1
|
Yamaga M, Kawabe H, Tani H, Yamaki A. Enhanced absorption of prenylated cinnamic acid derivatives from Brazilian green propolis by turmeric in humans and rats. Food Sci Nutr 2024; 12:4680-4691. [PMID: 39055207 PMCID: PMC11266932 DOI: 10.1002/fsn3.4116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 07/27/2024] Open
Abstract
Prenylated cinnamic acid derivatives are the bioactive components of Brazilian green propolis (BGP). The effect of other botanical components on the pharmacokinetic profiles of these derivatives remains relatively unexplored. In the present study, we investigated the influence of several herbal extracts (turmeric, ginkgo leaf, coffee fruit, soybean, and gotu kola) on the plasma concentrations of cinnamic acid derivatives after BGP consumption. When the herbal extracts were co-administered with BGP in the clinical study, the area under the curve (AUC) values of artepillin C and drupanin, the major BGP components in plasma, were significantly increased by 1.7- and 1.5-fold, respectively, compared to those after BGP administration alone. Among the herbal extracts administered to rats, turmeric extract increased the AUC. Furthermore, a bidirectional transport assay suggested that artepillin C and drupanin are substrates of breast cancer resistance protein (BCRP), a drug elimination transporter. These results suggest that curcumin-containing turmeric extract may increase the plasma concentrations of artepillin C and drupanin via BCRP. Our findings enabled us to estimate the food-herb and herb-herb interactions in vivo in foods and herbal medicines containing cinnamic acid derivatives and prenylated compounds.
Collapse
Affiliation(s)
- Masayuki Yamaga
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroshi Kawabe
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroko Tani
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Ayanori Yamaki
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| |
Collapse
|
2
|
Božina T, Ganoci L, Karačić E, Šimičević L, Vrkić-Kirhmajer M, Klarica-Domjanović I, Križ T, Sertić Z, Božina N. ABCG2 and SLCO1B1 gene polymorphisms in the Croatian population. Ann Hum Biol 2022; 49:323-331. [PMID: 36382878 DOI: 10.1080/03014460.2022.2140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Organic anion-transporting polypeptide 1B1 (OATP1B1) and the ATP-binding cassette subfamily G member 2, ABCG2, are important transporters involved in the transport of endogenous substrates and xenobiotics, including drugs. Genetic polymorphisms of these transporters have effect on transporter activity. There is significant interethnic variability in the frequency of allele variants. AIM To determined allele and genotype frequencies of ABCG2 and SLCO1B1 genes in Croatian populations of European descent. SUBJECTS AND METHODS A total of 905 subjects (482 women) were included. Genotyping for ABCG2 c.421C > A (rs2231142) and for SLCO1B1 c.521T > C (rs4149056), was performed by real-time polymerase chain reaction (PCR) using TaqMan® DME Genotyping Assays. RESULTS For ABCG2 c.421C > A, the frequency of CC, CA and AA genotypes was 81.4%, 17.8% and 0.8% respectively. The frequency of variant ABCG2 421 A allele was 9.7%. For SLCO1B1 c.521T > C, the frequency of TT, TC and CC genotypes was 61.7%, 34.8% and 3.5% respectively. The frequency of variant SLCO1B1 521 C allele was 20.9%. CONCLUSION The frequency of the ABCG2 and SLCO1B1 allelic variants and genotypes in the Croatian population is in accordance with other European populations. Pharmacogenetic analysis can serve to individualise drug therapy and minimise the risk of developing adverse drug reactions.
Collapse
Affiliation(s)
- Tamara Božina
- Department of Medical Chemistry, Biochemistry, and Clinical Chemistry, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ena Karačić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Majda Vrkić-Kirhmajer
- Department of Cardiovascular Diseases Zagreb, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Croatia
| | | | - Tena Križ
- Department of Ophthalmology, University Hospital Centre "Sestre milosrdnice", Zagreb, Croatia
| | - Zrinka Sertić
- Department of Emergency Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
3
|
Floerl S, Kuehne A, Hagos Y. Functional characterization and comparison of human and mouse organic anion transporter 1 as drugs and pesticides uptake carrier. Eur J Pharm Sci 2022; 175:106217. [DOI: 10.1016/j.ejps.2022.106217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
|
4
|
Zhang L, Liu Q, Huang SM, Lionberger R. Transporters in Regulatory Science: Notable Contributions from Dr. Giacomini in the Past Two Decades. Drug Metab Dispos 2022; 50:DMD-MR-2021-000706. [PMID: 35768075 PMCID: PMC9488972 DOI: 10.1124/dmd.121.000706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Transporters govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant drug-drug interactions mediated by transporters are of increasing interest in drug development. Drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism, and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. Dr. Kathy Giacomini from the University of California, San Francisco is one of the world leaders in transporters and pharmacogenetics with key contributions to transporter science. Her contributions to transporter science are noteworthy. This review paper will summarize Dr. Giacomini's key contributions and influence on transporters in regulatory science in the past two decades. Regulatory science research highlighted in this review covers various aspects of transporter science including understanding the effect of renal impairment on transporters, transporter ontogeny, biomarkers for transporters, and interactions of excipients with transporters affecting drug absorption. Significance Statement This review paper highlights Dr. Giacomini's key contributions and influence on transporters in regulatory science in the past two decades. She has been at the cutting edge of science pertaining to drug transport, drug disposition, and regulatory science, leading to new era of translational sciences pertaining to drug disposition and transporter biology. Her research has and will continue to bring enormous impact on gaining new knowledge in guiding drug development and inspire scientists from all sectors in the field.
Collapse
Affiliation(s)
- Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, FDA, United States
| | - Qi Liu
- Office of Clinical Pharmacology, Office of Translational Sciences, FDA, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, FDA, United States
| | - Robert Lionberger
- Office of Research and Standards, Office of Generic Drugs, FDA, United States
| |
Collapse
|
5
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Eke AC. An update on the physiologic changes during pregnancy and their impact on drug pharmacokinetics and pharmacogenomics. J Basic Clin Physiol Pharmacol 2021; 33:581-598. [PMID: 34881531 DOI: 10.1515/jbcpp-2021-0312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 01/23/2023]
Abstract
For many years, the medical community has relied in clinical practice on historic data about the physiological changes that occur during pregnancy. However, some newer studies have disputed a number of assumptions in these data for not being evidence-based or derived from large prospective cohort-studies. Accurate knowledge of these physiological changes is important for three reasons: Firstly, it facilitates correct diagnosis of diseases during pregnancy; secondly, it enables us to answer questions about the effects of medication during pregnancy and the ways in which pregnancy alters pharmacokinetic and drug-effects; and thirdly, it allows for proper modeling of physiologically-based pharmacokinetic models, which are increasingly used to predict gestation-specific changes and drug-drug interactions, as well as develop new knowledge on the mode-of-action of drugs, the mechanisms underlying their interactions, and any adverse effects following drug exposure. This paper reviews new evidence regarding the physiologic changes during pregnancy in relation to existing knowledge.
Collapse
Affiliation(s)
- Ahizechukwu C Eke
- Division of Maternal Fetal Medicine, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Martinez-Guerrero L, Zhang X, Zorn KM, Ekins S, Wright SH. Cationic Compounds with SARS-CoV-2 Antiviral Activity and Their Interaction with Organic Cation Transporter/Multidrug and Toxin Extruder Secretory Transporters. J Pharmacol Exp Ther 2021; 379:96-107. [PMID: 34253645 PMCID: PMC9006906 DOI: 10.1124/jpet.121.000619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
In the wake of the COVID-19 pandemic, drug repurposing has been highlighted for rapid introduction of therapeutics. Proposed drugs with activity against SARS-CoV-2 include compounds with positive charges at physiologic pH, making them potential targets for the organic cation secretory transporters of kidney and liver, i.e., the basolateral organic cation transporters, OCT1 and OCT2; and the apical multidrug and toxin extruders, MATE1 and MATE2-K. We selected several compounds proposed to have in vitro activity against SARS-CoV-2 (chloroquine, hydroxychloroquine, quinacrine, tilorone, pyronaridine, cetylpyridinium, and miramistin) to test their interaction with OCT and MATE transporters. We used Bayesian machine learning models to generate predictions for each molecule with each transporter and also experimentally determined IC50 values for each compound against labeled substrate transport into CHO cells that stably expressed OCT2, MATE1, or MATE2-K using three structurally distinct substrates (atenolol, metformin and 1-methyl-4-phenylpyridinium) to assess the impact of substrate structure on inhibitory efficacy. For the OCTs substrate identity influenced IC50 values, although the effect was larger and more systematic for OCT2. In contrast, inhibition of MATE1-mediated transport was largely insensitive to substrate identity. Unlike MATE1, inhibition of MATE2-K was influenced, albeit modestly, by substrate identity. Maximum unbound plasma concentration/IC50 ratios were used to identify potential clinical DDI recommendations; all the compounds interacted with the OCT/MATE secretory pathway, most with sufficient avidity to represent potential DDI issues for secretion of cationic drugs. This should be considered when proposing cationic agents as repurposed antivirals. SIGNIFICANCE STATEMENT: Drugs proposed as potential COVID-19 therapeutics based on in vitro activity data against SARS-CoV-2 include compounds with positive charges at physiological pH, making them potential interactors with the OCT/MATE renal secretory pathway. We tested seven such molecules as inhibitors of OCT1/2 and MATE1/2-K. All the compounds blocked transport activity regardless of substrate used to monitor activity. Suggesting that plasma concentrations achieved by normal clinical application of the test agents could be expected to influence the pharmacokinetics of selected cationic drugs.
Collapse
Affiliation(s)
- Lucy Martinez-Guerrero
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Xiaohong Zhang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Kimberley M Zorn
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Sean Ekins
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Stephen H Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.M.-G., X.Z., S.H.W.), and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| |
Collapse
|
8
|
Ungvári O, Király L, Bakos É, Özvegy-Laczka C. 8-acetoxy-trisulfopyrene as the first activatable fluorogenic probe for add-and-read assessment of Organic anion-transporting polypeptides, OATP1B1, OATP1B3, and OATP2B1. FASEB J 2021; 35:e21863. [PMID: 34411334 DOI: 10.1096/fj.202100648r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
Organic anion-transporting polypeptides, OATP1B1, OATP1B3, and OATP2B1 are multispecific membrane proteins mediating the hepatocellular uptake of structurally diverse endo- and exogenous compounds, including various kinds of drugs. Co-administration of OATP1B/2B1 substrates may lead to altered pharmacokinetics or even toxicity. Therefore, the study of the interaction with these OATPs is essential in drug development and is recommended by international regulatory agencies, the FDA, EMA, and PMDA. In general, radiolabeled indicators are used to measure drug interactions of OATPs, and, lately, fluorescent probes are also gaining wider application in OATP tests. However, all of the currently available methods (either radioactive or fluorescence-based) comprise multiple steps, including the removal of the indicator in the end of the experiment. Hence, they are not ideally suited for high-throughput screening. In the current study, in order to find an indicator allowing real-time assessment of hepatic OATP function, we searched for an activatable fluorogenic OATP substrate. Here, we show that 8-acetoxypyrene-1,3,6-trisulfonate (Ace), a fluorogenic derivative of the hepatic OATP substrate pyranine (8-hydroxypyrene-1,3,6-trisulfonate) enters the cells via OATP1B1/3 or OATP2B1 function. In living cells, Ace is then converted into highly fluorescent pyranine, allowing "no-wash" measurement of OATP function and drug interactions. Furthermore, we demonstrate that Ace can be used in an indirect assay termed as competitive counterflow suitable to distinguish between transported substrates and inhibitors of OATP1B1. The fluorescence-based methods described here are unique and open the way toward high-throughput screening of interactions between new molecular entities and OATPs.
Collapse
Affiliation(s)
- Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Laura Király
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
9
|
Cetin G, Tras B, Uney K. The Effects of P‐glycoprotein Modulators on the Transition of Levofloxacin to Rat Brain, Testicle, and Plasma: In Vivo and In Silico Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gul Cetin
- Department of Pharmacology Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| |
Collapse
|
10
|
ABCG2 Is Overexpressed on Red Blood Cells in Ph-Negative Myeloproliferative Neoplasms and Potentiates Ruxolitinib-Induced Apoptosis. Int J Mol Sci 2021; 22:ijms22073530. [PMID: 33805426 PMCID: PMC8036917 DOI: 10.3390/ijms22073530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of disorders characterized by clonal expansion of abnormal hematopoietic stem cells leading to hyperproliferation of one or more myeloid lineages. The main complications in MPNs are high risk of thrombosis and progression to myelofibrosis and leukemia. MPN patients with high risk scores are treated by hydroxyurea (HU), interferon-α, or ruxolitinib, a tyrosine kinase inhibitor. Polycythemia vera (PV) is an MPN characterized by overproduction of red blood cells (RBCs). ABCG2 is a member of the ATP-binding cassette superfamily transporters known to play a crucial role in multidrug resistance development. Proteome analysis showed higher ABCG2 levels in PV RBCs compared to RBCs from healthy controls and an additional increase of these levels in PV patients treated with HU, suggesting that ABCG2 might play a role in multidrug resistance in MPNs. In this work, we explored the role of ABCG2 in the transport of ruxolitinib and HU using human cell lines, RBCs, and in vitro differentiated erythroid progenitors. Using stopped-flow analysis, we showed that HU is not a substrate for ABCG2. Using transfected K562 cells expressing three different levels of recombinant ABCG2, MPN RBCs, and cultured erythroblasts, we showed that ABCG2 potentiates ruxolitinib-induced cytotoxicity that was blocked by the ABCG2-specific inhibitor KO143 suggesting ruxolitinib intracellular import by ABCG2. In silico modeling analysis identified possible ruxolitinib-binding site locations within the cavities of ABCG2. Our study opens new perspectives in ruxolitinib efficacy research targeting cell types depending on ABCG2 expression and polymorphisms among patients.
Collapse
|
11
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
12
|
Telbisz Á, Ambrus C, Mózner O, Szabó E, Várady G, Bakos É, Sarkadi B, Özvegy-Laczka C. Interactions of Potential Anti-COVID-19 Compounds with Multispecific ABC and OATP Drug Transporters. Pharmaceutics 2021; 13:pharmaceutics13010081. [PMID: 33435273 PMCID: PMC7827085 DOI: 10.3390/pharmaceutics13010081] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
During the COVID-19 pandemic, several repurposed drugs have been proposed to alleviate the major health effects of the disease. These drugs are often applied with analgesics or non-steroid anti-inflammatory compounds, and co-morbid patients may also be treated with anticancer, cholesterol-lowering, or antidiabetic agents. Since drug ADME-tox properties may be significantly affected by multispecific transporters, in this study, we examined the interactions of the repurposed drugs with the key human multidrug transporters present in the major tissue barriers and strongly affecting the pharmacokinetics. Our in vitro studies, using a variety of model systems, explored the interactions of the antimalarial agents chloroquine and hydroxychloroquine; the antihelmintic ivermectin; and the proposed antiviral compounds ritonavir, lopinavir, favipiravir, and remdesivir with the ABCB1/Pgp, ABCG2/BCRP, and ABCC1/MRP1 exporters, as well as the organic anion-transporting polypeptide (OATP)2B1 and OATP1A2 uptake transporters. The results presented here show numerous pharmacologically relevant transporter interactions and may provide a warning on the potential toxicities of these repurposed drugs, especially in drug combinations at the clinic.
Collapse
Affiliation(s)
- Ágnes Telbisz
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Csilla Ambrus
- SOLVO Biotechnology, Irinyi József Street 4-20, 1117 Budapest, Hungary;
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Orsolya Mózner
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Edit Szabó
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - György Várady
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Éva Bakos
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
- Correspondence: (B.S.); (C.Ö.-L.)
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Correspondence: (B.S.); (C.Ö.-L.)
| |
Collapse
|
13
|
Brazeau DA, Attwood K, Meaney CJ, Wilding GE, Consiglio JD, Chang SS, Gundroo A, Venuto RC, Cooper L, Tornatore KM. Beyond Single Nucleotide Polymorphisms: CYP3A5∗3∗6∗7 Composite and ABCB1 Haplotype Associations to Tacrolimus Pharmacokinetics in Black and White Renal Transplant Recipients. Front Genet 2020; 11:889. [PMID: 32849848 PMCID: PMC7433713 DOI: 10.3389/fgene.2020.00889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Interpatient variability in tacrolimus pharmacokinetics is attributed to metabolism by cytochrome P-450 3A5 (CYP3A5) isoenzymes and membrane transport by P-glycoprotein. Interpatient pharmacokinetic variability has been associated with genotypic variants for both CYP3A5 or ABCB1. Tacrolimus pharmacokinetics was investigated in 65 stable Black and Caucasian post-renal transplant patients by assessing the effects of multiple alleles in both CYP3A5 and ABCB1. A metabolic composite based upon the CYP3A5 polymorphisms: ∗3(rs776746), ∗6(10264272), and ∗7(41303343), each independently responsible for loss of protein expression was used to classify patients as extensive, intermediate and poor metabolizers. In addition, the role of ABCB1 on tacrolimus pharmacokinetics was assessed using haplotype analysis encompassing the single nucleotide polymorphisms: 1236C > T (rs1128503), 2677G > T/A(rs2032582), and 3435C > T(rs1045642). Finally, a combined analysis using both CYP3A5 and ABCB1 polymorphisms was developed to assess their inter-related influence on tacrolimus pharmacokinetics. Extensive metabolizers identified as homozygous wild type at all three CYP3A5 loci were found in 7 Blacks and required twice the tacrolimus dose (5.6 ± 1.6 mg) compared to Poor metabolizers [2.5 ± 1.1 mg (P < 0.001)]; who were primarily Whites. These extensive metabolizers had 2-fold faster clearance (P < 0.001) with 50% lower AUC∗ (P < 0.001) than Poor metabolizers. No differences in C12 h were found due to therapeutic drug monitoring. The majority of blacks (81%) were classified as either Extensive or Intermediate Metabolizers requiring higher tacrolimus doses to accommodate the more rapid clearance. Blacks who were homozygous for one or more loss of function SNPS were associated with lower tacrolimus doses and slower clearance. These values are comparable to Whites, 82% of who were in the Poor metabolic composite group. The ABCB1 haplotype analysis detected significant associations of the wildtype 1236T-2677T-3435T haplotype to tacrolimus dose (P = 0.03), CL (P = 0.023), CL/LBW (P = 0.022), and AUC∗ (P = 0.078). Finally, analysis combining CYP3A5 and ABCB1 genotypes indicated that the presence of the ABCB1 3435 T allele significantly reduced tacrolimus clearance for all three CPY3A5 metabolic composite groups. Genotypic associations of tacrolimus pharmacokinetics can be improved by using the novel composite CYP3A5∗3∗4∗5 and ABCB1 haplotypes. Consideration of multiple alleles using CYP3A5 metabolic composites and drug transporter ABCB1 haplotypes provides a more comprehensive appraisal of genetic factors contributing to interpatient variability in tacrolimus pharmacokinetics among Whites and Blacks.
Collapse
Affiliation(s)
- Daniel A Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, United States
| | - Kristopher Attwood
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Calvin J Meaney
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States.,School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
| | - Gregory E Wilding
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Joseph D Consiglio
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Shirley S Chang
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Erie County Medical Center, Buffalo, NY, United States
| | - Aijaz Gundroo
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Erie County Medical Center, Buffalo, NY, United States
| | - Rocco C Venuto
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Erie County Medical Center, Buffalo, NY, United States
| | - Louise Cooper
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States.,School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
| | - Kathleen M Tornatore
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States.,School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States.,Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
14
|
Chan G, Houle R, Lin M, Yabut J, Cox K, Wu J, Chu X. Role of transporters in the disposition of a novel β-lactamase inhibitor: relebactam (MK-7655). J Antimicrob Chemother 2020; 74:1894-1903. [PMID: 30891606 DOI: 10.1093/jac/dkz101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To identify the transporters involved in renal elimination of relebactam, and to assess the potential of relebactam as a perpetrator or victim of drug-drug interactions (DDIs) for major drug transporters. METHODS A series of bidirectional transport, uptake and inhibition studies were conducted in vitro using transfected cell lines and membrane vesicles. The inhibitory effects of relebactam on major drug transporters, as well as the inhibitory effects of commonly used antibiotics/antifungals on organic anion transporter (OAT) 3-mediated uptake of relebactam, were assessed. RESULTS Relebactam was shown to be a substrate of OAT3, OAT4, and multidrug and toxin extrusion (MATE) proteins MATE1 and MATE2K. Relebactam did not show profound inhibition across a panel of transporters, including organic anion-transporting polypeptides 1B1 and 1B3, OAT1, OAT3, organic cation transporter 2, MATE1, MATE2K, breast cancer resistance protein, multidrug resistance protein 1 and the bile salt export pump. Among the antibiotics/antifungals assessed for potential DDIs, probenecid demonstrated the most potent in vitro inhibition of relebactam uptake; however, such in vitro data did not translate into clinically relevant DDIs, suggesting that relebactam can be co-administered with OAT inhibitors, such as probenecid. CONCLUSIONS Overall, relebactam has low potential to be a victim or perpetrator of DDIs with major drug transporters.
Collapse
Affiliation(s)
- Grace Chan
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Robert Houle
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Meihong Lin
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jocelyn Yabut
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Kathleen Cox
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jin Wu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
15
|
Drosophila SLC22 Orthologs Related to OATs, OCTs, and OCTNs Regulate Development and Responsiveness to Oxidative Stress. Int J Mol Sci 2020; 21:ijms21062002. [PMID: 32183456 PMCID: PMC7139749 DOI: 10.3390/ijms21062002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
The SLC22 family of transporters is widely expressed, evolutionarily conserved, and plays a major role in regulating homeostasis by transporting small organic molecules such as metabolites, signaling molecules, and antioxidants. Analysis of transporters in fruit flies provides a simple yet orthologous platform to study the endogenous function of drug transporters in vivo. Evolutionary analysis of Drosophila melanogaster putative SLC22 orthologs reveals that, while many of the 25 SLC22 fruit fly orthologs do not fall within previously established SLC22 subclades, at least four members appear orthologous to mammalian SLC22 members (SLC22A16:CG6356, SLC22A15:CG7458, CG7442 and SLC22A18:CG3168). We functionally evaluated the role of SLC22 transporters in Drosophila melanogaster by knocking down 14 of these genes. Three putative SLC22 ortholog knockdowns-CG3168, CG6356, and CG7442/SLC22A-did not undergo eclosion and were lethal at the pupa stage, indicating the developmental importance of these genes. Additionally, knocking down four SLC22 members increased resistance to oxidative stress via paraquat testing (CG4630: p < 0.05, CG6006: p < 0.05, CG6126: p < 0.01 and CG16727: p < 0.05). Consistent with recent evidence that SLC22 is central to a Remote Sensing and Signaling Network (RSSN) involved in signaling and metabolism, these phenotypes support a key role for SLC22 in handling reactive oxygen species.
Collapse
|
16
|
Horsey AJ, Briggs DA, Holliday ND, Briddon SJ, Kerr ID. Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183218. [PMID: 32057756 PMCID: PMC7156912 DOI: 10.1016/j.bbamem.2020.183218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
ABCG2 is one of a trio of human ATP binding cassette transporters that have the ability to bind and transport a diverse array of chemical substrates out of cells. This so-called "multidrug" transport has numerous physiological consequences including effects on how drugs are absorbed into and eliminated from the body. Understanding how ABCG2 is able to interact with multiple drug substrates remains an important goal in transporter biology. Most drugs are believed to interact with ABCG2 through the hydrophobic lipid bilayer and experimental systems for ABCG2 study need to incorporate this. We have exploited styrene maleic acid to solubilise ABCG2 from HEK293T cells overexpressing the transporter, and confirmed by dynamic light scattering and fluorescence correlation spectroscopy (FCS) that this results in the extraction of SMA lipid copolymer (SMALP) particles that are uniform in size and contain a dimer of ABCG2, which is the predominant physiological state. FCS was further employed to measure the diffusion of a fluorescent ABCG2 substrate (BODIPY-prazosin) in the presence and absence of SMALP particles of purified ABCG2. Autocorrelation analysis of FCS traces enabled the mathematical separation of free BODIPY-prazosin from drug bound to ABCG2 and allowed us to show that combining SMALP extraction with FCS can be used to study specific drug: transporter interactions.
Collapse
Affiliation(s)
- Aaron J Horsey
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicholas D Holliday
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Stephen J Briddon
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
17
|
Venkatakrishnan K, Rostami‐Hodjegan A. Come Dance With Me: Transformative Changes in the Science and Practice of Drug–Drug Interactions. Clin Pharmacol Ther 2019; 105:1272-1278. [DOI: 10.1002/cpt.1433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic ResearchUniversity of Manchester Manchester UK
- Simcyp DivisionCertara UK Limited Sheffield UK
| |
Collapse
|
18
|
Zhou T, Arya V, Zhang L. Comparing Various In Vitro Prediction Methods to Assess the Potential of a Drug to Inhibit P-glycoprotein (P-gp) Transporter In Vivo. J Clin Pharmacol 2019; 59:1049-1060. [PMID: 30924955 DOI: 10.1002/jcph.1413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
The evaluation of potential of a new molecular entity (NME) to inhibit P-glycoprotein (P-gp) in vivo is an integral part of drug development and is recommended by regulatory agencies. In this study, we compared the performance of 5 prediction methods and their associated criteria (including those from the European Medicines Agency, the US Food and Drug Administration, and the Pharmaceuticals and Medical Devices Agency of Japan) for assessing the potential of an NME to inhibit P-gp in vivo based on in vitro assessment. We collected in vitro (eg, half-maximal inhibitory concentration [IC50 ], fraction unbound to plasma protein) and in vivo (eg, dose, maximum concentration, change in maximum concentration or area under the plasma concentration-time curve of the substrate digoxin) data for 50 Food and Drug Administration-approved, orally administered drug products containing 53 NMEs, from the University of Washington Metabolism and Transport Drug Interaction Database, Drugs@FDA, and PubMed. All methods yielded similar accuracy with small differences in false-negative (FN) and false-positive (FP) predictions. In addition, use of ratio of the theoretical maximum gastrointestinal concentration to IC50 is sufficient for a reasonable prediction for these orally administered drugs as potential P-gp inhibitors based on our dataset. The FN and FP rates varied depending on the cut-off value for the ratio of the theoretical maximum gastrointestinal concentration/IC50 . Possible reasons underlying FP and FN results from different methods should be taken into consideration to predict in vivo P-gp inhibition.
Collapse
Affiliation(s)
- Tian Zhou
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, MD, USA.,Oak Ridge Institute for Science and Education (ORISE) Fellow, Oak Ridge, TN, USA
| | - Vikram Arya
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| |
Collapse
|
19
|
Huang W, Isoherranen N. Development of a Dynamic Physiologically Based Mechanistic Kidney Model to Predict Renal Clearance. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:593-602. [PMID: 30043446 PMCID: PMC6157663 DOI: 10.1002/psp4.12321] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/31/2018] [Indexed: 11/10/2022]
Abstract
Renal clearance is usually predicted via empirical approaches including quantitative structure activity relationship and allometric scaling. Recently, mechanistic prediction approaches using in silico kidney models have been proposed. However, empirical scaling factors are typically used to adjust for either passive diffusion or active secretion, to acceptably predict renal clearances. The goal of this study was to establish a renal clearance simulation tool that allows prediction of renal clearance (filtration and pH-dependent passive reabsorption) from in vitro permeability data. A 35-compartment physiologically based mechanistic kidney model was developed based on human physiology. The model was verified using 46 test compounds, including neutrals, acids, bases, and zwitterions. The feasibility of incorporating active secretion and pH-dependent bidirectional passive diffusion into the model was demonstrated using para-aminohippuric acid (PAH), cimetidine, memantine, and salicylic acid. The developed model enables simulation of renal clearance from in vitro permeability data, with predicted renal clearance within twofold of observed for 87% of the test drugs.
Collapse
Affiliation(s)
- Weize Huang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Novel LC–MS assays impacting CYP and transporter drug–drug interaction evaluations. Bioanalysis 2018. [DOI: 10.4155/bio-2018-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Identification of novel cell-impermeant fluorescent substrates for testing the function and drug interaction of Organic Anion-Transporting Polypeptides, OATP1B1/1B3 and 2B1. Sci Rep 2018; 8:2630. [PMID: 29422623 PMCID: PMC5805760 DOI: 10.1038/s41598-018-20815-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
Organic Anion-Transporting Polypeptides are multispecific membrane proteins that regulate the passage of crucial endobiotics and drugs across pharmacological barriers. OATP1B1 and OATP1B3 have been described to play a major role in the hepatic uptake of statins, antivirals and various chemotherapeutics; whereas the pharmacological role of the ubiquitously expressed OATP2B1 is less well characterized. According to current industry standards, in vitro testing for susceptibility to OATP1B1 and 1B3 mediated transport is recommended for drug candidates that are eliminated in part via the liver. Here we show that human OATP1B1, 1B3 and 2B1 transport a series of commercially available viability dyes that are generally believed to be impermeable to intact cells. We demonstrate that the intracellular accumulation of Zombie Violet, Live/Dead Green, Cascade Blue and Alexa Fluor 405 is specifically increased by OATPs. Inhibition of Cascade Blue or Alexa Fluor 405 uptake by known OATP substrates/inhibitors yielded IC50 values in agreement with gold-standard radioligand assays. The fluorescence-based assays described in this study provide a new tool for testing OATP1B/2B1 drug interactions.
Collapse
|
22
|
Yoshida K, Zhao P, Zhang L, Abernethy DR, Rekić D, Reynolds KS, Galetin A, Huang SM. In Vitro–In Vivo Extrapolation of Metabolism- and Transporter-Mediated Drug–Drug Interactions—Overview of Basic Prediction Methods. J Pharm Sci 2017; 106:2209-2213. [DOI: 10.1016/j.xphs.2017.04.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
23
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
24
|
Kovacsics D, Patik I, Özvegy-Laczka C. The role of organic anion transporting polypeptides in drug absorption, distribution, excretion and drug-drug interactions. Expert Opin Drug Metab Toxicol 2016; 13:409-424. [PMID: 27783531 DOI: 10.1080/17425255.2017.1253679] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The in vivo fate and effectiveness of a drug depends highly on its absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Organic anion transporting polypeptides (OATPs) are membrane proteins involved in the cellular uptake of various organic compounds, including clinically used drugs. Since OATPs are significant players in drug absorption and distribution, modulation of OATP function via pharmacotherapy with OATP substrates/inhibitors, or modulation of their expression, affects drug pharmacokinetics. Given their cancer-specific expression, OATPs may also be considered anticancer drug targets. Areas covered: We describe the human OATP family, discussing clinically relevant consequences of altered OATP function. We offer a critical analysis of published data on the role of OATPs in ADME and in drug-drug interactions, especially focusing on OATP1A2, 1B1, 1B3 and 2B1. Expert opinion: Four members of the OATP family, 1A2, 1B1, 1B3 and 2B1, have been characterized in detail. As biochemical and pharmacological knowledge on the other OATPs is lacking, it seems timely to direct research efforts towards developing the experimental framework needed to investigate the transport mechanism and substrate specificity of the poorly described OATPs. In addition, elucidating the role of OATPs in tumor development and therapy response are critical avenues for further research.
Collapse
Affiliation(s)
- Daniella Kovacsics
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Izabel Patik
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Csilla Özvegy-Laczka
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
25
|
Burckhardt BC, Henjakovic M, Hagos Y, Burckhardt G. Counter-flow suggests transport of dantrolene and 5-OH dantrolene by the organic anion transporters 2 (OAT2) and 3 (OAT3). Pflugers Arch 2016; 468:1909-1918. [DOI: 10.1007/s00424-016-1894-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/27/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022]
|
26
|
Fan Y, Sun B, Agarwal S, Zhang L. Review of Transporter-Related Postmarketing Requirement or Postmarketing Commitment Studies. J Clin Pharmacol 2016; 56 Suppl 7:S193-204. [DOI: 10.1002/jcph.770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/21/2016] [Accepted: 05/11/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Ying Fan
- Office of Clinical Pharmacology; Office of Translational Sciences; Center for Drug Evaluation and Research; U.S. Food and Drug Administration; Silver Spring MD USA
- Current Affiliation: Office of Bioequivalence; Office of Generic Drugs; Center for Drug Evaluation and Research; U.S. Food and Drug Administration; Silver Spring MD USA
| | - Bo Sun
- Office of Clinical Pharmacology; Office of Translational Sciences; Center for Drug Evaluation and Research; U.S. Food and Drug Administration; Silver Spring MD USA
- Oak Ridge Institution for Science and Education (ORISE) Fellow; Oak Ridge TN USA
- Current Affiliation: Department of Pharmacy; Shanghai General Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Sheetal Agarwal
- Office of Clinical Pharmacology; Office of Translational Sciences; Center for Drug Evaluation and Research; U.S. Food and Drug Administration; Silver Spring MD USA
| | - Lei Zhang
- Office of Clinical Pharmacology; Office of Translational Sciences; Center for Drug Evaluation and Research; U.S. Food and Drug Administration; Silver Spring MD USA
| |
Collapse
|
27
|
Di Meo F, Fabre G, Berka K, Ossman T, Chantemargue B, Paloncýová M, Marquet P, Otyepka M, Trouillas P. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacol Res 2016; 111:471-486. [PMID: 27378566 DOI: 10.1016/j.phrs.2016.06.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; β-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.
Collapse
Affiliation(s)
- Florent Di Meo
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Gabin Fabre
- LCSN, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Karel Berka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Tahani Ossman
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Benjamin Chantemargue
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Markéta Paloncýová
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Pierre Marquet
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Michal Otyepka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic.
| |
Collapse
|
28
|
Brian W, Tremaine LM, Arefayene M, de Kanter R, Evers R, Guo Y, Kalabus J, Lin W, Loi CM, Xiao G. Assessment of drug metabolism enzyme and transporter pharmacogenetics in drug discovery and early development: perspectives of the I-PWG. Pharmacogenomics 2016; 17:615-31. [PMID: 27045656 DOI: 10.2217/pgs.16.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic variants of drug metabolism enzymes and transporters can result in high pharmacokinetic and pharmacodynamic variability, unwanted characteristics of efficacious and safe drugs. Ideally, the contributions of these enzymes and transporters to drug disposition can be predicted from in vitro experiments and in silico modeling in discovery or early development, and then be utilized during clinical development. Recently, regulatory agencies have provided guidance on the preclinical investigation of pharmacogenetics, for application to clinical drug development. This white paper summarizes the results of an industry survey conducted by the Industry Pharmacogenomics Working Group on current practice and challenges with using in vitro systems and in silico models to understand pharmacogenetic causes of variability in drug disposition.
Collapse
Affiliation(s)
- William Brian
- Sanofi, Translational Medicine and Early Development, 55 Corporate Drive, Bridgewater, NJ 08807, USA
| | - Larry M Tremaine
- Pfizer Inc., Worldwide Research and Development, Department of Pharmacokinetics, Dynamics and Metabolism, Eastern Point Road, Groton, CT 06340, USA
| | - Million Arefayene
- Biogen, Early Development Sciences, 14 Cambridge Center, Cambridge, MA 02142, USA
| | - Ruben de Kanter
- Preclinical Pharmacokinetics and Metabolism, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Raymond Evers
- Merck & Co, Pharmacodynamics, Pharmacokinetics and Drug Metabolism, 2000 Galloping Hill Road, Kenilworth, NJ07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Drug Disposition, LillyCorporate Center, Indianapolis, IN 46285, USA
| | - James Kalabus
- Novartis Pharmaceuticals, 1 Health Plaza, EastHanover, NJ 07936, USA
| | - Wen Lin
- Novartis Institutes for Biomedical Research, Drug Metabolism and Pharmacokinetics, One Health Plaza, East Hanover, NJ07936-1080, USA
| | - Cho-Ming Loi
- Pfizer Inc., Worldwide Research and Development, Department of Pharmacokinetics, Dynamics and Metabolism,10646 Science Center Drive, San Diego, CA 92121, USA
| | - Guangqing Xiao
- Biogen, Preclinical PK and In vitro ADME, 14 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
29
|
Riley RJ, Foley SA, Barton P, Soars MG, Williamson B. Hepatic drug transporters: the journey so far. Expert Opin Drug Metab Toxicol 2016; 12:201-16. [PMID: 26670591 DOI: 10.1517/17425255.2016.1132308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The key role of transporter biology in both the manifestation and treatment of disease is now firmly established. Experiences of sub-optimal drug exposure due to drug-transporter interplay have supported incorporation of studies aimed at understanding the interactions between compounds and drug transporters much earlier in drug discovery. While drug transporters can impact the most pivotal pharmacokinetic parameter with respect to human dose and exposure projections, clearance, at a renal or hepatobiliary level, the latter will form the focus of this perspective. AREAS COVERED A synopsis of guidelines on which transporters to study together with an overview of the currently available toolkit is presented. A perspective on when to conduct studies with various hepatic transporters is also provided together with structural "alerts" which should prompt early investigation. EXPERT OPINION Great progress has been made in individual laboratories and via consortia to understand the role of drug transporters in disease, drug disposition, drug-drug interactions and toxicity. A systematic analysis of the value posed by the available approaches and an inter-lab comparison now seems warranted. The emerging ability to use physico-chemical properties to guide future screening cascades promises to revolutionise the efficiency of early drug discovery.
Collapse
Affiliation(s)
| | | | - P Barton
- b School of Life Sciences , University of Nottingham , Nottingham , UK
| | - M G Soars
- c Drug Metabolism and Pharmacokinetics , Bristol-Myers Squibb , Wallingford , CT , USA
| | | |
Collapse
|
30
|
Volpe DA. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin Drug Discov 2015; 11:91-103. [DOI: 10.1517/17460441.2016.1101064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Donna A. Volpe
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
31
|
Mann A, Semenenko I, Meir M, Eyal S. Molecular Imaging of Membrane Transporters' Activity in Cancer: a Picture is Worth a Thousand Tubes. AAPS JOURNAL 2015; 17:788-801. [PMID: 25823669 DOI: 10.1208/s12248-015-9752-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/09/2015] [Indexed: 01/22/2023]
Abstract
Molecular imaging allows the non-invasive assessment of membrane transporter expression and function in living subjects. Such technologies have the potential to become diagnostic and prognostic tools, allowing detection, localization, and prediction of response of tumors and their metastases to therapy. Beyond tumors, imaging can also help understand the role of transporters in adverse drug effects and drug clearance. Here, we review molecular imaging technologies that monitor transporter-mediated processes. We emphasize emerging probe substrates and potential clinical applications of imaging the function of membrane transporters in cancer.
Collapse
Affiliation(s)
- Aniv Mann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Room 613, Ein Kerem, Jerusalem, 91120, Israel
| | | | | | | |
Collapse
|
32
|
Marada VVVR, Flörl S, Kühne A, Müller J, Burckhardt G, Hagos Y. Interaction of human organic anion transporter 2 (OAT2) and sodium taurocholate cotransporting polypeptide (NTCP) with antineoplastic drugs. Pharmacol Res 2014; 91:78-87. [PMID: 25481222 DOI: 10.1016/j.phrs.2014.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/23/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
The ability of an antineoplastic drug to exert its cytostatic effect depends largely on the balance between its uptake into and extrusion from the cancer cells. ATP driven efflux transporter proteins drive the export of antineoplastic drugs and play a pivotal role in the development of chemoresistance. As regards uptake transporters, comparably less is known on their impact in drug action. In the current study, we characterized the interactions of two uptake transporter proteins, expressed mainly in the liver; the organic anion transporter 2 (OAT2, encoded by the SLC22A7 gene) and the sodium taurocholate cotransporting polypeptide (NTCP, encoded by the SLC10A1 gene), stably transfected in human embryonic kidney cells, with some antineoplastic agents that are routinely being used in cancer chemotherapy. Whereas NTCP did not show any strong interactions with the cytostatics tested, we observed a very strong inhibition of OAT2 mediated [(3)H] cGMP uptake in the presence of bendamustine, irinotecan and paclitaxel. The Ki values of OAT2 for bendamustine, irinotecan and paclitaxel were determined to be 43.3±4.33μM, 26.4±2.34μM and 10.4±0.45μM, respectively. Incubation of bendamustine with OAT2 expressing cells increased the caspase-3 activity, and this increase was inhibited by simultaneous incubation with bendamustine and probenecid, a well-known inhibitor of OATs, suggesting that bendamustine is a substrate of OAT2. A higher accumulation of irinotecan was observed in OAT2 expressing cells compared to control pcDNA cells by HPLC analysis of cell lysates. The accumulation was diminished in the presence of cGMP, the substrate we used to functionally characterize OAT2, suggesting specificity of this uptake and the fact that OAT2 mediates uptake of irinotecan.
Collapse
Affiliation(s)
- Venkata V V R Marada
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Saskia Flörl
- PortaCellTec biosciences GmbH, Humboldtallee 23, 37073 Goettingen, Germany.
| | - Annett Kühne
- PortaCellTec biosciences GmbH, Humboldtallee 23, 37073 Goettingen, Germany.
| | - Judith Müller
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Gerhard Burckhardt
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Yohannes Hagos
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; PortaCellTec biosciences GmbH, Humboldtallee 23, 37073 Goettingen, Germany.
| |
Collapse
|
33
|
Yu J, Ritchie TK, Mulgaonkar A, Ragueneau-Majlessi I. Drug disposition and drug-drug interaction data in 2013 FDA new drug applications: a systematic review. Drug Metab Dispos 2014; 42:1991-2001. [PMID: 25271211 DOI: 10.1124/dmd.114.060392] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The aim of the present work was to perform a systematic review of drug metabolism, transport, pharmacokinetics, and DDI data available in the NDAs approved by the FDA in 2013, using the University of Washington Drug Interaction Database, and to highlight significant findings. Among 27 NMEs approved, 22 (81%) were well characterized with regard to drug metabolism, transport, or organ impairment, in accordance with the FDA drug interaction guidance (2012) and were fully analyzed in this review. In vitro, a majority of the NMEs were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. However, in vivo, only half (n = 11) showed clinically relevant drug interactions, with most related to the NMEs as victim drugs and CYP3A being the most affected enzyme. As perpetrators, the overall effects for NMEs were much less pronounced, compared with when they served as victims. In addition, the pharmacokinetic evaluation in patients with hepatic or renal impairment provided useful information for further understanding of the drugs' disposition.
Collapse
Affiliation(s)
- Jingjing Yu
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Tasha K Ritchie
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Aditi Mulgaonkar
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | | |
Collapse
|
34
|
Diallinas G. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Front Pharmacol 2014; 5:207. [PMID: 25309439 PMCID: PMC4162363 DOI: 10.3389/fphar.2014.00207] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 12/12/2022] Open
Abstract
Transporters are ubiquitous proteins mediating the translocation of solutes across cell membranes, a biological process involved in nutrition, signaling, neurotransmission, cell communication and drug uptake or efflux. Similarly to enzymes, most transporters have a single substrate binding-site and thus their activity follows Michaelis-Menten kinetics. Substrate binding elicits a series of structural changes, which produce a transporter conformer open toward the side opposite to the one from where the substrate was originally bound. This mechanism, involving alternate outward- and inward-facing transporter conformers, has gained significant support from structural, genetic, biochemical and biophysical approaches. Most transporters are specific for a given substrate or a group of substrates with similar chemical structure, but substrate specificity and/or affinity can vary dramatically, even among members of a transporter family that show high overall amino acid sequence and structural similarity. The current view is that transporter substrate affinity or specificity is determined by a small number of interactions a given solute can make within a specific binding site. However, genetic, biochemical and in silico modeling studies with the purine transporter UapA of the filamentous ascomycete Aspergillus nidulans have challenged this dogma. This review highlights results leading to a novel concept, stating that substrate specificity, but also transport kinetics and transporter turnover, are determined by subtle intramolecular interactions between a major substrate binding site and independent outward- or cytoplasmically-facing gating domains, analogous to those present in channels. This concept is supported by recent structural evidence from several, phylogenetically and functionally distinct transporter families. The significance of this concept is discussed in relationship to the role and potential exploitation of transporters in drug action.
Collapse
|
35
|
Jamei M, Bajot F, Neuhoff S, Barter Z, Yang J, Rostami-Hodjegan A, Rowland-Yeo K. A mechanistic framework for in vitro-in vivo extrapolation of liver membrane transporters: prediction of drug-drug interaction between rosuvastatin and cyclosporine. Clin Pharmacokinet 2014; 53:73-87. [PMID: 23881596 PMCID: PMC3889821 DOI: 10.1007/s40262-013-0097-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background and Objectives The interplay between liver metabolising enzymes and transporters is a complex process involving system-related parameters such as liver blood perfusion as well as drug attributes including protein and lipid binding, ionisation, relative magnitude of passive and active permeation. Metabolism- and/or transporter-mediated drug–drug interactions (mDDIs and tDDIs) add to the complexity of this interplay. Thus, gaining meaningful insight into the impact of each element on the disposition of a drug and accurately predicting drug–drug interactions becomes very challenging. To address this, an in vitro–in vivo extrapolation (IVIVE)-linked mechanistic physiologically based pharmacokinetic (PBPK) framework for modelling liver transporters and their interplay with liver metabolising enzymes has been developed and implemented within the Simcyp Simulator®. Methods In this article an IVIVE technique for liver transporters is described and a full-body PBPK model is developed. Passive and active (saturable) transport at both liver sinusoidal and canalicular membranes are accounted for and the impact of binding and ionisation processes is considered. The model also accommodates tDDIs involving inhibition of multiple transporters. Integrating prior in vitro information on the metabolism and transporter kinetics of rosuvastatin (organic-anion transporting polypeptides OATP1B1, OAT1B3 and OATP2B1, sodium-dependent taurocholate co-transporting polypeptide [NTCP] and breast cancer resistance protein [BCRP]) with one clinical dataset, the PBPK model was used to simulate the drug disposition of rosuvastatin for 11 reported studies that had not been used for development of the rosuvastatin model. Results The simulated area under the plasma concentration–time curve (AUC), maximum concentration (Cmax) and the time to reach Cmax (tmax) values of rosuvastatin over the dose range of 10–80 mg, were within 2-fold of the observed data. Subsequently, the validated model was used to investigate the impact of coadministration of cyclosporine (ciclosporin), an inhibitor of OATPs, BCRP and NTCP, on the exposure of rosuvastatin in healthy volunteers. Conclusion The results show the utility of the model to integrate a wide range of in vitro and in vivo data and simulate the outcome of clinical studies, with implications for their design. Electronic supplementary material The online version of this article (doi:10.1007/s40262-013-0097-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Jamei
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, John Street, S2 4SU, Sheffield, UK,
| | | | | | | | | | | | | |
Collapse
|
36
|
Macha S, Koenen R, Sennewald R, Schöne K, Hummel N, Riedmaier S, Woerle HJ, Salsali A, Broedl UC. Effect of Gemfibrozil, Rifampicin, or Probenecid on the Pharmacokinetics of the SGLT2 Inhibitor Empagliflozin in Healthy Volunteers. Clin Ther 2014; 36:280-90.e1. [DOI: 10.1016/j.clinthera.2014.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
|
37
|
Yeo KR, Jamei M, Rostami-Hodjegan A. Predicting drug-drug interactions: application of physiologically based pharmacokinetic models under a systems biology approach. Expert Rev Clin Pharmacol 2013; 6:143-57. [PMID: 23473592 DOI: 10.1586/ecp.13.4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The development of in vitro-in vivo extrapolation (IVIVE), a 'bottom-up' approach, to predict pharmacokinetic parameters and drug-drug interactions (DDIs) has accelerated mainly due to an increase in the understanding of the multiple mechanisms involved in these interactions and the availability of appropriate in vitro systems that act as surrogates for delineating various elements of the interactions relevant to absorption, distribution, metabolism and elimination. Recent advances in the knowledge of the population variables required for IVIVE (demographic, anatomical, genetic and physiological parameters) have also contributed to the appreciation of the sources of variability and wider use of this approach for different scenarios within the pharmaceutical industry. Initially, the authors present an overview of the integration of IVIVE into 'static' and 'dynamic' models for the quantitative prediction of DDIs. The main purpose of this review is to discuss the application of IVIVE in conjunction with physiologically based pharmacokinetic modeling under a systems biology approach to characterize the potential DDIs in individual patients, including those who cannot be investigated in formal clinical trials for ethical reasons. In addition, we address the issues related to the prediction of complex DDIs involving the inhibition of cytochrome P- and transporter-mediated activities through multiple drugs.
Collapse
Affiliation(s)
- Karen Rowland Yeo
- Simcyp Limited, Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK.
| | | | | |
Collapse
|
38
|
Giacomini KM, Huang SM. Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther 2013; 94:3-9. [PMID: 23778703 DOI: 10.1038/clpt.2013.86] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
More than 400 membrane transporters in two major superfamilies-ATP-binding cassette (ABC) and solute carrier (SLC)-are annotated in the human genome. Preclinical and clinical studies indicate that transport is an important determinant of drug disposition, as well as therapeutic and adverse drug effects. Importantly, transporters may represent the rate-determining step of drug absorption, distribution, and elimination in the intestine, liver, kidney, and blood-brain barrier (BBB), and they are often the sites of drug-drug interactions.
Collapse
|
39
|
Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin Pharmacol Ther 2013; 94:52-63. [PMID: 23588305 DOI: 10.1038/clpt.2013.74] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The International Transporter Consortium (ITC) has recently described seven transporters of particular relevance to drug development. Based on the second ITC transporter workshop in 2012, we have identified additional transporters of emerging importance in pharmacokinetics, interference of drugs with transport of endogenous compounds, and drug-drug interactions (DDIs) in humans. The multidrug and toxin extrusion proteins (MATEs, gene symbol SLC47A) mediate excretion of organic cations into bile and urine. MATEs are important in renal DDIs. Multidrug resistance proteins (MRPs or ABCCs) are drug and conjugate efflux pumps, and impaired activity of MRP2 results in conjugated hyperbilirubinemia. The bile salt export pump (BSEP or ABCB11) prevents accumulation of toxic bile salt concentrations in hepatocytes, and BSEP inhibition or deficiency may cause cholestasis and liver injury. In addition, examples are presented on the roles of nucleoside and peptide transporters in drug targeting and disposition.
Collapse
|
40
|
Roden DM. Cardiovascular pharmacogenomics: the future of cardiovascular therapeutics? Can J Cardiol 2013; 29:58-66. [PMID: 23200096 PMCID: PMC3529768 DOI: 10.1016/j.cjca.2012.07.845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 01/08/2023] Open
Abstract
Responses to drug therapy vary from benefit to no effect to adverse effects which can be serious or occasionally fatal. Increasing evidence supports the idea that genetic variants can play a major role in this spectrum of responses. Well-studied examples in cardiovascular therapeutics include predictors of steady-state warfarin dosage, predictors of reduced efficacy among patients receiving clopidogrel for drug eluting stents, and predictors of some serious adverse drug effects. This review summarizes contemporary approaches to identifying and validating genetic predictors of variability in response to drug treatment. Approaches to incorporating this new knowledge into clinical care, and the barriers to this concept, are addressed.
Collapse
Affiliation(s)
- Dan M Roden
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
41
|
The Role of Transporters in Drug Development: Regulatory Science Perspectives from the FDA. TRANSPORTERS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-8229-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2012. [PMID: 23207804 DOI: 10.1016/j.drudis.2012.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).
Collapse
|
43
|
An Overview of Transporter Information in Package Inserts of Recently Approved New Molecular Entities. Pharm Res 2012. [DOI: 10.1007/s11095-012-0924-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Sprowl JA, Sparreboom A. Drug Trafficking: Recent Advances in Therapeutics and Disease. Clin Pharmacol Ther 2012; 92:531-4. [DOI: 10.1038/clpt.2012.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Rowland M, Noe CR, Smith DA, Tucker GT, Crommelin DJA, Peck CC, Rocci ML, Besançon L, Shah VP. Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. J Pharm Sci 2012; 101:4075-99. [PMID: 22911654 DOI: 10.1002/jps.23295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/10/2012] [Accepted: 07/31/2012] [Indexed: 11/07/2022]
Abstract
During the last century, particularly the latter half, spectacular progress has been made in improving the health and longevity of people. The reasons are many, but the development of medicines has played a critical role. This report documents and reflects on the impressive contribution that those working in the pharmaceutical sciences have made to healthcare over the past 50 years. It is divided into six sections (drug discovery; absorption, distribution, metabolism, and excretion; pharmacokinetics and pharmacodynamics; drug formulation; drug regulation; and drug utilization), each describing key contributions that have been made in the progression of medicines, from conception to use. A common thread throughout is the application of translational science to the improvement of drug discovery, development, and therapeutic application. Each section has been coordinated by a leading scientist who was asked, after consulting widely with many colleagues across the globe, to identify "The five most influential ideas/concepts/developments introduced by 'pharmaceutical scientists' (in their field) over the past 50 years?" Although one cannot predict where the important breakthroughs will come in the future to meet the unmet medical needs, the evidence presented in this report should leave no doubt that those engaged in the pharmaceutical sciences will continue to make their contributions heavily felt.
Collapse
Affiliation(s)
- Malcolm Rowland
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kunze A, Huwyler J, Camenisch G, Gutmann H. Interaction of the antiviral drug telaprevir with renal and hepatic drug transporters. Biochem Pharmacol 2012; 84:1096-102. [PMID: 22902721 DOI: 10.1016/j.bcp.2012.07.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 02/06/2023]
Abstract
Telaprevir is a new, direct-acting antiviral drug that has been approved for the treatment of chronic hepatitis C viral infection. First data on drug-drug interactions with co-medications such as cyclosporine, tacrolimus and atorvastatin have been reported recently. Drug transporting proteins have been shown to play an important role in clinically observed drug-drug interactions. The aim of this study was therefore to systematically investigate the potential of telaprevir to inhibit drug transporting proteins. The effect of telaprevir on substrate uptake mediated by drug transporters located in human kidney and liver was investigated on a functional level in HEK293 cell lines that over-express single transporter. Telaprevir was shown to exhibit significant inhibition of the human renal drug transporters OCT2 and MATE1 with IC(50) values of 6.4 μM and 23.0 μM, respectively, whereas no inhibitory effect on OAT1 and OAT3 mediated transport by telaprevir was demonstrated. Liver drug transporters were inhibited with an IC(50) of 2.2 μM for OATP1B1, 6.8 μM for OATP1B3 and 20.7 μM for OCT1. Our data show that telaprevir exhibited significant potential to inhibit human drug transporters. In view of the inhibitory potential of telaprevir, clinical co-administration of telaprevir together with drugs that are substrates of renal or hepatic transporters should be carefully monitored.
Collapse
Affiliation(s)
- Annett Kunze
- Division of Drug Metabolism and Pharmacokinetics, Drug-Drug Interactions Section, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
47
|
König J, Klatt S, Dilger K, Fromm MF. Characterization of Ursodeoxycholic and Norursodeoxycholic Acid as Substrates of the Hepatic Uptake Transporters OATP1B1, OATP1B3, OATP2B1 and NTCP. Basic Clin Pharmacol Toxicol 2012; 111:81-6. [DOI: 10.1111/j.1742-7843.2012.00865.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/13/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen; Germany
| | - Sabine Klatt
- Institute of Experimental and Clinical Pharmacology and Toxicology; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen; Germany
| | - Karin Dilger
- Dr. Falk Pharma GmbH; Leinenweberstraße 5; Freiburg; Germany
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen; Germany
| |
Collapse
|
48
|
Barratt RA, Bowens SL, McCune SK, Johannessen JN, Buckman SY. The Critical Path Initiative: Leveraging Collaborations to Enhance Regulatory Science. Clin Pharmacol Ther 2012; 91:380-3. [DOI: 10.1038/clpt.2011.318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Clarke JD, Cherrington NJ. Genetics or environment in drug transport: the case of organic anion transporting polypeptides and adverse drug reactions. Expert Opin Drug Metab Toxicol 2012; 8:349-60. [PMID: 22280100 DOI: 10.1517/17425255.2012.656087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Organic anion transporting polypeptide (OATP) uptake transporters are important for the disposition of many drugs and perturbed OATP activity can contribute to adverse drug reactions (ADRs). It is well documented that both genetic and environmental factors can alter OATP expression and activity. Genetic factors include single nucleotide polymorphisms (SNPs) that change OATP activity and epigenetic regulation that modify OATP expression levels. SNPs in OATPs contribute to ADRs. Environmental factors include the pharmacological context of drug-drug interactions and the physiological context of liver diseases. Liver diseases such as non-alcoholic fatty liver disease, cholestasis and hepatocellular carcinoma change the expression of multiple OATP isoforms. The role of liver diseases in the occurrence of ADRs is unknown. AREAS COVERED This article covers the roles OATPs play in ADRs when considered in the context of genetic or environmental factors. The reader will gain a greater appreciation for the current evidence regarding the salience and importance of each factor in OATP-mediated ADRs. EXPERT OPINION A SNP in a single OATP transporter can cause changes in drug pharmacokinetics and contribute to ADRs but, because of overlap in substrate specificities, there is potential for compensatory transport by other OATP isoforms. By contrast, the expression of multiple OATP isoforms is decreased in liver diseases, reducing compensatory transport and thereby increasing the probability of ADRs. To date, most research has focused on the genetic factors in OATP-mediated ADRs while the impact of environmental factors has largely been ignored.
Collapse
Affiliation(s)
- John D Clarke
- University of Arizona, Department of Pharmacology and Toxicology, 1703 E. Mabel Street, Tucson, AZ 85721, USA
| | | |
Collapse
|
50
|
König J, Zolk O, Singer K, Hoffmann C, Fromm MF. Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol 2011; 163:546-55. [PMID: 20883471 DOI: 10.1111/j.1476-5381.2010.01052.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The organic cation transporters 1 (OCT1) and 2 (OCT2) mediate drug uptake into hepatocytes and renal proximal tubular cells, respectively. Multidrug and toxin extrusion protein 1 (MATE1) is a major component of subsequent export into bile and urine. However, the functional interaction of OCTs and MATE1 for uptake and transcellular transport of the oral antidiabetic drug metformin or of the cation 1-methyl-4-phenylpyridinium (MPP(+)) has not fully been characterized. EXPERIMENTAL APPROACH Single-transfected Madin-Darby canine kidney (MDCK) cells as well as double-transfected MDCK-OCT1-MATE1 and -OCT2-MATE1 cells were used to study metformin and MPP(+) uptake into and transcellular transport across cell monolayers, along with their concentration and pH dependence. KEY RESULTS Cellular accumulation of MPP(+) and metformin was significantly reduced by 31% and 46% in MDCK-MATE1 single-transfected cells compared with MDCK control cells (10 µM; P < 0.01). Over a wide concentration range (10-2500 µM) metformin transcellular transport from the basal into the apical compartment was significantly higher in the double-transfected cells compared with the MDCK control and MDCK-MATE1 monolayers. This process was not saturated up to metformin concentrations of 2500 µM. In MDCK-OCT2-MATE1 cells basal to apical MPP(+) and metformin transcellular translocation decreased with increasing pH from 6.0 to 7.5. CONCLUSIONS AND IMPLICATIONS Our data demonstrate functional interplay between OCT1/OCT2-mediated uptake and efflux by MATE1. Moreover, MATE1 function in human kidney might be modified by changes in luminal pH values.
Collapse
Affiliation(s)
- J König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Universität of Erlangen-Nürnberg, Germany
| | | | | | | | | |
Collapse
|