1
|
ALMatrafi TA. Deciphering the role of TMEM164 in autophagy-mediated ferroptosis and immune modulation in non-small cell lung cancer. Cell Immunol 2025; 409-410:104915. [PMID: 39798196 DOI: 10.1016/j.cellimm.2024.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains one of the most prevalent and deadly malignancies. Despite advancements in molecular therapies and diagnostic methods, the 5-year survival rate for lung adenocarcinoma patients remains unacceptably low, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, a distinct form of regulated cell death, has emerged as a promising target in cancer treatment. This study investigates the role of TMEM164, a membrane protein, in promoting ferroptosis and modulating anti-tumor immunity in NSCLC, aiming to elucidate its therapeutic potential. METHODS Using publicly available datasets, we performed bioinformatics analyses to identify TMEM164-regulated genes involved in ferroptosis. In addition, in vitro and in vivo assays were conducted to assess the impact of TMEM164 on cellular functions in NSCLC. RESULTS Functional assays demonstrated that TMEM164 overexpression significantly inhibited invasion, migration, and cell proliferation in both in vitro and in vivo models. TMEM164 was also found to induce ferroptosis in NSCLC cells by promoting autophagy. Specifically, we identified a mechanism whereby TMEM164 mediates ATG5-dependent autophagosome formation, leading to the degradation of ferritin, GPX4, and lipid droplets. This degradation facilitated iron accumulation and lipid peroxidation, which triggered iron-dependent cell death. Notably, co-administration of TMEM164 upregulation and anti-PD-1 antibodies exhibited synergistic anti-tumor effects in a mouse model. CONCLUSION These findings suggest that targeting TMEM164 to enhance ferroptosis and stimulate anti-tumor immunity may inhibit NSCLC progression. Consequently, TMEM164 holds promise as a new therapeutic target for NSCLC treatment.
Collapse
|
2
|
Liu Z, Li Y, Ren Y, Chen J, Weng S, Zhou Z, Luo P, Chen Q, Xu H, Ba Y, Zuo A, Liu S, Zhang Y, Pan T, Han X. Efferocytosis: The Janus-Faced Gatekeeper of Aging and Tumor Fate. Aging Cell 2025:e14467. [PMID: 39748782 DOI: 10.1111/acel.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
From embryogenesis to aging, billions of cells perish daily in mammals. The multistep process by which phagocytes engulf these deceased cells without eliciting an inflammatory response is called efferocytosis. Despite significant insights into the fundamental mechanisms of efferocytosis, its implications in disorders such as aging and cancer remain elusive. Upon summarizing and analyzing existing studies on efferocytosis, it becomes evident that efferocytosis is our friend in resolving inflammation, yet it transforms into our foe by facilitating tumor development and metastasis. This review illuminates recent discoveries regarding the emerging mechanisms of efferocytosis in clearing apoptotic cells, explores its connections with aging, examines its influence on tumor development and metastasis, and identifies the regulatory factors of efferocytosis within the tumor microenvironment. A comprehensive understanding of these efferocytosis facets offers insights into crucial physiological and pathophysiological processes, paving the way for innovative therapeutic approaches to combat aging and cancer.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingqi Chen
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Gu H, Zou H, Cheng J, Liu X, Jiang Z, Peng P, Li F, Li B. Mechanism of programmed cell death in the posterior silk gland of the silkworm, Bombyx mori, during pupation based on Ca 2+ homeostasis. INSECT MOLECULAR BIOLOGY 2024; 33:551-559. [PMID: 38545681 DOI: 10.1111/imb.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 11/06/2024]
Abstract
The silkworm, Bombyx mori, is a complete metamorphosed economic insect, and the silk gland is a significant organ for silk protein synthesis and secretion. The silk gland completely degenerates during pupation, but the regulatory mechanism of programmed cell death (PCD) has not yet been understood. In the present study, we investigated the non-genetic pathway of 20E-induced PCD in the posterior silk gland (PSG) based on intracellular Ca2+ levels. Silk gland morphology and silk gland index indicated rapid degeneration of silk gland during metamorphosis from mature silkworm (MS) to pupal day 1 (P1), and Ca2+ levels within the PSG were found to peak during the pre-pupal day 1 (PP1) stage. Moreover, the results of autophagy and apoptosis levels within the PSG showed that autophagy was significantly increased in MS-PP1 periods, and significantly decreased in PP2 and P1 periods. Apoptosis was almost absent in MS-PP1 periods and significantly increased in PP2 and P1 periods. Additionally, western blotting results showed that autophagy preceded apoptosis, and the autophagy-promoting ATG5 was cleaved by calpain to the autophagy-inhibiting and apoptosis-promoting NtATG5 since PP1 period, while decreased autophagy was accompanied by increased apoptosis. Collectively, these findings suggest that Ca2+ is a key factor in the shift from autophagy to apoptosis.
Collapse
Affiliation(s)
- Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Hongbin Zou
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Jialu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Xiaohan Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Zhe Jiang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Peilin Peng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Soochow University, Suzhou, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Squyres GR, Newman DK. Real-time high-resolution microscopy reveals how single-cell lysis shapes biofilm matrix morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618105. [PMID: 39463994 PMCID: PMC11507769 DOI: 10.1101/2024.10.13.618105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
During development, multiscale patterning requires that cells organize their behavior in space and time. Bacteria in biofilms must similarly dynamically pattern their behavior with a simpler toolkit. Like in eukaryotes, morphogenesis of the extracellular matrix is essential for biofilm development, but how it is patterned has remained unclear. Here, we explain how the architecture of eDNA, a key matrix component, is controlled by single cell lysis events during Pseudomonas aeruginosa biofilm development. We extend single-cell imaging methods to capture complete biofilm development, characterizing the stages of biofilm development and visualizing eDNA matrix morphogenesis. Mapping the spatiotemporal distribution of single cell lysis events reveals that cell lysis is restricted to a specific biofilm zone. Simulations indicate that this patterning couples cell lysis to growth, more uniformly distributing eDNA throughout the biofilm. Finally, we find that patterning of cell lysis is organized by nutrient gradients that act as positioning cues.
Collapse
Affiliation(s)
- Georgia R. Squyres
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
5
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Chen J, Tian M, Wu J, Gu X, Liu H, Ma X, Wang W. Mesenchymal stem cell conditioned medium improves hypoxic injury to protect islet graft function. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1210-1219. [PMID: 39788510 PMCID: PMC11628220 DOI: 10.11817/j.issn.1672-7347.2024.240349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVES Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms. This study aims to verify the protective effects of MSC-conditioned medium (CM) in enhancing islet cells' tolerance to hypoxic conditions and preserving islet graft function. METHODS MIN6 cells were cultured under hypoxic conditions (1% oxygen), and their viability was assessed at different time points using AO/PI staining, observed through fluorescence microscopy. MIN6 cells were treated with varying concentrations of MSC-CM under normal and hypoxic conditions. At different time points, cell viability was measured by Annexin/PI flow cytometry, and insulin secretion capacity was assessed through glucose-stimulated insulin secretion tests. A NCG T1DM mouse model was established, and islet cells from BALB/c mice were co-incubated with MSC-CM for 24 hours. The islet cells were then transplanted under the renal capsule of NCG T1DM mice. Mice body weight and blood glucose levels were monitored, and glucose tolerance tests were conducted to evaluate graft function. Graft survival was further assessed by HE staining and insulin immunohistochemistry. RESULTS Under hypoxic conditions, MIN6 cell death increased with prolonged hypoxia. Flow cytometry showed that after 48 hours of hypoxia, the survival rate of MIN6 cells was significantly lower than that of the normoxic group [(68.07±7.90)% vs (94.57±2.12)%, P<0.01)]. MSC-CM treatment restored the insulin secretion function of MIN6 cells under hypoxia, with the stimulation index (SI) increasing from 1.43±0.06 to 1.77±0.02 (P<0.001). Both 10% and 20% MSC-CM effectively mitigated hypoxic damage, whereas 30% MSC-CM had weaker effects. Glucose-stimulated insulin secretion results showed trends consistent with cell survival. Primary mouse islet cells pretreated with 10% MSC-CM and transplanted under the renal capsule of T1DM mice showed a sustained decrease in blood glucose levels 5 days post-surgery. HE staining and insulin immunohistochemistry indicated that the islet cells in the MSC-CM group maintained more intact morphology and higher insulin secretion. Glucose tolerance tests demonstrated better graft function in the MSC-CM group. CONCLUSIONS Hypoxia significantly reduces the survival of MIN6 cells and suppresses their insulin secretion function. However, MSC-CM can significantly improve hypoxia-induced cell death and functional decline, and protect islet graft function in a T1DM mouse transplantation model.
Collapse
Affiliation(s)
- Juan Chen
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Mengyu Tian
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Jianmin Wu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xingshi Gu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Huaping Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaoqian Ma
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Wei Wang
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
7
|
Zhao N, Chu J, Liu J, Ma L, Ma N, Song W, Sun T. Prenatal exposure to Benzo[a]pyrene affects maternal-fetal outcomes via placental apoptosis. Sci Rep 2024; 14:17002. [PMID: 39043924 PMCID: PMC11266563 DOI: 10.1038/s41598-024-68029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Prenatal exposure to Benzo[a]pyrene (BaP) has been suggested to increase the risk of adverse pregnancy outcomes. However, the role of placental apoptosis on BaP reproductive toxicity is poorly understood. We conducted a maternal animal model of C57BL/6 wild-type (WT) and transformation-related protein 53 (Trp53) heterozygous knockout (p53KO) mice, as well as a nested case-control study involving 83 women with PB and 82 term birth from a birth cohort on prenatal exposure to BaP and preterm birth (PB). Pregnant WT and p53KO mice were randomly allocated to BaP treatment and control groups, intraperitoneally injected of low (7.8 mg/kg), medium (35 mg/kg), and high (78 mg/kg) doses of 3,4-BaP per day and equal volume of vegetable oil, from gestational day 10.5 until delivery. Results show that high-dose BaP treatment increased the incidence of preterm birth in WT mice. The number of fetal deaths and resorptions increased with increasing doses of BaP exposure in mice. Notably, significant reductions in maternal and birth weights, increases in placental weights, and decrease in the number of livebirths were observed in higher-dose BaP groups in dose-dependent manner. We additionally observed elevated p53-mediated placental apoptosis in higher BaP exposure groups, with altered expression levels of p53 and Bax/Bcl-2. In case-control study, the expression level of MMP2 was increased among women with high BaP exposure and associated with the increased risk of all PB and moderate PB. Our study provides the first evidence of BaP-induced reproductive toxicity and its adverse effects on maternal-fetal outcomes in both animal and population studies.
Collapse
Affiliation(s)
- Nan Zhao
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Dongcheng Dist., Beijing, 100730, China.
| | - Jun Chu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jieying Liu
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Dongcheng Dist., Beijing, 100730, China
| | - Liangkun Ma
- Department of Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Ma
- Department of Echocardiography, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Song
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Dongcheng Dist., Beijing, 100730, China
| | - Tianshu Sun
- Institute of Clinical Medicine, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Shuaifuyuan, Dongcheng Dist., Beijing, 100730, China.
| |
Collapse
|
8
|
Chen Y, Zhang Z, Li Z, Wu W, Lan S, Yan T, Mei K, Qiao Z, Wang C, Bai C, Li Z, Wu S, Wang J, Zhang Q. Dynamic nanomechanical characterization of cells in exosome therapy. MICROSYSTEMS & NANOENGINEERING 2024; 10:97. [PMID: 39015940 PMCID: PMC11251037 DOI: 10.1038/s41378-024-00735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 07/18/2024]
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have been confirmed to enhance cell proliferation and improve tissue repair. Exosomes release their contents into the cytoplasmic solution of the recipient cell to mediate cell expression, which is the main pathway through which exosomes exert therapeutic effects. The corresponding process of exosome internalization mainly occurs in the early stage of treatment. However, the therapeutic effect of exosomes in the early stage remains to be further studied. We report that the three-dimensional cell traction force can intuitively reflect the ability of exosomes to enhance the cytoskeleton and cell contractility of recipient cells, serving as an effective method to characterize the therapeutic effect of exosomes. Compared with traditional biochemical methods, we can visualize the early therapeutic effect of exosomes in real time without damage by quantifying the cell traction force. Through quantitative analysis of traction forces, we found that endometrial stromal cells exhibit short-term cell roundness accompanied by greater traction force during the early stage of exosome therapy. Further experiments revealed that exosomes enhance the traction force and cytoskeleton by regulating the Rac1/RhoA signaling pathway, thereby promoting cell proliferation. This work provides an effective method for rapidly quantifying the therapeutic effects of exosomes and studying the underlying mechanisms involved.
Collapse
Affiliation(s)
- Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Zihan Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230022 China
| | - Ziwei Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230022 China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Shihai Lan
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Tianhao Yan
- Department of Cell Biology and Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Kainan Mei
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Zihan Qiao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Chen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Chuanbiao Bai
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Ziyan Li
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing, 100190 China
| | - Jianye Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230022 China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 China
| |
Collapse
|
9
|
Fu Y, Yuan P, Everaert N, Comer L, Jiang S, Jiao N, Huang L, Yuan X, Yang W, Li Y. Effects of Chinese Gallotannins on Antioxidant Function, Intestinal Health, and Gut Flora in Broilers Challenged with Escherichia coli Lipopolysaccharide. Animals (Basel) 2024; 14:1915. [PMID: 38998028 PMCID: PMC11240627 DOI: 10.3390/ani14131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
This experiment was conducted to study the protective effects of dietary Chinese gallotannins (CGT) supplementation against Escherichia coli lipopolysaccharide (LPS)-induced intestinal injury in broilers. Four hundred and fifty healthy Arbor Acres broilers (one-day-old) were randomly divided into three groups: (1) basal diet (CON group), (2) basal diet with LPS challenge (LPS group), and (3) basal diet supplemented with 300 mg/kg CGT as well as LPS challenge (LPS+CGT group). The experiment lasted for 21 days. Intraperitoneal LPS injections were administered to broilers in the LPS group and the LPS+CGT group on days 17, 19, and 21 of the trial, whereas the CON group received an intraperitoneal injection of 0.9% physiological saline. Blood and intestinal mucosa samples were collected 3 h after the LPS challenge. The results showed that LPS administration induced intestinal inflammation and apoptosis and damaged small intestinal morphology and structure in broilers. However, dietary supplementation with CGT alleviated the deleterious effects on intestinal morphology and barrier integrity caused by the LPS challenge, while also reducing intestinal apoptosis and inflammation, enhancing intestinal antioxidant capacity, and increasing cecal microbial alpha diversity in the LPS-challenged broilers. Therefore, our findings demonstrated that a 300 mg/kg CGT addition could improve intestinal morphology and gut barrier structure, as well as maintaining bacterial homeostasis, in broilers exposed to LPS. This might partially be attributed to the reduced cell apoptosis, decreased inflammatory response, and enhanced antioxidant capacity in the small intestinal mucosa.
Collapse
Affiliation(s)
- Yuemeng Fu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Peng Yuan
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Nadia Everaert
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium; (N.E.); (L.C.)
| | - Luke Comer
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium; (N.E.); (L.C.)
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China;
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7, Tai’an 271017, China; (Y.F.); (P.Y.); (S.J.); (N.J.); (L.H.); (W.Y.)
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium; (N.E.); (L.C.)
| |
Collapse
|
10
|
Huang CH, Lai YJ, Chen LN, Hung YH, Tu HY, Cheng CJ. Label-Free Three-Dimensional Morphological Characterization of Cell Death Using Holographic Tomography. SENSORS (BASEL, SWITZERLAND) 2024; 24:3435. [PMID: 38894226 PMCID: PMC11174527 DOI: 10.3390/s24113435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
This study presents a novel label-free approach for characterizing cell death states, eliminating the need for complex molecular labeling that may yield artificial or ambiguous results due to technical limitations in microscope resolution. The proposed holographic tomography technique offers a label-free avenue for capturing precise three-dimensional (3D) refractive index morphologies of cells and directly analyzing cellular parameters like area, height, volume, and nucleus/cytoplasm ratio within the 3D cellular model. We showcase holographic tomography results illustrating various cell death types and elucidate distinctive refractive index correlations with specific cell morphologies complemented by biochemical assays to verify cell death states. These findings hold promise for advancing in situ single cell state identification and diagnosis applications.
Collapse
Affiliation(s)
- Chung-Hsuan Huang
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (L.-N.C.); (Y.-H.H.)
| | - Li-Nian Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (L.-N.C.); (Y.-H.H.)
| | - Yu-Hsuan Hung
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (L.-N.C.); (Y.-H.H.)
| | - Han-Yen Tu
- Department of Electrical Engineering, Chinese Culture University, Taipei 11114, Taiwan;
| | - Chau-Jern Cheng
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
| |
Collapse
|
11
|
Han Y, Hu J, Pan J, Song X, Zhou Y, Zhang J, Yang Y, Shi X, Sun M, Yang J. LPS exposure alleviates multiple tissues damage by facilitating macrophage efferocytosis. Int Immunopharmacol 2024; 135:112283. [PMID: 38772299 DOI: 10.1016/j.intimp.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Toll-like receptors (TLRs) play a crucial role in mediating immune responses by recognizing pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), as well as facilitating apoptotic cell (ACs) clearance (efferocytosis), thus contributing significantly to maintaining homeostasis and promoting tissue resolution. In this study, we investigate the impact of TLR agonists on macrophage efferocytosis. Our findings demonstrate that pretreatment with the TLR agonist lipopolysaccharide (LPS) significantly enhances macrophage phagocytic ability, thereby promoting efferocytosis both in vitro and in vivo. Moreover, LPS pretreatment confers tissue protection against damage by augmenting macrophage efferocytic capacity in murine models. Further examination reveals that LPS modulates efferocytosis by upregulating the expression of Tim4.These results underscore the pivotal role of TLR agonists in regulating the efferocytosis process and suggest potential therapeutic avenues for addressing inflammatory diseases. Overall, our study highlights the intricate interplay between LPS pretreatment and efferocytosis in maintaining tissue homeostasis and resolving inflammation.
Collapse
Affiliation(s)
- Yuwen Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jiukun Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Xueyan Song
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jun Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Yue Yang
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China; Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohua Shi
- Department of Gastroenterology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 1 Lijiang Road, Suzhou 215153, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China.
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China.
| |
Collapse
|
12
|
Waghmare I, Gangwani K, Rai A, Singh A, Kango-Singh M. A Tumor-Specific Molecular Network Promotes Tumor Growth in Drosophila by Enforcing a Jun N-Terminal Kinase-Yorkie Feedforward Loop. Cancers (Basel) 2024; 16:1768. [PMID: 38730720 PMCID: PMC11083887 DOI: 10.3390/cancers16091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer cells expand rapidly in response to altered intercellular and signaling interactions to achieve the hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer, e.g., activating invasion by increased activity of Jun N-terminal kinase (JNK) and sustained proliferative signaling by increased activity of Hippo effector Yorkie (Yki). Thus, JNK, Yki, and their downstream transcription factors have emerged as synergistic drivers of tumor growth through pro-tumor signaling and intercellular interactions like cell competition. However, little is known about the signals that converge onto JNK and Yki in tumor cells and enable tumor cells to achieve the hallmarks of cancer. Here, using mosaic models of cooperative oncogenesis (RasV12,scrib-) in Drosophila, we show that RasV12,scrib- tumor cells grow through the activation of a previously unidentified network comprising Wingless (Wg), Dronc, JNK, and Yki. We show that RasV12,scrib- cells show increased Wg, Dronc, JNK, and Yki signaling, and all these signals are required for the growth of RasV12,scrib- tumors. We report that Wg and Dronc converge onto a JNK-Yki self-reinforcing positive feedback signal-amplification loop that promotes tumor growth. We found that the Wg-Dronc-Yki-JNK molecular network is specifically activated in polarity-impaired tumor cells and not in normal cells, in which apical-basal polarity remains intact. Our findings suggest that the identification of molecular networks may provide significant insights into the key biologically meaningful changes in signaling pathways and paradoxical signals that promote tumorigenesis.
Collapse
Affiliation(s)
- Indrayani Waghmare
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Karishma Gangwani
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Computational Biology Department, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Arushi Rai
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Premedical Programs, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Centre (ISE), University of Dayton, Dayton, OH 45469, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (I.W.); (A.R.); (A.S.)
- Premedical Programs, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Centre (ISE), University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
13
|
Jiang Y, Conradt B. A genetic screen identifies C. elegans eif-3.H and hrpr-1 as pro-apoptotic genes and potential activators of egl-1 expression. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001126. [PMID: 38434221 PMCID: PMC10905296 DOI: 10.17912/micropub.biology.001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
During C. elegans development, 1090 somatic cells are generated of which 131 reproducibly die, many through apoptosis. The C. elegans BH3-only gene egl-1 is the key activator of apoptosis in somatic tissues, and it is predominantly expressed in 'cell death' lineages i.e. lineages in which apoptotic cell death occurs. egl-1 expression is regulated at the transcriptional and post-transcriptional level. For example, we previously showed that the miR-35 and miR-58 families of miRNAs repress egl-1 expression in mothers of 'unwanted' cells by binding to the 3' UTR of egl-1 mRNA, thereby increasing egl-1 mRNA turnover. In a screen for RNA-binding proteins with a role in the post-transcriptional control of egl-1 expression, we identified EIF-3.H (ortholog of human eIF3H) and HRPR-1 (ortholog human hnRNP R/Q) as potential activators of egl-1 expression. In addition, we demonstrate that the knockdown of the eif-3.H or hrpr-1 gene by RNA-mediated interference (RNAi) results in the inappropriate survival of unwanted cells during C. elegans development. Our study provides novel insight into how egl-1 expression is controlled to cause the reproducible pattern of cell death observed during C. elegans development.
Collapse
Affiliation(s)
- Yanwen Jiang
- Cell and Developmental Biology, University College London
| | | |
Collapse
|
14
|
Duszyc K, von Pein JB, Ramnath D, Currin-Ross D, Verma S, Lim F, Sweet MJ, Schroder K, Yap AS. Apical extrusion prevents apoptosis from activating an acute inflammatory program in epithelia. Dev Cell 2023; 58:2235-2248.e6. [PMID: 37647898 DOI: 10.1016/j.devcel.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Apoptosis is traditionally considered to be an immunologically silent form of cell death. Multiple mechanisms exist to ensure that apoptosis does not stimulate the immune system to cause inflammation or autoimmunity. Against this expectation, we now report that epithelia are programmed to provoke, rather than suppress, inflammation in response to apoptosis. We found that an acute inflammatory response led by neutrophils occurs in zebrafish and cell culture when apoptotic epithelial cells cannot be expelled from the monolayer by apical extrusion. This reflects an intrinsic circuit where ATP released from apoptotic cells stimulates epithelial cells in the immediate vicinity to produce interleukin-8 (IL-8). Apical extrusion therefore prevents inappropriate epithelial inflammation by physically eliminating apoptotic cells before they can activate this pro-inflammatory circuit. This carries the implication that epithelia may be predisposed to inflammation, elicited by sporadic or induced apoptosis, if apical extrusion is compromised.
Collapse
Affiliation(s)
- Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Jessica B von Pein
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Divya Ramnath
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Denni Currin-Ross
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Fayth Lim
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Matthew J Sweet
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Kate Schroder
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
15
|
Gu H, Shu Q, Dai M, Zou H, Wang Y, Cheng J, Su Y, Li F, Li B. Low concentration chlorantraniliprole-promoted Ca 2+ release drives a shift from autophagy to apoptosis in the silk gland of Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105585. [PMID: 37945221 DOI: 10.1016/j.pestbp.2023.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 11/12/2023]
Abstract
The novel pesticide chlorantraniliprole (CAP) is widely used for pest control in agriculture, and the safety for non-target organisms of trace residues in the environment has received widespread attention. In the present study, exposure to low concentrations of CAP resulted in abnormal silk gland development in the B. mori, and induced the release of intracellular Ca2+ in addition to the triggering of Ca2+-dependent gene transcription. Moreover, the CAP treatment group exhibited down-regulation of oxidative phosphorylation and antioxidant enzyme-related genes in the silk gland, resulting in peroxide accumulation. Furthermore, transcript levels of autophagy-related genes were significantly up-regulated and protein levels of LC3-I and LC3-II were up-regulated, indicating an increase in autophagy. The protein levels of ATG5 and NtATG5 were also significantly up-regulated. While the protein levels of caspase3 and active caspase3 were significantly up-regulated consistent with the transcript levels of key genes in the apoptotic signaling pathway, ultimately affecting silk protein synthesis. Overall, these findings indicate that low concentration CAP induced abnormal development in the silk gland of B. mori by causing intracellular Ca2+ overload, which inhibits oxidative phosphorylation pathway and the removal of reactive oxygen species, leading to a driving a shift from autophagy to apoptosis. The findings herein provided a basis for evaluating the safety of CAP environmental residues on non-target organisms.
Collapse
Affiliation(s)
- Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Hongbin Zou
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Jialu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yue Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China; Sericulture Institute of Soochow University, Soochow University, Suzhou, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China; Sericulture Institute of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Waghmare I, Gangwani K, Rai A, Singh A, Kango-Singh M. A Tumour-Specific Molecular Network Promotes Tumour Growth in Drosophila by Enforcing a JNK-YKI Feedforward Loop. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.561369. [PMID: 37904920 PMCID: PMC10614921 DOI: 10.1101/2023.10.18.561369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cancer cells expand rapidly in response to altered intercellular and signalling interactions to achieve hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer e.g., activating invasion by increased activity of Jun N-terminal kinase (JNK), and sustained proliferative signalling by increased activity of Hippo effector Yorkie (Yki). Thus, JNK, Yki, and their downstream transcription factors have emerged as synergistic drivers of tumour growth through pro-tumour signalling and intercellular interactions like cell-competition. However, little is known about the signals that converge onto JNK and Yki in tumour cells that enable the tumour cells to achieve hallmarks of cancer. Here, using mosaic models of cooperative oncogenesis ( Ras V12 , scrib - ) in Drosophila , we show that Ras V12 , scrib - tumour cells grow by activation of a previously unidentified network comprising Wingless (Wg), Dronc, JNK and Yki. We show that Ras V12 , scrib - cells show increased Wg, Dronc, JNK, and Yki signalling, and all of these signals are required for the growth of Ras V12 , scrib - tumours. We report that Wg and Dronc converge onto a JNK-Yki self-reinforcing positive feedback signal-amplification loop that promotes tumour growth. We found that Wg-Dronc-Yki-JNK molecular network is specifically activated in polarity-impaired tumour cells and not in normal cells where apical basal polarity is intact. Our findings suggest that identification of molecular networks may provide significant insights about the key biologically meaningful changes in signalling pathways, and paradoxical signals that promote Tumourigenesis.
Collapse
|
17
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
18
|
Garcia-Arias JM, Pinal N, Cristobal-Vargas S, Estella C, Morata G. Lack of apoptosis leads to cellular senescence and tumorigenesis in Drosophila epithelial cells. Cell Death Discov 2023; 9:281. [PMID: 37532716 PMCID: PMC10397273 DOI: 10.1038/s41420-023-01583-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Programmed cell death (apoptosis) is a homeostasis program of animal tissues designed to remove cells that are unwanted or are damaged by physiological insults. To assess the functional role of apoptosis, we have studied the consequences of subjecting Drosophila epithelial cells defective in apoptosis to stress or genetic perturbations that normally cause massive cell death. We find that many of those cells acquire persistent activity of the JNK pathway, which drives them into senescent status, characterized by arrest of cell division, cell hypertrophy, Senescent Associated ß-gal activity (SA-ß-gal), reactive oxygen species (ROS) production, Senescent Associated Secretory Phenotype (SASP) and migratory behaviour. We have identified two classes of senescent cells in the wing disc: 1) those that localize to the appendage part of the disc, express the upd, wg and dpp signalling genes and generate tumour overgrowths, and 2) those located in the thoracic region do not express wg and dpp nor they induce tumour overgrowths. Whether to become tumorigenic or non-tumorigenic depends on the original identity of the cell prior to the transformation. We also find that the p53 gene contributes to senescence by enhancing the activity of JNK.
Collapse
Affiliation(s)
- Juan Manuel Garcia-Arias
- Laboratory of Tumorogenesis and Regeneration. Centro de Biología Molecular CSIC-UAM, Madrid, Spain
| | - Noelia Pinal
- Laboratory of Tumorogenesis and Regeneration. Centro de Biología Molecular CSIC-UAM, Madrid, Spain
| | - Sara Cristobal-Vargas
- Laboratory of Gene expression control, patterning and growth during appendage development. Centro de Biología Molecular CSIC-UAM, Madrid, Spain
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Carlos Estella
- Laboratory of Gene expression control, patterning and growth during appendage development. Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| | - Ginés Morata
- Laboratory of Tumorogenesis and Regeneration. Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| |
Collapse
|
19
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
20
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
21
|
Xing N, Du Q, Guo S, Xiang G, Zhang Y, Meng X, Xiang L, Wang S. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov 2023; 9:110. [PMID: 37005430 PMCID: PMC10067943 DOI: 10.1038/s41420-023-01407-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Lung cancer is a common malignant tumor that occurs in the human body and poses a serious threat to human health and quality of life. The existing treatment methods mainly include surgical treatment, chemotherapy, and radiotherapy. However, due to the strong metastatic characteristics of lung cancer and the emergence of related drug resistance and radiation resistance, the overall survival rate of lung cancer patients is not ideal. There is an urgent need to develop new treatment strategies or new effective drugs to treat lung cancer. Ferroptosis, a novel type of programmed cell death, is different from the traditional cell death pathways such as apoptosis, necrosis, pyroptosis and so on. It is caused by the increase of iron-dependent reactive oxygen species due to intracellular iron overload, which leads to the accumulation of lipid peroxides, thus inducing cell membrane oxidative damage, affecting the normal life process of cells, and finally promoting the process of ferroptosis. The regulation of ferroptosis is closely related to the normal physiological process of cells, and it involves iron metabolism, lipid metabolism, and the balance between oxygen-free radical reaction and lipid peroxidation. A large number of studies have confirmed that ferroptosis is a result of the combined action of the cellular oxidation/antioxidant system and cell membrane damage/repair, which has great potential application in tumor therapy. Therefore, this review aims to explore potential therapeutic targets for ferroptosis in lung cancer by clarifying the regulatory pathway of ferroptosis. Based on the study of ferroptosis, the regulation mechanism of ferroptosis in lung cancer was understood and the existing chemical drugs and natural compounds targeting ferroptosis in lung cancer were summarized, with the aim of providing new ideas for the treatment of lung cancer. In addition, it also provides the basis for the discovery and clinical application of chemical drugs and natural compounds targeting ferroptosis to effectively treat lung cancer.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
22
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
Razi S, Yaghmoorian Khojini J, Kargarijam F, Panahi S, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Macrophage efferocytosis in health and disease. Cell Biochem Funct 2023; 41:152-165. [PMID: 36794573 DOI: 10.1002/cbf.3780] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Kargarijam
- Department of Biotechnology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
24
|
Anatomical, histochemical, and immunohistochemical observations on the gastrointestinal tract of Gallinula chloropus (Aves: Rallidae). BMC ZOOL 2022; 7:61. [PMID: 37170387 PMCID: PMC10127349 DOI: 10.1186/s40850-022-00161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
Gallinula chloropus (Linnaeus, 1758) is a wild aquatic omnivorous bird characterized by a marked resistance to harsh environmental conditions and a worldwide distribution. In this study, anatomical, morphometrical, histochemical, and immunohistochemical techniques were employed to study the structure of the gastrointestinal tract of Gallinula chloropus.
Results
The esophagus appeared tubular with no distinct crop. Both superficial (SPG) and deep (DPG) proventricular glands were present. The DPG filled about two-thirds of the total wall thickness. Histochemically, the mucosubstances revealed mixed alcian blue-PAS positive reactions. They were mainly localized in the acini of the esophageal glands and SPG, gastric surface epithelium, duct system of DPG, and intestinal goblet cells. The highest number of goblet cells per every 1 mm2 of the intestinal mucosa was seen within the ileum and rectum, 2555 ± 468 and 2607 ± 653 respectively. Notably, glucagon immunoreactive (IR) cells were abundant in the mucosa of the small and large intestines and the proventriculus, while somatostatin IR cells were concentrated within the acini of the DPG. IR cells for the mitosis marker phospho-histone H3 (PHH3) were highest within the entire intestinal crypts and mucosa-associated lymphoid tissues (MALT). In contrast, cells IR for the apoptosis marker C.CASP3 were remarkable in epithelial cells at the tips of intestinal villi and in MALT, reflecting the dynamic nature of the latter mentioned structures.
Conclusions
The findings of the present study advance our knowledge of the gross and microscopic anatomy of the gastrointestinal tract in wild birds and could help to enhance the productivity of Aves via improving gut health.
Collapse
|
25
|
Abstract
Morphogenesis is extremely diverse, but its systematic quantification to determine the physical mechanisms that produce different phenotypes is possible by quantifying the underlying cell behaviours. These are limited and definable: they consist of cell proliferation, orientation of cell division, cell rearrangement, directional matrix production, cell addition/subtraction and cell size/shape change. Although minor variations in these categories are possible, in sum they capture all possible morphogenetic behaviours. This article summarises these processes, discusses their measurement, and highlights some salient examples.
Collapse
Affiliation(s)
- Jeremy B. A. Green
- Centre for Craniofacial Regeneration and Biology, King's College London, Guy's Campus, London SE1 9RT, UK
| |
Collapse
|
26
|
Feng Y, Zhang Y, Lin Z, Ye X, Lin X, Lv L, Lin Y, Sun S, Qi Y, Lin X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet 2022; 18:e1010395. [PMID: 36166470 PMCID: PMC9514664 DOI: 10.1371/journal.pgen.1010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (YF); (YQ); (XL)
| | - Yan Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| | - Xinhua Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| |
Collapse
|
27
|
Zang RX, Mumby MJ, Dikeakos JD. The Phosphofurin Acidic Cluster Sorting Protein 2 (PACS-2) E209K Mutation Responsible for PACS-2 Syndrome Increases Susceptibility to Apoptosis. ACS OMEGA 2022; 7:34378-34388. [PMID: 36188273 PMCID: PMC9520720 DOI: 10.1021/acsomega.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional cytosolic membrane trafficking protein with distinct roles in maintaining cellular homeostasis. Recent clinical reports have described 28 individuals possessing a de novo PACS-2 E209K mutation that present with epileptic seizures and cerebellar dysgenesis. As the PACS-2 E209K missense mutation has become a marker for neurodevelopmental disorders, we sought to characterize its biochemical properties. Accordingly, we observed that the PACS-2 E209K protein exhibited a slower turnover rate relative to PACS-2 wild type (WT) upon cycloheximide treatment in 293T cells. The longer half-life of PACS-2 E209K suggests a disruption in its proteostasis, with the potential for altered protein-protein interactions. Indeed, a regulatory protein in neurodevelopment known as 14-3-3ε was identified as having an increased association with PACS-2 E209K. Subsequently, when comparing the effect of PACS-2 WT and E209K expression on the staurosporine-induced apoptosis response, we found that PACS-2 E209K increased susceptibility to staurosporine-induced apoptosis in HCT 116 cells. Overall, our findings suggest PACS-2 E209K alters PACS-2 proteostasis and favors complex formation with 14-3-3ε, leading to increased cell death in the presence of environmental stressors.
Collapse
|
28
|
Harbauer AB, Schneider A, Wohlleber D. Analysis of Mitochondria by Single-Organelle Resolution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:1-16. [PMID: 35303775 DOI: 10.1146/annurev-anchem-061020-111722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular organelles are highly specialized compartments with distinct functions. With the increasing resolution of detection methods, it is becoming clearer that same organelles may have different functions or properties not only within different cell populations of a tissue but also within the same cell. Dysfunction or altered function affects the organelle itself and may also lead to malignancies or undesirable cell death. To understand cellular function or dysfunction, it is therefore necessary to analyze cellular components at the single-organelle level. Here, we review the recent advances in analyzing cellular function at single-organelle resolution using high-parameter flow cytometry or multicolor confocal microscopy. We focus on the analysis of mitochondria, as they are organelles at the crossroads of various cellular signaling pathways and functions. However, most of the applied methods/technologies are transferable to any other organelle, such as the endoplasmic reticulum, lysosomes, or peroxisomes.
Collapse
Affiliation(s)
- Angelika B Harbauer
- Max Planck Institute of Neurobiology, Martinsried, Germany;
- Institute of Neuronal Cell Biology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Annika Schneider
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| |
Collapse
|
29
|
Understanding Necroptosis in Pancreatic Diseases. Biomolecules 2022; 12:biom12060828. [PMID: 35740953 PMCID: PMC9221205 DOI: 10.3390/biom12060828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Intermediate between apoptosis and necrosis, necroptosis is a regulated caspase-independent programmed cell death that induces an inflammatory response and mediates cancer development. As our understanding improves, its role in the physiopathology of numerous diseases, including pancreatic diseases, has been reconsidered, and especially in pancreatitis and pancreatic cancer. However, the exact pathogenesis remains elusive, even though some studies have been conducted on these diseases. Its unique mechanisms of action in diseases are expected to bring prospects for the treatment of pancreatic diseases. Therefore, it is imperative to further explore its molecular mechanism in pancreatic diseases in order to identify novel therapeutic options. This article introduces recent related research on necroptosis and pancreatic diseases, explores necroptosis-related molecular pathways, and provides a theoretical foundation for new therapeutic targets for pancreatic diseases.
Collapse
|
30
|
Halimi R, Levin-Zaidman S, Levin-Salomon V, Bialik S, Kimchi A. Epiblast fragmentation by shedding—a novel mechanism to eliminate cells in post-implantation mouse embryos. Cell Death Differ 2022; 29:1255-1266. [DOI: 10.1038/s41418-021-00918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
|
31
|
Pérez E, Venkatanarayan A, Lundell MJ. Hunchback prevents notch-induced apoptosis in the serotonergic lineage of Drosophila Melanogaster. Dev Biol 2022; 486:109-120. [PMID: 35381219 DOI: 10.1016/j.ydbio.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022]
Abstract
The serotonergic lineage (NB7-3) in the Drosophila ventral nerve cord produces six cells during neurogenesis. Four of the cells differentiate into neurons: EW1, EW2, EW3 and GW. The other two cells undergo apoptosis. This simple lineage provides an opportunity to examine genes that are required to induce or repress apoptosis during cell specification. Previous studies have shown that Notch signaling induces apoptosis within the NB7-3 lineage. The three EW neurons are protected from Notch-induced apoptosis by asymmetric distribution of Numb protein, an inhibitor of Notch signaling. In a numb1 mutant EW2 and EW3 undergo apoptosis. The EW1 and GW neurons survive even in a numb1 mutant background suggesting that these cells are protected from Notch-induced apoptosis by some factor other than Numb. The EW1 and GW neurons are mitotic sister cells, and uniquely express the transcription factor Hunchback. We present evidence that Hunchback prevents apoptosis in the NB7-3 lineage during normal CNS development and can rescue the two apoptotic cells in the lineage when it is ectopically expressed. We show that hunchback overexpression produces ectopic cells that express markers similar to the EW2 neuron and changes the expression pattern of the EW3 neuron to a EW2 neuron In addition we show that hunchback overexpression can override apoptosis that is genetically induced by the pro-apoptotic genes grim and hid.
Collapse
Affiliation(s)
- Ernesto Pérez
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
32
|
Pang H, Wu T, Peng Z, Tan Q, Peng X, Zhan Z, Song L, Wei B. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. J Bone Oncol 2022; 33:100415. [PMID: 35573641 PMCID: PMC9091934 DOI: 10.1016/j.jbo.2022.100415] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Baicalin causes apoptosis and autophagy through accumulating ROS to suppress PI3K/Akt/mTOR, ERK1/2 and β-catenin pathways in OS cells. Baicalin-induced autophagosome further triggers apoptosis. Baicalin-induced ROS and Ca2+ interactions induce apoptosis. Baicalin molecule targets PI3Kγ, inhibiting downstream effectors AKT and mTOR.
Baicalin, a flavonoid derivative, exerts antitumor activity in a variety of neoplasms. However, whether baicalin exerts antitumor effects on osteosarcoma cells remains to be elucidated. In this study, treatment with baicalin reduced the proliferation and invasive potential of osteosarcoma cells and reduced the mitochondrial membrane potential, which eventually caused mitochondrial apoptosis. In addition, baicalin increased intercellular Ca2+ and ROS concentrations. Baicalin-induced apoptosis was confirmed by enhanced Bax, cleaved caspase-3, and cleaved PARP levels and decreased Bcl-2 levels. The increase in LC3-II and p62 suggested that baicalin induced autophagosome formation but ultimately inhibited downstream autophagy. Moreover, apoptosis induced by baicalin was attenuated by the addition of 3-MA. Furthermore, we found that baicalin inhibited the PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. Chelation of free Ca2+ by BAPTA-AM also inhibited both apoptosis induction and ROS concentration changes. Finally, NAC pretreatment reversed baicalin treatment outcomes, including the increase in Ca2+ concentration, induction of apoptosis and autophagy, and inhibition of the pathways. Molecular docking results indicated that baicalin might interact with the structural domain of PI3Kγ. Thus, baicalin may be considered a potential candidate for osteosarcoma treatment.
Collapse
Affiliation(s)
- He Pang
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhonghua Peng
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qichao Tan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xin Peng
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zeyu Zhan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Corresponding authors.
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Corresponding authors.
| |
Collapse
|
33
|
Herb M, Gluschko A, Farid A, Krönke M. When the Phagosome Gets Leaky: Pore-Forming Toxin-Induced Non-Canonical Autophagy (PINCA). Front Cell Infect Microbiol 2022; 12:834321. [PMID: 35372127 PMCID: PMC8968195 DOI: 10.3389/fcimb.2022.834321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages remove bacteria from the extracellular milieu via phagocytosis. While most of the engulfed bacteria are degraded in the antimicrobial environment of the phagolysosome, several bacterial pathogens have evolved virulence factors, which evade degradation or allow escape into the cytosol. To counter this situation, macrophages activate LC3-associated phagocytosis (LAP), a highly bactericidal non-canonical autophagy pathway, which destroys the bacterial pathogens in so called LAPosomes. Moreover, macrophages can also target intracellular bacteria by pore-forming toxin-induced non-canonical autophagy (PINCA), a recently described non-canonical autophagy pathway, which is activated by phagosomal damage induced by bacteria-derived pore-forming toxins. Similar to LAP, PINCA involves LC3 recruitment to the bacteria-containing phagosome independently of the ULK complex, but in contrast to LAP, this process does not require ROS production by Nox2. As last resort of autophagic targeting, macrophages activate xenophagy, a selective form of macroautophagy, to recapture bacteria, which evaded successful targeting by LAP or PINCA through rupture of the phagosome. However, xenophagy can also be hijacked by bacterial pathogens for their benefit or can be completely inhibited resulting in intracellular growth of the bacterial pathogen. In this perspective, we discuss the molecular differences and similarities between LAP, PINCA and xenophagy in macrophages during bacterial infections.
Collapse
Affiliation(s)
- Marc Herb
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alexander Gluschko
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alina Farid
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- German Center for Infection Research, Bonn-Cologne, Germany
| |
Collapse
|
34
|
Rico-Ramírez AM, Pedro Gonçalves A, Louise Glass N. Fungal Cell Death: The Beginning of the End. Fungal Genet Biol 2022; 159:103671. [PMID: 35150840 DOI: 10.1016/j.fgb.2022.103671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Death is an important part of an organism's existence and also marks the end of life. On a cellular level, death involves the execution of complex processes, which can be classified into different types depending on their characteristics. Despite their "simple" lifestyle, fungi carry out highly specialized and sophisticated mechanisms to regulate the way their cells die, and the pathways underlying these mechanisms are comparable with those of plants and metazoans. This review focuses on regulated cell death in fungi and discusses the evidence for the occurrence of apoptotic-like, necroptosis-like, pyroptosis-like death, and the role of the NLR proteins in fungal cell death. We also describe recent data on meiotic drive elements involved in "spore killing" and the molecular basis of allorecognition-related cell death during cell fusion of genetically dissimilar cells. Finally, we discuss how fungal regulated cell death can be relevant in developing strategies to avoid resistance and tolerance to antifungal agents.
Collapse
Affiliation(s)
- Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
| | - A Pedro Gonçalves
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720.
| |
Collapse
|
35
|
Abstract
The classical evolutionary theories of aging suggest that aging evolves due to insufficient selective pressure against it. In these theories, declining selection pressure with age leads to aging through genes or resource allocations, implying that aging could potentially be stalled were genes, resource allocation, or selection pressure somewhat different. While these classical evolutionary theories are undeniably part of a description of the evolution of aging, they do not explain the diversity of aging patterns, and they do not constitute the only possible evolutionary explanation. Without denying selection pressure a role in the evolution of aging, we argue that the origin and diversity of aging should also be sought in the nature and evolution of organisms that are, from their very physiological make up, unmaintainable. Drawing on advances in developmental biology, genetics, biochemistry, and complex systems theory since the classical theories emerged, we propose a fresh evolutionary-mechanistic theory of aging, the Danaid theory. We argue that, in complex forms of life like humans, various restrictions on maintenance and repair may be inherent, and we show how such restrictions are laid out during development. We further argue that there is systematic variation in these constraints across taxa, and that this is a crucial factor determining variation in aging and lifespan across the tree of life. Accordingly, the core challenge for the field going forward is to map and understand the mosaic of constraints, trade-offs, chance events, and selective pressures that shape aging in diverse ways across diverse taxa.
Collapse
Affiliation(s)
- Maarten J Wensink
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense, Denmark
| | - Alan A Cohen
- Department of Family Medicine, Research Centre on Aging, CHUS Research Centre, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
36
|
Klemm J, Stinchfield MJ, Harris RE. Necrosis-induced apoptosis promotes regeneration in Drosophila wing imaginal discs. Genetics 2021; 219:6365941. [PMID: 34740246 PMCID: PMC8570793 DOI: 10.1093/genetics/iyab144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 01/13/2023] Open
Abstract
Regeneration is a complex process that requires a coordinated genetic response to tissue loss. Signals from dying cells are crucial to this process and are best understood in the context of regeneration following programmed cell death, like apoptosis. Conversely, regeneration following unregulated forms of death, such as necrosis, have yet to be fully explored. Here, we have developed a method to investigate regeneration following necrosis using the Drosophila wing imaginal disc. We show that necrosis stimulates regeneration at an equivalent level to that of apoptosis-mediated cell death and activates a similar response at the wound edge involving localized JNK signaling. Unexpectedly, however, necrosis also results in significant apoptosis far from the site of ablation, which we have termed necrosis-induced apoptosis (NiA). This apoptosis occurs independent of changes at the wound edge and importantly does not rely on JNK signaling. Furthermore, we find that blocking NiA limits proliferation and subsequently inhibits regeneration, suggesting that tissues damaged by necrosis can activate programmed cell death at a distance from the injury to promote regeneration.
Collapse
Affiliation(s)
- Jacob Klemm
- School of Life Sciences, Arizona State University, Tempe, AZ 85728, USA
| | | | - Robin E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ 85728, USA
| |
Collapse
|
37
|
Compagnucci C, Martinus K, Griffin J, Depew MJ. Programmed Cell Death Not as Sledgehammer but as Chisel: Apoptosis in Normal and Abnormal Craniofacial Patterning and Development. Front Cell Dev Biol 2021; 9:717404. [PMID: 34692678 PMCID: PMC8531503 DOI: 10.3389/fcell.2021.717404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
Coordination of craniofacial development involves an complex, intricate, genetically controlled and tightly regulated spatiotemporal series of reciprocal inductive and responsive interactions among the embryonic cephalic epithelia (both endodermal and ectodermal) and the cephalic mesenchyme — particularly the cranial neural crest (CNC). The coordinated regulation of these interactions is critical both ontogenetically and evolutionarily, and the clinical importance and mechanistic sensitivity to perturbation of this developmental system is reflected by the fact that one-third of all human congenital malformations affect the head and face. Here, we focus on one element of this elaborate process, apoptotic cell death, and its role in normal and abnormal craniofacial development. We highlight four themes in the temporospatial elaboration of craniofacial apoptosis during development, namely its occurrence at (1) positions of epithelial-epithelial apposition, (2) within intra-epithelial morphogenesis, (3) during epithelial compartmentalization, and (4) with CNC metameric organization. Using the genetic perturbation of Satb2, Pbx1/2, Fgf8, and Foxg1 as exemplars, we examine the role of apoptosis in the elaboration of jaw modules, the evolution and elaboration of the lambdoidal junction, the developmental integration at the mandibular arch hinge, and the control of upper jaw identity, patterning and development. Lastly, we posit that apoptosis uniquely acts during craniofacial development to control patterning cues emanating from core organizing centres.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Craniofacial Development, King's College London, London, United Kingdom
| | - Kira Martinus
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany
| | - John Griffin
- Department of Craniofacial Development, King's College London, London, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael J Depew
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Department of Craniofacial Development, King's College London, London, United Kingdom
| |
Collapse
|
38
|
Early cellular development induced by ecdysteroid in sex-specific wing degeneration of the wingless female winter moth. Cell Tissue Res 2021; 387:29-38. [PMID: 34661757 DOI: 10.1007/s00441-021-03540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
The winter moth, Nyssiodes lefuarius, exhibits striking sexual dimorphism in wing form; males have functional wings of normal size, whereas females lack wings. We previously found that the steroid hormone 20-hydroxyecdysone (20E) triggered massive programmed cell death (PCD) only in the female pupal wing epithelium; however, when and how early sexual trait development of the pupal wings is initiated during pupal-adult metamorphosis remains obscure. To clarify the detailed morphological changes and mechanisms underlying early sexual trait development and cell death, we examined the effects of 20E on early ultrastructural and histological changes in the pupal wing epithelium of both sexes. Before the onset of adult differentiation, no morphological differences were observed in the epithelial cells of both sexes at an ultrastructural level. When 5.4 µg of 20E was injected into pupae of both sexes at 15 days after the onset of pupation, retraction of the wing epithelium from the pupal cuticle was initiated at day 2 after 20E injection in both sexes. Although overt degeneration of wing tissue was not still obvious, apoptotic body-like structures and auto-phagosomes were visible at day 3 after 20E injection in females, whereas development of scale precursor cells started on day 4 after injection in males. Our results suggest that (1) the injection of 20E induced sexually dimorphic changes in the pattern of organelle distribution in wing epithelial cells, and (2) abnormally shaped mitochondria in the cytoplasm of the female wing epithelium might be involved in the PCD that occurs during wing tissue degeneration.
Collapse
|
39
|
Jiang HS, Ghose P, Han HF, Wu YZ, Tsai YY, Lin HC, Tseng WC, Wu JC, Shaham S, Wu YC. BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9 transcription. Development 2021; 148:dev193995. [PMID: 34541605 PMCID: PMC8572009 DOI: 10.1242/dev.193995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Programmed cell death (PCD) is a common cell fate in metazoan development. PCD effectors are extensively studied, but how they are temporally regulated is less understood. Here, we report a mechanism controlling tail-spike cell death onset during Caenorhabditis elegans development. We show that the zinc-finger transcription factor BLMP-1, which controls larval development timing, also regulates embryonic tail-spike cell death initiation. BLMP-1 functions upstream of CED-9 and in parallel to DRE-1, another CED-9 and tail-spike cell death regulator. BLMP-1 expression is detected in the tail-spike cell shortly after the cell is born, and blmp-1 mutations promote ced-9-dependent tail-spike cell survival. BLMP-1 binds ced-9 gene regulatory sequences, and inhibits ced-9 transcription just before cell-death onset. BLMP-1 and DRE-1 function together to regulate developmental timing, and their mammalian homologs regulate B-lymphocyte fate. Our results, therefore, identify roles for developmental timing genes in cell-death initiation, and suggest conservation of these functions.
Collapse
Affiliation(s)
- Hang-Shiang Jiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Piya Ghose
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
- Department of Biology, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Hsiao-Fen Han
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Yun-Zhe Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Ya-Yin Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Huang-Chin Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Wei-Chin Tseng
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
| | - Jui-Ching Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100229, Taiwan
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106216, Taiwan
- Department of Life Science, Center for Systems Biology, and Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106216, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106216, Taiwan
| |
Collapse
|
40
|
Khogali MK, Wen K, Jauregui D, Liu L, Zhao M, Gong D, Geng T. Uterine structure and function contributes to the formation of the sandpaper-shelled eggs in laying hens. Anim Reprod Sci 2021; 232:106826. [PMID: 34403835 DOI: 10.1016/j.anireprosci.2021.106826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
The avian eggshell is formed in the uterus, and eggshell quality usually decreases markedly in the late phase of hen laying cycles. Production of sandpaper-shelled eggs (SE), a category of eggs with relatively less eggshell quality, causes a great economic loss. Underlying mechanisms of SE formation, however, remain unclear. For the present study, it was hypothesized that alterations in uterine structure and function contribute to SE formation. To test this hypothesis, uterine samples were collected from 450-day-old hens that produced normal eggs (NE) and SE (based on 2-week-long assessments, n = 10) for histomorphological and transcriptome analyses. Compared with the NE group, uteri of the SE group were apparently atrophied. Furthermore, a total of 211 differentially expressed genes (DEGs) were identified in the uteri of hens of the two groups. These DEGs were clustered into 145 gene ontology terms (FDR < 0.05) and enriched in 12 KEGG pathways (P < 0.10), which are primarily related to organ morphogenesis and development, cell growth, differentiation and death, ion transport, endocrine and cell communication, immune response, and corticotropin-releasing hormones. In particular, corticotropin may be an important factor in SE formation because of effects on ion transport. Furthermore, as indicated by lesser abundances of relevant mRNA transcripts, the lesser expression of genes related to ion transport and matrix proteins also contribute to SE production because of effects on eggshell formation. In conclusion, results from this study revealed there were structural and functional differences in the hen uterus in NE and SE groups.
Collapse
Affiliation(s)
- Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, 13314, Sudan
| | - Kang Wen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Diego Jauregui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
41
|
Nguyen TTM, Gillet G, Popgeorgiev N. Caspases in the Developing Central Nervous System: Apoptosis and Beyond. Front Cell Dev Biol 2021; 9:702404. [PMID: 34336853 PMCID: PMC8322698 DOI: 10.3389/fcell.2021.702404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The caspase family of cysteine proteases represents the executioners of programmed cell death (PCD) type I or apoptosis. For years, caspases have been known for their critical roles in shaping embryonic structures, including the development of the central nervous system (CNS). Interestingly, recent findings have suggested that aside from their roles in eliminating unnecessary neural cells, caspases are also implicated in other neurodevelopmental processes such as axon guidance, synapse formation, axon pruning, and synaptic functions. These results raise the question as to how neurons regulate this decision-making, leading either to cell death or to proper development and differentiation. This review highlights current knowledge on apoptotic and non-apoptotic functions of caspases in the developing CNS. We also discuss the molecular factors involved in the regulation of caspase-mediated roles, emphasizing the mitochondrial pathway of cell death.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Germain Gillet
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Nikolay Popgeorgiev
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
42
|
Minina EA, Dauphinee AN, Ballhaus F, Gogvadze V, Smertenko AP, Bozhkov PV. Apoptosis is not conserved in plants as revealed by critical examination of a model for plant apoptosis-like cell death. BMC Biol 2021; 19:100. [PMID: 33980238 PMCID: PMC8117276 DOI: 10.1186/s12915-021-01018-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Animals and plants diverged over one billion years ago and evolved unique mechanisms for many cellular processes, including cell death. One of the most well-studied cell death programmes in animals, apoptosis, involves gradual cell dismantling and engulfment of cellular fragments, apoptotic bodies, through phagocytosis. However, rigid cell walls prevent plant cell fragmentation and thus apoptosis is not applicable for executing cell death in plants. Furthermore, plants are devoid of the key components of apoptotic machinery, including phagocytosis as well as caspases and Bcl-2 family proteins. Nevertheless, the concept of plant "apoptosis-like programmed cell death" (AL-PCD) is widespread. This is largely due to superficial morphological resemblances between plant cell death and apoptosis, and in particular between protoplast shrinkage in plant cells killed by various stimuli and animal cell volume decrease preceding fragmentation into apoptotic bodies. RESULTS Here, we provide a comprehensive spatio-temporal analysis of cytological and biochemical events occurring in plant cells subjected to heat shock at 40-55 °C and 85 °C, the experimental conditions typically used to trigger AL-PCD and necrotic cell death, respectively. We show that cell death under both conditions was not accompanied by membrane blebbing or formation of apoptotic bodies, as would be expected during apoptosis. Instead, we observed instant and irreversible permeabilization of the plasma membrane and ATP depletion. These processes did not depend on mitochondrial functionality or the presence of Ca2+ and could not be prevented by an inhibitor of ferroptosis. We further reveal that the lack of protoplast shrinkage at 85 °C, the only striking morphological difference between cell deaths induced by 40-55 °C or 85 °C heat shock, is a consequence of the fixative effect of the high temperature on intracellular contents. CONCLUSIONS We conclude that heat shock-induced cell death is an energy-independent process best matching definition of necrosis. Although the initial steps of this necrotic cell death could be genetically regulated, classifying it as apoptosis or AL-PCD is a terminological misnomer. Our work supports the viewpoint that apoptosis is not conserved across animal and plant kingdoms and demonstrates the importance of focusing on plant-specific aspects of cell death pathways.
Collapse
Affiliation(s)
- Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
- COS, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| | - Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden
| | - Florentine Ballhaus
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden
| | - Vladimir Gogvadze
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Andrei P Smertenko
- Institute of Biological Chemistry, College of Human, Agricultural, and Natural Resource Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
43
|
Proapoptotic Bad Involved in Brain Development, When Severely Defected, Induces Dramatic Malformation in Zebrafish. Int J Mol Sci 2021; 22:ijms22094832. [PMID: 34063300 PMCID: PMC8124244 DOI: 10.3390/ijms22094832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
The BH3-only molecule Bad regulates cell death via its differential protein phosphorylation, but very few studies address its effect on early embryonic development in vertebrate systems. In this work, we examined the novel role of zebrafish Bad in the initial programmed cell death (PCD) for brain morphogenesis through reducing environmental stress and cell death signaling. Bad was considered to be a material factor that because of the knockdown of Bad by morpholino oligonucleotides, PCD was increased and the reactive oxygen species (ROS) level was enhanced, which correlated to trigger a p53/caspase-8 involving cell death signaling. This Bad knockdown-mediated environmental stress and enhanced cell dying can delay normal cell migration in the formation of the three germ layers, especially the ectoderm, for further brain development. Furthermore, Bad defects involved in three-germ-layers development at 8 hpf were identified by in situ hybridization approach on cyp26, rtla, and Sox17 pattern expression markers. Finally, the Bad knockdown-induced severely defected brain was examined by tissue section from 24 to 48 h postfertilization (hpf), which correlated to induce dramatic malformation in the hindbrain. Our data suggest that the BH3-only molecule Bad regulates brain development via controlling programmed cell death on overcoming environmental stress for reducing secondary cell death signaling, which suggests that correlates to brain developmental and neurological disorders in this model system.
Collapse
|
44
|
DNase II mediates a parthanatos-like developmental cell death pathway in Drosophila primordial germ cells. Nat Commun 2021; 12:2285. [PMID: 33863891 PMCID: PMC8052343 DOI: 10.1038/s41467-021-22622-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
During Drosophila embryonic development, cell death eliminates 30% of the primordial germ cells (PGCs). Inhibiting apoptosis does not prevent PGC death, suggesting a divergence from the conventional apoptotic program. Here, we demonstrate that PGCs normally activate an intrinsic alternative cell death (ACD) pathway mediated by DNase II release from lysosomes, leading to nuclear translocation and subsequent DNA double-strand breaks (DSBs). DSBs activate the DNA damage-sensing enzyme, Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) and the ATR/Chk1 branch of the DNA damage response. PARP-1 and DNase II engage in a positive feedback amplification loop mediated by the release of PAR polymers from the nucleus and the nuclear accumulation of DNase II in an AIF- and CypA-dependent manner, ultimately resulting in PGC death. Given the anatomical and molecular similarities with an ACD pathway called parthanatos, these findings reveal a parthanatos-like cell death pathway active during Drosophila development.
Collapse
|
45
|
Guntur AR, Venkatanarayan A, Gangula S, Lundell MJ. Zfh-2 facilitates Notch-induced apoptosis in the CNS and appendages of Drosophila melanogaster. Dev Biol 2021; 475:65-79. [PMID: 33705738 DOI: 10.1016/j.ydbio.2021.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022]
Abstract
Apoptosis is a fundamental remodeling process for most tissues during development. In this manuscript we examine a pro-apoptotic function for the Drosophila DNA binding protein Zfh-2 during development of the central nervous system (CNS) and appendages. In the CNS we find that a loss-of-function zfh-2 allele gives an overall reduction of apoptotic cells in the CNS, and an altered pattern of expression for the axonal markers 22C10 and FasII. This same loss-of-function zfh-2 allele causes specific cells in the NB7-3 lineage of the CNS that would normally undergo apoptosis to be inappropriately maintained, whereas a gain-of-function zfh-2 allele has the opposite effect, resulting in a loss of normal NB 7-3 progeny. We also demonstrate that Zfh-2 and Hunchback reciprocally repress each other's gene expression which limits apoptosis to later born progeny of the NB7-3 lineage. Apoptosis is also required for proper segmentation of the fly appendages. We find that Zfh-2 co-localizes with apoptotic cells in the folds of the imaginal discs and presumptive cuticular joints. A reduction of Zfh-2 levels with RNAi inhibits expression of the pro-apoptotic gene reaper, and produces abnormal joints in the leg, antenna and haltere. Apoptosis has previously been shown to be activated by Notch signaling in both the NB7-3 CNS lineage and the appendage joints. Our results indicate that Zfh-2 facilitates Notch-induced apoptosis in these structures.
Collapse
Affiliation(s)
- Ananya R Guntur
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | - Sindhura Gangula
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
46
|
Lou J, Zhou Y, Feng Z, Ma M, Yao Y, Wang Y, Deng Y, Wu Y. Caspase-Independent Regulated Necrosis Pathways as Potential Targets in Cancer Management. Front Oncol 2021; 10:616952. [PMID: 33665167 PMCID: PMC7921719 DOI: 10.3389/fonc.2020.616952] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Regulated necrosis is an emerging type of cell death independent of caspase. Recently, with increasing findings of regulated necrosis in the field of biochemistry and genetics, the underlying molecular mechanisms and signaling pathways of regulated necrosis are gradually understood. Nowadays, there are several modes of regulated necrosis that are tightly related to cancer initiation and development, including necroptosis, ferroptosis, parthanatos, pyroptosis, and so on. What’s more, accumulating evidence shows that various compounds can exhibit the anti-cancer effect via inducing regulated necrosis in cancer cells, which indicates that caspase-independent regulated necrosis pathways are potential targets in cancer management. In this review, we expand the molecular mechanisms as well as signaling pathways of multiple modes of regulated necrosis. We also elaborate on the roles they play in tumorigenesis and discuss how each of the regulated necrosis pathways could be therapeutically targeted.
Collapse
Affiliation(s)
- Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zengyu Feng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mindi Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yulian Wu
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Goldblatt ZE, Cirka HA, Billiar KL. Mechanical Regulation of Apoptosis in the Cardiovascular System. Ann Biomed Eng 2021; 49:75-97. [PMID: 33169343 PMCID: PMC7775273 DOI: 10.1007/s10439-020-02659-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Apoptosis is a highly conserved physiological process of programmed cell death which is critical for proper organism development, tissue maintenance, and overall organism homeostasis. Proper regulation of cell removal is crucial, as both excessive and reduced apoptotic rates can lead to the onset of a variety of diseases. Apoptosis can be induced in cells in response to biochemical, electrical, and mechanical stimuli. Here, we review literature on specific mechanical stimuli that regulate apoptosis and the current understanding of how mechanotransduction plays a role in apoptotic signaling. We focus on how insufficient or excessive mechanical forces may induce apoptosis in the cardiovascular system and thus contribute to cardiovascular disease. Although studies have demonstrated that a broad range of mechanical stimuli initiate and/or potentiate apoptosis, they are predominantly correlative, and no mechanisms have been established. In this review, we attempt to establish a unifying mechanism for how various mechanical stimuli initiate a single cellular response, i.e. apoptosis. We hypothesize that the cytoskeleton plays a central role in this process as it does in determining myriad cell behaviors in response to mechanical inputs. We also describe potential approaches of using mechanomedicines to treat various diseases by altering apoptotic rates in specific cells. The goal of this review is to summarize the current state of the mechanobiology field and suggest potential avenues where future research can explore.
Collapse
|
48
|
Toricelli M, Pereira AAR, Souza Abrao G, Malerba HN, Maia J, Buck HS, Viel TA. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regen Res 2021; 16:58-67. [PMID: 32788448 PMCID: PMC7818866 DOI: 10.4103/1673-5374.286952] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging is a dynamic and progressive process that begins at conception and continues until death. This process leads to a decrease in homeostasis and morphological, biochemical and psychological changes, increasing the individual’s vulnerability to various diseases. The growth in the number of aging populations has increased the prevalence of chronic degenerative diseases, impairment of the central nervous system and dementias, such as Alzheimer’s disease, whose main risk factor is age, leading to an increase of the number of individuals who need daily support for life activities. Some theories about aging suggest it is caused by an increase of cellular senescence and reactive oxygen species, which leads to inflammation, oxidation, cell membrane damage and consequently neuronal death. Also, mitochondrial mutations, which are generated throughout the aging process, can lead to changes in energy production, deficiencies in electron transport and apoptosis induction that can result in decreased function. Additionally, increasing cellular senescence and the release of proinflammatory cytokines can cause irreversible damage to neuronal cells. Recent reports point to the importance of changing lifestyle by increasing physical exercise, improving nutrition and environmental enrichment to activate neuroprotective defense mechanisms. Therefore, this review aims to address the latest information about the different mechanisms related to neuroplasticity and neuronal death and to provide strategies that can improve neuroprotection and decrease the neurodegeneration caused by aging and environmental stressors.
Collapse
Affiliation(s)
- Mariana Toricelli
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Arthur Antonio Ruiz Pereira
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Guilherme Souza Abrao
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Helena Nascimento Malerba
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Julia Maia
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Tania Araujo Viel
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
49
|
Smits LM, Magni S, Kinugawa K, Grzyb K, Luginbühl J, Sabate-Soler S, Bolognin S, Shin JW, Mori E, Skupin A, Schwamborn JC. Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids. Cell Tissue Res 2020; 382:463-476. [PMID: 32737576 PMCID: PMC7683480 DOI: 10.1007/s00441-020-03249-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Human stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulate in vitro the organization and function of a respective organ or part of an organ. Human midbrain organoids (hMOs) have been described to contain midbrain-specific dopaminergic neurons that release the neurotransmitter dopamine. However, the human midbrain contains also additional neuronal cell types, which are functionally interacting with each other. Here, we analysed hMOs at high-resolution by means of single-cell RNA sequencing (scRNA-seq), imaging and electrophysiology to unravel cell heterogeneity. Our findings demonstrate that hMOs show essential neuronal functional properties as spontaneous electrophysiological activity of different neuronal subtypes, including dopaminergic, GABAergic, glutamatergic and serotonergic neurons. Recapitulating these in vivo features makes hMOs an excellent tool for in vitro disease phenotyping and drug discovery.
Collapse
Affiliation(s)
- Lisa M. Smits
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Stefano Magni
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Kaoru Kinugawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Joachim Luginbühl
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa Japan
| | - Sonia Sabate-Soler
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Jay W. Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
- University California San Diego, La Jolla, CA USA
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
50
|
Wang Y, Qi H, Zhang C, Guo Y, Yao Y, Feng X, Fan S, Han Y, Yuan Z, Weng Q, Zhang H. The seasonal profile of proliferation and apoptosis in the prostate gland of the wild ground squirrel (Spermophilus dauricus). Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110862. [PMID: 33276131 DOI: 10.1016/j.cbpa.2020.110862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/14/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
The seasonal cycle of growth and regression in the prostate gland of wild ground squirrel provide a unique research model to understand the morphological changes of prostate glands. Our previous studies showed that the local production of dihydrotestosterone could affect the morphology and function of the prostate gland in either an autocrine or paracrine manner. In the present study, we attempted to gain more insight into this process by investigating the expression of key factors implicated in cell proliferation, apoptosis, and the cell cycle, including mechanistic target of rapamycin (mTOR), cyclin-D2, p21, p27 and retinoblastoma 1 (pRB). Morphological and histological observations confirmed that the prostate increased significantly in both size and weight during the breeding season. Positive immunostaining for proliferating cell nuclear antigen (PCNA) was mainly localized to the prostate epithelial cells during the breeding season, which is significantly higher in the prostate gland during the breeding season (2470 ± 81/mm2) than that in the nonbreeding season (324 ± 54/mm2). However, there was no significant difference in the prostate gland when compared between the breeding and nonbreeding seasons, with regards to TUNEL staining. Moreover, cell cycle regulators were mainly localized to the epithelial cells, including mTOR, cyclin-D2, p21, p27 and pRB. the immunostaining of mTOR and cyclin D2 were stronger during the breeding season, whereas the immunostaining of p27 and pRB were stronger during the nonbreeding season. The mRNA expression levels of mTOR, cyclin D2, and PCNA, were higher during the breeding season while those of p27 and p21 were higher during the nonbreeding season. Collectively, this study profiled the distinct expression pattern of key cell cycle regulators throughout the breeding and nonbreeding seasons. Collectively, these factors may play important roles in regulating the seasonal growth and regression of the prostatic epithelium in the wild ground squirrel.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongyu Qi
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunjiao Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Guo
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuchen Yao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaohang Feng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sijie Fan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|