitotoxicity, and this is considered the triggering spark in the ischemic neuronal damage. The glutamatergic stimulation will lead to rise in the intracellular sodium and calcium, and the elevated intracellular calcium will lead to mitochondrial dysfunction, activation of proteases, accumulation of reactive oxygen species and release of nitric oxide. Interruption of the cascades of glutamate-induced cell death during ischemia may provide a way to prevent, or at least reduce, the ischemic damage. Various therapeutic options are suggested interrupting the glutamatergic pathways, e.g., inhibiting the glutamate synthesis or release, increasing its clearance, blocking of its receptors or preventing the rise in intracellular calcium. Development of these strategies may provide future treatment options in the management of ischemic stroke.
Collapse
Affiliation(s)
- Botros B Kostandy
- Department of Pharmacology, Faculty of Medicine, University of Assiut, Assiut 71526, Egypt.
| |
Collapse
|
40
|
|