1
|
Jassim BA, Bai Y, Qu Z, Sander CJ, Lin J, Miao J, Zhang ZY. Structure-activity relationship studies and design of a PTPN22 inhibitor with enhanced isozyme selectivity and cellular efficacy. Eur J Med Chem 2025; 283:117129. [PMID: 39693863 DOI: 10.1016/j.ejmech.2024.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Abstract
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) lies downstream of the T cell receptor (TCR) and attenuates T cell signaling by dephosphorylating key effector proteins such as LCK, Zap70, and the intracellular region of the TCR. Recent evidence implicates PTPN22 as an exciting target for enabling immunotherapeutic efficacy against cancer. We carried out structural optimization of a benzofuran salicylic acid-based orthosteric PTPN22 inhibitor 8b, using a combination of crystal structure analysis, synthesis, matched molecular pairs analysis, and biochemical and cell-based assays. Herein, we report structure-activity relationship studies, lead optimization based on the 8b-PTPN22 co-crystal structure, and cellular evaluation of the top analog. Notably, our efforts yielded compound 8b-19, an essentially equipotent scaffold with superior isozyme selectivity, improved aqueous solubility, and significantly enhanced cellular efficacy compared to the parent 8b. This compound may serve as a lead for further optimization of PTPN22-targeting immunotherapies or as a chemical probe for interrogation for additional links between PTPN22 and immunomodulation in cells.
Collapse
Affiliation(s)
- Brenson A Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Zihan Qu
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conrad J Sander
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Jiang C, Liu R, Chang Y, Zhang S, Li X, Zhao Z, Quan M, Wang Q, Zhou H, Hou X, Fang H. Design and synthesis of novel benzoic acid derivatives as striatal-enriched protein tyrosine phosphatase (STEP) inhibitors with neuroprotective properties. Eur J Med Chem 2025; 283:117135. [PMID: 39657460 DOI: 10.1016/j.ejmech.2024.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
As a central nervous system-specific member of the protein tyrosine phosphatase (PTP) family, the striatal-enriched protein tyrosine phosphatase (STEP) is an attractive drug target for neurodegenerative diseases. Here, we reported the discovery of a series of benzoic acid derivatives as new STEP inhibitors. Among them, compound 14b exhibited good STEP inhibitory activity and displayed selectivity against other PTPs. The neuroprotective activity of compound 14b was evaluated against glutamate-induced oxidative cell death in HT22 cells. Results indicated that compound 14b co-treatment prevented cell death and reduced cellular ROS accumulation. Compound 14b inhibited cell apoptosis by upregulating BCL-2 expression and downregulating BAX and C-caspase3 expression. Moreover, compound 14b was also found to provide neuroprotection to primary cortical neurons after oxygen-glucose deprivation/reoxygenation (OGD/R). Further structural elaboration of compound 14b may provide new drug candidates for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunxue Jiang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Renshuai Liu
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yong Chang
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shiji Zhang
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xue Li
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhongcheng Zhao
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mengyao Quan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Quande Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin, 541004, China
| | - Hengxing Zhou
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
3
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges. Natural products targeting RAS by multiple mechanisms.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing, 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing, 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, Chongqing, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, Chongqing, China.
| |
Collapse
|
4
|
Ti W, Liu M, Xie A, Wang Y, Wu S, Sheng Q, Lan M. Application of Ti 4+ embedded functional composite materials in simultaneous enrichment of glycopeptides and phosphopeptides. Talanta 2025; 282:126955. [PMID: 39357403 DOI: 10.1016/j.talanta.2024.126955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Glycosylation and phosphorylation of proteins represent crucial forms of post-translational modifications (PTMs), playing pivotal roles in various biological processes. Research indicates a strong correlation between the development of type 2 diabetes (T2D) and abnormal protein translation in the body. Therefore, studying glycosylation and phosphorylation at the molecular level can be used for monitoring disease progression and refining research methodologies. In this study, the material is modified and functionally engineered by utilizing graphene oxide (GO) as the substrate, and incorporating titanium ions (Ti4+) into chondroitin sulfate. The composite was successfully applied to the selective enrichment of glycopeptides and phosphopeptides by utilizing the bifunctionality of hydrophilic interaction chromatography and metal ion chelation chromatography. This approach allowed for the capture of 57 glycopeptides and 2 phosphopeptides from normal human serum, and 141 glycopeptides and 10 phosphopeptides from T2D serum, respectively. This approach effectively tackles the challenges of detecting low-abundance glycopeptides and phosphopeptides in complex environments, enabling the successful capture from serum samples. The design and application of this material provide new insights into the development of PTMs and their connection to the study of T2D diabetes.
Collapse
Affiliation(s)
- WenGeng Ti
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - MeiYan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - AnYu Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - YueYao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - SiJin Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - QianYing Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
Raza I, Sohail A, Muneer H, Fayyaz H, Uddin Z, Almars AI, Aggad WS, Almohaimeed HM, Ullah I. Viscosol Treatment Ameliorates Insulin-Mediated Regulation of Dyslipidemia, Hepatic Steatosis, and Lipid Metabolism by Targeting PTP1B in Type-2 Diabetic Mice Model. Int J Endocrinol 2024; 2024:3914332. [PMID: 39759127 PMCID: PMC11698613 DOI: 10.1155/ije/3914332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM. Numerous studies claimed the anti-inflammatory, hypoglycemic, hepatoprotective, and hypolipidemic activities of Dodonaea viscosa. Previously, we generated the high-fat diet (HFD)-low dose streptozotocin (STZ)-induced diabetic male mice model and treated it with a PTP1B inhibitor (5, 7-dihydroxy-3, 6-dimethoxy-2- (4-methoxy-3- (3-methyl-2-enyl) phenyl)-4H-chromen-4-one), isolated from Dodonaea viscosa. In the current study, we aimed to investigate the De novo lipogenesis, adipocyte differentiation, augmentation of lipoproteins clearance, fatty acid uptake, antilipolysis activity, and hepatic steatosis of PTP1B inhibition in adipose and liver tissues of the HFD-STZ-induced diabetic mice model. We found the retrieval of normal morphology of adipocytes and hepatocytes in the compound-treated group. The biochemical parameters showed the gradual reduction of LDL, VLDL, TC, and TG in the serum of the compound-treated group. To further test our hypothesis, real-time PCR was performed, and data revealed the reduction of PTP1B and other inflammatory markers in both tissues, showing enhanced expression of insulin signaling markers (INSR, IRS1, IRS2, and PI3K). Our compound upregulated the adipogenic (PPARγ), lipogenic (SREBP1c, FAS, ACC, and DGAT2), lipoprotein clearance (LPL, LDLR, and VLDLR), fatty acid uptake (CD36 and FATP1), and lipid droplet forming (FSP27 and perilipin-1) markers expressions in adipocytes and downregulated in hepatocytes. Furthermore, we found elevated cholesterol efflux (in adipose and liver) and decreased lipolysis in adipocytes and elevated in hepatocytes. Hence, we can conclude that our compound protects the adipocytes from abrupt lipolysis and stimulates adipocyte differentiation. In addition, it plays a hepatic protective role by shifting clearance and uptake of lipoproteins and fatty acids to the peripheral tissues and retrieving the fatty liver condition.
Collapse
Affiliation(s)
- Idrees Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Aamir Sohail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hamza Muneer
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hajra Fayyaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waheeb S. Aggad
- Division of Anatomy, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah 23234, Saudi Arabia
| | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
6
|
Wang Y, Xu Y, Wu D, Wang D, Fu P, Zhu W, Wang L. Semisynthesis of Nocarterphenyl A and Its Analogues. JOURNAL OF NATURAL PRODUCTS 2024. [PMID: 39730310 DOI: 10.1021/acs.jnatprod.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
p-Terphenyl compounds are known to possess a diverse range of biological activities, making the synthesis of novel p-terphenyl derivatives a significant research objective. In this study, we report the first synthesis of nocarterphenyl A (1), characterized by a thiazole-fused p-terphenyl framework. Furthermore, we synthesized 18 additional analogs, including the naturally occurring compound 5-methoxy-4,7-bis(4-methoxyphenyl)benzo[d]thiazol-6-ol (9), employing a similar synthetic approach. Notably, compounds 12, 13, 15-17, and 19 demonstrated potent inhibitory effects against protein tyrosine phosphatase 1B (PTP1B), exhibiting IC50 values ranging from 2.2 to 7.9 μM, which are lower than that of oleanolic acid (13.2 μM). Additionally, compound 14 was found to inhibit α-glucosidase from human colorectal adenocarcinoma (Caco-2) cells with an IC50 value of 10.4 μM, which is also lower than that of acarbose (11.2 μM).
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Dan Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Dongyang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Peng Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiming Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
7
|
Hansen DT, Tu J, Bouck AW, Mathis CL, Barrios AM. Multipartite Fluorogenic Sensors for Monitoring Tyrosine Phosphatase Activity. Chembiochem 2024; 25:e202400607. [PMID: 39406683 DOI: 10.1002/cbic.202400607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Fluorogenic substrates are essential tools for studying the activity of many enzymes including the protein tyrosine phosphatases (PTPs). Here, we have taken the first step toward the development of genetically encodable sensors for PTP activity using fluorescent and fluorogen-activating proteins. The Fluorescence-Activating and absorption Shifting Tag (FAST) is a small protein that becomes fluorescent upon binding to a small molecule dye. We demonstrate that FAST protein can be used as a sensor for PTP-mediated dephosphorylation of phosphorylated dye molecules. Phosphorylated 4-hydroxybenzylidene rhodanine (pHBR) is not able to bind to the FAST protein and induce fluorescence, but provides a sensitive assay for PTP activity, readily detecting 100 pM concentrations of PTP1B in the presence of FAST with a kcat value of 19±1 s-1 and a KM value of 93±3 μM. In addition, while phosphorylation of the C-terminal peptide of split GFP does not result in appreciable change in fluorescence of the reconstituted protein, phosphorylation of the C-terminal peptide of the split FAST protein abrogates fluorescence. Upon PTP-mediated dephosphorylation of the C-terminal peptide, the ability of the N- and C-terminal components to form a fluorescent complex with the small molecule dye is restored, leading to fluorescence.
Collapse
Affiliation(s)
- Daniel T Hansen
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Alison W Bouck
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Cheryl L Mathis
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
8
|
Tian J, Tan S, Gao L, Rajamani L, Srinivasan R. KAHA ligation as a platform for the rapid discovery of Protein Tyrosine phosphatase 1B (PTP1B) inhibitors. Bioorg Chem 2024; 154:108028. [PMID: 39673878 DOI: 10.1016/j.bioorg.2024.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
We have successfully designed and assembled a 66-member library of protein tyrosine phosphatases (PTP) inhibitor candidates using α-ketoacid-hydroxylamine (KAHA) ligation. Subsequent in situ enzymatic screening revealed a potent hit (IC50 = 1.67 μM) against PTP1B, which displayed 6.8- to 50-fold selectivity over other phosphatases.
Collapse
Affiliation(s)
- Jing Tian
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, PR China; Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007, PR China
| | - Sijia Tan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of SunYat-sen University, Shenzhen 518107, PR China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of SunYat-sen University, Shenzhen 518107, PR China
| | - Lakshminarayanan Rajamani
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, PR China; Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| |
Collapse
|
9
|
Borowska MT, Liu LD, Caveney NA, Jude KM, Kim WJ, Masubuchi T, Hui E, Majzner RG, Garcia KC. Orientation-dependent CD45 inhibition with viral and engineered ligands. Sci Immunol 2024; 9:eadp0707. [PMID: 39454026 PMCID: PMC11537708 DOI: 10.1126/sciimmunol.adp0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/01/2024] [Indexed: 10/27/2024]
Abstract
CD45 is a cell surface phosphatase that shapes the T cell receptor signaling threshold but does not have a known ligand. A family of adenovirus proteins, including E3/49K, exploits CD45 to evade immunity by binding to the extracellular domain of CD45, resulting in the suppression of T cell signaling. We determined the cryo-EM structure of this complex and found that the E3/49K protein is composed of three immunoglobulin domains assembled as "beads on a string" that compel CD45 into a closely abutted dimer by cross-linking the CD45 D3 domain, leading to steric inhibition of its intracellular phosphatase activity. Inspired by the E3/49K mechanism, we engineered CD45 surrogate ligands that can fine-tune T cell activation by dimerizing CD45 into different orientations and proximities. The adenovirus E3/49K protein has taught us that, despite a lack of a known ligand, CD45 activity can be modulated by extracellular dimerizing ligands that perturb its phosphatase activity and alter T cell responses.
Collapse
Affiliation(s)
- Marta T. Borowska
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94063, USA
| | - Liu D. Liu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94063, USA
| | - Nathanael A. Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94063, USA
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94063, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94063, USA
| | - Won-Ju Kim
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Takeya Masubuchi
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Enfu Hui
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robbie G. Majzner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94063, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94063, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94063, USA
| |
Collapse
|
10
|
Cui P, Lian J, Liu Y, Zhang D, Lin Y, Lu L, Ye L, Chen H, An S, Huang J, Liang H. Pan-cancer analysis of the prognostic and immunological roles of SHP-1/ptpn6. Sci Rep 2024; 14:23083. [PMID: 39367146 PMCID: PMC11452508 DOI: 10.1038/s41598-024-74037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
SHP-1, a nonreceptor protein tyrosine phosphatase encoded by ptpn6, has been regarded as a regulatory protein of hematopoietic cell biology for years. However, there is now increasing evidence to support its role in tumors. Thus, the role of ptpn6 for prognosis and immune regulation across 33 tumors was investigated, aiming to explore its functional heterogeneity and clinical significance in pan-cancer. Differential expression of ptpn6 was found between cancer and adjacent normal tissues, and its expression was significantly correlated with the prognosis of tumor patients. In most cancers, ptpn6 expression was significantly associated with immune infiltration. This was further confirmed by ptpn6-related genes/proteins enrichment analysis. Additionally, genetic alterations in ptpn6 was observed in most cancers. As for epigenetic changes, it's phosphorylation levels significantly altered in 6 tumors, while methylation levels significantly altered in 12 tumors. Notably, the methylation levels of ptpn6 were significantly decreased in 11 tumors, accompanied by its increased expression in 8 of them, suggesting that the hypomethylation may be related to its increased expression. Our results show that ptpn6 plays a specific role in tumor immunity and exerts a pleiotropic effect in a variety of tumors. It can serve as a prognostic factor for some cancers. Especially in LGG, KIRC, UCS and TGCT, the increased expression of ptpn6 is associated with poor prognosis and high immune infiltration. This aids in understanding the role of ptpn6 in tumor biology, and can provide insight into presenting a potential biomarker for poor prognosis and immune infiltration in cancers.
Collapse
Affiliation(s)
- Ping Cui
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Jie Lian
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Yang Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongsheng Zhang
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Yao Lin
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Lili Lu
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sanqi An
- Life Science Institute, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China.
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China.
- School of Public Health, Guangxi Medical University, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| | - Hao Liang
- Life Science Institute, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
11
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
12
|
Ryu B, Ponce-Zea JE, Mai VH, Lee M, Hyun Sung S, Won Chin Y, Keun Oh W. Inhibition of protein tyrosine phosphatase 1B by serratane triterpenes from Huperzia serrata and their molecular docking study. Bioorg Med Chem Lett 2024; 111:129904. [PMID: 39069105 DOI: 10.1016/j.bmcl.2024.129904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
During the search for protein tyrosine phosphatase 1B (PTP1B) inhibitory compounds from the natural resources, two new serratane triterpenes, 3-O-dihydro-p-coumaroyltohogenol (1) and 21-O-acetyltohogenol (2), along with four known serratane triterpenes (3-6), were isolated from the whole plant of Huperzia serrata. The chemical structures of compounds 1 and 2 were determined by NMR study, HRMS analysis, and chemical modification. All isolates were evaluated for their PTP1B inhibitory activities. Among the isolates, compounds 1, 3, 5 and 6 exhibit moderate inhibitory activities against PTP1B. Kinetic studies demonstrated that they are competitive inhibitors. Molecular docking studies support these experimental results by showing that compounds 1, 3, 5 and 6 interact with the active site of PTP1B, clarifying the structure-activity relationship. This study suggests that serratane triterpenes from H. serrata have potential as starting skeletons for anti-diabetes or anti-obesity agents.
Collapse
Affiliation(s)
- Byeol Ryu
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jorge-Eduardo Ponce-Zea
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Van-Hieu Mai
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Mina Lee
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea
| | - Sang Hyun Sung
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Young Won Chin
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
13
|
Walters JM, Noblet HA, Chung HJ. An emerging role of STriatal-Enriched protein tyrosine Phosphatase in hyperexcitability-associated brain disorders. Neurobiol Dis 2024; 200:106641. [PMID: 39159894 DOI: 10.1016/j.nbd.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer M Walters
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hayden A Noblet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
14
|
Cai H, Chen S, Jiang Z, Chen L, Yang X. PTPN22 through the regulation of Th17/Treg balance acts as a potential target for the treatment of Graves' disease. Tissue Cell 2024; 90:102502. [PMID: 39083881 DOI: 10.1016/j.tice.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Graves' disease (GD) is an autoimmune disease and the most common cause of hyperthyroidism. While the phosphotyrosine phosphatase non-receptor type 22 (PTPN22) variant is associated with GD susceptibility, its precise role and mechanism in GD remain unclear. To investigate this, we induced GD in mice using Ad-TSHR289 and isolated CD4+ T cells from spleen tissues. We conducted a series of experiments, including hematoxylin-eosin staining, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, flow cytometry, immunofluorescence (IF), reverse transcription quantitative PCR (RT-qPCR), and western blotting. PTPN22 expression was found to be downregulated in GD mice. Overexpression of PTPN22 ameliorated pathological damage and increased serum levels of T4 and thyroid stimulating hormone receptor antibody (TRAb), as well as the ratio of thyroid weight to body weight in GD mice. Furthermore, GD mice exhibited elevated levels of CD4+ and IL-17+ T cells, an increased Th17/Treg ratio, and upregulation of IL-17A mRNA expression. Conversely, there was a decrease in Foxp3+ T cells and transcriptional levels of Foxp3, which were reversed by PTPN22 overexpression. In vitro experiments showed that PTPN22 overexpression in CD4+ T cells from spleen tissues of GD mice enhanced Foxp3 expression while reducing IL-17A expression. Mechanistically, PTPN22 overexpression led to decreased levels of phosphorylated Lck (p-Lck), Lck, phosphorylated Fyn (p-Fyn), Fyn, phosphorylated Zap70 (p-Zap70), and Zap70 in both in vivo and in vitro GD models. In summary, PTPN22 can alleviate thyroid dysfunction in GD by modulating Th17/Treg balance through the downregulation of the Lck/Zap70 signaling axis.
Collapse
Affiliation(s)
- Huiyao Cai
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China.
| | - Siying Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Zhengrong Jiang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Lijun Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xinna Yang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| |
Collapse
|
15
|
Kirtipal N, Seo Y, Son J, Lee S. Systems Biology of Human Microbiome for the Prediction of Personal Glycaemic Response. Diabetes Metab J 2024; 48:821-836. [PMID: 39313228 PMCID: PMC11449821 DOI: 10.4093/dmj.2024.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
The human gut microbiota is increasingly recognized as a pivotal factor in diabetes management, playing a significant role in the body's response to treatment. However, it is important to understand that long-term usage of medicines like metformin and other diabetic treatments can result in problems, gastrointestinal discomfort, and dysbiosis of the gut flora. Advanced sequencing technologies have improved our understanding of the gut microbiome's role in diabetes, uncovering complex interactions between microbial composition and metabolic health. We explore how the gut microbiota affects glucose metabolism and insulin sensitivity by examining a variety of -omics data, including genomics, transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Machine learning algorithms and genome-scale modeling are now being applied to find microbiological biomarkers associated with diabetes risk, predicted disease progression, and guide customized therapy. This study holds promise for specialized diabetic therapy. Despite significant advances, some concerns remain unanswered, including understanding the complex relationship between diabetes etiology and gut microbiota, as well as developing user-friendly technological innovations. This mini-review explores the relationship between multiomics, precision medicine, and machine learning to improve our understanding of the gut microbiome's function in diabetes. In the era of precision medicine, the ultimate goal is to improve patient outcomes through personalized treatments.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Youngchang Seo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jangwon Son
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
16
|
Coronell-Tovar A, Pardo JP, Rodríguez-Romero A, Sosa-Peinado A, Vásquez-Bochm L, Cano-Sánchez P, Álvarez-Añorve LI, González-Andrade M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett 2024; 598:1811-1838. [PMID: 38724486 DOI: 10.1002/1873-3468.14901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan P Pardo
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandro Sosa-Peinado
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Vásquez-Bochm
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Iliana Álvarez-Añorve
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martin González-Andrade
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
17
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
18
|
Taki S, Boron WF, Moss FJ. Novel RPTPγ and RPTPζ splice variants from mixed neuron-astrocyte hippocampal cultures as well as from the hippocampi of newborn and adult mice. Front Physiol 2024; 15:1406448. [PMID: 38952869 PMCID: PMC11215419 DOI: 10.3389/fphys.2024.1406448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor protein tyrosine phosphatases γ and ζ (RPTPγ and RPTPζ) are transmembrane signaling proteins with extracellular carbonic anhydrase-like domains that play vital roles in the development and functioning of the central nervous system (CNS) and are implicated in tumor suppression, neurodegeneration, and sensing of extracellular [CO2] and [HCO3 -]. RPTPγ expresses throughout the body, whereas RPTPζ preferentially expresses in the CNS. Here, we investigate differential RPTPγ-RPTPζ expression in three sources derived from a wild-type laboratory strain of C57BL/6 mice: (a) mixed neuron-astrocyte hippocampal (HC) cultures 14 days post isolation from P0-P2 pups; (b) P0-P2 pup hippocampi; and (c) 9- to 12-week-old adult hippocampi. Regarding RPTPγ, we detect the Ptprg variant-1 (V1) transcript, representing canonical exons 1-30. Moreover, we newly validate the hypothetical assembly [XM_006517956] (propose name, Ptprg-V3), which lacks exon 14. Both transcripts are in all three HC sources. Regarding RPTPζ, we confirm the expression of Ptprz1-V1, detecting it in pups and adults but not in cultures, and Ptprz1-V3 through Ptprz1-V7 in all three preparations. We newly validate hypothetical assemblies Ptprz1-X1 (in cultures and pups), Ptprz1-X2 (in all three), and Ptprz1-X5 (in pups and adults) and propose to re-designate them as Ptprz1-V0, Ptprz1-V2, and Ptprz1-V8, respectively. The diversity of RPTPγ and RPTPζ splice variants likely corresponds to distinct signaling functions, in different cellular compartments, during development vs later life. In contrast to previous studies that report divergent RPTPγ and RPTPζ protein expressions in neurons and sometimes in the glia, we observe that RPTPγ and RPTPζ co-express in the somata and processes of almost all HC neurons but not in astrocytes, in all three HC preparations.
Collapse
Affiliation(s)
- Sara Taki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Fraser J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
19
|
Dong J, Jassim BA, Milholland KL, Qu Z, Bai Y, Miao Y, Miao J, Ma Y, Lin J, Hall MC, Zhang ZY. Development of Novel Phosphonodifluoromethyl-Containing Phosphotyrosine Mimetics and a First-In-Class, Potent, Selective, and Bioavailable Inhibitor of Human CDC14 Phosphatases. J Med Chem 2024; 67:8817-8835. [PMID: 38768084 DOI: 10.1021/acs.jmedchem.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brenson A Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Ma
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Mir IH, Shyam KT, Balakrishnan SS, Kumar MS, Ramesh T, Thirunavukkarasu C. Elucidation of escitalopram oxalate and related antidepressants as putative inhibitors of PTP4A3/PRL-3 protein in hepatocellular carcinoma: A multi-computational investigation. Comput Biol Chem 2024; 110:108039. [PMID: 38471352 DOI: 10.1016/j.compbiolchem.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Hepatocellular carcinoma (HCC) persists to be one of the most devastating and deadliest malignancies globally. Recent research into the molecular signaling networks entailed in many malignancies has given some prominent insights that can be leveraged to create molecular therapeutics for combating HCC. Therefore, in the current communication, an in-silico drug repurposing approach has been employed to target the function of PTP4A3/PRL-3 protein in HCC using antidepressants: Fluoxetine hydrochloride, Citalopram, Amitriptyline, Imipramine, and Escitalopram oxalate as the desired ligands. The density function theory (DFT) and chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters for the chosen ligands were evaluated to comprehend the pharmacokinetics, drug-likeness properties, and bioreactivity of the ligands. The precise interaction mechanism was explored using computational methods such as molecular docking and molecular dynamics (MD) simulation studies to assess the inhibitory effect and the stability of the interactions against the protein of interest. Escitalopram oxalate exhibited a comparatively significant docking score (-7.4 kcal/mol) compared to the control JMS-053 (-6.8 kcal/mol) against the PRL-3 protein. The 2D interaction plots exhibited an array of hydrophobic and hydrogen bond interactions. The findings of the ADMET forecast confirmed that it adheres to Lipinski's rule of five with no violations, and DFT analysis revealed a HOMO-LUMO energy gap of -0.26778 ev, demonstrating better reactivity than the control molecule. The docked complexes were subjected to MD studies (100 ns) showing stable interactions. Considering all the findings, it can be concluded that Escitalopram oxalate and related therapeutics can act as potential pharmacological candidates for targeting the activity of PTP4A3/PRL-3 in HCC.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - Kankipati Teja Shyam
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | | | | | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
21
|
Hansen DT, Rueb NJ, Levinzon ND, Cheatham TE, Gaston R, Tanvir Ahmed K, Osburn-Staker S, Cox JE, Dudley GB, Barrios AM. The mechanism of covalent inhibition of LAR phosphatase by illudalic acid. Bioorg Med Chem Lett 2024; 104:129740. [PMID: 38599294 PMCID: PMC11057956 DOI: 10.1016/j.bmcl.2024.129740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Leukocyte antigen-related (LAR) phosphatase is a receptor-type protein tyrosine phosphatase involved in cellular signaling and associated with human disease including cancer and metabolic disorders. Selective inhibition of LAR phosphatase activity by well characterized and well validated small molecules would provide key insights into the roles of LAR phosphatase in health and disease, but identifying selective inhibitors of LAR phosphatase activity has been challenging. Recently, we described potent and selective inhibition of LAR phosphatase activity by the fungal natural product illudalic acid. Here we provide a detailed biochemical characterization of the adduct formed between LAR phosphatase and illudalic acid. A mass spectrometric analysis indicates that two cysteine residues are covalently labeled by illudalic acid and a related analog. Mutational analysis supports the hypothesis that inhibition of LAR phosphatase activity is due primarily to the adduct with the catalytic cysteine residue. A computational study suggests potential interactions between the illudalic acid moiety and the enzyme active site. Taken together, these data offer novel insights into the mechanism of inhibition of LAR phosphatase activity by illudalic acid.
Collapse
Affiliation(s)
- Daniel T Hansen
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicole J Rueb
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathan D Levinzon
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert Gaston
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Kh Tanvir Ahmed
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Sandra Osburn-Staker
- Mass Spectrometry and Proteomics Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - James E Cox
- Mass Spectrometry and Proteomics Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
22
|
Zhang C, Yang X, Wu L, Liu F, Dong K, Guo C, Gong L, Dong G, Shi Y, Gu Z, Liu X, Liu S, Wu J, Su F. Site-Specifically Modified Peptide Inhibitors of Protein Tyrosine Phosphatase 1B and T-Cell Protein Tyrosine Phosphatase with Enhanced Stability and Improved In Vivo Long-Acting Activity. ACS Pharmacol Transl Sci 2024; 7:1426-1437. [PMID: 38751623 PMCID: PMC11091969 DOI: 10.1021/acsptsci.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) and TC-PTP can function in a coordinated manner to regulate diverse biological processes including insulin and leptin signaling, T-cell activation, and tumor antigen presentation, which makes them potential targets for several therapeutic applications. We have previously demonstrated that the lipidated BimBH3 peptide analogues were a new class of promising PTP1B inhibitors with once-weekly antidiabetic potency. Herein, we chemically synthesized two series of BimBH3 analogues via site-specific modification and studied their structure-activity relationship. The screened analogues S2, S6, A2-14, A2-17, A2-20, and A2-21 exhibited an improved PTP1B/TC-PTP dual inhibitory activity and achieved good stability in the plasma of mice and dogs, which indicated long-acting potential. In mouse models of type 2 diabetes mellitus (T2DM), the selected analogues S6, S7, A2-20, and A2-21 with an excellent target activity and plasma stability generated once-weekly therapeutic potency for T2DM at lower dosage (0.5 μmol/kg). In addition, evidence was provided to confirm the cell permeability and targeted enrichment of the BimBH3 analogues. In summary, we report here that site-specific modification and long fatty acid conjugation afforded cell-permeable peptidomimetic analogues of BimBH3 with enhanced stability, in vivo activity, and long-acting pharmacokinetic profile. Our findings could guide the further optimization of BimBH3 analogues and provide a proof-of-concept for PTP1B/TC-PTP targeting as a new therapeutic approach for T2DM, which may facilitate the discovery and development of alternative once-weekly anti-T2DM drug candidates.
Collapse
Affiliation(s)
- Chuanliang Zhang
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Xianmin Yang
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Lijuan Wu
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Fei Liu
- Joincare
Pharmaceutical Group Industry Co., Ltd, Shenzhen 518000, China
| | - Kehong Dong
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Liyan Gong
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Guozhen Dong
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Yiying Shi
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Zongwen Gu
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Xiaochun Liu
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Shan Liu
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Juan Wu
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Feng Su
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| |
Collapse
|
23
|
Liang W, Krabill AD, Gallagher KS, Muli C, Qu Z, Trader D, Zhang ZY, Dai M. Natural Product-Inspired Molecules for Covalent Inhibition of SHP2 Tyrosine Phosphatase. Tetrahedron 2024; 156:133918. [PMID: 38618612 PMCID: PMC11008911 DOI: 10.1016/j.tet.2024.133918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Natural products have been playing indispensable roles in the development of lifesaving drug molecules. They are also valuable sources for covalent protein modifiers. However, they often are scarce in nature and have complex chemical structures, which are limiting their further biomedical development. Thus, natural product-inspired small molecules which still contain the essence of the parent natural products but are readily available and amenable for structural modification, are important and desirable in searching for lead compounds for various disease treatment. Inspired by the complex and diverse ent-kaurene diterpenoids with significant biological activities, we have created a synthetically accessible and focused covalent library by incorporating the bicyclo[3.2.1]octane α-methylene ketone, which is considered as the pharmacophore of ent-kaurene diterpenoids, as half of the structure, and replacing the other half with much less complex but more druglike scaffolds. From this library, we have identified and characterized selective covalent inhibitors of protein tyrosine phosphatase SHP2, an important anti-cancer therapeutic target. The success of this study demonstrated the importance of creating and evaluating natural product-inspired library as well as their application in targeting challenging disease targets.
Collapse
Affiliation(s)
- Weida Liang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Katelyn S Gallagher
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Christine Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Zihan Qu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Darci Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Mingji Dai
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
24
|
Han J, Wang C, Yang H, Luo J, Zhang X, Zhang XA. Novel Insights into the Links between N6-Methyladenosine and Regulated Cell Death in Musculoskeletal Diseases. Biomolecules 2024; 14:514. [PMID: 38785921 PMCID: PMC11117795 DOI: 10.3390/biom14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Musculoskeletal diseases (MSDs), including osteoarthritis (OA), osteosarcoma (OS), multiple myeloma (MM), intervertebral disc degeneration (IDD), osteoporosis (OP), and rheumatoid arthritis (RA), present noteworthy obstacles associated with pain, disability, and impaired quality of life on a global scale. In recent years, it has become increasingly apparent that N6-methyladenosine (m6A) is a key regulator in the expression of genes in a multitude of biological processes. m6A is composed of 0.1-0.4% adenylate residues, especially at the beginning of 3'-UTR near the translation stop codon. The m6A regulator can be classified into three types, namely the "writer", "reader", and "eraser". Studies have shown that the epigenetic modulation of m6A influences mRNA processing, nuclear export, translation, and splicing. Regulated cell death (RCD) is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment. Moreover, distorted RCDs are widely used to influence the course of various diseases and receiving increasing attention from researchers. In the past few years, increasing evidence has indicated that m6A can regulate gene expression and thus influence different RCD processes, which has a central role in the etiology and evolution of MSDs. The RCDs currently confirmed to be associated with m6A are autophagy-dependent cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, immunogenic cell death, NETotic cell death and oxeiptosis. The m6A-RCD axis can regulate the inflammatory response in chondrocytes and the invasive and migratory of MM cells to bone remodeling capacity, thereby influencing the development of MSDs. This review gives a complete overview of the regulatory functions on the m6A-RCD axis across muscle, bone, and cartilage. In addition, we also discuss recent advances in the control of RCD by m6A-targeted factors and explore the clinical application prospects of therapies targeting the m6A-RCD in MSD prevention and treatment. These may provide new ideas and directions for understanding the pathophysiological mechanism of MSDs and the clinical prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Haolin Yang
- College of Pharmacy, Jilin University, Changchun 132000, China;
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang 110100, China;
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| |
Collapse
|
25
|
Schwartz L, Salamon K, Simoni A, Eichler T, Jackson AR, Murtha M, Becknell B, Kauffman A, Linn-Peirano S, Holdsworth N, Tyagi V, Tang H, Rust S, Cortado H, Zabbarova I, Kanai A, Spencer JD. Insulin receptor signaling engages bladder urothelial defenses that limit urinary tract infection. Cell Rep 2024; 43:114007. [PMID: 38517889 DOI: 10.1016/j.celrep.2024.114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024] Open
Abstract
Urinary tract infections (UTIs) commonly afflict people with diabetes. To better understand the mechanisms that predispose diabetics to UTIs, we employ diabetic mouse models and altered insulin signaling to show that insulin receptor (IR) shapes UTI defenses. Our findings are validated in human biosamples. We report that diabetic mice have suppressed IR expression and are more susceptible to UTIs caused by uropathogenic Escherichia coli (UPEC). Systemic IR inhibition increases UPEC susceptibility, while IR activation reduces UTIs. Localized IR deletion in bladder urothelium promotes UTI by increasing barrier permeability and suppressing antimicrobial peptides. Mechanistically, IR deletion reduces nuclear factor κB (NF-κB)-dependent programming that co-regulates urothelial tight junction integrity and antimicrobial peptides. Exfoliated urothelial cells or urine samples from diabetic youths show suppressed expression of IR, barrier genes, and antimicrobial peptides. These observations demonstrate that urothelial insulin signaling has a role in UTI prevention and link IR to urothelial barrier maintenance and antimicrobial peptide expression.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA
| | - Kristin Salamon
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Aaron Simoni
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Tad Eichler
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Ashley R Jackson
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA
| | - Matthew Murtha
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA
| | - Andrew Kauffman
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Tulane University, New Orleans, LA 70118, USA
| | - Sarah Linn-Peirano
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Natalie Holdsworth
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Vidhi Tyagi
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Hancong Tang
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Steve Rust
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Hanna Cortado
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Irina Zabbarova
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony Kanai
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA.
| |
Collapse
|
26
|
Mestareehi A, Abu-Farsakh N. Impact of Protein Phosphatase Expressions on the Prognosis of Hepatocellular Carcinoma Patients. ACS OMEGA 2024; 9:10299-10331. [PMID: 38463290 PMCID: PMC10918787 DOI: 10.1021/acsomega.3c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
The study was conducted to unveil the significance of protein phosphatases in the prognosis of hepatocellular carcinoma (HCC) patients and its related molecular biological attributes as well as to discover novel potential biomarkers for therapeutic significance and diagnostic purposes that may benefit clinical practice. Analyzing a data set from 159 HCC patients using high-throughput phosphoproteomics, we examined the dysregulated expression of protein phosphatases. Employing bioinformatic and pathway analyses, we explored differentially expressed genes linked to protein phosphatases. A protein-protein interaction network was constructed using the search tool for the retrieval of interacting genes/proteins database. We quantified a total of 11,547 phosphorylation sites associated with 4043 phosphoproteins from HCC patients. Within this data set, we identified 105 identified phosphorylation sites associated with protein phosphatases; 28 genes were upregulated and 3 were downregulated in HCC. Enriched pathways using Gene Set Enrichment Analysis encompassed oocyte meiosis, proteoglycans in cancer, the oxytocin signaling pathway, the cGMP-PKG signaling pathway, the vascular smooth muscle, and the cAMP signaling pathway. The Kyoto encyclopedia of genes and genomes (KEGG) analysis highlighted pathways like mitogen-activated protein kinase, AMPK, and PI3K-Akt, indicating potential involvement in HCC progression. Notably, the PPI network identified hub genes, emphasizing their interconnections and potential roles in HCC. In our study, we found significantly upregulated levels of CDC25C, PPP1R13L, and PPP1CA, which emerge as promising avenues. This significant expression could serve as potent diagnostic and prognostic markers to enhance the effectiveness of HCC cancer treatment, offering efficiency and accuracy in patient assessment. The findings regarding protein phosphatases reveal their elevated expression in HCC, correlating with unfavorable prognosis. Moreover, the outcomes of gene ontology and KEGG pathway analyses suggest that protein phosphatases may influence liver cancer by engaging diverse targets and pathways, ultimately fostering the progression of HCC. These results underscore the substantial potential of protein phosphatases as key contributors to HCC's development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance the comprehension of the intricate molecular mechanisms underpinning HCC.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
| | - Noor Abu-Farsakh
- Department
of Gastroenterology and Hepatology, Internal Medicine Department, Jordan University Hospital, Amman 11942, Jordan
| |
Collapse
|
27
|
Khaledi K, Hoseini R, Gharzi A. The impact of vitamin D on type 2 diabetes management: boosting PTP1B gene expression and physical activity benefits in rats. GENES & NUTRITION 2024; 19:4. [PMID: 38431555 PMCID: PMC10908205 DOI: 10.1186/s12263-023-00736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/15/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND The protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in the development of insulin resistance. Aerobic training (AT) and vitamin D (Vit D) supplementation have been shown to individually improve glucose tolerance and diabetes-related factors. However, the impact of their combined effect on PTP1B gene expression and serum irisin in the visceral adipose tissue remains unknown. This study aims to investigate whether 8 weeks of combined AT with Vit D supplementation can improve the expression of PTP1B in adipose tissue and serum irisin in obese rats with type 2 diabetes (T2D). METHODS Fifty male Wistar rats were divided into two groups: diabetic (n = 40) and non-diabetic (ND; n = 10). The diabetic rats were further divided into four groups: aerobic training with vitamin D supplementation (D + AT + Vit D; n = 10), aerobic training only (D + AT; n = 10), vitamin D supplementation only (D + Vit D; n = 10), and control (D + C; n = 10). The D + Vit D and D + AT + Vit D groups received 5000 IU of vitamin D via injection once a week, while the D + AT and D + C groups received sesame oil. Diabetes was induced in all groups except the nondiabetic group by intraperitoneal (IP) injection of streptozotocin. At the end of the intervention, blood and adipose tissue samples were collected, and RNA was extracted from adipose tissue for real-time PCR analysis of PPTP1B gene expression. RESULTS There was an increase in serum Vit D and irisin levels and a decrease in HOMA-IR and PTP1B gene expression in the diabetic rat model treated with D + AT and injected with 50,000 IU/kg/week of Vit D. Comparatively, when treated with D + AT + Vit D, the downregulation of PTP1B was significantly higher (p = 0.049; p = 0.004), and there was a significant increase in irisin (p = 0.010; p = 0.001). CONCLUSION The present study shows that the combined AT and Vit D supplementation positively impacts the expression of PTP1B in adipose tissue and serum irisin in rats with T2D. These findings suggest that combining AT with Vit D supplementation can provide a new and effective strategy to improve glucose tolerance and diabetes-related factors in individuals with T2D by regulating the expression of PTP1B in adipose tissue and promoting the synthesis of beneficial irisin protein.
Collapse
Affiliation(s)
- Kimya Khaledi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
28
|
Zhou X, Xu Q, Li W, Dong N, Stomberski C, Narla G, Lin Z. Protein Phosphatase 2A Activation Promotes Heart Transplant Acceptance in Mice. Transplantation 2024; 108:e36-e48. [PMID: 38126420 PMCID: PMC10922415 DOI: 10.1097/tp.0000000000004832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
BACKGROUND Although heart transplantation is the definitive treatment for heart failure in eligible patients, both acute and chronic transplant rejection frequently occur. Protein phosphatase 2A (PP2A) activity is critical in maintaining tissue and organ homeostasis. In this study, we evaluated the effect of a novel class of small molecule activators of PP2A (SMAPs) on allograft rejection in a mouse heterotopic heart transplantation model. METHODS Recipient mice were administered with DT-061 (a pharmaceutically optimized SMAP) or vehicle by oral gavage beginning 1 d after transplantation. Histological and immunofluorescence analyses were performed to examine allograft rejection. Regulatory T cells (Treg) from recipient spleens were subjected to flow cytometry and RNA sequencing analysis. Finally, the effect of DT-061 on smooth muscle cells (SMCs) migration and proliferation was assessed. RESULTS DT-061 treatment prolonged cardiac allograft survival. SMAPs effectively suppressed the inflammatory immune response while increasing Treg population in the allografts, findings corroborated by functional analysis of RNA sequencing data derived from Treg of treated splenic tissues. Importantly, SMAPs extended immunosuppressive agent cytotoxic T lymphocyte-associated antigen-4-Ig-induced cardiac transplantation tolerance and allograft survival. SMAPs also strongly mitigated cardiac allograft vasculopathy as evidenced by a marked reduction of neointimal hyperplasia and SMC proliferation. Finally, our in vitro studies implicate suppression of MEK/ERK pathways as a unifying mechanism for the effect of PP2A modulation in Treg and SMCs. CONCLUSIONS PP2A activation prevents cardiac rejection and prolongs allograft survival in a murine model. Our findings highlight the potential of PP2A activation in improving alloengraftment in heart transplantation.
Collapse
Affiliation(s)
- Xianming Zhou
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xu
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cardiovascular Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Wangzi Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Colin Stomberski
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyong Lin
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
29
|
Nelson CB, Rogers S, Roychoudhury K, Tan YS, Atkinson CJ, Sobinoff AP, Tomlinson CG, Hsu A, Lu R, Dray E, Haber M, Fletcher JI, Cesare AJ, Hegde RS, Pickett HA. The Eyes Absent family members EYA4 and EYA1 promote PLK1 activation and successful mitosis through tyrosine dephosphorylation. Nat Commun 2024; 15:1385. [PMID: 38360978 PMCID: PMC10869800 DOI: 10.1038/s41467-024-45683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.
Collapse
Affiliation(s)
- Christopher B Nelson
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Samuel Rogers
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Kaushik Roychoudhury
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Caroline J Atkinson
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Alexander P Sobinoff
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Christopher G Tomlinson
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Anton Hsu
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Robert Lu
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Eloise Dray
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Anthony J Cesare
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hilda A Pickett
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
30
|
Danao KR, Rokde VV, Nandurkar DM, Mahajan UN. Pyrazole Scaffold: Potential PTP1B Inhibitors for Diabetes Treatment. Curr Diabetes Rev 2024; 21:e130224226925. [PMID: 38351692 DOI: 10.2174/0115733998280245240130075909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The overexpression of the Protein Tyrosine Phosphatase 1B (PTP1B), a key role in the development of insulin resistance, diabetes (T2DM) and obesity, seems to have a substantial impact as a negative regulator of the insulin and leptin signaling pathways. Therefore, inhibiting PTP1B is a prospective therapeutic approach for the treatment of diabetes and obesity. However, the pyrazole scaffold is expected to be of significant pharmaceutical interest due to its broad spectrum of pharmacological actions. This study aims to focus on the significance of pyrazole scaffold in medicinal chemistry, the impact of PTP1B in diabetes and the therapeutic approach of pyrazole scaffold to treat T2DM. METHODS A comprehensive analysis of the published literature in several pharmaceutical and medical databases, such as the Web of Science (WoS), PubMed, ResearchGate, ScienceDirect etc., were indeed successfully completed and classified accordingly. RESULTS As reviewed, the various derivatives of the pyrazole scaffold exhibited prominent PTP1B inhibitory activity. The result showed that derivatives of oxadiazole and dibenzyl amine, chloro substituents, 1, 3-diaryl pyrazole derivatives with rhodanine-3-alkanoic acid groups, naphthalene and also 1, 3, 5-triazine-1H-pyrazole-triazolothiadiazole derivatives, octyl and tetradecyl derivative, indole- and N-phenylpyrazole-glycyrrhetinic acid derivatives with trifluoromethyl group, 2,3-pyrazole ring-substituted-4,4-dimethyl lithocholic acid derivatives with 4- fluoro phenyl substituted and additional benzene ring in the pyrazole scaffold significantly inhibits PTP1B. In silico study observed that pyrazole scaffold interacted with amino acid residues like TYR46, ASP48, PHE182, TYR46, ALA217 and ILE219. CONCLUSION Diabetes is a metabolic disorder that elevates the risk of mortality and severe complications. PTP1B is a crucial component in the management of diabetes and obesity. As a result, PTP1B is a promising therapeutic target for the treatment of T2DM and obesity in humans. We concluded that the pyrazole scaffold has prominent inhibitory potential against PTP1B.
Collapse
Affiliation(s)
- Kishor R Danao
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra 440037, India
| | - Vijayshri V Rokde
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra 440037, India
| | - Deweshri M Nandurkar
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra 440037, India
| | - Ujwala N Mahajan
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra 440037, India
| |
Collapse
|
31
|
Kruglova N, Filatov A. Detecting PTP Protein-Protein Interactions by Fluorescent Immunoprecipitation Analysis (FIPA). Methods Mol Biol 2024; 2743:181-194. [PMID: 38147216 DOI: 10.1007/978-1-0716-3569-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Identifying protein-protein interactions is crucial for revealing protein functions and characterizing cellular processes. Manipulating PPIs has become widespread in treating human diseases such as cancer, autoimmunity, and infections. It has been recently applied to the regulation of protein tyrosine phosphatases (PTPs) previously considered undruggable. A broad panel of methods is available for studying PPIs. To complement the existing toolkit, we developed a simple method called fluorescent immunoprecipitation analysis (FIPA). This method is based on coimmunoprecipitation followed by protein gel electrophoresis and fluorescent imaging to visualize components of a protein complex simultaneously on a gel. The FIPA allows the detection of proteins expressed under native conditions and is compatible with mass spectrometry identification of protein bands.
Collapse
Affiliation(s)
- Natalia Kruglova
- Cell and Gene Technology Group, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, Russia
- National Research Center, Institute of Immunology of Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Alexander Filatov
- National Research Center, Institute of Immunology of Federal Medical Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
32
|
Li YM, He HW, Zhang N. Targeting Protein Phosphatases for the Treatment of Chronic Liver Disease. Curr Drug Targets 2024; 25:171-189. [PMID: 38213163 DOI: 10.2174/0113894501278886231221092522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Yi-Ming Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Wei He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Na Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
33
|
Qu Z, Dong J, Zhang ZY. Protein tyrosine phosphatases as emerging targets for cancer immunotherapy. Br J Pharmacol 2023:10.1111/bph.16304. [PMID: 38116815 PMCID: PMC11186978 DOI: 10.1111/bph.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Contemporary strategies in cancer immunotherapy, despite remarkable success, remain constrained by inherent limitations such as suboptimal patient responses, the emergence of drug resistance, and the manifestation of pronounced adverse effects. Consequently, the need for alternative strategies for immunotherapy becomes clear. Protein tyrosine phosphatases (PTPs) wield a pivotal regulatory influence over an array of essential cellular processes. Substantial research has underscored the potential in targeting PTPs to modulate the immune responses and/or regulate antigen presentation, thereby presenting a novel paradigm for cancer immunotherapy. In this review, we focus on recent advances in genetic and biological validation of several PTPs as emerging targets for immunotherapy. We also highlight recent development of small molecule inhibitors and degraders targeting these PTPs as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Zihan Qu
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
Miao J, Dong J, Miao Y, Bai Y, Qu Z, Jassim BA, Huang B, Nguyen Q, Ma Y, Murray AA, Li J, Low PS, Zhang ZY. Discovery of a selective TC-PTP degrader for cancer immunotherapy. Chem Sci 2023; 14:12606-12614. [PMID: 38020389 PMCID: PMC10646932 DOI: 10.1039/d3sc04541b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
T-cell protein tyrosine phosphatase (TC-PTP), encoded by PTPN2, has emerged as a promising target for cancer immunotherapy. TC-PTP deletion in B16 melanoma cells promotes tumor cell antigen presentation, while loss of TC-PTP in T-cells enhances T-cell receptor (TCR) signaling and stimulates cell proliferation and activation. Therefore, there is keen interest in developing TC-PTP inhibitors as novel immunotherapeutic agents. Through rational design and systematic screening, we discovered the first highly potent and selective TC-PTP PROTAC degrader, TP1L, which induces degradation of TC-PTP in multiple cell lines with low nanomolar DC50s and >110-fold selectivity over the closely related PTP1B. TP1L elevates the phosphorylation level of TC-PTP substrates including pSTAT1 and pJAK1, while pJAK2, the substrate of PTP1B, is unaffected by the TC-PTP degrader. TP1L also intensifies interferon gamma (IFN-γ) signaling and increases MHC-I expression. In Jurkat cells, TP1L activates TCR signaling through increased phosphorylation of LCK. Furthermore, in a CAR-T cell and KB tumor cell co-culture model, TP1L enhances CAR-T cell mediated tumor killing efficacy through activation of the CAR-T cells. Thus, we surmise that TP1L not only provides a unique opportunity for in-depth interrogation of TC-PTP biology but also serves as an excellent starting point for the development of novel immunotherapeutic agents targeting TC-PTP.
Collapse
Affiliation(s)
- Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Zihan Qu
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Brenson A Jassim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Bo Huang
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Quyen Nguyen
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Yuan Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Allison A Murray
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Jinyue Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Philip S Low
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Institute for Cancer Research, Purdue University West Lafayette IN 47907 USA
- Institute for Drug Discovery, Purdue University West Lafayette IN 47907 USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Institute for Cancer Research, Purdue University West Lafayette IN 47907 USA
- Institute for Drug Discovery, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
35
|
He Y, Nan D, Wang H. Role of Non-Receptor-Type Tyrosine Phosphatases in Brain-Related Diseases. Mol Neurobiol 2023; 60:6530-6541. [PMID: 37458988 DOI: 10.1007/s12035-023-03487-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023]
Abstract
The non-receptor protein tyrosine phosphatase is a class of enzymes that catalyze the dephosphorylation of phosphotyrosines in protein molecules. They are involved in cellular signaling by regulating the phosphorylation status of a variety of receptors and signaling molecules within the cell, thereby influencing cellular physiological and pathological processes. In this article, we detail multiple non-receptor tyrosine phosphatase and non-receptor tyrosine phosphatase genes involved in the pathological process of brain disease. These include PTPN6, PTPN11, and PTPN13, which are involved in glioma signaling; PTPN1, PTPN5, and PTPN13, which are involved in the pathogenesis of Alzheimer's disease Tau protein lesions, PTPN23, which may be involved in the pathogenesis of Epilepsy and PTPN1, which is involved in the pathogenesis of Parkinson's disease. The role of mitochondrial tyrosine phosphatase in brain diseases was also discussed. Non-receptor tyrosine phosphatases have great potential for targeted therapies in brain diseases and are highly promising research areas.
Collapse
Affiliation(s)
- Yatong He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ding Nan
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
36
|
Fürst A, Shahzadi I, Akkuş-Dağdeviren ZB, Schöpf AM, Gust R, Bernkop-Schnürch A. Zeta potential shifting nanoemulsions comprising single and gemini tyrosine-based surfactants. Eur J Pharm Sci 2023; 189:106538. [PMID: 37495057 DOI: 10.1016/j.ejps.2023.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
AIM This study aims to design and evaluate zeta potential shifting nanoemulsions comprising single and gemini type tyrosine-based surfactants for specific cleavage by tyrosine phosphatase. METHODS Tyrosine-based surfactants, either single 4-(2-amino-3-(dodecylamino)-3-oxopropyl)phenyl dihydrogen phosphate (AF1) or gemini 4-(2-amino-3-((1-(dodecylamino)-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)amino)-3-oxopropyl)phenyl dihydrogen phosphate (AF2) type were synthesized via amide bond formation of tyrosine with dodecylamine followed by phosphorylation. These surfactants were incorporated into nanoemulsions. Nanoemulsions were monitored by incubation with isolated tyrosine phosphatase as well as secreted tyrosine phosphatase of Escherichia coli in terms of phosphate release and zeta potential change. RESULTS Via isolated tyrosine phosphatase, and mediated by E. coli, phosphate groups of either single or gemini tyrosine-based surfactants could be cleaved by secreted tyrosine phosphatase. Nanoemulsions comprising a single tyrosine-based surfactant resulted in a charge shift from - 13.46 mV to - 4.41 mV employing isolated tyrosine phosphatase whilst nanoemulsions consisting of a gemini tyrosine-based surfactant showed a shift in zeta potential from - 15.92 mV to - 5.86 mV, respectively. CONCLUSION Nanoemulsions containing tyrosine-based surfactants represent promising zeta potential shifting nanocarrier systems targeting tyrosine phosphatase secreting bacteria.
Collapse
Affiliation(s)
- Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Zeynep Burcu Akkuş-Dağdeviren
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Anna Maria Schöpf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
37
|
Casertano M, Vito A, Aiello A, Imperatore C, Menna M. Natural Bioactive Compounds from Marine Invertebrates That Modulate Key Targets Implicated in the Onset of Type 2 Diabetes Mellitus (T2DM) and Its Complications. Pharmaceutics 2023; 15:2321. [PMID: 37765290 PMCID: PMC10538088 DOI: 10.3390/pharmaceutics15092321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an ongoing, risky, and costly health problem that therefore always requires new treatment options. Moreover, although several drugs are available, only 36% of patients achieve glycaemic control, and patient adherence is a major obstacle. With monotherapy, T2DM and its comorbidities/complications often cannot be managed, and the concurrent administration of several hypoglycaemic drugs is required, which increases the risk of side effects. In fact, despite the efficacy of the drugs currently on the market, they generally come with serious side effects. Therefore, scientific research must always be active in the discovery of new therapeutic agents. DISCUSSION The present review highlights some of the recent discoveries regarding marine natural products that can modulate the various targets that have been identified as crucial in the establishment of T2DM disease and its complications, with a focus on the compounds isolated from marine invertebrates. The activities of these metabolites are illustrated and discussed. OBJECTIVES The paper aims to capture the relevant evidence of the great chemical diversity of marine natural products as a key tool that can advance understanding in the T2DM research field, as well as in antidiabetic drug discovery. The variety of chemical scaffolds highlighted by the natural hits provides not only a source of chemical probes for the study of specific targets involved in the onset of T2DM, but is also a helpful tool for the development of drugs that are capable of acting via novel mechanisms. Thus, it lays the foundation for the design of multiple ligands that can overcome the drawbacks of polypharmacology.
Collapse
Affiliation(s)
| | | | | | | | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (A.V.); (A.A.); (C.I.)
| |
Collapse
|
38
|
Rizzo S, Sikorski E, Park S, Im W, Vasquez‐Montes V, Ladokhin AS, Thévenin D. Promoting the activity of a receptor tyrosine phosphatase with a novel pH-responsive transmembrane agonist inhibits cancer-associated phenotypes. Protein Sci 2023; 32:e4742. [PMID: 37515426 PMCID: PMC10461461 DOI: 10.1002/pro.4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
Cell signaling by receptor protein tyrosine kinases (RTKs) is tightly controlled by the counterbalancing actions of receptor protein tyrosine phosphatases (RPTPs). Due to their role in attenuating the signal-initiating potency of RTKs, RPTPs have long been viewed as therapeutic targets. However, the development of activators of RPTPs has remained limited. We previously reported that the homodimerization of a representative member of the RPTP family (protein tyrosine phosphatase receptor J or PTPRJ) is regulated by specific transmembrane (TM) residues. Disrupting this interaction by single point mutations promotes PTPRJ access to its RTK substrates (e.g., EGFR and FLT3), reduces RTK's phosphorylation and downstream signaling, and ultimately antagonizes RTK-driven cell phenotypes. Here, we designed and tested a series of first-in-class pH-responsive TM peptide agonists of PTPRJ that are soluble in aqueous solution but insert as a helical TM domain in lipid membranes when the pH is lowered to match that of the acidic microenvironment of tumors. The most promising peptide reduced EGFR's phosphorylation and inhibited cancer cell EGFR-driven migration and proliferation, similar to the PTPRJ's TM point mutations. Developing tumor-selective and TM-targeting peptide binders of critical RPTPs could afford a potentially transformative approach to studying RPTP's selectivity mechanism without requiring less specific inhibitors and represent a novel class of therapeutics against RTK-driven cancers.
Collapse
Affiliation(s)
- Sophie Rizzo
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Eden Sikorski
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Soohyung Park
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Wonpil Im
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Victor Vasquez‐Montes
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Damien Thévenin
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
39
|
Nowell J, Blunt E, Gupta D, Edison P. Antidiabetic agents as a novel treatment for Alzheimer's and Parkinson's disease. Ageing Res Rev 2023; 89:101979. [PMID: 37328112 DOI: 10.1016/j.arr.2023.101979] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Therapeutic strategies for neurodegenerative disorders have commonly targeted individual aspects of the disease pathogenesis to little success. Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by several pathological features. In AD and PD, there is an abnormal accumulation of toxic proteins, increased inflammation, decreased synaptic function, neuronal loss, increased astrocyte activation, and perhaps a state of insulin resistance. Epidemiological evidence has revealed a link between AD/PD and type 2 diabetes mellitus, with these disorders sharing some pathological commonalities. Such a link has opened up a promising avenue for repurposing antidiabetic agents in the treatment of neurodegenerative disorders. A successful therapeutic strategy for AD/PD would likely require a single or several agents which target the separate pathological processes in the disease. Targeting cerebral insulin signalling produces numerous neuroprotective effects in preclinical AD/PD brain models. Clinical trials have shown the promise of approved diabetic compounds in improving motor symptoms of PD and preventing neurodegenerative decline, with numerous further phase II trials and phase III trials underway in AD and PD populations. Alongside insulin signalling, targeting incretin receptors in the brain represents one of the most promising strategies for repurposing currently available agents for the treatment of AD/PD. Most notably, glucagon-like-peptide-1 (GLP-1) receptor agonists have displayed impressive clinical potential in preclinical and early clinical studies. In AD the GLP-1 receptor agonist, liraglutide, has been demonstrated to improve cerebral glucose metabolism and functional connectivity in small-scale pilot trials. Whilst in PD, the GLP-1 receptor agonist exenatide is effective in restoring motor function and cognition. Targeting brain incretin receptors reduces inflammation, inhibits apoptosis, prevents toxic protein aggregation, enhances long-term potentiation and autophagy as well as restores dysfunctional insulin signalling. Support is also increasing for the use of additional approved diabetic treatments, including intranasal insulin, metformin hydrochloride, peroxisome proliferator-activated nuclear receptor γ agonists, amylin analogs, and protein tyrosine phosphatase 1B inhibitors which are in the investigation for deployment in PD and AD treatment. As such, we provide a comprehensive review of several promising anti-diabetic agents for the treatment of AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dhruv Gupta
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK; School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
40
|
Li R, Zhou L, Yang C, Xu WD, Huang AF. Relationship between SHP2 gene polymorphisms and systemic lupus erythematosus risk. Int J Rheum Dis 2023; 26:1485-1494. [PMID: 37270672 DOI: 10.1111/1756-185x.14761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a complex autoimmune disorder. SHP2, a non-transmembrane member of the protein tyrosine phosphatase (PTP) family, can be involved in multiple signaling pathways in inflammatory response. To date, it remains to be investigated whether polymorphisms in the SHP2 gene are correlated with SLE in the Chinese Han population. METHOD A study comprising 320 SLE patients and 400 healthy individuals was performed. Three single nucleotide polymorphisms (rs4767860, rs7132778, rs7953150) of the SHP2 gene were genotyped using the Kompetitive Allele-Specific Polymerase Chain Reaction method. RESULTS Genotypes of rs4767860 (AA, AG + AA) and rs7132778 (AA, AC + AA), and alleles of rs4767860 (A) and rs7132778 (A) were associated with SLE risk. Genotype AA of rs7132778 and allele A of rs7132778 and rs7953150 were associated with oral ulcers in SLE patients. Allele C of rs7132778 and genotype AA and allele A of rs7953150 were associated with pyuria. Patients who carried AA genotype and allele A of rs7953150 are more likely to develop hypocomplementemia. AA and AG genotype frequencies are more raised in patients with SLE with alopecia than in those without alopecia. Patients who carried AA and AG genotypes of rs4767860 had elevated C-reactive protein levels. CONCLUSION Gene polymorphisms of SHP2 (rs4767860, rs7132778) are relevant to SLE susceptibility.
Collapse
Affiliation(s)
- Rong Li
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Zhou
- Department of Preventive Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
41
|
Li S, Luo Z, Su S, Wen L, Xian G, Zhao J, Xu X, Xu D, Zeng Q. Targeted inhibition of PTPN22 is a novel approach to alleviate osteogenic responses in aortic valve interstitial cells and aortic valve lesions in mice. BMC Med 2023; 21:252. [PMID: 37443055 PMCID: PMC10347738 DOI: 10.1186/s12916-023-02888-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/02/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most prevalent valvular disease and has high morbidity and mortality. CAVD is characterized by complex pathophysiological processes, including inflammation-induced osteoblastic differentiation in aortic valve interstitial cells (AVICs). Novel anti-CAVD agents are urgently needed. Protein tyrosine phosphatase nonreceptor type 22 (PTPN22), an intracellular nonreceptor-like protein tyrosine phosphatase, is involved in several chronic inflammatory diseases, including rheumatoid arthritis and diabetes. However, it is unclear whether PTPN22 is involved in the pathogenesis of CAVD. METHODS We obtained the aortic valve tissue from human and cultured AVICs from aortic valve. We established CAVD mice model by wire injury. Transcriptome sequencing, western bolt, qPCR, and immunofluorescence were performed to elucidate the molecular mechanisms. RESULTS Here, we determined that PTPN22 expression was upregulated in calcific aortic valve tissue, AVICs treated with osteogenic medium, and a mouse model of CAVD. In vitro, overexpression of PTPN22 induced osteogenic responses, whereas siRNA-mediated PTPN22 knockdown abolished osteogenic responses and mitochondrial stress in the presence of osteogenic medium. In vivo, PTPN22 ablation ameliorated aortic valve lesions in a wire injury-induced CAVD mouse model, validating the pathogenic role of PTPN22 in CAVD. Additionally, we discovered a novel compound, 13-hydroxypiericidin A 10-O-α-D-glucose (1 → 6)-β-D-glucoside (S18), in a marine-derived Streptomyces strain that bound to PTPN22 with high affinity and acted as a novel inhibitor. Incubation with S18 suppressed osteogenic responses and mitochondrial stress in human AVICs induced by osteogenic medium. In mice with aortic valve injury, S18 administration markedly alleviated aortic valve lesions. CONCLUSION PTPN22 plays an essential role in the progression of CAVD, and inhibition of PTPN22 with S18 is a novel option for the further development of potent anti-CAVD drugs. Therapeutic inhibition of PTPN22 retards aortic valve calcification through modulating mitochondrial dysfunction in AVICs.
Collapse
Affiliation(s)
- Shunyi Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University, Göttingen, Germany
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
42
|
Asano W, Yamanaka K, Ohara Y, Uhara T, Doi S, Orita T, Iwanaga T, Adachi T, Fujioka S, Akaki T, Ikegashira K, Hantani Y. Fragment-Based Discovery of Novel VE-PTP Inhibitors Using Orthogonal Biophysical Techniques. Biochemistry 2023. [PMID: 37414577 DOI: 10.1021/acs.biochem.3c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Tyrosine phosphorylation is an essential post-translational modification that regulates various biological events and is implicated in many diseases including cancer and atherosclerosis. Vascular endothelial protein tyrosine phosphatase (VE-PTP), which plays an important role in vascular homeostasis and angiogenesis, is therefore an attractive drug target for these diseases. However, there are still no drugs targeting PTP including VE-PTP. In this paper, we report the discovery of a novel VE-PTP inhibitor, Cpd-2, by fragment-based screening combining various biophysical techniques. Cpd-2 is the first VE-PTP inhibitor with a weakly acidic structure and high selectivity, unlike known strongly acidic inhibitors. We believe that this compound represents a new possibility for the development of bioavailable VE-PTP inhibitors.
Collapse
Affiliation(s)
- Wataru Asano
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kenji Yamanaka
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yasunori Ohara
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Toru Uhara
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Satoki Doi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takuya Orita
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tomoko Iwanaga
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tsuyoshi Adachi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shingo Fujioka
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tatsuo Akaki
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kazutaka Ikegashira
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshiji Hantani
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
43
|
Lu Y, Yang Y, Zhu G, Zeng H, Fan Y, Guo F, Xu D, Wang B, Chen D, Ge G. Emerging Pharmacotherapeutic Strategies to Overcome Undruggable Proteins in Cancer. Int J Biol Sci 2023; 19:3360-3382. [PMID: 37496997 PMCID: PMC10367563 DOI: 10.7150/ijbs.83026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023] Open
Abstract
Targeted therapies in cancer treatment can improve in vivo efficacy and reduce adverse effects by altering the tissue exposure of specific biomolecules. However, there are still large number of target proteins in cancer are still undruggable, owing to the following factors including (1) lack of ligand-binding pockets, (2) function based on protein-protein interactions (PPIs), (3) the highly specific conserved active sites among protein family members, and (4) the variability of tertiary docking structures. The current status of undruggable targets proteins such as KRAS, TP53, C-MYC, PTP, are carefully introduced in this review. Some novel techniques and drug designing strategies have been applicated for overcoming these undruggable proteins, and the most classic and well-known technology is proteolysis targeting chimeras (PROTACs). In this review, the novel drug development strategies including targeting protein degradation, targeting PPI, targeting intrinsically disordered regions, as well as targeting protein-DNA binding are described, and we also discuss the potential of these strategies for overcoming the undruggable targets. Besides, intelligence-assisted technologies like Alpha-Fold help us a lot to predict the protein structure, which is beneficial for drug development. The discovery of new targets and the development of drugs targeting them, especially those undruggable targets, remain a huge challenge. New drug development strategies, better extraction processes that do not disrupt protein-protein interactions, and more precise artificial intelligence technologies may provide significant assistance in overcoming these undruggable targets.
Collapse
Affiliation(s)
- Yuqing Lu
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Yuewen Yang
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Guanghao Zhu
- Shanghai University of Traditional Chinese Medicine, 201203 Shanghai City, China
| | - Hairong Zeng
- Shanghai University of Traditional Chinese Medicine, 201203 Shanghai City, China
| | - Yiming Fan
- Dalian Harmony Medical Testing Laboratory Co., Ltd, 116620 Dalian City, Liaoning Province, China
| | - Fujia Guo
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Dongshu Xu
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Boya Wang
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Dapeng Chen
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, 201203 Shanghai City, China
| |
Collapse
|
44
|
Shahab M, Khan SS, Zulfat M, Bin Jardan YA, Mekonnen AB, Bourhia M, Zheng G. In silico mutagenesis-based designing of oncogenic SHP2 peptide to inhibit cancer progression. Sci Rep 2023; 13:10088. [PMID: 37344519 DOI: 10.1038/s41598-023-37020-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the top causes of death, accounting for an estimated 9.6 million deaths in 2018, it appeared that approximately 500,000 people die from cancer in the United States alone annually. The SHP2 plays a major role in regulation of cell growth, proliferation, and differentiation, and functional upregulation of this enzyme is linked to oncogenesis and developmental disorders. SHP2 activity has been linked to several cancer types for which no drugs are currently available. In our study, we aimed to design peptide inhibitors against the SHP2 mutant. The crystal structure of the human Src SH2-PQpYEEIPI peptide mutant was downloaded from the protein databank. We generated several peptides from the native wild peptide using an in silico mutagenesis method, which showed that changes (P302W, Y304F, E306Q, and Q303A) might boost the peptide's affinity for binding to SHP2. Furthermore, the dynamical stability and binding affinities of the mutated peptide were confirmed using Molecular dynamics simulation and Molecular Mechanics with Generalized Born and Surface Area Solvation free energy calculations. The proposed substitution greatly enhanced the binding affinity at the residue level, according to a study that decomposed energy into its component residues. Our proposed peptide may prevent the spread of cancer by inhibiting SHP2, according to our detailed analyses of binding affinities.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Maryam Zulfat
- Department of Chemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, 70000, Laayoune, Morocco
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
45
|
Ahn D, Kwon J, Song S, Lee J, Yoon S, Chung SJ. Methyl Syringate Stimulates Glucose Uptake by Inhibiting Protein Tyrosine Phosphatases Relevant to Insulin Resistance. Life (Basel) 2023; 13:1372. [PMID: 37374154 DOI: 10.3390/life13061372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Several protein tyrosine phosphatases (PTPs), particularly PTPN1, PTPN2, PTPN6, PTPN9, PTPN11, PTPRS, and DUSP9, are involved in insulin resistance. Therefore, these PTPs could be promising targets for the treatment of type 2 diabetes. Our previous studies revealed that PTPN2 and PTPN6 are potential antidiabetic targets. Therefore, the identification of dual-targeting inhibitors of PTPN2 and PTPN6 could be a potential therapeutic strategy for the treatment or prevention of type 2 diabetes. In this study, we demonstrate that methyl syringate inhibits the catalytic activity of PTPN2 and PTPN6 in vitro, indicating that methyl syringate acts as a dual-targeting inhibitor of PTPN2 and PTPN6. Furthermore, methyl syringate treatment significantly increased glucose uptake in mature 3T3-L1 adipocytes. Additionally, methyl syringate markedly enhanced phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in 3T3L1 adipocytes. Taken together, our results suggest that methyl syringate, a dual-targeting inhibitor of PTPN2 and PTPN6, is a promising therapeutic candidate for the treatment or prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Dohee Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihee Kwon
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Songyi Song
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jooyoung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunyoung Yoon
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
46
|
Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023; 28:4491. [PMID: 37298967 PMCID: PMC10254920 DOI: 10.3390/molecules28114491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin resistance (IR) and the associated hyperinsulinemia are early pathophysiological changes which, if not well treated, can lead to type 2 diabetes, endothelial dysfunction and cardiovascular disease. While diabetes care is fairly well standardized, the prevention and treatment of IR lacks a single pharmaceutical approach and many lifestyle and dietary interventions have been proposed, including a wide range of food supplements. Among the most interesting and well-known natural remedies, alkaloid berberine and the flavonol quercetin have particular relevance in the literature, while silymarin-the active principle of the Silybum marianum thistle-was traditionally used for lipid metabolism disorders and to sustain liver function. This review describes the major defects of insulin signaling leading to IR and the main properties of the three mentioned natural substances, their molecular targets and synergistic action mechanisms. The actions of berberine, quercetin and silymarin are partially superimposable as remedies against reactive oxygen intermediates generated by a high-lipid diet and by NADPH oxidase, which is triggered by phagocyte activation. Furthermore, these compounds inhibit the secretion of a battery of pro-inflammatory cytokines, modulate intestinal microbiota and are especially able to control the various disorders of the insulin receptor and post-receptor signaling systems. Although most of the evidence on the effects of berberine, quercetin and silymarin in modulating insulin resistance and preventing cardiovascular disease derive from experimental studies on animals, the amount of pre-clinical knowledge strongly suggests the need to investigate the therapeutic potential of these substances in human pathology.
Collapse
Affiliation(s)
- Paolo Bellavite
- Pathophysiology Chair, Homeopathic Medical School of Verona, 37121 Verona, Italy
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | | |
Collapse
|
47
|
Windheim M, Reubold TF, Aichane K, Gaestel M, Burgert HG. Enforced Dimerization of CD45 by the Adenovirus E3/49K Protein Inhibits T Cell Receptor Signaling. J Virol 2023; 97:e0189822. [PMID: 37125921 PMCID: PMC10231199 DOI: 10.1128/jvi.01898-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
Human adenoviruses (HAdVs) are widespread pathogens that generally cause mild infections in immunocompetent individuals but severe or even fatal diseases in immunocompromised patients. In order to counteract the host immune defenses, HAdVs encode various immunomodulatory proteins in the early transcription unit 3 (E3). The E3/49K protein is a highly glycosylated type I transmembrane protein uniquely expressed by species D HAdVs. Its N-terminal ectodomain sec49K is released by metalloprotease-mediated shedding at the cell surface and binds to the receptor-like protein tyrosine phosphatase CD45, a critical regulator of leukocyte activation and functions. It remained elusive which domains of CD45 and E3/49K are involved in the interaction and whether such an interaction can also occur on the cell surface with membrane-anchored full-length E3/49K. Here, we show that the two extracellular domains R1 and R2 of E3/49K bind to the same site in the domain d3 of CD45. This interaction enforces the dimerization of CD45, causing the inhibition of T cell receptor signaling. Intriguingly, the membrane-anchored E3/49K appears to be designed like a "molecular fishing rod" using an extended disordered region of E3/49K as a "fishing line" to bridge the distance between the plasma membrane of infected cells and the CD45 binding site on T cells to effectively position the domains R1 and R2 as baits for CD45 binding. This design strongly suggests that both secreted sec49K as well as membrane-anchored full-length E3/49K have immunomodulatory functions. The forced dimerization of CD45 may be applied as a therapeutic strategy in chronic inflammatory disorders and cancer. IMPORTANCE The battle between viruses and their hosts is an ongoing arms race. Whereas the host tries to detect and eliminate the virus, the latter counteracts such antiviral measures to replicate and spread. Adenoviruses have evolved various mechanisms to evade the human immune response. The E3/49K protein of species D adenoviruses mediates the inhibition of immune cell function via binding to the protein tyrosine phosphatase CD45. Here, we show that E3/49K triggers the dimerization of CD45 and thereby inhibits its phosphatase activity. Intriguingly, the membrane-anchored E3/49K seems to be designed like a "molecular fishing rod" with the two CD45 binding domains of E3/49K as baits positioned at the end of an extended disordered region reminiscent of a fishing line. The adenoviral strategy to inhibit CD45 activity by forced dimerization may be used for therapeutic intervention in autoimmune diseases or to prevent graft rejection after transplantation.
Collapse
Affiliation(s)
- Mark Windheim
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas F. Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Khadija Aichane
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hans-Gerhard Burgert
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
49
|
Li N, Li X, Deng M, Zhu F, Wang Z, Sheng R, Wu W, Guo R. Isosteviol derivatives as protein tyrosine Phosphatase-1B inhibitors: Synthesis, biological evaluation and molecular docking. Bioorg Med Chem 2023; 83:117240. [PMID: 36963270 DOI: 10.1016/j.bmc.2023.117240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
Protein tyrosine phosphatase (PTP1B) antagonizes insulin signaling and acts as a potential therapeutic target for insulin resistance associated with obesity and type II diabetes. In this work, a series of isosteviol derivatives 1-28 was synthesized and the inhibitory activity on PTP1B was evaluated by double antibody sandwich ELISA (DAS-ELISA) in vitro. Most isosteviol derivatives showed moderate PTP1B inhibitory activities. Among them, derivatives 10, 13, 24, 27 showed remarkable bioactivities with IC50 values ranging from 0.24 to 0.40 µM. Particularly, derivative 24 exhibited the best inhibitory activity against PTP1B (IC50 = 0.24 µM) in vitro; moreover, it showed 7-fold selectivity to PTP1B over T-cell protein tyrosine phosphatase (TCPTP) and 14-fold selectivity to PTP1B over cell division cycle 25 homolog B (CDC25B). Molecular docking studies demonstrated the hydrogen bond interaction between 24 and LYS-116 residue in PTP1B might be essential for the inhibitory activity. The results suggested that derivative 24 has great potential to be employed as drug candidate for the treatment of obesity and type II diabetes.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xinyu Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Meidi Deng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Feifei Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zian Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| |
Collapse
|
50
|
Chen YL, Hsieh CC, Chu PM, Chen JY, Huang YC, Chen CY. Roles of protein tyrosine phosphatases in hepatocellular carcinoma progression (Review). Oncol Rep 2023; 49:48. [PMID: 36660927 PMCID: PMC9887465 DOI: 10.3892/or.2023.8485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents almost 80% of all liver cancers, is the sixth most common cancer and is the second‑highest cause of cancer‑related deaths worldwide. Protein tyrosine phosphatases (PTPs), which are encoded by the largest family of phosphatase genes, play critical roles in cellular responses and are implicated in various signaling pathways. Moreover, PTPs are dysregulated and involved in various cellular processes in numerous cancers, including HCC. Kinases and phosphatases are coordinators that modulate cell activities and regulate signaling responses. There are multiple interacting signaling networks, and coordination of these signaling networks in response to a stimulus determines the physiological outcome. Numerous issues, such as drug resistance and inflammatory reactions in the tumor microenvironment, are implicated in cancer progression, and the role of PTPs in these processes has not been well elucidated. Therefore, the present review focused on discussing the relationship of PTPs with inflammatory cytokines and chemotherapy/targeted drug resistance, providing detailed information on how PTPs can modulate inflammatory reactions and drug resistance to influence progression in HCC.
Collapse
Affiliation(s)
- Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan, R.O.C
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Jing-Yi Chen
- Department of Medical Laboratory Science, College of Medicine, I‑Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Yu-Chun Huang
- Aging and Diseases Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| |
Collapse
|