1
|
Bai H, Meng F, Ke K, Fang L, Xu W, Huang H, Liang X, Li W, Zeng F, Chen C. The significance of small noncoding RNAs in the pathogenesis of cardiovascular diseases. Genes Dis 2025; 12:101342. [PMID: 40247912 PMCID: PMC12005926 DOI: 10.1016/j.gendis.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 04/19/2025] Open
Abstract
With the advancement of high-throughput sequencing and bioinformatics, an increasing number of overlooked small noncoding RNAs (sncRNAs) have emerged. These sncRNAs predominantly comprise transfer RNA-derived fragments (tsRNAs), PIWI-interacting RNAs (piRNAs), Ro-associated non-coding RNAs (RNYs or Y-RNAs), small nucleolar RNAs (snoRNAs), and small nuclear RNAs (snRNAs). Each of these RNA types possesses distinct biological properties and plays specific roles in both physiological and pathological processes. The differential expression of sncRNAs substantially affects the occurrence and progression of various systemic diseases. However, their roles in the cardiovascular system remain unclear. Therefore, understanding the functionality and mechanisms of sncRNAs in the cardiovascular system holds promise for identifying novel targets and strategies for the diagnosis, prevention, and treatment of cardiovascular diseases. This review examines the biological characteristics of sncRNAs and their potential roles in cardiovascular diseases.
Collapse
Affiliation(s)
- Hemanyun Bai
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Fanji Meng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Kangling Ke
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Lingyan Fang
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Weize Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Haitao Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Xiao Liang
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Weiyan Li
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Fengya Zeng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| | - Can Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524002, China
| |
Collapse
|
2
|
Wang W, Chen J, Bao Y, Ma W, Xie Y, Wang W, Li M, Shen K. MicroRNA sequencing analysis in pediatric patients with influenza-associated acute necrotizing encephalopathy: Potential biomarkers for early diagnosis and therapy. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105734. [PMID: 40120635 DOI: 10.1016/j.meegid.2025.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Acute necrotizing encephalopathy (ANE) secondary to influenza infection is characterized by fulminant neurological deterioration and a high mortality rate. The underlying mechanisms remain unclear, and specific treatments are currently lacking. Therefore, understanding the pathogenesis and identifying diagnostic and therapeutic targets for influenza-induced ANE are crucial. Peripheral blood samples were collected from two groups: influenza-infected patients without ANE (mild) and influenza infection with ANE patients (severe). Differentially expressed genes (DEG) were identified through microRNA sequencing analysis, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The expression levels of the four specific miRNAs were validated using qRT-PCR. In the severe group, 24 genes were up-regulated, and 67 genes were down-regulated compared to the mild group. The expression levels of hsa-miR-1290, hsa-miR-4657, has-miR-1231, and hsa-miR-342-3p were validated by qRT-PCR, and the levels of has-miR-4657 and hsamiR- 342-3p showed significant differences between severe and mild groups. GO analysis demonstrated that the DEGs were predominantly involved in the positive regulation of cellular processes, intracellular anatomical structure, and protein binding. KEGG pathway analysis revealed that DEGs were mainly enriched in calcium signaling pathway and axon guidance. The down-regulated hsa-miR-4657 and hsa-miR-342-3p might be associated with the development of ANE in pediatric patients with influenza by regulation of calcium pathways and axon guidance.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Influenza, Human/complications
- Influenza, Human/genetics
- Influenza, Human/virology
- Biomarkers/blood
- Child, Preschool
- Male
- Female
- Leukoencephalitis, Acute Hemorrhagic/diagnosis
- Leukoencephalitis, Acute Hemorrhagic/genetics
- Leukoencephalitis, Acute Hemorrhagic/etiology
- Leukoencephalitis, Acute Hemorrhagic/therapy
- Leukoencephalitis, Acute Hemorrhagic/virology
- Child
- Early Diagnosis
- Infant
- Gene Ontology
- Gene Expression Profiling
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Wei Wang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, China; Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Jiehua Chen
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Weike Ma
- Department of Critical care medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Ying Xie
- Department of Cardiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenjian Wang
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Meng Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China.
| | - Kunling Shen
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, China.
| |
Collapse
|
3
|
Aleshcheva G, Salih S, Baumeier C, Escher F, Bock CT, Schultheiss H. Discovery of miRNAs unique to actively transcribed erythroparvovirus infection in heart failure patients. ESC Heart Fail 2025; 12:1872-1882. [PMID: 39970057 PMCID: PMC12055386 DOI: 10.1002/ehf2.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 02/21/2025] Open
Abstract
AIMS miRNAs, small non-coding RNAs, play key roles in gene regulation, cell differentiation and tissue development. They influence viral infection outcomes by directly interacting with viral genomes or modifying the host microenvironment. This study demonstrates miRNAs' ability to selectively suppress transcriptionally active erythroparvovirus, highlighting their potential in antiviral therapies. METHODS AND RESULTS Seventy-five endomyocardial biopsy (EMB) specimens from patients with unexplained heart failure were analysed. The samples included 19 with dilated cardiomyopathy and inflammation (DCMi), 12 with dilated cardiomyopathy (DCM), 25 with inflammation and active erythroparvovirus infection, 13 with active erythroparvovirus infection only and 6 from undiagnosed patients as controls. miRNA expression was measured using TaqMan assays. miR-98, miR-222, miR-106b and miR-197 were significantly upregulated in patients with transcriptionally active erythroparvovirus infection, independent of inflammation (P < 0.005). These miRNAs differentiated these patients from all other groups with over 90% specificity. CONCLUSIONS These specific miRNAs offer a novel diagnostic tool for active erythroparvovirus infections and hold promise as therapeutic targets, providing safer alternatives to traditional antiviral treatments.
Collapse
Affiliation(s)
- Ganna Aleshcheva
- Institute for Cardiac Diagnostics and Therapy (IKDT)BerlinGermany
| | - Sara Salih
- BHT – Berliner Hochschule für TechnikBerlinGermany
| | | | - Felicitas Escher
- Institute for Cardiac Diagnostics and Therapy (IKDT)BerlinGermany
- DHZC (German Heart Centre of Charité)BerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
| | - C. Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and EnterovirusesRobert Koch InstituteBerlinGermany
| | | |
Collapse
|
4
|
Bae H, Nguyen CM, Ruiz-Orera J, Mills NL, Snyder MP, Jang C, Shah SH, Hübner N, Seldin M. Emerging Technologies and Future Directions in Interorgan Crosstalk Cardiometabolic Research. Circ Res 2025; 136:1494-1506. [PMID: 40403107 PMCID: PMC12101523 DOI: 10.1161/circresaha.125.325515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 05/24/2025]
Abstract
The heart does not work in isolation, with cardiac health and disease occurring through complex interactions between the heart with multiple organs. Furthermore, the integration of organ-specific lipid metabolism, blood pressure, insulin sensitivity, and inflammation involves a complex network of signaling pathways between many organs. Dysregulation in these communications is now recognized as a key contributor to many manifestations of cardiovascular disease. Mechanistic characterization of specific molecules mediating interorgan signaling has been pivotal in advancing our understanding of cardiovascular disease. The discovery of insulin, glucagon, and other hormones in the early 20th century illustrated the importance of communication between organs in maintaining physiological homeostasis. For example, elegant studies evaluating insulin signaling and its role in regulating glucose metabolism have shed light on its broader impact on cardiovascular health, hypertension, atherosclerosis, and other cardiovascular disease risks. Recent technological advances have revolutionized our understanding of interorgan signaling. Global approaches such as proteomics and metabolomics applications to blood have enabled the simultaneous profiling of thousands of circulating factors, revealing previously unknown signaling molecules and pathways. These large-scale studies have identified biomarkers linked to early stages of heart disease and offered new therapeutic targets. By understanding how specific cells in the heart interact with cells in other organs, such as the kidney or liver, researchers can identify key pathways that, when disrupted, lead to cardiovascular pathology. The ability to capture a more holistic view of the cardiovascular system positions interorgan signaling at the forefront of cardiovascular research. As we continue to refine our tools for mapping these complex networks, the insights gained hold the potential to not only improve early diagnosis but also to develop more targeted and effective treatments for cardiovascular disease. In this review, we discuss current approaches used to enhance our understanding of organ crosstalk with a specific emphasis on cardiac and cardiovascular physiology.
Collapse
Affiliation(s)
- Hosung Bae
- Department of Biological Chemistry and Center of Epigenetics and Metabolism, School of Medicine, University of California Irvine School of Medicine (H.B., C.M.N., C.J., M.S.)
| | - Christy M Nguyen
- Department of Biological Chemistry and Center of Epigenetics and Metabolism, School of Medicine, University of California Irvine School of Medicine (H.B., C.M.N., C.J., M.S.)
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (J.R.-O., N.H.)
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science (N.L.M.), The University of Edinburgh, United Kingdom
- Usher Institute (N.L.M.), The University of Edinburgh, United Kingdom
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA (M.P.S.)
| | - Cholsoon Jang
- Department of Biological Chemistry and Center of Epigenetics and Metabolism, School of Medicine, University of California Irvine School of Medicine (H.B., C.M.N., C.J., M.S.)
| | - Svati H Shah
- Duke Center for Precision Health (S.H.S.), Duke University School of Medicine, Durham, NC
- Duke Molecular Physiology Institute (S.H.S.), Duke University School of Medicine, Durham, NC
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (J.R.-O., N.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (N.H.)
- Charité-Universitätsmedizin, Berlin, Germany (N.H.)
- Helmholtz Institute for Translational AngioCardioScience, MDC, Heidelberg University, Germany (N.H.)
| | - Marcus Seldin
- Department of Biological Chemistry and Center of Epigenetics and Metabolism, School of Medicine, University of California Irvine School of Medicine (H.B., C.M.N., C.J., M.S.)
| |
Collapse
|
5
|
Fu B, Yuan Z, Fang G, Wang WJ, Xiong Z, Chen YC. Dielectric Nanocavity Enhanced Fluorescence Emission for Ultrasensitive Wavelength-Multiplexed Detection. NANO LETTERS 2025. [PMID: 40393953 DOI: 10.1021/acs.nanolett.5c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
This study demonstrates a novel biosensing platform utilizing a dielectric nanocavity to enhance fluorescence emission for the ultrasensitive detection of biomolecules. By coupling a silver (Ag) nanocube with a distributed Bragg reflector (DBR) mirror, we achieved a substantial fluorescence enhancement reaching a maximum enhancement factor of up to 855-fold and having quasi-single molecule sensitivity. The platform was successfully applied for multiplexed detection of four different miRNA biomarkers, showcasing its ability to detect multiple targets simultaneously with high sensitivity. The simplicity, rapid speed, and small detection volume (down to 0.5 μL) of this system make it suitable for high-throughput and large-area nanocavity imaging. Our findings offer a promising solution for ultrasensitive, multiplexed biosensing with potential applications in disease diagnosis, personalized medicine, and digital molecular diagnostics.
Collapse
Affiliation(s)
- Bowen Fu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Guocheng Fang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Wen-Jie Wang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhongshu Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| |
Collapse
|
6
|
Mardi N, Khanicheragh P, Abbasi-Malati Z, Saghebasl S, Khosrowshahi ND, Chegeni SA, Javid F, Azari M, Salimi L, Rezabakhsh A, Milani SZ, Rahbarghazi R. Beneficial and challenges of exosome application in ischemic heart disease. Stem Cell Res Ther 2025; 16:247. [PMID: 40390086 PMCID: PMC12090443 DOI: 10.1186/s13287-025-04363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/23/2025] [Indexed: 05/21/2025] Open
Abstract
Cardiovascular diseases are the main cause of death and disability in the clinical setting. Among several pathological conditions, myocardial infarction (MI) is a common clinical finding and happens due to the reduction or complete interruption of blood support. Stem cells and progenitors are valid cell sources with significant potential to alleviate several tissue injuries. Differentiation to mature and functional cells and the release of various growth factors, and cytokines are the main reparative mechanisms by which stem cells mediate their reparative tasks. Exosomes (Exos), a subset of extracellular vesicles (EVs), exhibit great theranostic potential in biomedicine. Along with whole-cell-based therapies, the pre-clinical and clinical application of Exos has been extended in animals and humans with ischemic heart diseases (IHD). Here, in this review article, we aimed to highlight the importance of Exos in IHD and address the mechanism of action by focusing on their regenerative potential.
Collapse
Affiliation(s)
- Narges Mardi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Abbasi-Malati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | | | - Farzin Javid
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdiyeh Azari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheil Zamen Milani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Zhou S, Zhang L, Duan X, Liu K, Yingnan Y, Ma M, Han B. MiR-425-5p intervenes in autoimmune myocarditis by regulating Treg cell differentiation through NRAS. Front Cell Dev Biol 2025; 13:1600103. [PMID: 40433545 PMCID: PMC12106460 DOI: 10.3389/fcell.2025.1600103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Aim Our Previous research revealed significant differences in exosome-mediated intercellular miR-425a-5p between normal children and those with fulminant myocarditis. We sought to elucidate the molecular underpinnings and functional implications of miR-425a-5p in the context of myocarditis progression. Methods Bioinformatics techniques were employed to predict NRAS as the target gene of miR-425a-5p. We constructed a cellular myocarditis paradigm through LPS-mediated provocation of AC16 cardiomyocyte cultures. MiR-425a-5p was overexpressed, and the expressions of NRAS, cell apoptosis, and proinflammatory cytokine profiles, encompassing IL-1β, IL-6, and TNF-α, were comprehensively quantified. An experimental autoimmune myocarditis (EAM) mouse model was created using adeno-associated virus (AAV) for miR-425a-5p overexpression. Comprehensive histopathological analyses were conducted utilizing multiple staining techniques, including hematoxylin-eosin (HE), immunohistochemical, and Masson trichrome methodologies to characterize tissue responses. Results The study demonstrated that miR-425a-5p alleviated the inflammatory response in both AC16 cells and EAM mice through NRAS mediation. Single-cell data analysis of cardiac immune cells revealed that miR-425a-5p promoted Treg cell differentiation and improved cardiac function. Conclusion MiR-425a-5p plays a crucial role in modulating inflammatory responses in myocarditis, potentially offering a novel therapeutic strategy for managing the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Zaidi SA, Fan Z, Chauhdari T, Ding Y. MicroRNA regulatory dynamic, emerging diagnostic and therapeutic frontier in atherosclerosis. Microvasc Res 2025; 160:104818. [PMID: 40368159 DOI: 10.1016/j.mvr.2025.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, are pivotal post-transcriptional regulators of gene expression with profound implications in the pathogenesis of atherosclerosis (AS). As a progressive arterial disease driven by vascular cells dysfunction, lipid dysregulation and subsequent chronic inflammation, AS remains a leading cause of global morbidity. Recent studies have demonstrated how important miRNAs are in regulating central biological processes in the vascular wall, such as endothelial function, vascular smooth muscle cell (VSMC) phenotypic switching, and macrophage polarization. This review provides comprehensive insight into the role of miRNAs in the development and complexity of atherosclerotic plaques according to their effects on endothelial cells, macrophages, and VSMCs. We also go over the growing prospects of miRNAs as therapeutic targets and diagnostic biomarkers, providing information to be used in the study of vascular diseases. Lastly, we address recent complications and potential applications of miRNA-based approaches in clinical practice.
Collapse
Affiliation(s)
- Syeda Armana Zaidi
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Zhiyu Fan
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Talha Chauhdari
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| | - Yongsheng Ding
- College of Life Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China.
| |
Collapse
|
9
|
Zhou S, Han B. Biological disturbance of MiR-425 and its application prospects in cardiovascular diseases. Front Cell Dev Biol 2025; 13:1593241. [PMID: 40417179 PMCID: PMC12098596 DOI: 10.3389/fcell.2025.1593241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
MiR-425 is a biological molecule that has potential applications in cardiovascular diseases. It can regulate biological functions by combining with LncRNAs, binding with proteins, and changing the differentiation of immune cells. MiR-425 also has a role as a biomarker of disease. In cardiovascular diseases, it has clinical significance in reducing inflammation and heart repair, inducing angiogenesis, improving the prediction of atherosclerosis, reducing cardiac fibrosis, and regulating atrial natriuretic peptide to affect cardiovascular function. Target gene prediction and KEGG enrichment analysis are also mentioned.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong first Medical University, Jinan, Shandong, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong first Medical University, Jinan, Shandong, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Biomedical Engineering and Interdisciplinary Studies), Shandong First Medical University, jinan, China
| |
Collapse
|
10
|
Duan H, Siadat SH, Jasim SA, Bansal P, Kaur H, Qasim MT, Abosaoda MK, Aboqader Al-Aouadi RF, Suliman M, Ali Khiavi P. Therapeutic Potential of Exosomal miRNAs: New Insights and Future Directions. J Biochem Mol Toxicol 2025; 39:e70270. [PMID: 40272032 DOI: 10.1002/jbt.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/13/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Modern advancements in medicine include developing targeted drug delivery systems in the medical field, which are designed to unravel the potential of therapeutic products and overcome the barriers to the effectiveness of current approaches. Various nanopolymer carrier systems have been introduced in this regard, and the simple characteristics of extracellular vesicles have drawn special attention to their application as an effective drug delivery tool. Exosomes are very similar to transport vesicles and have a lipid-biomembrane covering an aqueous core. They also contain both hydrophilic and lipophilic substances and deliver their cargo to the desired targets. These properties enable exosomes to overcome some of the limitations of liposomes. Exosomes can easily diffuse into body fluids and remain in the bloodstream for a long time, crossing physiological barriers and entering cells. Exosomes, which contain a large volume of biomolecules, do not stimulate immune responses and do not accumulate in the liver or lungs instead of target tissues. Recent advancements in regenerative medicine have enabled scientists to utilize exosomes extracted from mesenchymal stem cells (MSCs), which possess significant regenerative abilities, for treating various diseases. The contents of these exosomes are crucial for both diagnosis and treatment, as they influence disease progression. Numerous in vitro studies have confirmed the safety, effectiveness, and therapeutic promise of exosomes in conditions such as cancer, neurodegenerative disorders, cardiovascular issues, and orthopedic ailments. This article explores the therapeutic potential of MSC-derived exosomes and outlines the essential procedures for their preparation.
Collapse
Affiliation(s)
- Haili Duan
- China Three Gorges University, Yichang City, China
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, India
| | - Maytham T Qasim
- Immunology and Physiology, College of Health and Medical Technology, Al-Ayen University, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| | | | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Payam Ali Khiavi
- Medicine Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Mainkar G, Ghiringhelli M, Zangi L. The Potential of RNA Therapeutics in Treating Cardiovascular Disease. Drugs 2025; 85:659-676. [PMID: 40175855 DOI: 10.1007/s40265-025-02173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Despite significant advances in cardiology over the past few decades, cardiovascular diseases (CVDs) remain the leading cause of global mortality and morbidity. This underscores the need for novel therapeutic interventions that go beyond symptom management to address the underlying causal mechanisms of CVDs. RNA-based therapeutics represent a new class of drugs capable of regulating specific genetic and molecular pathways, positioning them as strong candidates for targeting the root causes of a wide range of diseases. Moreover, owing to the vast diversity in RNA form and function, these molecules can be utilized to induce changes at different levels of gene expression regulation, making them suitable for a broad array of medical applications, even within a single disease context. Several RNA-based therapies are currently being investigated for their potential to address various CVD pathologies. These include treatments aimed at promoting cardiac revascularization and regeneration, preventing cardiomyocyte apoptosis, reducing harmful circulating cholesterols and fats, lowering blood pressure, reversing cardiac fibrosis and remodeling, and correcting the genetic basis of inherited CVDs. In this review, we discuss the current landscape of RNA therapeutics for CVDs, with an emphasis on their classifications, modes of action, advancements in delivery strategies and considerations for their implementation, as well as CVD targets with proven therapeutic potential.
Collapse
Affiliation(s)
- Gayatri Mainkar
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matteo Ghiringhelli
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lior Zangi
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Abolhasani S, Ahmadi Y, Fattahi D, Rostami Y, Chollou KM. microRNA-Mediated Regulation of Oxidative Stress in Cardiovascular Diseases. J Clin Lab Anal 2025; 39:e70017. [PMID: 40183484 PMCID: PMC12078765 DOI: 10.1002/jcla.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/08/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading cause of mortality globally, often linked to oxidative stress. MicroRNAs (miRNAs) have emerged as significant regulators of oxidative stress within the cardiovascular system. OBJECTIVE This review examines the complex relationship between miRNAs and oxidative stress, clarifying their effects on gene expression pathways related to ROS production and detoxification in CVDs. METHODS From August to October 2024, we conducted a comprehensive search of PubMed, Scopus, Web of Science, and Google Scholar for studies published between 2014 and 2024 investigating the role of miRNAs in oxidative stress and cardiovascular diseases. RESULTS Specific miRNAs have been identified as critical regulators in the pathophysiology of CVDs, with distinct expression patterns correlated with conditions such as hypertension, coronary artery disease, and heart failure. For instance, miR-21 exacerbates oxidative stress by targeting genes essential for redox homeostasis, while miR-210 promotes endothelial cell survival under hypoxic conditions by mitigating ROS levels. CONCLUSION The reciprocal relationship between miRNAs and oxidative stress highlights the potential for therapeutic interventions targeting miRNA expression and activity in managing CVDs. Understanding these molecular mechanisms is vital for developing innovative strategies to address oxidative damage in cardiac tissues and improve cardiovascular health outcomes.
Collapse
Affiliation(s)
- Sakhavat Abolhasani
- Department of Basic Sciences and HealthSarab Faculty of Medical SciencesSarabEast AzerbaijanIran
| | - Yasin Ahmadi
- Department of Medical Laboratory ScienceKomar University of Science and TechnologySulaymaniyahKurdistan RegionIraq
| | - Davood Fattahi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Yavar Rostami
- Department of Basic Sciences and HealthSarab Faculty of Medical SciencesSarabEast AzerbaijanIran
| | - Khalil Maleki Chollou
- Department of Basic Sciences and HealthSarab Faculty of Medical SciencesSarabEast AzerbaijanIran
| |
Collapse
|
13
|
Acuna N, Park SY, Conti DV, Stern MC, Wu AH, Cheng I, Wilkens LR, Shu XO, Setiawan VW. Circulating microRNAs and alcohol consumption in the multiethnic cohort study. Alcohol 2025; 124:105-110. [PMID: 39880058 PMCID: PMC11977456 DOI: 10.1016/j.alcohol.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/20/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Excessive alcohol consumption is a significant public health concern and contributes to liver diseases and cancer. Modifiable lifestyle factors including alcohol consumption can influence circulating microRNAs (miRNAs), which are increasingly used as biomarkers for early disease detection. Yet limited studies have identified miRNAs associated with alcohol intake, particularly in multiethnic populations. We aimed to assess the association of alcohol consumption and circulating miRNAs in the Multiethnic Cohort Study. Participants (N = 917) had alcohol consumption data collected at baseline and miRNA data collected at follow-up. Negative binomial models were used to assess the association between alcohol consumption (continuous and categorical [nondrinkers: 0 g of ethanol/day; light drinkers: <28 g of ethanol/day for men and <14 g of ethanol/day for women; and heavy drinkers: ≥28 g of ethanol/day for men and ≥14 g of ethanol/day for women]) and miRNAs. Stratified analyses also examined categories by sex, race/ethnicity, smoking status, and body mass index. Overall, there were 52% non-drinkers, 37 % light drinkers, and 11 % were heavy drinkers. We did not detect an association of miRNAs with alcohol intake in continuous models after correcting for multiple comparisons. However, we did find an inverse association for light drinkers [incidence rate ratio (IRR) = 0.59, p = 8.21E-04] and heavy drinkers (IRR = 0.44, p = 1.47E-03) compared to nondrinkers for miR-451a. Additionally, miR-320e (IRR = 0.63, p = 1.61E-03) had an inverse association with alcohol intake for light drinkers compared to nondrinkers. Subgroup analysis also suggested there were differences by subgroups, underscoring that miRNAs used to detect chronic diseases may be subgroup specific. When stratified by case-control status, we found that among controls both light and heavy drinkers were associated with miR-451a. We identified an association for light and heavy drinkers with miR-451a and mir-320e, miRNAs associated with cancers and liver diseases, in comparison to nondrinkers.
Collapse
Affiliation(s)
- Nicholas Acuna
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Song-Yi Park
- Population Sciences in the Pacific Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Lynne R Wilkens
- Population Sciences in the Pacific Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Veronica Wendy Setiawan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Mansouri F, Seyed Mohammadzad M. Bioinformatics analyses of potential microRNAs and their target genes in myocardial infarction patients with diabetes. Diab Vasc Dis Res 2025; 22:14791641251335925. [PMID: 40326247 PMCID: PMC12059454 DOI: 10.1177/14791641251335925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 01/24/2025] [Accepted: 04/03/2025] [Indexed: 05/07/2025] Open
Abstract
ObjectivePatients with diabetes are 3-5 times higher at risk for cardiovascular diseases and myocardial infarction (MI). There is a need to find miRNAs and other target genes to reduce mortality rates. The current study aims to find potential miRNAs and target genes among MI patients, MI patients with pre-diabetes (metformin non-users), and MI patients with diabetes (metformin users).MethodThe candidate miRNAs were identified by microarray profiling, and their differential expression was evaluated through real-time polymerase chain reaction (RT-PCR) in control and patient groups. The potential targets for miR-1 and miR-133a were retrieved from the TargetScan, miRWalk, and miRDB databases. The sensitivity and specificity of miRNAs were assessed using receiver operating characteristic (ROC) curve analyses.ResultsMicroarray profiling identified 16 miRNAs with significantly altered expression in all MI patient groups compared with healthy controls. According to this data, two miR-1 and miR-133a (with a high ratio) were selected for further verification. All patient groups exhibited a significant increase in the expression levels of miR-1 and miR-133a. Also, miR-1 and miR-133a levels were lower in metformin-user patients than in non-user patients (p < 0.05). Moreover, interleukins, growth factors, and other related genes were identified as potential targets for miR-1 and miR-133a. The ROC area under the curve (AUC) was 0.973 (95% CI: 0.718-0.884) for circulating miR-1, and 0.969 (95% CI: 0.723-0.876) for miR-133a in patients with diabetes (p < 0.001).ConclusionPrediction of miRNA profiles and network of target genes are valuable in the early diagnosis of MI in individuals without and with diabetes. Metformin treatment is associated with lower expression of MI-related miRNAs, suggesting a potential mechanism for cardiac protection by this agent.
Collapse
Affiliation(s)
- Fatemeh Mansouri
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Iran
| | | |
Collapse
|
15
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
16
|
Méndez-García A, García-Mendoza MA, Zárate-Peralta CP, Flores-Perez FV, Carmona-Ramirez LF, Pathak S, Banerjee A, Duttaroy AK, Paul S. Mitochondrial microRNAs (mitomiRs) as emerging biomarkers and therapeutic targets for chronic human diseases. Front Genet 2025; 16:1555563. [PMID: 40352788 PMCID: PMC12061977 DOI: 10.3389/fgene.2025.1555563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
Mitochondria are membrane-bound cell organelles that undertake the majority of the energetic and metabolic processes within the cell. They are also responsible for mediating multiple apoptotic pathways, balancing redox charges, and scavenging reactive oxygen species. MicroRNAs, which are short, non-coding RNAs widely known for regulating gene expression at the post-transcriptional level, regulate many of these processes. The specific microRNAs that directly or indirectly control mitochondrial dynamics are called mitochondrial miRNAs (mitomiRs). The broadest classification of this type of ncRNA encompasses nuclear-encoded miRNAs that interact with cytoplasmatic mRNAs associated with mitochondrial activity. At the same time, a more specific subset comprises nuclear-encoded miRNAs that translocate into the mitochondria to interact with mRNAs inside of this organelle. Finally, the smallest group of mitomiRs includes those codified by mtDNA and can regulate endogenous mitochondrial transcripts or be transported into the cytoplasm to modulate circulating mRNAs. Regardless of the origin or action mechanism, mitomiRs have been recently recognized to have a key role in the progression of a variety of chronic disorders, such as neurodegenerative and cardiovascular diseases, diabetes, asthma, depression, and even cancer. All of these progressive pathologies have been tightly linked to mitochondrial dysregulation. They are further associated with an aberrant expression of specific miRNAs that regulate cellular metabolism, positioning mitomiRs as reliable biomarkers for diagnosing several chronic diseases. These molecular indicators have also provided insights into how these conditions progress, allowing for the development of different miRNA-based treatment strategies that target dysregulated mitochondrial-related genes, reestablishing their baseline activity and restricting further disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| |
Collapse
|
17
|
Jiang L, Li L, Zhang K, Zheng L, Zhang X, Hou Y, Cao M, Wang Y. A systematic review and meta-analysis of microRNAs in the diagnosis of early diabetic kidney disease. Front Endocrinol (Lausanne) 2025; 16:1432652. [PMID: 40331139 PMCID: PMC12052537 DOI: 10.3389/fendo.2025.1432652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Objective The aim of this study was to comprehensively assess the overall diagnostic value of circulating microRNAs (miRNAs or miRs) as biomarkers for the early diagnosis of diabetic kidney disease (DKD) through Meta-analysis, and to identify potential molecular biomarkers with higher diagnostic value for early DKD. Methods The CNKI, Wanfang date, VIP, Pubmed, Embase, Web of Science, and Cochrane Library until January 2024 were searched. Relevant studies associated with the value of miRNAs in the diagnosis of early DKD were selected. Case numbers, sensitivity, and specificity were extracted from the included literature for both the observation and control groups. Results Nine studies including 655 cases of early DKD patients and 664 cases as a control group were conducted. The comprehensive sensitivity was 0.76, comprehensive specificity was 0.74, combined positive likelihood ratio was 2.9 and the combined negative likelihood ratio was 0.33, diagnostic odds ratio (DOR) was 9. The summary receiver operating characteristic (SROC) curve was drawn and the area under the curve (AUC) was 0.79. Blood and urine source data were analyzed and showed that urine source miRNA had a higher sensitivity (0.82vs 0.68) and a higher DOR (10.5vs 8.2) than blood source miRNA. Conclusion MiRNAs may serve as promising noninvasive biomarkers for the early diagnosis of DKD. The diagnostic value of miRNAs in urine samples may be higher than that in blood samples. The combined detection of some miRNAs or other clinical indicators can enhance the accuracy of early DKD diagnosis. Systematic Review Registration https://osf.io, identifier DOI: 10.17605/OSF.IO/FC6DK.
Collapse
Affiliation(s)
- Lujie Jiang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Li Li
- Department of Endocrinology, The First People’s Hospital of Taian, Taian, Shandong, China
| | - Ke Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Liping Zheng
- Department of Endocrinology, The First People’s Hospital of Ningyang, Taian, Shandong, China
| | - Xinhuan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yanlian Hou
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yan Wang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| |
Collapse
|
18
|
Guan Z, Jin X, Zhang X. MFF-nDA: A Computational Model for ncRNA-Disease Association Prediction Based on Multimodule Fusion. J Chem Inf Model 2025; 65:3324-3342. [PMID: 40129032 DOI: 10.1021/acs.jcim.5c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Noncoding RNAs(ncRNAs), including piwi-interacting RNA(piRNA), long noncoding RNA(lncRNA), microRNA(miRNA), small nucleolar RNA(snoRNA), and circular RNA(circRNA), contribute significantly to gene expression regulation and serve as key factors in disease association studies and health-related exploration. Accurate prediction of ncRNA-disease associations is crucial for elucidating disease mechanisms and advancing therapeutic development. Recently, computational models based on a graph neural network have extensively emerged for identifying associations among various ncRNAs and diseases. However, existing computational models have not fully utilized integrative information on ncRNs and diseases, and reliance on GNN-based models alone may be limited in performance due to oversmoothing issues. On the other hand, existing models are mainly targeted at a specific type of ncRNA and may not be applicable to most ncRNAs. Therefore, to overcome these limitations, we propound a computational model MFF-nDA based on multimodule fusion. Specifically, we first introduce five types of similarity network information, including three types of ncRNA and two types of disease similarity information, in order to fully explore and optimize the multisource feature information on these entities. Subsequently, we establish three modules: heterogeneous network representation module based on Transformer, association network representation module based on graph convolutional network (GCN), and topological structure representation module based on graph attention network (GAT), which capture diverse features of nodes in heterogeneous networks and topological structure information reflected in association networks. The complementary effects of the three modules also help relieve the oversmoothing issue to some extent. By leveraging the multimodule fusion learning to comprehensively capture the diverse features of these entities, our model outperforms the available state-of-the-art methods, achieving an AUC greater than 0.9000 for each dataset. This demonstrates the highest predictive performance, making it a valuable tool for identifying potential ncRNA associated with diseases. The code of MFF-nDA can be accessed at https://github.com/Jack-Cxy/MFF-nDA.
Collapse
Affiliation(s)
- Zhihao Guan
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| | - Xiu Jin
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Zhang
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
19
|
Wasserman AH, Abolibdeh B, Hamdan R, Hong CC. Stem-Cell Derived Exosomal microRNAs as Biomarkers and Therapeutics for Pediatric Cardiovascular Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2025; 27:32. [PMID: 40224357 PMCID: PMC11982073 DOI: 10.1007/s11936-025-01088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 04/15/2025]
Abstract
Purpose of Review In recent years, several pre-clinical studies have demonstrated the therapeutic potential of stem cell-derived exosomes in the treatment of cardiovascular disease (CVD). Here, we evaluate their potential as biomarkers for the detection and monitoring of CVD, with a particular focus on pediatric heart disease. Recent Findings Exosomes isolated from stem cell sources, including mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), benefit cardiovascular function, inflammatory responses, and angiogenesis in injured and diseased hearts. These exosomes carry a variety of cargo, such as proteins, lipids, and nucleic acids. However, the majority contain non-coding RNA molecules. Summary Review of the existing literature for several non-coding RNAs and their relationship to CVD suggests that exosomes containing microRNAs (miRNAs) can serve as promising biomarkers for CVD due to their presence in circulation, ease of isolation, and therapeutic potential. These biomarkers are especially promising as screening and diagnostic tools for the early detection of pediatric and congenital heart disease.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI USA
| | - Bana Abolibdeh
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI USA
| | - Reema Hamdan
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI USA
| | - Charles C. Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI USA
| |
Collapse
|
20
|
Gyöngyösi M, Guthrie J, Hasimbegovic E, Han E, Riesenhuber M, Hamzaraj K, Bergler-Klein J, Traxler D, Emmert MY, Hackl M, Derdak S, Lukovic D. Critical analysis of descriptive microRNA data in the translational research on cardioprotection and cardiac repair: lost in the complexity of bioinformatics. Basic Res Cardiol 2025:10.1007/s00395-025-01104-1. [PMID: 40205177 DOI: 10.1007/s00395-025-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
The unsuccessful translation of cardiac regeneration and cardioprotection from animal experiments to clinical applications in humans has raised the question of whether microRNA bioinformatics can narrow the gap between animal and human research outputs. We reviewed the literature for the period between 2000 and 2024 and found 178 microRNAs involved in cardioprotection and cardiac regeneration. On analyzing the orthologs and annotations, as well as downstream regulation, we observed species-specific differences in the diverse regulation of the microRNAs and related genes and transcriptomes, the influence of the experimental setting on the microRNA-guided biological responses, and database-specific bioinformatics results. We concluded that, in addition to reducing the number of in vivo experiments, following the 3R animal experiment rules, the bioinformatics approach allows the prediction of several currently unknown interactions between pathways, coding and non-coding genes, proteins, and downstream regulatory elements. However, a comprehensive analysis of the miRNA-mRNA-protein networks needs a profound bioinformatics and mathematical education and training to appropriately design an experimental study, select the right bioinformatics tool with programming language skills and understand and display the bioinformatics output of the results to translate the research data into clinical practice. In addition, using in-silico approaches, a risk of deviating from the in vivo processes exists, with adverse consequences on the translational research.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Julia Guthrie
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Emilie Han
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Kevin Hamzaraj
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Berlin, Germany
| | | | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Cătălina GR, Gheorman V, Gheorman V, Forțofoiu MC. The Role of Neuroinflammation in the Comorbidity of Psychiatric Disorders and Internal Diseases. Healthcare (Basel) 2025; 13:837. [PMID: 40218134 PMCID: PMC11988559 DOI: 10.3390/healthcare13070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/08/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Psychiatric disorders and internal diseases frequently co-occur, posing significant challenges due to overlapping symptoms, shared pathophysiological mechanisms, and increased healthcare burdens. Neuroinflammation has emerged as a central mechanism linking these conditions, driven by systemic inflammation, hypothalamic-pituitary-adrenal (HPA) axis dysregulation, and autonomic nervous system (ANS) imbalance. This review synthesizes current evidence on the role of neuroinflammation in comorbid conditions such as depression, anxiety, cardiovascular disease, and diabetes mellitus, emphasizing bidirectional relationships and shared inflammatory pathways. This analysis identifies gaps in longitudinal studies, biomarker validation, and the integration of multidisciplinary care models. Emerging therapeutic approaches, including IL-6 inhibitors, vagus nerve stimulation, and behavioral interventions, show promise but remain underexplored in combined applications. Furthermore, disparities in research representation limit the generalizability of findings and highlight the need for inclusive clinical trials. Addressing these gaps through precision medicine, advanced biomarker monitoring technologies, and equitable healthcare strategies could transform the management of these complex comorbidities. By advancing our understanding of neuroinflammatory mechanisms and promoting integrated interventions, this review underscores the need for a collaborative, patient-centered approach to improve outcomes and reduce the global burden of psychiatric and internal disease comorbidities.
Collapse
Affiliation(s)
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronica Gheorman
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mircea-Cătălin Forțofoiu
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
22
|
Arul JC, Raja Beem SS, Parthasarathy M, Kuppusamy MK, Rajamani K, Silambanan S. Association of microRNA-210-3p with NT-proBNP, sST2, and Galectin-3 in heart failure patients with preserved and reduced ejection fraction: A cross-sectional study. PLoS One 2025; 20:e0320365. [PMID: 40179320 PMCID: PMC11991677 DOI: 10.1371/journal.pone.0320365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Heart failure (HF) is a growing health problem and around two percent are affected in the general population. Accurate diagnostic markers that have the potential for early diagnosis of HF are lacking. This study aimed to compare the expression levels of microRNA-210-3p with biomarkers NT-proBNP, sST2, and galectin-3, in heart failure patients with preserved and reduced ejection fractions. MATERIALS AND METHODS The cross-sectional study was conducted on 270 hypertensive heart failure patients in the age group of 30 to 75 years of both genders. The participants with evidence of HF were recruited from the Department of Cardiology in a tertiary care hospital in Chennai, India. MicroRNA-210-3p was analyzed by qRT-PCR in a stratified sample of 80 HF patients and 20 apparently healthy individuals. Biomarkers were analyzed by ELISA. Institutional ethics committee approval and written informed consent were obtained. Statistical analysis was performed using R software (4.2.1). Based on the type of distribution of data, appropriate statistical tools were used. p-value ≤ 0.05 was considered to be statistically significant. RESULTS All the biomarkers including microRNA-210-3p were significantly higher in HFrEF than in HFpEF. MAGGIC score showed a positive correlation with all the biomarkers. The cut-off of microRNA-210-3p was 5.03. CONCLUSION All the biomarkers were significantly elevated in HFrEF compared to HFpEF. However, microRNA-210-3p could be an early marker in the diagnosis of heart failure. The strategy of employing a multi-marker approach could help in the early diagnosis as well as in stratifying the HF patients.
Collapse
Affiliation(s)
- Jasmine Chandra Arul
- Department of Biochemistry, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sudagar Singh Raja Beem
- Department General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Mohanalakshmi Parthasarathy
- Department of Biochemistry, Sri Muthukumaran Medical College Hospital and Research Institute, Chennai, Tamil Nadu, India
| | - Mahesh Kumar Kuppusamy
- Department of Physiology and Biochemistry, Government Yoga and Naturopathy Medical College and Hospital, Chennai, Tamil Nadu, India
| | - Karthikeyan Rajamani
- Department of Public Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Santhi Silambanan
- Department of Biochemistry, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
23
|
Cho H, Ha SE, Singh R, Kim D, Ro S. microRNAs in Type 1 Diabetes: Roles, Pathological Mechanisms, and Therapeutic Potential. Int J Mol Sci 2025; 26:3301. [PMID: 40244147 PMCID: PMC11990060 DOI: 10.3390/ijms26073301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of pancreatic β-cells, leading to insulin deficiency. The primary drivers of β-cell destruction in T1D involve autoimmune-mediated processes that trigger chronic inflammation and ultimately β-cell loss. Regulatory microRNAs (miRNAs) play a crucial role in modulating these processes by regulating gene expression through post-transcriptional suppression of target mRNAs. Dysregulated miRNAs have been implicated in T1D pathogenesis, serving as both potential diagnostic biomarkers and therapeutic targets. This review explores the role of miRNAs in T1D, highlighting their involvement in disease mechanisms across both rodent models and human patients. While current antidiabetic therapies manage T1D symptoms, they do not prevent β-cell destruction, leaving patients reliant on lifelong insulin therapy. By summarizing key miRNA expression profiles in diabetic animal models and patients, this review explores the potential of miRNA-based therapies to restore β-cell function and halt or slow the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Seungil Ro
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (H.C.); (S.E.H.); (R.S.); (D.K.)
| |
Collapse
|
24
|
Yang BSK, Tabassum S, Hinds S, O'Keefe LM, Wu S, Paz AS, Chen H, Gusdon AM, Ren X, Choi HA. MiR-34c Is Predictive of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. RESEARCH SQUARE 2025:rs.3.rs-6198784. [PMID: 40235490 PMCID: PMC11998774 DOI: 10.21203/rs.3.rs-6198784/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Introduction Delayed cerebral ischemia (DCI) is a potentially preventable complication from an aneurysmal subarachnoid hemorrhage (SAH). The micro-RNAs (miR) 34 family has shown its ability to disrupt the blood-brain barrier and redox metabolism and might contribute to the complex pathophysiology of DCI. This study aimsto evaluate the association between the serum levels of miR-34c and the occurrence of DCI. Methods This retrospective observational study is based on 72 subjects with acute aneurysmal SAH who were admitted to a single tertiary center between December 2017 and July 2021. Subjects were prospectively adjudicated for clinical outcomes, including delayed cerebral ischemia.Levels of miR-34c were measured in plasma collected within 48 hours of ictus. Patients were median-dichotomized into having a higher or lower plasma level of miR-34c. miR34c levels were compared between DCI and no DCI groups using the Wilcoxon rank sum tests. A multivariable logistic regression model and the Cox proportional hazard model were used to evaluate the effect of higher miR-34c levels. Results The median age was 54 years, 76% were females, and 21% developed DCI. Early miR-34c levels were significantly higher in SAH subjects who progressed to have DCI with Cohen's d of 0.75 (p<0.05). Even after adjusting for age, sex, histories of diabetes, hypertension, Hunt-Hess grade, and modified Graeb scores, a higher miR-34c level was associated with 5.7-fold increased odds of DCI (p<0.05; 95% CI: 1.35-32.22). Survival analysis adjusting for the known predictors also revealeda 5.4-fold higher hazard of DCI for the patients with a higher miR-34c level (p < 0.05; 95% CI 1.22-25.43). Conclusion The present study demonstrates the potential importance of circulating miR-34c in predicting DCI in SAH patients. Given the known importance of the miR-34 family in vascular physiology, it may be an important target for future studies.
Collapse
|
25
|
Netala VR, Hou T, Wang Y, Zhang Z, Teertam SK. Cardiovascular Biomarkers: Tools for Precision Diagnosis and Prognosis. Int J Mol Sci 2025; 26:3218. [PMID: 40244022 PMCID: PMC11989402 DOI: 10.3390/ijms26073218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The present study provides a detailed review of cardiovascular biomarkers critical for the diagnosis, prognosis, and pathophysiology of cardiovascular diseases, the leading cause of global morbidity and mortality. These biomarkers aid in detecting disease onset, progression, and therapeutic responses, providing insights into molecular mechanisms. Enzyme markers like AST, CK-MB, LDH, CA-III, and HBDH are pivotal for detecting myocardial injury during acute events. Protein markers such as CRP, H-FABP, and MPO shed light on inflammation and oxidative stress. Cardiac Troponins, the gold standard for myocardial infarction diagnosis, exhibit high specificity and sensitivity, while IMA and GPBB indicate ischemia and early myocardial damage. Peptide markers, including BNP and NT-proBNP, are crucial for heart failure diagnosis and management, reflecting ventricular stress and remodeling. Novel peptides like MR-proANP and MR-proADM aid in assessing disease severity. Lipid markers such as lipoprotein-associated phospholipase A2 and oxylipins provide insights into lipid metabolism and atherosclerosis. Inflammatory and stress-related biomarkers, including TNFα, IL-6, GDF-15, and Pentraxin 3, illuminate chronic inflammation in CVDs. Hormonal markers like copeptin and endothelin-1 highlight neurohormonal activation, while emerging markers such as ST2, galectin-3, PAPP-A, and TMAO elucidate fibrosis, remodeling, and metabolic dysregulation. The inclusion of microRNAs and long non-coding RNAs represents a breakthrough in biomarker research, offering sensitive tools for early detection, risk stratification, and therapeutic targeting. This review emphasizes the diagnostic and prognostic utility of these biomarkers, advancing cardiovascular care through personalized medicine.
Collapse
Affiliation(s)
- Vasudeva Reddy Netala
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Yanbo Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (T.H.); (Y.W.)
| | - Sireesh Kumar Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
26
|
Ghazal R, Wang M, Liu D, Tschumperlin DJ, Pereira NL. Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure. Circ Res 2025; 136:773-802. [PMID: 40146800 PMCID: PMC11949229 DOI: 10.1161/circresaha.124.325402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cardiac fibrosis, a hallmark of heart failure and various cardiomyopathies, represents a complex pathological process that has long challenged therapeutic intervention. High-throughput omics technologies have begun revolutionizing our understanding of the molecular mechanisms driving cardiac fibrosis and are providing unprecedented insights into its heterogeneity and progression. This review provides a comprehensive analysis of how techniques-encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics-are providing insight into our understanding of cardiac fibrosis. Genomic studies have identified novel genetic variants and regulatory networks associated with fibrosis susceptibility and progression, and single-cell transcriptomics has unveiled distinct cardiac fibroblast subpopulations with unique molecular signatures. Epigenomic profiling has revealed dynamic chromatin modifications controlling fibroblast activation states, and proteomic analyses have identified novel biomarkers and potential therapeutic targets. Metabolomic studies have uncovered important alterations in cardiac energetics and substrate utilization during fibrotic remodeling. The integration of these multi-omic data sets has led to the identification of previously unrecognized pathogenic mechanisms and potential therapeutic targets, including cell-type-specific interventions and metabolic modulators. We discuss how these advances are driving the development of precision medicine approaches for cardiac fibrosis while highlighting current challenges and future directions in translating multi-omic insights into effective therapeutic strategies. This review provides a systems-level perspective on cardiac fibrosis that may inform the development of more effective, personalized therapeutic approaches for heart failure and related cardiovascular diseases.
Collapse
Affiliation(s)
- Rachad Ghazal
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
| | - Min Wang
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | - Duan Liu
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | | | - Naveen L. Pereira
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
27
|
Zhang J, Guo Y, Ji M, Lin S, Liu D, Chen Q. A comprehensive analysis of microRNA alteration in an ApoE(-/-) mice model of white adipose tissue injury induced by chronic intermittent hypoxia. Front Genet 2025; 16:1474223. [PMID: 40206502 PMCID: PMC11979184 DOI: 10.3389/fgene.2025.1474223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/26/2025] [Indexed: 04/11/2025] Open
Abstract
Background MicroRNAs (miRNAs) represent a class of noncoding small RNAs and are implicated in many diseases. However, the role of miRNA in obstructive sleep apnea (OSA)-induced white adipose tissue (WAT) dysfunction remains to be fully elucidated. Using miRNA sequencing (miRNA-seq), we uncovered the miRNA expression profiles in chronic intermittent hypoxia (CIH)-induced WAT dysfunction mice. Methods We established an apolipoprotein-deficient (ApoE-/-) CIH mouse model and identified differentially expressed miRNAs (DEmiRs) using miRNA-seq technology. With the help of Gene Ontology (GO) functional enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we determined the biological functions of these DEmiRs. In addition, RT-qPCR was performed for further evaluation of the sequencing data. Finally, we constructed a conserved negative correlation (CNC) network to expound the relationship between miRNA and target genes. Results Overall, 13 miRNAs were found to be upregulated and 18 miRNAs downregulated in the CIH-induced mouse model of WAT dysfunction. KEGG pathway analysis results indicated that the lysosome pathway participated in CIH-induced WAT dysfunction. Then, eight miRNAs were shortlisted for RT-qPCR validation. Based on the data, we chose these DEmiRs to construct a miRNA-mRNA regulatory network. Conclusion Overall, we identified 31 DEmiRs in the ApoE-/- CIH mouse model. Our findings may play a major role in explaining the pathophysiological mechanisms of WAT dysfunction induced by obstructive sleep apnea.
Collapse
Affiliation(s)
- Jinjie Zhang
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yaopeng Guo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meilin Ji
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- The Second Clinical Medical College, Fujian Medical University, Quanzhou, China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Dexin Liu
- Department of Interventional Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingshi Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
28
|
Prananda AT, Halim P, Syahputra RA. Targeting miRNA with flavonoids: unlocking novel pathways in cardiovascular disease management. Front Pharmacol 2025; 16:1532986. [PMID: 40115258 PMCID: PMC11922852 DOI: 10.3389/fphar.2025.1532986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide, with complex pathophysiological mechanisms such as oxidative stress, inflammation, apoptosis, and endothelial dysfunction driving disease progression. MicroRNAs (miRNAs), a class of non-coding RNAs, have emerged as key regulators of gene expression involved in these processes, positioning them as potential biomarkers and therapeutic targets in CVD management. Simultaneously, flavonoids, naturally occurring polyphenolic compounds found in various plant-based foods, have gained attention for their cardioprotective properties, including antioxidant, anti-inflammatory, and anti-apoptotic effects. Recent studies suggest a novel intersection between flavonoids and miRNAs, where flavonoids may modulate the expression of specific miRNAs implicated in CVD pathogenesis. This review explores the potential of flavonoids as miRNA modulators, focusing on their ability to regulate miRNAs associated with cardiac fibrosis, hypertrophy, and vascular inflammation. By bridging the therapeutic potential of flavonoids with miRNA targeting, this review highlights innovative pathways for advancing CVD treatment strategies. Additionally, preclinical and clinical evidence supporting these interactions is discussed, alongside the challenges and opportunities in developing flavonoid-based miRNA therapies. Unlocking this synergy could pave the way for more effective, personalized approaches to CVD management, addressing unmet needs in contemporary cardiovascular care.
Collapse
Affiliation(s)
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
29
|
Shu Q, Lai R. miR-874-3p Alleviates Macrophage-Mediated Inflammatory Injury in Intracerebral Hemorrhage by Targeting HIPK2. Cell Biochem Biophys 2025; 83:953-961. [PMID: 39298065 DOI: 10.1007/s12013-024-01527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
Macrophages mediate secondary inflammatory injury after intracerebral hemorrhage (ICH). This study aimed to investigate the role and molecular mechanisms of miR-874-3p in macrophage polarization. A mice model of ICH was constructed by autologous blood injection. Macrophages were treated with erythrocyte lysates to construct an ICH cell model. Real-time quantitative reverse transcription PCR (RT-qPCR) was used to detect miR-874-3p levels. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect macrophage polarization markers. Brain tissue water content and neurological deficit scores were used to assess the degree of inflammatory injury in ICH mice. RNA immunoprecipitation (RIP) and Dual-luciferase reporter (DLR) assays were used to analyze the targeting relationship between miR-874-3p and target mRNA. miR-874-3p levels were decreased in ICH mice and erythrocyte lysates-treated macrophages. miR-874-3p mimic alleviated inflammatory injury, decreased the levels of M1 macrophage markers, and increased the levels of M2 macrophage markers, suggesting that miR-874-3p is involved in ICH by regulating macrophage polarization. HIPK2 is the target mRNA of miR-874-3p and has the opposite expression pattern of miR-874-3p. Overexpression of HIPK2 attenuates the effect of elevated miR-874-3p levels on macrophage polarization and inflammatory brain injury in ICH mice. miR-874-3p regulates macrophage polarization in ICH by targeting HIPK2. Therefore, the miR-874-3p/HIPK2 axis may be a promising target for ICH treatment.
Collapse
Affiliation(s)
- Quan Shu
- Internal Medicine Teaching and Research Office of Clinical Medicine College, Hubei University of Science and Technology, Xianning, 437000, China
| | - Ruihui Lai
- Department of Neurology, Xianning Central Hospital, Xianning, 437000, China.
| |
Collapse
|
30
|
Zhang RL, Wang WM, Li JQ, Li RW, Zhang J, Wu Y, Liu Y. The role of miR-155 in cardiovascular diseases: Potential diagnostic and therapeutic targets. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2025; 24:200355. [PMID: 39760132 PMCID: PMC11699627 DOI: 10.1016/j.ijcrp.2024.200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Cardiovascular diseases (CVDs), such as atherosclerotic cardiovascular diseases, heart failure (HF), and acute coronary syndrome, represent a significant threat to global health and impose considerable socioeconomic burdens. The intricate pathogenesis of CVD involves various regulatory mechanisms, among which microRNAs (miRNAs) have emerged as critical posttranscriptional regulators. In particular, miR-155 has demonstrated differential expression patterns across a spectrum of CVD and is implicated in the etiology and progression of arterial disorders. This systematic review synthesizes current evidence on the multifaceted roles of miR-155 in the modulation of genes and pathological processes associated with CVD. We delineate the potential of miR-155 as a diagnostic biomarker and therapeutic target, highlighting its significant regulatory influence on conditions such as atherosclerosis, aneurysm, hypertension, HF, myocardial hypertrophy, and oxidative stress. Our analysis underscores the transformative potential of miR-155 as a target for intervention in cardiovascular medicine, warranting further investigation into its clinical applicability.
Collapse
Affiliation(s)
- Rui-Lin Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Wei-Ming Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ji-Qiang Li
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Run-Wen Li
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
31
|
Alizadeh M, Ghasemi H, Bazhan D, Mohammadi Bolbanabad N, Rahdan F, Arianfar N, Vahedi F, Khatami SH, Taheri-Anganeh M, Aiiashi S, Armand N. MicroRNAs in disease States. Clin Chim Acta 2025; 569:120187. [PMID: 39938625 DOI: 10.1016/j.cca.2025.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This review highlights the role of miRNAs in various diseases affecting major organ systems. miRNAs are small, non-coding RNA molecules that regulate numerous genes. Dysregulation of miRNAs is linked to many pathological conditions due to their involvement in gene silencing and cellular pathways. We discuss miRNA expression patterns, their physiological and pathological roles, and how changes in miRNA levels contribute to disease. Notably, miRNAs like miR-499 and miR-21 are implicated in heart failure and atherosclerosis. miRNA dysregulation is also associated with colorectal and gastric cancers, influencing tumorigenesis and chemoresistance. In neurological diseases, miRNAs exhibit diverse profiles that affect neurodevelopment and degeneration. Additionally, miRNAs modulate cell function in reproductive organs, impacting fertility and cancer progression. miRNAs such as miR-192 and miR-204 serve as biomarkers for nephropathy and acute kidney injury. These miRNAs are involved in skeletal muscle diseases, contributing to conditions like osteoporosis and sarcopenia. miRNAs function as oncogenes or tumor suppressors in cancer, highlighting their potential in diagnostics and therapy. Further research is needed to develop miRNA-based diagnostics and treatments.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Donya Bazhan
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Arianfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Nezam Armand
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
32
|
Gregorich ZR, Guo W. Alternative splicing factors and cardiac disease: more than just missplicing? RNA (NEW YORK, N.Y.) 2025; 31:300-306. [PMID: 39773891 PMCID: PMC11874993 DOI: 10.1261/rna.080332.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Alternative splicing (AS) is the process wherein the exons from a single gene are joined in different combinations to produce nonidentical, albeit related, RNA transcripts. This process is important for the development and physiological function of many organs and is particularly important in the heart. Notably, AS has been implicated in cardiac disease and failure, and a growing number of genetic variants in AS factors have been identified in association with cardiac malformation and/or disease. With the field poised to interrogate how these variants affect cardiac development and disease, an understandable point of emphasis will undoubtedly be on downstream target gene missplicing. In this Perspective article, we would like to encourage consideration not only of the potential for novel disease mechanisms, but also for contributions from disruption of the ever-expanding list of nonsplicing functions ascribed to many AS factors. We discuss the emergence of a novel cardiac disease mechanism based on pathogenic RNA granules and speculate on the generality of such a mechanism among localization-disrupting AS factor genetic variants. We also highlight emerging nonsplicing functions attributed to several AS factors with cardiac disease-associated genetic variants in the hopes of pointing to avenues for exploration of mechanisms that may contribute to disease alongside target gene missplicing.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
33
|
Sabit H, Arneth B, Altrawy A, Ghazy A, Abdelazeem RM, Adel A, Abdel-Ghany S, Alqosaibi AI, Deloukas P, Taghiyev ZT. Genetic and Epigenetic Intersections in COVID-19-Associated Cardiovascular Disease: Emerging Insights and Future Directions. Biomedicines 2025; 13:485. [PMID: 40002898 PMCID: PMC11852909 DOI: 10.3390/biomedicines13020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The intersection of COVID-19 and cardiovascular disease (CVD) has emerged as a significant area of research, particularly in understanding the impact of antiplatelet therapies like ticagrelor and clopidogrel. COVID-19 has been associated with acute cardiovascular complications, including myocardial infarction, thrombosis, and heart failure, exacerbated by the virus's ability to trigger widespread inflammation and endothelial dysfunction. MicroRNAs (miRNAs) play a critical role in regulating these processes by modulating the gene expressions involved in platelet function, inflammation, and vascular homeostasis. This study explores the potential of miRNAs such as miR-223 and miR-126 as biomarkers for predicting resistance or responsiveness to antiplatelet therapies in COVID-19 patients with cardiovascular disease. Identifying miRNA signatures linked to drug efficacy could optimize treatment strategies for patients at high risk of thrombotic events during COVID-19 infection. Moreover, understanding miRNA-mediated pathways offers new insights into how SARS-CoV-2 exacerbates CVD, particularly through mechanisms like cytokine storms and endothelial damage. The findings of this research could lead to personalized therapeutic approaches, improving patient outcomes and reducing mortality in COVID-19-associated cardiovascular events. With global implications, this study addresses the urgent need for effective management of CVD in the context of COVID-19, focusing on the integration of molecular biomarkers to enhance the precision of antiplatelet therapy.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Aysha Ghazy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amro Adel
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Zulfugar T. Taghiyev
- Department of Cardiovascular Surgery, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
34
|
Gu X, Zou Y, Huang Z, Wei M, Ji L. Biochemical biomarkers for the toxicity induced by Traditional Chinese Medicine: A review update. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119315. [PMID: 39755183 DOI: 10.1016/j.jep.2024.119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) is widely used in China for disease treatment and has become a valuable resource for drug development due to its high efficacy and low risk of side-effects. However, growing toxicity reports has garnered significant global attention. A major challenge in addressing TCM-induced toxicity is lack of specific and sensitive biomarkers for diagnosing and predicting its toxicity. Identifying toxicological biomarkers reflecting TCM-induced toxicity is crucial for timely detection and intervention, and provides significant clues for elucidating the underlying toxic mechanism and key target. AIM OF THE STUDY This article aims to summarize and classify some potential toxicological biomarkers for side-effects induced by TCM and its contained phytochemical ingredients. METHODS The keywords "biomarkers", "traditional Chinese medicine", "Chinese herb", "phytochemical ingredient", "natural product", "toxicity", "hepatotoxicity", "nephrotoxicity", "cardiotoxicity" were used to collect relevant information from literature databases (including PubMed, Web of Science) up to October 2024. RESULTS Research has indicated that more sensitive and specific biomarkers are needed for reflecting TCM's side-effects. PA-protein adducts and AA-DNA adducts could be served as diagnostic biomarkers for hepatotoxicity and nephrotoxicity induced by TCM containing PA and AA, respectively. Multiple miRNAs like miRNA-122-3p, miRNA-5099, and miRNA-21-3p, as well as some endogenous metabolites such as hypoxanthine, choline, and L-valine could be potential biomarkers associated with TCM-induced hepatotoxicity, nephrotoxicity, and cardiotoxicity. CONCLUSION In this review, different research demonstrates that DNA/protein-adducts, noncoding RNAs, endogenous metabolites and so on show the potential to be new early-warning biomarkers for TCM-induced toxicity with high specificity and sensitivity.
Collapse
Affiliation(s)
- Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Zou
- School of Basic Medical Science of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Academy of International Standardization for Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
35
|
Nunes S, Bastos R, Marinho AI, Vieira R, Benício I, de Noronha MA, Lírio S, Brodskyn C, Tavares NM. Recent advances in the development and clinical application of miRNAs in infectious diseases. Noncoding RNA Res 2025; 10:41-54. [PMID: 39296638 PMCID: PMC11406675 DOI: 10.1016/j.ncrna.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In the search for new biomarkers and therapeutic targets for infectious diseases, several molecules have been investigated. Small RNAs, known as microRNAs (miRs), are important regulators of gene expression, and have emerged as promising candidates for these purposes. MiRs are a class of small, endogenous non-coding RNAs that play critical roles in several human diseases, including host-pathogen interaction mechanisms. Recently, miRs signatures have been reported in different infectious diseases, opening new perspectives for molecular diagnosis and therapy. MiR profiles can discriminate between healthy individuals and patients, as well as distinguish different disease stages. Furthermore, the possibility of assessing miRs in biological fluids, such as serum and whole blood, renders these molecules feasible for the development of new non-invasive diagnostic and prognostic tools. In this manuscript, we will comprehensively describe miRs as biomarkers and therapeutic targets in infectious diseases and explore how they can contribute to the advance of existing and new tools. Additionally, we will discuss different miR analysis platforms to understand the obstacles and advances of this molecular approach and propose their potential clinical applications and contributions to public health.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Rana Bastos
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ananda Isis Marinho
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Raissa Vieira
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ingra Benício
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Sofia Lírio
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Cláudia Brodskyn
- Federal University of Bahia (UFBA), Salvador, Brazil
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Natalia Machado Tavares
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| |
Collapse
|
36
|
Sen MG, Chooi R, McMullen JR. Heart-derived factors and organ cross-talk in settings of health and disease: new knowledge and clinical opportunities for multimorbidity. J Physiol 2025. [PMID: 39888058 DOI: 10.1113/jp287400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Cardiovascular disease affects millions of people worldwide and often presents with other conditions including metabolic, renal and neurological disorders. A variety of secreted factors from multiple organs/tissues (proteins, nucleic acids and lipids) have been implicated in facilitating organ cross-talk that may contribute to the development of multimorbidity. Secreted proteins have received the most attention, with the greatest body of research related to factors released from adipose tissue (adipokines), followed by skeletal muscle (myokines). To date, there have been fewer studies on proteins released from the heart (cardiokines) implicated with organ cross-talk. Early evidence for the secretion of cardiac-specific factors facilitating organ cross-talk came in the form of natriuretic peptides which are secreted via the classical endoplasmic reticulum-Golgi pathway. More recently, studies in cardiomyocyte-specific genetic mouse models have revealed cardiac-initiated organ cross-talk. Cardiomyocyte-specific modulation of microRNAs (miR-208a and miR-23-27-24 cluster) and proteins such as the mediator complex subunit 13 (MED13), G-protein-coupled receptor kinase 2 (GRK2), mutant α-myosin heavy-chain (αMHC), ubiquitin-like modifier-activating enzyme (ATG7), oestrogen receptor alpha (ERα) and fibroblast growth factor 21 (FGF21) have resulted in metabolic and renal phenotypes. These studies have implicated a variety of factors which can be secreted via the classical pathway or via non-classical mechanisms including the release of extracellular vesicles. Cross-talk between the heart and the brain has also been described (e.g. via miR-1 and an emerging concept, interoception: detection of internal neural signals). Here we summarize these studies taking into consideration that factors may be secreted in both settings of health and in disease.
Collapse
Affiliation(s)
- Melodi G Sen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Roger Chooi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Heart Research Institute, Newtown, New South Wales, Australia
- Monash Alfred Baker Centre for Cardiovascular Research, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
37
|
Paltzer WG, Martin JF. Micro RNA Regulating a Mega Difference in Male and Female Cardiac Physiology. Circ Res 2025; 136:276-278. [PMID: 39883792 DOI: 10.1161/circresaha.124.325941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Affiliation(s)
- Wyatt G Paltzer
- Department of Integrative Physiology (W.G.P., J.F.M.), Baylor College of Medicine, Houston, TX
| | - James F Martin
- Department of Integrative Physiology (W.G.P., J.F.M.), Baylor College of Medicine, Houston, TX
- Center for Organ Repair and Renewal (J.F.M.), Baylor College of Medicine, Houston, TX
- Cardiomyocyte Renewal Laboratory (J.F.M.), Texas Heart Institute, Houston
- McGill Gene Editing Laboratory (J.F.M.), Texas Heart Institute, Houston
| |
Collapse
|
38
|
Sadeghi M, Tavakol Afshari J, Fadaee A, Dashti M, Kheradmand F, Dehnavi S, Mohammadi M. Exosomal miRNAs involvement in pathogenesis, diagnosis, and treatment of rheumatoid arthritis. Heliyon 2025; 11:e41983. [PMID: 39897907 PMCID: PMC11786886 DOI: 10.1016/j.heliyon.2025.e41983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune arthropathy worldwide. The initiation, and progression of RA involves multiple cellular and molecular pathways, and biological interactions. Micro RNAs (miRNAs) are characterized as a class of small non-coding RNAs that influence gene expression at the post-transcriptional level. Exosomes are biological nano-vesicles that are secreted by different types of cells. They facilitate communication and signalling between cells by transferring a variety of biological substances, such as proteins, lipids, and nucleic acids like mRNA and miRNA. Exosomal miRNAs were shown to be involved in normal and pathological conditions. In RA, deregulated exosomal miRNA expression was observed to be involved in the intercellular communication between synovial cells, and inflammatory or regulatory immune cells. Furthermore, circulating exosomal miRNAs were introduced as available diagnostic and prognostic biomarkers for RA pathology. The current review categorized and summarized dysregulated pathologically involved and circulating exosomal miRNAs in the context of RA. It highlighted present situation and future perspective of using exosomal miRNAs as biomarkers and a specific gene therapy approach for RA treatment.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Fadaee
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Dashti
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kheradmand
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Jakubowski H, Witucki Ł. Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease. Int J Mol Sci 2025; 26:746. [PMID: 39859460 PMCID: PMC11765536 DOI: 10.3390/ijms26020746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation. Together with increased plasma levels of low-density lipoprotein (LDL), diabetes, hypertension, cigarette smoking, infectious microorganisms, and genetic factors, epidemiological studies established that dysregulated metabolism of homocysteine (Hcy) causing hyperhomocysteinemia (HHcy) is associated with CVD. Patients with severe HHcy exhibit severe CVD and die prematurely due to vascular complications. Biochemically, HHcy is characterized by elevated levels of Hcy and related metabolites such as Hcy-thiolactone and N-Hcy-protein, seen in genetic and nutritional deficiencies in Hcy metabolism in humans and animals. The only known source of Hcy in humans is methionine released in the gut from dietary protein. Hcy is generated from S-adenosylhomocysteine (AdoHcy) and metabolized to cystathionine by cystathionine β-synthase (CBS) and to Hcy-thiolactone by methionyl-tRNA synthetase. Hcy-thiolactone, a chemically reactive thioester, modifies protein lysine residues, generating N-homocysteinylated (N-Hcy)-protein. N-Hcy-proteins lose their normal native function and become cytotoxic, autoimmunogenic, proinflammatory, prothrombotic, and proatherogenic. Accumulating evidence, discussed in this review, shows that these Hcy metabolites can promote endothelial dysfunction, CVD, and stroke in humans by inducing pro-atherogenic changes in gene expression, upregulating mTOR signaling, and inhibiting autophagy through epigenetic mechanisms involving specific microRNAs, histone demethylase PHF8, and methylated histone H4K20me1. Clinical studies, also discussed in this review, show that cystathionine and Hcy-thiolactone are associated with myocardial infarction and ischemic stroke by influencing blood clotting. These findings contribute to our understanding of the complex mechanisms underlying endothelial dysfunction, atherosclerosis, CVD, and stroke and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland;
| |
Collapse
|
40
|
Sreepada A, Khasanov R, Elkrewi EZ, de la Torre C, Felcht J, Al Abdulqader AA, Martel R, Hoyos-Celis NA, Boettcher M, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Urine miRNA signature as potential non-invasive diagnostic biomarker for Hirschsprung's disease. Front Mol Neurosci 2025; 17:1504424. [PMID: 39872605 PMCID: PMC11770682 DOI: 10.3389/fnmol.2024.1504424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications. Consequently, there is room for new non-invasive diagnostic methods that are objective, more logistically feasible and also deliver a far earlier base for a potential surgical intervention. In recent years, microRNA (miRNA) has come into the focus as a relevant early marker that could provide more insights into the etiology and progression of diseases. Therefore, in the search of a non-invasive HSCR biomarker, we analyzed miRNA expression in urine samples of HSCR patients. Results from 5 HSCR patients using microarrays, revealed hsa-miR-378 h, hsa-miR-210-5p, hsa-miR-6876-3p, hsa-miR-634 and hsa-miR-6883-3p as the most upregulated miRNAs; while hsa-miR-4443, hsa-miR-22-3p, hsa-miR-4732-5p, hsa-miR-3187-5p, and hsa-miR-371b-5p where the most downregulated miRNAs. Further search in miRNAwalk and miRDB databases showed that certainly most of these dysregulated miRNAs identified target HSCR associated genes, such as RET, GDNF, BDNF, EDN3, EDNRB, ERBB, NRG1, SOX10; and other genes implied in neuronal migration and neurogenesis. Finally, we could also validate some of these miRNA changes in HSCR urine by RT-qPCR. Altogether, our analyzed HSCR cohort presents a dysregulated miRNA expression presents that can be detected in urine. Our findings open the possibility of using specific urine miRNA signatures as non-invasive HSCR diagnosis method in the future.
Collapse
Affiliation(s)
- Abhijit Sreepada
- Translational Medical Research/International Master in Innovative Medicine Master Program, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Enas Zoheer Elkrewi
- Translational Medical Research/International Master in Innovative Medicine Master Program, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Judith Felcht
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ahmad A. Al Abdulqader
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Surgery, College of Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Richard Martel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicolás Andrés Hoyos-Celis
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Campus Zweibrücken, Kaiserslautern, Germany
| | | |
Collapse
|
41
|
Wu C, Hong YX, Zhang XC, Li JZ, Li YT, Xie J, Wang RY, Wang Y, Li G. SIRT1-dependent regulation of mitochondrial metabolism participates in miR-30a-5p-mediated cardiac remodeling post-myocardial infarction. Free Radic Biol Med 2025; 226:117-128. [PMID: 39557133 DOI: 10.1016/j.freeradbiomed.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Myocardial infarction-triggered myocardial remodeling is fatal for therapies. The miR-30 family is an essential component of several physiological and pathological processes. Previous studies have proved that the miR-30 family may contribute to regulating myocardial infarction. This study aimed to demonstrate that the combination of miR-30a-5p and mitochondrial metabolism recapitulates the critical features for remodeling post-myocardial infarction. Using gain- and loss-of-function of miR-30a-5p in mice, we found miR-30a-5p is highly expressed in the heart and is reduced in infarcted hearts. Further evidence showed that miR-30a-5p acts as a protective molecule to maintain myocardial remodeling, fibrosis, and mitochondrial structure. Mitochondrial function, ATP production, and mitochondrial respiratory chain proteins were positively regulated by miR-30a-5p. Mechanistically, alterations in these properties depend on SIRT1, which modulates miR-30a-5p-regulated mitochondrial metabolism. Remarkably, reactivation of SIRT1 prevented miR-30a-5p deficiency-aggravated myocardial infarction-induced myocardial remodeling. These data identified miR-30a-5p as a critical modulator of mitochondrial function in cardiomyocytes and revealed that the miR-30a-5p-SIRT1-mitochondria network is essential for myocardial infarction-induced cardiac remodeling.
Collapse
Affiliation(s)
- Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Xiao-Cheng Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Jing-Zhou Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Yu-Ting Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rui-Ying Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian, 361000, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian, 361000, China.
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China; Xiamen Key Laboratory of Cardiovascular Diseases, Xiamen, Fujian, 361000, China.
| |
Collapse
|
42
|
Zong X, Zhu L, Wang Y, Wang J, Gu Y, Liu Q. Cohort Studies and Multi-omics Approaches to Low-Dose Ionizing Radiation-Induced Cardiovascular Disease: A Comprehensive Review. Cardiovasc Toxicol 2025; 25:148-165. [PMID: 39538046 DOI: 10.1007/s12012-024-09943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The effect of low-dose ionizing radiation exposure on the risk of cardiovascular disease (CVD) represents a significant concern in the field of radiation protection. The prevailing approach to mitigating the adverse effects of low-dose or low-dose-rate radiation does not currently incorporate the potential risk of CVD, despite the possibility that such risk may be a substantial contributor to overall health hazards. Current evidence suggests a potential association between radiation exposure and CVD; however, the overall findings remain inconclusive. This is particularly due to the uncertainty surrounding the influence of significant non-radiation risk factors on the associations reported in epidemiological studies. It is difficult to discern the underlying connection in observational epidemiology when there is substantial variation in baseline risk factors. The paucity of epidemiological research in this domain is being partially offset by the advancement of multi-omics approaches. These methods assist in identifying radiosensitive targets, comprehending underlying biological processes, and pinpointing biomarkers. This, in turn, fortifies the evidence gleaned from epidemiological studies. In this review, we delve into the body of epidemiological research pertaining to CVD induced by low-dose ionizing radiation and the application of multi-omics techniques. The integration of these two methodologies holds the promise of identifying specific molecules or biological pathways that can be employed to validate endpoints related to radiation risk assessment.
Collapse
Affiliation(s)
- Xumin Zong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Lin Zhu
- School of Basic Medical Sciences, Weifang Medical University, Shandong, 261000, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
43
|
Wang Z, Xie C, Chen X. Diagnostic and therapeutic role of non-coding RNAs regulating programmed cell death in melanoma. Front Oncol 2024; 14:1476684. [PMID: 39777348 PMCID: PMC11703721 DOI: 10.3389/fonc.2024.1476684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
lncRNAs (long non-coding RNAs) are heterogeneous RNA molecules that modulate various cellular processes, such as proliferation, differentiation, migration, invasion, and apoptosis, via different mechanisms. An increasing amount of research indicates that abnormal expression of lncRNA influences the development of drug resistance as well as the genesis and advancement of cancer, including melanoma. Furthermore, they are attractive biomarkers for non-invasive cancer diagnostics due to their strongly modulated expression and improved tissue and disease specificity. This review offers a succinct overview of the present understanding concerning the potential diagnostic biomarker potential of lncRNAs in melanoma. Cell death occurs frequently during growth and throughout life and is an active, organized, and genetically determined process. It is essential for the regulation of homeostasis. Controlled cell death and non-programmed cell death are both forms of cell death. The most prevalent forms of regulatory cell death are pyroptosis, ferroptosis, autophagy, necroptosis, necrosis, and apoptosis. Ferroptosis, pyroptosis, and autophagy are less common forms of cell death compared to necrosis, apoptosis, and necroptosis. ncRNAs are regulatory RNA molecules that are not involved in encoding proteins. They primarily consist of circular RNAs (circ RNAs), lncRNAs, and microRNAs (miRNAs). Moreover, non-coding RNAs have the ability to modulate tumor cell autophagy, pyroptosis, and ferroptosis at the transcriptional or post-transcriptional stage, as well as function as oncogenes and tumor suppressor genes, which can have considerable effects on the incidence and growth of tumors. This review concentrated on the recent advancements in the research of the diagnostic and therapeutic functions of ncRNAs in the regulation of programmed cell death in melanoma.
Collapse
Affiliation(s)
- Zixu Wang
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cong Xie
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiao Chen
- Office for Postgraduate Student Studies, Kunming Medical University, Kunming, China
| |
Collapse
|
44
|
Wang X, Bian Y, Chen W. Cross-disease transcriptomic analysis reveals DOK3 and PAPOLA as therapeutic targets for neuroinflammatory and tumorigenic processes. Front Immunol 2024; 15:1504629. [PMID: 39726593 PMCID: PMC11669587 DOI: 10.3389/fimmu.2024.1504629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Objective Subarachnoid hemorrhage (SAH) and tumorigenesis share numerous biological complexities; nevertheless, the specific gene expression profiles and underlying mechanisms remain poorly understood. This study aims to identify differentially expressed genes (DEGs) that could serve as biomarkers for diagnosis and prognosis. Methods Gene expression datasets (GSE122063, GSE13353, GSE161870) were analyzed using machine learning algorithms and logistic regression to identify DEGs associated with both SAH and tumorigenesis. Lasso regression and receiver operating characteristic (ROC) curve analysis were employed to evaluate the classification accuracy of these genes. Validation of critical DEGs was performed through pan-cancer analysis and experimental studies, focusing on the role of DOK3 in modulating inflammation and oxidative stress in U251MG glioblastoma and BV2 microglia cells. Results Fifteen common DEGs were identified, with DOK3 and PAPOLA highlighted as crucial genes implicated in SAH and neurodegenerative processes. Experimental validation demonstrated that DOK3 overexpression significantly reduced pro-inflammatory cytokine levels and oxidative stress markers while enhancing antioxidant enzyme activity. Additionally, DOK3 influenced tumorigenic processes such as apoptosis, cell cycle regulation, and proliferation, effectively mitigating LPS-induced cytotoxicity and inflammation in BV2 microglial cells. Conclusions DOK3 and PAPOLA play critical roles in both SAH and related neurodegeneration, presenting themselves as potential prognostic biomarkers and therapeutic targets. Notably, DOK3 exhibits potential as an antitumor agent with anti-inflammatory and antioxidative properties, offering therapeutic benefits for both cancer and neuroinflammatory conditions.
Collapse
Affiliation(s)
| | | | - Weiguang Chen
- Emergency Department, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
45
|
Podyacheva E, Snezhkova J, Onopchenko A, Dyachuk V, Toropova Y. The Role of MicroRNAs in the Pathogenesis of Doxorubicin-Induced Vascular Remodeling. Int J Mol Sci 2024; 25:13335. [PMID: 39769102 PMCID: PMC11728060 DOI: 10.3390/ijms252413335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/14/2025] Open
Abstract
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity. miRNAs, such as miR-21, miR-22, miR-25, miR-126, miR-140-5p, miR-330-5p, miR-146, miR-143, miR-375, miR-125b, miR-451, miR-34a-5p, and miR-9, influence signaling pathways like TGF-β/Smad, AMPKa/SIRT, NF-κB, mTOR, VEGF, and PI3K/AKT/Nrf2, impacting vascular homeostasis, angiogenesis, and endothelial-to-mesenchymal transition. Despite existing studies, gaps remain in understanding the full spectrum of miRNAs involved and their downstream effects on vascular remodeling. This review synthesizes the current knowledge on miRNA dysregulation during DOX exposure, focusing on their dual roles in cardiovascular pathology and tumor progression. Strategies to reduce DOX cardiotoxicity include modulating miRNA expression to restore signaling balance, targeting pro-inflammatory and pro-fibrotic pathways, and leveraging miRNA inhibitors or mimics. This review aims to organize and integrate the existing knowledge on the role of miRNAs in vascular remodeling, particularly in the contexts of DOX treatment and the progression of various cardiovascular diseases, including their potential involvement in tumor growth.
Collapse
Affiliation(s)
| | | | | | | | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia or (E.P.); (J.S.); (A.O.); (V.D.)
| |
Collapse
|
46
|
Sajid GA, Uddin MJ, Al-Janabi SAA, Ibrahim AN, Cinar MU. MicroRNA expression profiling of ovine epithelial cells stimulated with the Staphylococcus aureus in vitro. Mamm Genome 2024; 35:673-682. [PMID: 39215776 DOI: 10.1007/s00335-024-10062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) act as key gene expression regulators, influencing intracellular biological and pathological processes. They are of significant interest in animal genetics as potential biomarkers for animal selection and health. This study aimed to unravel the complex miRNA signature involved in mastitis in in vitro cell culture. For this purpose, we constructed a control and treatment model in ovarian mammary epithelial cells to analyze miRNA responses upon Staphylococcus aureus (S. aureus) stimulation. The high-throughput Illumina Small RNA protocol was employed, generating an average of 7.75 million single-end reads per sample, totaling 46.54 million reads. Standard bioinformatics analysis, including cleaning, filtering, miRNA quantification, and differential expression was performed using the miRbase database as a reference for ovine miRNAs. The results indicated differential expression of 63 miRNAs, including 33 up-regulated and 30 down-regulated compared to the control group. Notably, miR-10a, miR-10b, miR-21, and miR-99a displayed a significant differential expression (p ≤ 0.05) associated to signal transduction, transcriptional pathways, diseases of signal transduction by growth factor receptors and second messengers, MAPK signaling pathway, NF-κB pathway, TNFα, Toll Like Receptor 4 (TLR4) cascade, and breast cancer. This study contributes expanding miRNA databases, especially for sheep miRNAs, and identifies potential miRNA candidates for further study in biomarker identification for mastitis resistance and diagnosis.
Collapse
Affiliation(s)
- Ghulam Asghar Sajid
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
| | - Muhammad Jasim Uddin
- Center for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
- The School of Veterinary Medicine, Murdoch University, South Street, Murdoch, 6150, Australia
| | - Saif Adil Abbood Al-Janabi
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
- Ministry of Agriculture, Office of Technical Deputy, Baghdad, Iraq
| | - Abdiaziz Nur Ibrahim
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye.
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
47
|
Singh V, Sen A, Saini S, Dwivedi S, Agrawal R, Bansal A, Shekhar S. MicroRNA Significance in Cancer: An Updated Review on Diagnostic, Prognostic, and Therapeutic Perspectives. EJIFCC 2024; 35:265-284. [PMID: 39810890 PMCID: PMC11726331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The article provides a thorough and up-to-date analysis of the role that microRNAs (miRNAs) within the realm of cancer therapy, paying specific attention to their diagnostic, prognostic as well as therapeutic capabilities. The miRNAs (small non-coding RNAs) are the current major genes that regulate gene expression. They are a key factor in the genesis of cancer. They are oncogenes, or tumor suppressors that play key functions in the signaling pathway that contribute to the development of cancer. This article focuses on the double importance of microRNAs for cancer oncogenesis. This includes both their ability to inhibit cancer suppressor genes and the stimulation of cancer-causing oncogenes. MicroRNAs have been identified for a long time as biomarkers to help in diagnosing cancer and have distinct signatures specific to different kinds of cancer. There are many detection strategies including RT-qPCR, Next Generation Sequencing (NGS) as well as Microarray Analysis that have been evaluated to prove their effectiveness in aiding the non-invasive diagnosis of cancer. The paper provides an overview of the importance of miRNAs to prognosis, highlighting their ability to forecast tumor progression as well as outcomes for cancer patients. In addition, their therapeutic value remains a subject of research. Research is being conducted in order to investigate miRNA-targeting therapy including antisense oligonucleotides, or small molecules inhibitors as possible treatment options for cancer. These methods could favor more specific and individualized approaches than the current techniques. The article also focuses on the current challenges and future prospects linked to miRNA research and demonstrates the complex biological functions they play as well as clinical applications that require investigation. The review is the source of information for researchers, clinicians and scientists who are interested in advancing studies into cancer research as well as personalized treatments.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Aniruddha Sen
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Sapna Saini
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Ruchika Agrawal
- Department of ENT, All India Institute of Medical Sciences Gorakhpur, 273008, India
| | - Akash Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| | - Shashank Shekhar
- Department of Radiotherapy, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, 273008, India
| |
Collapse
|
48
|
Bardill JR, Karimpour-Fard A, Breckenfelder CC, Sucharov CC, Eason CR, Gallagher LT, Khailova L, Wright CJ, Gien J, Galan HL, Derderian SC. microRNAs in congenital diaphragmatic hernia: insights into prenatal and perinatal biomarkers and altered molecular pathways. Am J Obstet Gynecol MFM 2024; 6:101535. [PMID: 39505208 DOI: 10.1016/j.ajogmf.2024.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is characterized by a diaphragmatic defect, leading to herniation of abdominal organs into the chest, lung compression, and impaired lung development, often resulting in pulmonary hypertension and lung hypoplasia. Prenatal imaging techniques like ultrasound and MRI provide anatomical predictors of outcomes, but their limitations necessitate novel biomarkers for better prognostic accuracy. OBJECTIVE This study aims to identify unique circulating maternal, fetal, and neonatal microRNAs (miRNAs) that can distinguish CDH pregnancies from healthy controls and assess their potential as markers of disease severity. STUDY DESIGN We conducted a prospective study involving third-trimester maternal blood, amniotic fluid, cord blood, and neonatal blood samples from pregnancies complicated by CDH and healthy controls. miRNA expression was analyzed using RNA-sequencing, and random forest analysis identified miRNAs distinguishing CDH survivors from nonsurvivors. Pathway enrichment analyses were performed to explore the biological relevance of differentially expressed miRNAs. RESULTS Significant miRNA expression differences were observed between CDH and control samples across all sample types. In infant blood, 148 miRNAs were up-regulated, and 36 were down-regulated in CDH cases. Pathway analysis revealed that dysregulated miRNAs in CDH targeted pathways related to protein binding, transcription regulation, and signaling pathways implicated in pulmonary hypertension and lung hypoplasia. Random forest analysis identified miRNAs in maternal blood (miR-7850-5p_L-1R+2, miR-942-3p, and miR-197-3p) that distinguished CDH survivors from nonsurvivors, with an receiver operating characteristic area under the curve of 1.0. CONCLUSION Circulating miRNAs in maternal blood offer promising biomarkers for predicting CDH outcomes. miRNAs from infant blood provide mechanistic insights and potential targets for therapeutic intervention in critical pathways of pulmonary hypertension and lung hypoplasia. Further studies with larger cohorts are needed to validate these findings and explore the clinical application of miRNA biomarkers in CDH management.
Collapse
Affiliation(s)
- James R Bardill
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian); Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian)
| | - Anis Karimpour-Fard
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO (Karimpour-Fard)
| | - Courtney C Breckenfelder
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian); Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian)
| | - Carmen C Sucharov
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, CO (Sucharov)
| | - Caitlin R Eason
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian); Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian)
| | - Lauren T Gallagher
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian)
| | - Ludmila Khailova
- Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian)
| | - Clyde J Wright
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO (Wright and Gien)
| | - Jason Gien
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO (Wright and Gien)
| | - Henry L Galan
- Colorado Fetal Care Center, Children's Hospital Colorado, Aurora, CO (Galan and Derderian); Divison of Maternal Fetal Medicine, University of Colorado School of Medicine, Aurora, CO (Galan)
| | - Sarkis Christopher Derderian
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Gallagher, and Derderian); Department of Surgery, Laboratory for Fetal and Regenerative Biology, University of Colorado Denver School of Medicine, Aurora, CO (Bardill, Breckenfelder, Eason, Khailova, and Derderian); Colorado Fetal Care Center, Children's Hospital Colorado, Aurora, CO (Galan and Derderian); Division of Pediatric Surgery, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO (Derderian).
| |
Collapse
|
49
|
GAO C, DING S, Shadi AM, LU F, LIU C, TENG Z, XU P, LIU S. Cardioprotective mechanism of Qixuan Yijianing formula in Graves' disease mice using miRNA sequencing approach. J TRADIT CHIN MED 2024; 44:1127-1136. [PMID: 39617698 PMCID: PMC11589547 DOI: 10.19852/j.cnki.jtcm.20240927.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate the mechanism of Qixuan Yijianing (,QYN) in minimizing cardiac injury in Graves' disease (GD) mice using microRNA (miRNA) sequencing analysis. METHODS Female BALB/c mice were randomly divided into the modeling and control groups (CG). The modeling group was established with Ad-TSHR289. Following 10 weeks of successful modeling, the mice were randomly assigned to four groups: model (MG), methimazole (MMI), QYN low-dose (LD), and high-dose (HD). After four weeks of treatment, the heart rate, heart volume, and heart index were measured, and the levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), α-hydroxybutyrate dehydrogenase (α-HBD), creatine kinase (CK), and creatine kinase MB isoenzyme (CK-MB) in the serum were detected using a biochemical analyzer. Hematoxylin-eosin and Masson staining were used to determine histological changes in cardiac tissue. The heart tissues in the CG, MG, and HD groups were selected, and miRNA sequencing was used to identify differentially expressed miRNAs. A bioinformatics database was used to predict the target genes of differential miRNAs, and Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted on the predicted target genes. RESULTS As compared to the CG group, the MG group's heart rate, heart volume, heart index, AST, CK, CK-MB, LDH, α-HBD, myocardial fiber thickness, and collagen fiber significantly increased, all P < 0.01, while following QYN, these indicators improved in the HD group, all P < 0.01 or P < 0.05. Compared to the CG group, the MG group identified 151 differentially expressed miRNAs, with 42 miRNAs downregulated and 109 miRNAs upregulated; compared to the MG group, the HD group identified 70 differentially expressed miRNAs, 40 were downregulated, and 30 were upregulated. The GO functions of differential miRNA target genes are mostly enriched in cardiac development regulation, cardiac contraction control, heart rate regulation, and so on. The most enriched KEGG pathways include the mitogen-activated protein kinase, ErbB, Hippo, forkhead box protein O, and Wnt signaling pathways. CONCLUSION QYN may protect the cardiac structure and function and minimize cardiac damage caused by GD by regulating relevant target genes and signaling pathways through miRNAs which include miR-206-3p, miR-122-5p, and miR-200a-3p.
Collapse
Affiliation(s)
- Changjiu GAO
- 1 School of Pharmacy, Mudanjiang Medical University, Mudanjiang 157011, China
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Song DING
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - A.D. Mohammed Shadi
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- 4 School of Pharmacy, Lebanese International University, Sana’a 18644, Yemen
| | - Fang LU
- 2 Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Changfeng LIU
- 2 Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhan TENG
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Peng XU
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shumin LIU
- 2 Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
50
|
Piacquadio KA, Margolis LM, Gwin JA, Leidy HJ. Preliminary Evidence Supports that Long-Term Consumption of Higher-Protein Breakfast Promotes Higher Expression of Select miRNA Associated with Cardiometabolic Health in Adolescents. J Nutr 2024; 154:3585-3591. [PMID: 39393494 DOI: 10.1016/j.tjnut.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Increased dietary protein at breakfast promotes cardiometabolic health; however, whether these improvements occur at the molecular level is unknown. OBJECTIVES The objective was to examine whether long-term consumption of breakfast, varying in protein quantity, alters the expression of circulating microRNAs (miRNAs) associated with cardiometabolic health in "breakfast-skipping" adolescents. METHODS Thirty adolescents (age: 19 ± 1 y; body mass index: 25.4 ± 3 kg/m2) completed a 6-mo tightly controlled breakfast trial in which participants consumed 350 kcal normal-protein (NP, 10 g protein) or higher-protein (HP, 30 g protein) breakfasts or continued to BS for 6 mo. Fasting blood samples were collected at baseline (PRE) and 6 mo (POST) for assessment of 12 a priori circulating plasma miRNA expression levels (real-time quantitative polymerase chain reaction), glucose, insulin, IL-6, and C-reactive protein. RESULTS No main effects of group were observed for any miRNAs; however, a time-by-group interaction was detected for the expression of miR-126-3p (P = 0.05). HP breakfast tended to increase miR-126-3p expression throughout the study (POST-PRE, P = 0.09) leading to greater expression at POST compared with BS (P = 0.03), whereas NP breakfast did not. Additionally, several miRNAs predicted fasting concentrations of IL-6: miR-320a-3p, -146a-5p, -150-5p, -423-5p, -122-5p, glucose: miR-24-3p, -126-3p; insulin: miR-24-3p, -126-3p, -15b-5p; insulin sensitivity: miR-24-3p, -126-3p, -199a-5p, -15b-5p; and β-cell function: miR-15b-5p (R2 between 0.2 and 0.39; P < 0.05) from PRE and POST samples across groups. CONCLUSIONS These data support the daily consumption of a HP breakfast to promote cardiometabolic health, potentially through changes in miRNA expression, in a sensitive life-stage where early intervention strategies are critical to reduce the risk of adult-onset chronic disease. TRIAL REGISTRATION NUMBER NCT03146442.
Collapse
Affiliation(s)
- Kamille A Piacquadio
- Department of Nutritional Sciences & Department of Pediatrics, University of Texas at Austin, Austin, TX, United States
| | - Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Jess A Gwin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Heather J Leidy
- Department of Nutritional Sciences & Department of Pediatrics, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|